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Abstract— A lightweight pointer-analysis framework, srcPtr, is 
presented to support the implementation and comparison of 
points-to analysis algorithms.  It differentiates itself from existing 
tools by performing the analysis directly on the abstract syntax 
tree, as opposed to an intermediate representation (e.g., LLVM 
IR), by using srcML, an XML representation of source code.  
Working with srcML and the abstract syntax allows easy access to 
the actual source code as the programmer views it, thus better 
supporting comprehension.  Currently the framework provides 
example implementations for both Andersen’s and Steensgaard’s 
pointer-analysis algorithms.  It also allows for easy integration of 
other points-to algorithms for comparison of accuracy/speed.  The 
approach is very scalable and can generate pointer dependencies 
for a 750 KLOC program in less than a minute.  
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I. INTRODUCTION  
Pointer analysis encompasses a widely-used set of 

techniques aimed at determining, for a pointer, the possible set 
of memory locations it will reference at runtime.  The idea of 
pointer analysis is simple: determine what memory locations a 
given pointer (or perhaps all pointers within a program) will 
point to.  There are a number of characteristics that affect how 
efficient or precise a given points-to algorithm is [1].  For 
example, flow-sensitive algorithms consider control-flow 
information during analysis; context-sensitive algorithms 
examine the calling context when analyzing functions, 
respecting call/return semantics to avoid recording 
interprocedurally-unrealizable paths; algorithms that perform 
aggregate modeling pay attention to the internals of objects 
rather than collapsing them into singular objects; and other 
pointer-analysis algorithms model relationships using either 
points-to relationships or generalized aliasing [2].   

The use of pointers in programs often decrease the 
understandability of the code.  They clearly increase the 
complexity of conducting static analysis and are often the source 
of nefarious bugs.  Hence, having tools for pointer analysis is of 
benefit to the programmer in the context of program 
comprehension.  

There are numerous approaches for pointer analysis [3]–[8], 
each containing some set of the characteristics above [1].  Many 
of these approaches implement a single pointer-analysis 
algorithm and work on a specific target language.  On its own, 
this is not a problem.  However, if we are interested in 
comparing these algorithms based on speed/accuracy or how 
useful they are for comprehension, the inflexibility of these tools 
is a limitation.   

We introduce srcPtr, a framework that directly supports the 
implementation, application, and comparison of pointer-
analysis algorithms.  srcPtr is tested on flow insensitive and 
context sensitive/insensitive, points-to analysis algorithms.  In 
the future, the framework will also support flow-sensitive 
analysis.  The framework is fast, scalable, and modular; 
allowing for any static pointer analysis algorithm to be 
implemented by extending the framework’s interface.  The tool 
also works directly with the source code rather than with an 
intermediate representation or byte code.  This facilitates 
studying how these different algorithms can be used for tracking 
down errors and comprehending the code. 

There are few open-source pointer-analysis tools available 
to researchers and students that are extensible.  With srcPtr, 
developers can easily use the output of multiple pointer-analysis 
algorithms to solve research or industry problems.  For example, 
one can estimate the impact of a change to a large system using 
multiple tools to help improve the accuracy of their estimation.  
This is very important for planning the implementation of new 
features and understanding how a change is related to other parts 
of the system.  Furthermore, because the srcPtr framework is 
fast, this may be done very efficiently when using an efficient 
pointer-analysis algorithm; the framework does not significantly 
impact performance.  Finally, we feel a fast pointer-analysis 
approach can open up new avenues of research in metrics and 
mining of histories.  That is, pointer analysis can now be applied, 
compared, and synergized on very large systems and even on 
entire version histories in very practical time frames.  This opens 
the door to a number of experiments and empirical 
investigations previously too costly to undertake. 



II. SRCPTR 
The srcPtr framework is built using the srcML [9] 

infrastructure (www.srcML.org).  srcML is an XML format 
which augments source code with abstract-syntax information.  
srcML provides direct access to this information to support 
several activities including static analysis and fact extraction, 
which are core to srcPtr.  While srcML supports several 
languages (i.e., C/C++/C#/Java), the current implementation of 
srcPtr has been built to operate on C / C++ grammar, but could 
be extended to support other languages in the future. srcPtr uses 
the srcSAXEventDispatcher (part of the srcML infrastructure) 
for parsing the generated srcML. 

The core responsibility of srcPtr is to collect the information 
necessary to conduct pointer analysis.  The framework uses a 
two-pass algorithm over the srcML document; this document 
can be one file, an entire system/project, or even a single 
function.  We detail the main activities of this two-pass process 
within the next three subsections. 

A. Initial Data Collection 
The first pass of srcPtr collects data about class definitions 

and free-function definitions/declarations.  From class 
definitions, srcPtr collects the name, specifiers, and types of 
public fields and method parameters.  It also collects the name 
and number of parameters of public methods.  From free-
function definitions, srcPtr collects the number of parameters 
and name/type/specifier for each parameter.  Local variables are 
ignored during the first pass but are resolved in the second pass. 

Fig. 1. The architecture of srcPtr.  Source code is translated into srcML, then 
it is traversed using srcSAX and pointer information is collected and stored in 
a dictionary.  Pointer-analysis algorithms are then applied to the dictionary 
before srcPtr outputs the result. 

B. Resolving and Analyzing Pointers 
The second pass is where srcPtr scans for usages of variables 

collected in the previous steps by re-traversing srcML’s AST.  
That is, it looks for where a variable is assigned or where it is 
passed into a function or method call.  srcPtr additionally begins 
to keep track of local variables, which it skips during the first 
pass, collecting declaration and usage information.  Each time a 
local declaration is found, srcPtr collects the variable’s name, 
specifiers (e.g., constness, whether it is a pointer or reference), 

type, line number, and containing file.  Declarations are stored 
on a scope stack to differentiate between identifiers with the 
same name.  Every time a new scope is entered, a new frame is 
pushed onto the stack.  When the algorithm exits a scope, the top 
of the stack is popped.  Each frame is composed of two items: a 
map (i.e., dictionary) from variable names to their collected data 
(i.e., {{varname1, vardata1}, ..., {varnamen, vardatan}}), and a 
map from function names to data about the function (i.e., 
{{funcname1, funcdata1}, …, {funcnamen, funcdatan}}).  This 
way, we can differentiate between variables in differing scopes 
when collecting data. 

When a local variable is found, srcPtr checks to see if the 
type of this variable is that of a known class.  If it is, each of the 
class’ public member variables and methods are pushed onto the 
stack, preceded by the name of the variable.  For example, let us 
assume a class named string with a single public member 
variable c_str and two methods: print() and trim().  If an object 
x of type string is declared, we create two variables, x and 
x.c_str, and two functions, x.print and x.trim.  All of this is 
pushed onto the scope stack.  This supports aggregate modeling. 

While collecting local-variable information and constructing 
the stack, srcPtr resolves points-to relationships by keeping 
track of when a pointer is assigned a new memory location 
through either explicit assignment (i.e., using ‘=’) or calls made 
to functions/methods (i.e., the pointer is a parameter).  When a 
pointer assignment is detected, srcPtr calls one of two special 
functions.  These special functions are how pointer-analysis 
algorithms interact with srcPtr.  We discuss these now. 

C. Performing Pointer Analysis with srcPtr 
srcPtr allows integration of custom pointer-analysis 

algorithms via a template-method design pattern.  The analysis 
algorithm must implement a class with two methods to handle 
pointer changes: AddAssignmentRelationship(lhs,rhs), which is 
called when a pointer is assigned to another pointer, and 
AddPointsToRelationship(lhs,rhs), which is called when a 
pointer is assigned to point to a variable.  These two methods 
cover everything that can happen to a pointer in C++.  The class 
containing these two methods is passed via template to srcPtr’s 
main class.  These methods are triggered as described above and 
the algorithm can process/store data as required.  A graphical 
representation of srcPtr’s architecture appears in Fig. 1. 

srcPtr provides a default algorithm that is used when no 
custom pointer-analysis algorithm is provided.  This default 
algorithm collects information about pointer assignments, but no 
analysis is performed.  We use it to help measure overhead in 
srcPtr’s performance.  Additionally, we have integrated two 
well-known points-to analysis algorithms, Andersen’s [10] and 
Steensgard’s [11], into the srcPtr framework.   

III. OUTPUT 
Fig. 2 gives an example of code with pointers.  We ran this code 
through srcPtr and used our implementation of Andersen’s 
algorithm to generate results.  Output is in Table 1 where the left 
column gives the line number, data type, alias type and name of 
each pointer identifier.  The right column gives the line number, 
data type, and name of the identifier pointed to by the 
corresponding pointer found in the left column.  For example, 
num2 is a pointer to an integer that is declared on line 6.  During 
execution, it might end up pointing to the integer declared on 



line 6, calc.result, and another integer declared on line 10 called 
y.  In this example, only integers are used as datatypes (and 
pointers to them), but srcPtr supports all datatypes. 

This example also highlights a caveat of static pointer 
analysis.  Based on the code, the variable num2 could never end 
up pointing to calc.result, but since the pointer analysis is done 
statically, this has to be assumed.  srcPtr also supports the 
generation of visualizations as seen in Fig. 3 using graphViz and 
the pointer-analysis results base on the code in Fig 2. 

1 class Calculator { public: 
2    void Add(int& num1, int* num2) { 
3       int sum = num1 + *num2; 
4       result = sum; 
5    } 
6    int result; 
7 }; 
8 int main() { 
9    int x = 12; 
10    int y = 24; 
11    int* ptr = &y; 
12    Calculator calc; 
13    calc.Add(x, ptr); 
14    ptr = &calc.result; 
15    std::cout << *ptr; 
16 } 
Fig. 2. Code with pointers and references used directly and as parameters. 

 

Fig. 3. Example of srcPtr graphviz output of the analysis given in Table I of 
the code example in Fig. 2 

Table 1.  Points-to relationships for example given in Fig. 2.  Line number of 
the code is given in parentheses. 

(Line #) Pointer (Line #) Points to 
(2)  int & num1 (9)  int x  

(2)  int * num2 
(6)  int calc.result  
(10) int y  

(11) int * ptr 
(6)  int calc.result  
(10) int y  

IV. PERFORMANCE 
srcPtr is built using the srcML infrastructure and 

implemented as a SAX parser.  Translating source code to the 
srcML format is very fast with speeds of ~35 KLOC/sec, with 
translation of the entire Linux kernel in ~7 minutes.  The SAX 
parser is a C++ wrapper around libxml2’s SAX interface called 
srcSAX; it was made specifically to support building tools that 
use srcML.  Since SAX parsers store no data about previously 

seen nodes (e.g., tags), they are very memory and operation 
efficient.  To take full advantage, we have worked to store as 
little data as possible and minimize repetition.  As a result, 
srcPtr is quite fast. 

The blue line in Fig. 4 is baseline performance with no 
pointer analysis and demonstrates the framework overhead of 
srcPtr.  The results are that srcPtr is quite scalable as the runtime 
is linear with respect to the number of lines of code.  The orange 
line in Fig. 4 is pointer analysis performed with Andersen’s 
algorithm using srcPtr.  The runtime complexity of Andersen’s 
algorithm is O(n3), which remains consistent with our findings 
due to srcPtr’s low overhead. 

To determine if our framework runtime is comparable to 
current practices, we also ran Andersen’s pointer analysis using 
srcPtr on Git to compare runtime performance with the tool 
PtrTracker [12].  Converting the Git source code to srcML takes 
less than 8 seconds and running Andersen’s algorithm using 
srcPtr takes 43 seconds.  The total runtime from original source 
code to the output of the points-to analysis is under 1 minute.  
The time reported for PtrTracker for a similar analysis was 27 
minutes.  It is worth noting that the speed difference could be 
due to PtrTracker’s use of the Goanna architecture for AST 
generation and analysis. Accuracy differences between the two 
implementations was also not considered. 

 
Fig. 4. Comparison of the execution time of the framework to the KLOC of 
the source code. The blue line is the baseline runtime of data collection versus 
lines of code, and the results show that the data collection is linear. The orange 
line shows runtimes with Andersen’s algorithm, and demonstrates that the 
runtime complexity of O(n3) is preserved with srcPtr. 

V. USING SRCPTR 
The example implementations included with srcPtr can be 

run the using the command-line tool srcptr to apply pointer 
analysis on the srcML format of source code.  To convert to 
srcML, the srcml command-line client is used with the option --
position so that line numbers are included: 

srcml main.cpp --position -o main.cpp.xml 
The command to run srcptr on a srcML file is: 

srcptr -a main.cpp.xml > pointer.out 
where main.cpp.xml is the srcML format of the main.cpp and 
pointer.out is the output file.  The option –a selects Andersen’s 
algorithm and -s for Steensgard’s.  As other algorithms are 
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implemented, you will be able to use other flags.  By default, 
srcptr outputs the pointer report to stdout. 

The client srcptr supports pointer-graph generation with 
graphViz.  To make srcptr generate a dotfile use the flag ‘-g’: 

srcptr -a -g file.cpp.xml > graph.dot 
Then, run the following command to generate a graph with 
graphViz based on the file created earlier (requires graphViz): 

dot -Tpng graph.dot > out.png 
You can download srcPtr at www.srcML.org under tools. 
Installation instructions and documentation are also available.   

VI. RELATED WORK 
Pointer analysis is a heavily-researched topic spanning over 

a decade of published work.  We direct readers interested in a 
broad overview of the field to surveys [1], [13], [14].  Much of 
the current work in pointer analysis supports compiler 
optimizations [3]–[6].  However, SVF can be used more broadly 
as it a general-purpose analysis framework.  These approaches 
and supporting frameworks utilize compiler technologies, 
specifically LLVM, to supply the IR (intermediate 
representation) and core analyses.  These IR representations are 
represented as low-level assembly instructions and require the 
source code to be complete and compiling. 

The goal of PtrTracker [12] is to perform pointer analysis 
and improve the accuracy of software bugs and vulnerabilities 
detected by Goanna.  PtrTracker is modeled after shape analysis 
and uses heap graphs for pointer analysis.  Goanna is capable of 
producing an AST of source code in XML and performs 
interprocedural analysis.  PtrTracker integrates with Goanna by 
enhancing the AST it builds with sets of variables that might be 
affected by pointer dereferences.  Goanna then uses the 
enhanced AST to complete its bug detection analysis. 

srcPtr differentiates itself from the existing approaches by 
using a much higher-level IR representation.  For our work, 
srcML serves as the IR by inserting AST elements into the 
source code and allowing the original contents of the source 
code (whitespace and comments included) to remain intact when 
moving to and from the srcML format.  Parsing with srcML does 
not require compilation of the source code, which permits srcPtr 
to run analysis on incomplete code, and even code fragments.  
This allows for better developer support for tasks such as source-
code transformation [7] and impact analysis [8]. Using a high-
level IR permits srcPtr to collect much more code centric pointer 
information. However, this introduces a trade-off – analyzing 
C++ code is harder then a lower level representation (LLVM IR 
or assembly). 

VII. CONCLUSIONS AND FUTURE WORK 
The framework srcPtr supports the use and implementation 

of pointer-analysis algorithms.  srcPtr has a number of 
advantages that make it useful for developers and researchers.  
There is no need to compile the code or even have a complete 
system that compiles.  This way analysis can be easily done on 
partial code or only part of a system.  This also makes the 
framework more standalone in that it is not tied to any specific 
compiler.  The framework exhibits low overhead and scales well 
making experimenting with different analysis algorithms easy.   

Currently srcPtr is implemented for C/C++ but srcML also 
supports C# and Java.  It is relatively straightforward to extend 
srcPtr to C#/Java.  As a research prototype, limitations exist.  
However, srcPtr can be applied to large systems without issue.  
Because srcML supports multiple languages, pointer analysis 
can feasibly be done on systems that are written in multiple 
languages.  We also see this as a platform to compare and 
experiment with pointer-analysis techniques. 

There are a number of general limitations.  Only simple type-
based points-to analysis is supported.  This does not address full 
alias analysis.  We do not do any flow analysis.  Our type 
analysis is somewhat limited (but can be improved).  Function 
pointers are not considered at this time; only c-pointers.  There 
is also no support for STL shared pointers.  This work was 
supported in part by a grant from the US National Science 
Foundation CNS 13-05292/05217. 
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