
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

srcPtr: A Framework for Implementing
Static Pointer Analysis Approaches

Vlas Zyrianov
Department of Computer Science

Kent State University
Kent, Ohio USA

vzyriano@kent.edu

Christian D. Newman
Dept. of Software Engineering

Rochester Institute of
Technology

Rochester, NY USA
cnewman@se.rit.edu

Drew T. Guarnera
Department of Computer Science

Kent State University
Kent, Ohio USA

dguarner@kent.edu

Michael L. Collard
Department of Computer Science

The University of Akron
Akron, Ohio USA

collard@uakron.edu

Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent, Ohio USA

jmaletic@kent.edu

Abstract— A lightweight pointer-analysis framework, srcPtr, is
presented to support the implementation and comparison of
points-to analysis algorithms. It differentiates itself from existing
tools by performing the analysis directly on the abstract syntax
tree, as opposed to an intermediate representation (e.g., LLVM
IR), by using srcML, an XML representation of source code.
Working with srcML and the abstract syntax allows easy access to
the actual source code as the programmer views it, thus better
supporting comprehension. Currently the framework provides
example implementations for both Andersen’s and Steensgaard’s
pointer-analysis algorithms. It also allows for easy integration of
other points-to algorithms for comparison of accuracy/speed. The
approach is very scalable and can generate pointer dependencies
for a 750 KLOC program in less than a minute.

Keywords— Pointer analysis; static program analysis; srcML

I. INTRODUCTION
Pointer analysis encompasses a widely-used set of

techniques aimed at determining, for a pointer, the possible set
of memory locations it will reference at runtime. The idea of
pointer analysis is simple: determine what memory locations a
given pointer (or perhaps all pointers within a program) will
point to. There are a number of characteristics that affect how
efficient or precise a given points-to algorithm is [1]. For
example, flow-sensitive algorithms consider control-flow
information during analysis; context-sensitive algorithms
examine the calling context when analyzing functions,
respecting call/return semantics to avoid recording
interprocedurally-unrealizable paths; algorithms that perform
aggregate modeling pay attention to the internals of objects
rather than collapsing them into singular objects; and other
pointer-analysis algorithms model relationships using either
points-to relationships or generalized aliasing [2].

The use of pointers in programs often decrease the
understandability of the code. They clearly increase the
complexity of conducting static analysis and are often the source
of nefarious bugs. Hence, having tools for pointer analysis is of
benefit to the programmer in the context of program
comprehension.

There are numerous approaches for pointer analysis [3]–[8],
each containing some set of the characteristics above [1]. Many
of these approaches implement a single pointer-analysis
algorithm and work on a specific target language. On its own,
this is not a problem. However, if we are interested in
comparing these algorithms based on speed/accuracy or how
useful they are for comprehension, the inflexibility of these tools
is a limitation.

We introduce srcPtr, a framework that directly supports the
implementation, application, and comparison of pointer-
analysis algorithms. srcPtr is tested on flow insensitive and
context sensitive/insensitive, points-to analysis algorithms. In
the future, the framework will also support flow-sensitive
analysis. The framework is fast, scalable, and modular;
allowing for any static pointer analysis algorithm to be
implemented by extending the framework’s interface. The tool
also works directly with the source code rather than with an
intermediate representation or byte code. This facilitates
studying how these different algorithms can be used for tracking
down errors and comprehending the code.

There are few open-source pointer-analysis tools available
to researchers and students that are extensible. With srcPtr,
developers can easily use the output of multiple pointer-analysis
algorithms to solve research or industry problems. For example,
one can estimate the impact of a change to a large system using
multiple tools to help improve the accuracy of their estimation.
This is very important for planning the implementation of new
features and understanding how a change is related to other parts
of the system. Furthermore, because the srcPtr framework is
fast, this may be done very efficiently when using an efficient
pointer-analysis algorithm; the framework does not significantly
impact performance. Finally, we feel a fast pointer-analysis
approach can open up new avenues of research in metrics and
mining of histories. That is, pointer analysis can now be applied,
compared, and synergized on very large systems and even on
entire version histories in very practical time frames. This opens
the door to a number of experiments and empirical
investigations previously too costly to undertake.

II. SRCPTR
The srcPtr framework is built using the srcML [9]

infrastructure (www.srcML.org). srcML is an XML format
which augments source code with abstract-syntax information.
srcML provides direct access to this information to support
several activities including static analysis and fact extraction,
which are core to srcPtr. While srcML supports several
languages (i.e., C/C++/C#/Java), the current implementation of
srcPtr has been built to operate on C / C++ grammar, but could
be extended to support other languages in the future. srcPtr uses
the srcSAXEventDispatcher (part of the srcML infrastructure)
for parsing the generated srcML.

The core responsibility of srcPtr is to collect the information
necessary to conduct pointer analysis. The framework uses a
two-pass algorithm over the srcML document; this document
can be one file, an entire system/project, or even a single
function. We detail the main activities of this two-pass process
within the next three subsections.

A. Initial Data Collection
The first pass of srcPtr collects data about class definitions

and free-function definitions/declarations. From class
definitions, srcPtr collects the name, specifiers, and types of
public fields and method parameters. It also collects the name
and number of parameters of public methods. From free-
function definitions, srcPtr collects the number of parameters
and name/type/specifier for each parameter. Local variables are
ignored during the first pass but are resolved in the second pass.

Fig. 1. The architecture of srcPtr. Source code is translated into srcML, then
it is traversed using srcSAX and pointer information is collected and stored in
a dictionary. Pointer-analysis algorithms are then applied to the dictionary
before srcPtr outputs the result.

B. Resolving and Analyzing Pointers
The second pass is where srcPtr scans for usages of variables

collected in the previous steps by re-traversing srcML’s AST.
That is, it looks for where a variable is assigned or where it is
passed into a function or method call. srcPtr additionally begins
to keep track of local variables, which it skips during the first
pass, collecting declaration and usage information. Each time a
local declaration is found, srcPtr collects the variable’s name,
specifiers (e.g., constness, whether it is a pointer or reference),

type, line number, and containing file. Declarations are stored
on a scope stack to differentiate between identifiers with the
same name. Every time a new scope is entered, a new frame is
pushed onto the stack. When the algorithm exits a scope, the top
of the stack is popped. Each frame is composed of two items: a
map (i.e., dictionary) from variable names to their collected data
(i.e., {{varname1, vardata1}, ..., {varnamen, vardatan}}), and a
map from function names to data about the function (i.e.,
{{funcname1, funcdata1}, …, {funcnamen, funcdatan}}). This
way, we can differentiate between variables in differing scopes
when collecting data.

When a local variable is found, srcPtr checks to see if the
type of this variable is that of a known class. If it is, each of the
class’ public member variables and methods are pushed onto the
stack, preceded by the name of the variable. For example, let us
assume a class named string with a single public member
variable c_str and two methods: print() and trim(). If an object
x of type string is declared, we create two variables, x and
x.c_str, and two functions, x.print and x.trim. All of this is
pushed onto the scope stack. This supports aggregate modeling.

While collecting local-variable information and constructing
the stack, srcPtr resolves points-to relationships by keeping
track of when a pointer is assigned a new memory location
through either explicit assignment (i.e., using ‘=’) or calls made
to functions/methods (i.e., the pointer is a parameter). When a
pointer assignment is detected, srcPtr calls one of two special
functions. These special functions are how pointer-analysis
algorithms interact with srcPtr. We discuss these now.

C. Performing Pointer Analysis with srcPtr
srcPtr allows integration of custom pointer-analysis

algorithms via a template-method design pattern. The analysis
algorithm must implement a class with two methods to handle
pointer changes: AddAssignmentRelationship(lhs,rhs), which is
called when a pointer is assigned to another pointer, and
AddPointsToRelationship(lhs,rhs), which is called when a
pointer is assigned to point to a variable. These two methods
cover everything that can happen to a pointer in C++. The class
containing these two methods is passed via template to srcPtr’s
main class. These methods are triggered as described above and
the algorithm can process/store data as required. A graphical
representation of srcPtr’s architecture appears in Fig. 1.

srcPtr provides a default algorithm that is used when no
custom pointer-analysis algorithm is provided. This default
algorithm collects information about pointer assignments, but no
analysis is performed. We use it to help measure overhead in
srcPtr’s performance. Additionally, we have integrated two
well-known points-to analysis algorithms, Andersen’s [10] and
Steensgard’s [11], into the srcPtr framework.

III. OUTPUT
Fig. 2 gives an example of code with pointers. We ran this code
through srcPtr and used our implementation of Andersen’s
algorithm to generate results. Output is in Table 1 where the left
column gives the line number, data type, alias type and name of
each pointer identifier. The right column gives the line number,
data type, and name of the identifier pointed to by the
corresponding pointer found in the left column. For example,
num2 is a pointer to an integer that is declared on line 6. During
execution, it might end up pointing to the integer declared on

line 6, calc.result, and another integer declared on line 10 called
y. In this example, only integers are used as datatypes (and
pointers to them), but srcPtr supports all datatypes.

This example also highlights a caveat of static pointer
analysis. Based on the code, the variable num2 could never end
up pointing to calc.result, but since the pointer analysis is done
statically, this has to be assumed. srcPtr also supports the
generation of visualizations as seen in Fig. 3 using graphViz and
the pointer-analysis results base on the code in Fig 2.

1 class Calculator { public:
2 void Add(int& num1, int* num2) {
3 int sum = num1 + *num2;
4 result = sum;
5 }
6 int result;
7 };
8 int main() {
9 int x = 12;
10 int y = 24;
11 int* ptr = &y;
12 Calculator calc;
13 calc.Add(x, ptr);
14 ptr = &calc.result;
15 std::cout << *ptr;
16 }
Fig. 2. Code with pointers and references used directly and as parameters.

Fig. 3. Example of srcPtr graphviz output of the analysis given in Table I of
the code example in Fig. 2

Table 1. Points-to relationships for example given in Fig. 2. Line number of
the code is given in parentheses.

(Line #) Pointer (Line #) Points to
(2) int & num1 (9) int x

(2) int * num2
(6) int calc.result
(10) int y

(11) int * ptr
(6) int calc.result
(10) int y

IV. PERFORMANCE
srcPtr is built using the srcML infrastructure and

implemented as a SAX parser. Translating source code to the
srcML format is very fast with speeds of ~35 KLOC/sec, with
translation of the entire Linux kernel in ~7 minutes. The SAX
parser is a C++ wrapper around libxml2’s SAX interface called
srcSAX; it was made specifically to support building tools that
use srcML. Since SAX parsers store no data about previously

seen nodes (e.g., tags), they are very memory and operation
efficient. To take full advantage, we have worked to store as
little data as possible and minimize repetition. As a result,
srcPtr is quite fast.

The blue line in Fig. 4 is baseline performance with no
pointer analysis and demonstrates the framework overhead of
srcPtr. The results are that srcPtr is quite scalable as the runtime
is linear with respect to the number of lines of code. The orange
line in Fig. 4 is pointer analysis performed with Andersen’s
algorithm using srcPtr. The runtime complexity of Andersen’s
algorithm is O(n3), which remains consistent with our findings
due to srcPtr’s low overhead.

To determine if our framework runtime is comparable to
current practices, we also ran Andersen’s pointer analysis using
srcPtr on Git to compare runtime performance with the tool
PtrTracker [12]. Converting the Git source code to srcML takes
less than 8 seconds and running Andersen’s algorithm using
srcPtr takes 43 seconds. The total runtime from original source
code to the output of the points-to analysis is under 1 minute.
The time reported for PtrTracker for a similar analysis was 27
minutes. It is worth noting that the speed difference could be
due to PtrTracker’s use of the Goanna architecture for AST
generation and analysis. Accuracy differences between the two
implementations was also not considered.

Fig. 4. Comparison of the execution time of the framework to the KLOC of
the source code. The blue line is the baseline runtime of data collection versus
lines of code, and the results show that the data collection is linear. The orange
line shows runtimes with Andersen’s algorithm, and demonstrates that the
runtime complexity of O(n3) is preserved with srcPtr.

V. USING SRCPTR
The example implementations included with srcPtr can be

run the using the command-line tool srcptr to apply pointer
analysis on the srcML format of source code. To convert to
srcML, the srcml command-line client is used with the option --
position so that line numbers are included:

srcml main.cpp --position -o main.cpp.xml
The command to run srcptr on a srcML file is:

srcptr -a main.cpp.xml > pointer.out
where main.cpp.xml is the srcML format of the main.cpp and
pointer.out is the output file. The option –a selects Andersen’s
algorithm and -s for Steensgard’s. As other algorithms are

HippoDraw
httpd

GIMP

srcPtr + libraries

LMMS

HippoDraw

httpd

GIMP
srcPtr + libraries

LMMS

0

10

20

30

40

50

60

70

80

0 200 400 600 800

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

KLOC (thousand lines of code)

Execution Time to KLOC

implemented, you will be able to use other flags. By default,
srcptr outputs the pointer report to stdout.

The client srcptr supports pointer-graph generation with
graphViz. To make srcptr generate a dotfile use the flag ‘-g’:

srcptr -a -g file.cpp.xml > graph.dot
Then, run the following command to generate a graph with
graphViz based on the file created earlier (requires graphViz):

dot -Tpng graph.dot > out.png
You can download srcPtr at www.srcML.org under tools.
Installation instructions and documentation are also available.

VI. RELATED WORK
Pointer analysis is a heavily-researched topic spanning over

a decade of published work. We direct readers interested in a
broad overview of the field to surveys [1], [13], [14]. Much of
the current work in pointer analysis supports compiler
optimizations [3]–[6]. However, SVF can be used more broadly
as it a general-purpose analysis framework. These approaches
and supporting frameworks utilize compiler technologies,
specifically LLVM, to supply the IR (intermediate
representation) and core analyses. These IR representations are
represented as low-level assembly instructions and require the
source code to be complete and compiling.

The goal of PtrTracker [12] is to perform pointer analysis
and improve the accuracy of software bugs and vulnerabilities
detected by Goanna. PtrTracker is modeled after shape analysis
and uses heap graphs for pointer analysis. Goanna is capable of
producing an AST of source code in XML and performs
interprocedural analysis. PtrTracker integrates with Goanna by
enhancing the AST it builds with sets of variables that might be
affected by pointer dereferences. Goanna then uses the
enhanced AST to complete its bug detection analysis.

srcPtr differentiates itself from the existing approaches by
using a much higher-level IR representation. For our work,
srcML serves as the IR by inserting AST elements into the
source code and allowing the original contents of the source
code (whitespace and comments included) to remain intact when
moving to and from the srcML format. Parsing with srcML does
not require compilation of the source code, which permits srcPtr
to run analysis on incomplete code, and even code fragments.
This allows for better developer support for tasks such as source-
code transformation [7] and impact analysis [8]. Using a high-
level IR permits srcPtr to collect much more code centric pointer
information. However, this introduces a trade-off – analyzing
C++ code is harder then a lower level representation (LLVM IR
or assembly).

VII. CONCLUSIONS AND FUTURE WORK
The framework srcPtr supports the use and implementation

of pointer-analysis algorithms. srcPtr has a number of
advantages that make it useful for developers and researchers.
There is no need to compile the code or even have a complete
system that compiles. This way analysis can be easily done on
partial code or only part of a system. This also makes the
framework more standalone in that it is not tied to any specific
compiler. The framework exhibits low overhead and scales well
making experimenting with different analysis algorithms easy.

Currently srcPtr is implemented for C/C++ but srcML also
supports C# and Java. It is relatively straightforward to extend
srcPtr to C#/Java. As a research prototype, limitations exist.
However, srcPtr can be applied to large systems without issue.
Because srcML supports multiple languages, pointer analysis
can feasibly be done on systems that are written in multiple
languages. We also see this as a platform to compare and
experiment with pointer-analysis techniques.

There are a number of general limitations. Only simple type-
based points-to analysis is supported. This does not address full
alias analysis. We do not do any flow analysis. Our type
analysis is somewhat limited (but can be improved). Function
pointers are not considered at this time; only c-pointers. There
is also no support for STL shared pointers. This work was
supported in part by a grant from the US National Science
Foundation CNS 13-05292/05217.

VIII. REFERENCES
[1] M. Hind, “Pointer Analysis: Haven’t We Solved This Problem Yet?,” in

2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, Snowbird, Utah, 2001, pp. 54–61.

[2] R. O’Callahan, “Generalized aliasing as a basis for program analysis
tools,” Carnegie-Mellon University Pittsburgh, PA, USA School of
Compuer Science, Doctoral Dissertation, 2000.

[3] B. Hardekopf and C. Lin, “Flow-sensitive Pointer Analysis for Millions
of Lines of Code,” in 9th IEEE/ACM International Symposium on Code
Generation and Optimization, Chamonix, France, 2011, pp. 289–298.

[4] Y. Sui and J. Xue, “SVF: Interprocedural Static Value-flow Analysis in
LLVM,” in 25th International Conference on Compiler Construction,
Barcelona, Spain, 2016, pp. 265–266.

[5] N. P. Johnson, J. Fix, S. R. Beard, T. Oh, T. B. Jablin, and D. I. August,
“A Collaborative Dependence Analysis Framework,” in 2017
International Symposium on Code Generation and Optimization,
Austin, Texas, USA, 2017, pp. 148–159.

[6] M. Maalej, V. Paisante, P. Ramos, L. Gonnord, and F. M. Q. Pereira,
“Pointer disambiguation via strict inequalities,” in 2017 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
Austin, Texas, USA, 2017, pp. 134–147.

[7] M. Buss, S. A. Edwards, B. Yao, and D. Waddington, “Pointer analysis
for source-to-source transformations,” in Fifth IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM’05),
Budapest, Hungary, Hungary, 2005, pp. 139–148.

[8] M. Acharya and B. Robinson, “Practical Change Impact Analysis Based
on Static Program Slicing for Industrial Software Systems,” in 33rd
International Conference on Software Engineering, Waikiki, Honolulu,
HI, USA, 2011, pp. 746–755.

[9] Jonathan I. Maletic and Michael L. Collard, “Exploration, Analysis, and
Manipulation of Source Code using srcML,” presented at the 37th
International Conference on Software Engineering - Volume 2,
Florence, Italy, 2015.

[10] L. O. Andersen and Københavns Universitet. Datalogisk Institut,
Program Analysis and Specialization for the C Programming
Language. Datalogisk Institut, 1994.

[11] B. Steensgaard, “Points-to Analysis in Almost Linear Time,” in 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, St. Petersburg Beach, Florida, USA, 1996, pp. 32–41.

[12] S. Biallas, M. C. Olesen, F. Cassez, and R. Huuck, “PtrTracker:
Pragmatic pointer analysis,” in 2013 IEEE 13th International Working
Conference on Source Code Analysis and Manipulation (SCAM),
Eindhoven, Netherlands, 2013, pp. 69–73.

[13] M. Hind and A. Pioli, “Which Pointer Analysis Should I Use?,” in 2000
ACM SIGSOFT International Symposium on Software Testing and
Analysis, Portland, Oregon, USA, 2000, pp. 113–123.

[14] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav, “Alias
Analysis for Object-Oriented Programs,” in Aliasing in Object-Oriented
Programming. Types, Analysis and Verification, vol. 7850, Springer,
Berlin, Heidelberg, 2013, pp. 196–232.

