

Automatic Identification of Class Stereotypes

Natalia Dragan

Department of Computer Science

Kent State University

Kent, OH 44242

ndragan@cs.kent.edu

Michael L. Collard

Department of Computer Science

The University of Akron

Akron, OH 44325

collard@uakron.edu

Jonathan I. Maletic

Department of Computer Science

Kent State University

Kent, OH 44242

jmaletic@cs.kent.edu

Abstract—An approach is presented to automatically determine a

class’s stereotype. The stereotype is based on the frequency and

distribution of method stereotypes in the class. Method

stereotypes are automatically determined using a defined

taxonomy given in previous work. The stereotypes, boundary,

control and entity are used as a basis but refined based on an

empirical investigation of 21 systems. A number of heuristics,

derived from empirical evidence, are used to determine a class’s

stereotype. For example, the prominence of certain types of

methods can indicate a class’s main role. The approach is

applied to five open source systems and evaluated. The results

show that 95% of the classes are stereotyped by the approach.

Additionally, developers (via manual inspection) agreed with the

approach’s results.

Keywords-method stereotypes, class stereotypes, program

comprehension, reverse engineering

I. INTRODUCTION

The work presented here investigates how to automatically
identify a class’s stereotype in an existing object-oriented
software system. Stereotypes are a simple abstraction of a
class’s role and responsibility in a system’s design. Very few
software systems have this sort of documentation explicit in the
source code. Manually documenting this type of abstraction is
relatively easy for a small number of classes but doing so for
entire systems would be quite costly.

Accurate information about a class’s stereotype is useful for
a number of software maintenance and evolution tasks.
Knowing a class’s stereotype implies the role of the class in the
design. It gives clues to how a class collaborates with other
classes in different design patterns. A class’s stereotype may
also be an indicator of bad smells and give clues for
refactoring. It can be an indicator of comprehensibility.

A number of studies [1-6] demonstrate the benefits of using
stereotypes, which reflect semantics, in program
comprehension, design, and software maintenance tasks.
Using class stereotype information [4-6] as a factor in laying
out UML class diagrams has shown to improve the
comprehensibility of the diagram. Staron et al. [1] show the
effectiveness of class stereotypes based on domain model in
program comprehension.

Hence, we feel this is a very important, yet unexamined
area of object oriented design recovery. This work directly
leverages our prior work on recovery of method stereotypes.

However, automatic identification of class stereotypes proved
to be a much more difficult problem, requiring a more in-depth
empirical study and understanding of how method stereotypes
are used across systems and classes.

This work has the following contributions. First, a
taxonomy of class stereotypes is proposed. This taxonomy is
derived from an empirical examination of 21 open source
software systems. The second contribution involves an
approach to automatically label a given class with its
corresponding derived stereotype. Here we limit our study to
one programming language, namely C++.

Our approach starts by automatically identifying and
labeling all methods in a system with their stereotype. This
information is then collected and a distribution of method
stereotypes for each class is calculated. Class stereotypes are
derived from this distribution via a set of rules that map method
stereotype distribution characteristics to the class stereotype
taxonomy. The approach is evaluated against human experts
and through an empirical study.

The paper is organized as follows. The next section (II)
contains a brief description of our method stereotype
taxonomy. This represents the main result of our previous
work [7, 8]. Additionally, how we compute the method
stereotype distributions is described. The result is a class
signature that forms the input for our automatic classification
scheme. In section III we present a taxonomy of class
stereotypes. Section IV describes our approach to
automatically identify class stereotypes from existing C++
code. Section V is an evaluation of the approach as compared
to experts, followed by an empirical study in Section VI. This
is followed by a discussion of the threats to validity, related
work and conclusions.

II. CLASS SIGNATURES

Here we define a class signature [8] as a frequency
distribution of method stereotypes for a class. We use the class
signature to infer a class’s stereotype. In this section, we
summarize our previous work on defining and automatically
identifying method stereotypes as this forms the basis for the
signature. Specifics of the class signature are then presented.

A. Method Stereotypes

The aggregates for class signature identification, method
stereotypes (see Table I), were first presented in [7] and we

refer the reader there for more complete details and examples.
That work presented an approach to automatically identify
method stereotypes. Additionally, a taxonomy for method
stereotypes is given that unifies and extends the previous
literature on stereotypes to address a number of gaps and
deficiencies. Based on this taxonomy, method stereotypes can
be reverse engineered using static program analysis. We
constructed a tool, StereoCode, that re-documents source code
with the stereotype information for each method. The
assessment of this work demonstrated two things. First, that
the given method stereotype classification covered a very large
percentage of the methods studied. That is, almost all methods
could be labeled by the classification scheme. Second, that the
tool redocumented systems correctly. By correctly, we mean
that an experienced developer agreed 90% of the time with our
labeling of the method. The discrepancies typically involved
very poorly written or convoluted methods.

The taxonomy of method stereotypes (Table I) is organized
by the main role of a method while simultaneously
emphasizing its creational, structural, and collaborational
aspects with respect to a class’s design. Structural methods
provide and support the structure of the class. For example,
accessors read an object’s state, while mutators change it.
Creational methods create or destroy objects of the class.
Collaborational methods characterize the communication
between objects and how objects are controlled in the system.
Degenerate are methods where the structural or collaborational
stereotypes are limited. The name is based on the
mathematical term for a case for which a stereotype cannot be
any simpler.

TABLE I. TAXONOMY OF METHOD STEREOTYPES

Stereotype

Category
Stereotype Description

get Returns a data member.

predicate
Returns Boolean value which is

not a data member.

property
Returns information about data

members.

Structural

Accessor

void-accessor
Returns information through a

parameter.

set Sets a data member.

command Structural

Mutator non-void-

command

Performs a complex change to

the object’s state.

Creational

constructor,

copy-const,

destructor,

factory

Creates and/or destroys objects.

collaborator

Works with objects (parameter,

local variable and return

object). Collaborational

controller
Changes only an external

object’s state (not this).

incidental
Does not read/change the

object’s state. Degenerate

empty Has no statements.

Also, a method may have more than one stereotype.
Methods have a single stereotype from any category and may
have secondary stereotypes from the collaborational and
degenerate categories. For example, a two-stereotype method
get collaborator returns a data member that is an object or uses
an object as a parameter or a local variable. We now describe

how the method stereotypes are used for defining the class
signatures.

B. Method Stereotype Distributions

In [8] we introduced the idea of system signatures and
examined the frequency of method distributions for one open
source system. From this study we learned that these
distributions of method stereotypes seemed to be indicators of
system architecture. Here we extend this concept to a class
signature.

We found it useful to present the distribution data in both a
detailed and summarized manner. In the detailed view we give
the distribution counts for each individual stereotype (e.g., get,
set, command, factory, etc). In the summarized view we
present counts of whole stereotype categories (e.g., all the
accessors, all the collaborational, etc).

The stereotype distribution highlights the role of a method
in the class. It deemphasizes, to a large degree, interaction with
other classes. An example of a detailed view for two classes
from the open source system HippoDraw is given in Fig. 1.

The class DataSource is largely composed of different types

of accessors and mutators while class DisplayController

primarily constitutes factory and controller methods, i.e.,
performs most of its work on other classes.

The stereotype category distribution aggregates the data and
highlights the degree of coupling and collaboration among
classes in a system. It also includes some internal coupling
(cohesion) of a class through the main categories of method
stereotypes. Additionally, parts of the system not yet
implemented (degenerate) are reflected. As can be seen in Fig.

2, the class DataSource collaborates (structurally) very little
with other classes and has a small percentage of degenerate
accessors and mutators. In contrast all methods of class

DisplayController are collaborational and there are no
degenerate methods.

0% 20% 40% 60% 80% 100%

DataSource

DisplayController

get predicate property voidaccessor

set command non-void-command factory

collaborator controller incidental empty

Figure 1. Distribution of stereotypes for the classes DataSource and

DisplayController signatures (from HippoDraw).

The methods in the taxonomy are categorized by the data
access type (i.e., read or write to the object’s state) and by
functionality, which is given in the creational, structural,
behavioral and collaborational characteristics. These two

perspectives are reflected in the two distributions, stereotype
and stereotype category, which complement each other and
highlight different aspects of a class’s design. The detailed
view presents the class’s internal structure and responsibilities
in terms of types of methods, i.e., we can identify what part of
the class is responsible for its creational, structural, behavioral,
and control tasks. The summarized view contrasts readers of
object’s state (accessors) versus writers (mutators) as well as
simple readers or writers versus readers or writers that use
external objects (e.g., accessor versus accessor collaborator).
Additionally, it hightlights the accessors and mutators that are
not yet implemented (degenerate). Most likely, there is some
plan to complete these in the future. Note that in Fig. 1 and

Fig. 2 the class DataSource presents two very different

distributions. This difference between the stereotype and
category view is true for a majority of classes. The charts for

the class DisplayController are more similar because it

has no degenerate methods and all accessors and mutators are
collaborational.

0% 20% 40% 60% 80% 100%

DataSource

DisplayController

accessor accessor collaborator accessor degenerate

mutator mutator collaborator mutator_degenerate

creational collaborational

Figure 2. Distribution of categories for the DataSource and

DisplayController signatures (from HippoDraw).

These two distributions make up the class signature and
provide us with a basis for the automatic identification of class
stereotypes.

III. TAXONOMY OF CLASS STEREOTYPES

The process of creating the taxonomy of class stereotypes
involved multiple steps. The first step was creating the
taxonomy of method stereotypes. We manually examined 150
of the HippoDraw classes in detail and found many patterns of
design at the method and class level. The validation of the
method’s taxonomy on further systems gave us additional
evidence of the existence of these patterns of design
abstractions.

The next step was to classify software at the system level
based on the method stereotypes. Automatic hierarchical
(COBWEB) and partitional (X-Means) clustering was used to
classify 21 open-source C++ systems listed in Table II. The
clusters found are characterized by the frequency and
distribution of method stereotypes. The results showed that
these distributions are a good indicator of system
architecture/design. Additionally, we observed more patterns

of the method stereotype distributions at the class level by
examining about 250 classes of the systems that were clustered
together (Qt and WxWidgets) and separately (HippoDraw,
QuantLib, ACE, and Doxygen).

That led to a more thorough investigation of the patterns of
design at the class level. We continued the exploration of these
patterns by considering the diverse types of features that a class
may have with respect to the method’s taxonomy and method
stereotype distribution. The detection rules were implemented
and then we meticulously checked the HippoDraw system and
a random set of classes (about 100) in the systems listed in
Table II. Some of the rules were refined and improved after
this manual verification.

To summarize, the creation of the taxonomy of class
stereotypes started with an empirical investigation that led to
formulation of the rules for the identification of class
stereotypes. The rules were validated on open source systems
that led to the rules refinement and further validations of the
class’s taxonomy.

The list of class stereotypes is presented in Table III. The
actual class names are not used in the categorization. While the
name can be a good source of information it can also be
misleading and we leave this aspect of the investigation for
future work.

TABLE II. AN OVERVIEW OF THE SOFTWARE SYSTEMS EXAMINED TO

DEVELOP THE TAXONOMY OF CLASS STEREOTYPES. ORDERED BY THE

NUMBER OF METHODS.

System Domain Methods

C++Fuzzy 0.61 fuzzy logic library 313

CppUnit 1.12.1 framework for unit testing 1335

CEL 1.2.1 game engine 2798

SmartWin++ 2.0.0 GUI and SOAP library 2882

Ivf++ 1.0.0 visualization framework 3032

HippoDraw 1.21.3 data analysis environment 3315

QuantLib 0.9.7 finance library 4235

ClanLib 0.8.1 game SDK 4427

PPTactical 0.9.6 game engine 4887

OpenWBEM 3.2.2 management of systems 4963

ICU 4.0.1 components for Unicode 5984

FlightGear 1.9.1 flight stimulator 6036

Ice 3.3.0
internet communications

engine
6952

ACE 5.6.8 communication environment 7867

CGAL 3.4
library of geometric

algorithms
11365

Code::Blocks 8.02 IDE 11586

KDevelop 3.5.4 IDE 11799

CrystalSpace 1.2.1
SDK for real-time 3D

graphics
12839

Doxygen 1.5.8 documentation system 13445

wxWidgets 2.8.9 GUI framework 34907

Qt 4.4.3 GUI framework 59535

Total 214502

Our initial taxonomy included the standard set of
overarching stereotypes of entity, boundary and control class
stereotypes [9]. We expanded this simple taxonomy as
necessary to cover recurring stereotypes that emerged from our
empirical investigation. We tried to adopt naming conventions
from literature on such things as method stereotypes [7] and
bad smells [10]. The list of class stereotypes uncovered is given
in Table III. A given class may take on one or more of these
stereotypes. That is, a class may have the characteristics of
more than one of these stereotypes in certain cases.

For the remainder of the section, each of the class
stereotypes is presented along with an explanation of the role
and responsibilities of such a class. Additionally, examples of
each class stereotype are presented visually along with a
specific class and its signature from the HippoDraw system.
Due to the space limits these class signatures are shown in a
combined view from which the detailed and summarized views
can be inferred. An Entity is a class that encapsulates data and
behavior. It is the keeper of the data model and/or business
logic (e.g., the Subject in the Observer pattern). Examples of

entity classes are the classes Range, DataSource, Rect,

and BinnerAxis (see Fig. 3). As can be seen by their
signatures, they typically contain accessors and mutators in
various proportions and might have a variable percentage of

collaborational methods (up to 2/3). They do not have
controller methods.

A Minimal Entity is a special case of Entity that has only
get/set and command methods. It encapsulates very trivial

entities (e.g., Point). It is considered separately because it is

a very simple class that does not require much effort to
comprehend. It can also be considered as a Lazy Class
(described below).

TABLE III. A TAXONOMY OF CLASS STEREOTYPES

Class Stereotype Name

Entity

Minimal Entity

Data Provider

Commander

Boundary

Factory

Controller

Pure Controller

Large Class

Lazy Class

Degenerate

Data Class

Small Class

.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

DataClass (AxisTick)

DegenerateClass (AxisRep2D)

LazyClass (BinsBase)

LargeClass, Boundary (FunctionController)

Controller (DisplayController)

PureController, SmallClass (AxisTickXML)

Factory, PureController (BinnerAxisXML)

Factory (QtViewFacory)

Boundary (QtView)

Boundary,Commander (EpsView)

Boundary, Commander (DrawBorder)

Boundary, DataProvider (DataView)

Entity,DataProvider (BinnerAxis)

Entity,DataProvider (Rect)

Entity (DataSource)

Entity (Range)

Minimal Entity (Point)

get get collaborator predicate predicate collaborator property

property collaborator voidaccessor voidaccessor collaborator set set collaborator

command command collaborator non-void-command non-void-command collaborator controller collaborator

collaborator factory degenerate

Figure 3. Class stereotypes and their signatures for 17 HippoDraw classes. Each row is labeled with the class stereotype(s) and in parentheses the

name of the example class whose data is shown in the row. Each stereotype is automatically identified based on the signatures using the detection

rules. Accessors are shown in green colors, mutators – in blue, factory – in tan, collaborational - in rose and turquoise. The method stereotype has a

grey fill effect if ‘collaborator’ is a secondary stereotype for this method.

A Data Provider is a class that encapsulates data and

consists mainly of accessors. For example, classes Rect and

BinnerAxis have two stereotypes: Entity and DataProvider -

more than 75% of their methods are accessors.

A Commander is a class that encapsulates behavior and
mainly consists of mutators. A large part of the logic for the
class’s behavior is implemented in command and non-void-
command methods. These methods execute complex changes
of an object’s state. The changes may also involve objects of

different classes. The DrawBorder and EpsView classes

are examples of the Commander class. More than 70% of their
methods are mutators.

A Boundary is a communicator in a system and has a large
percentage of collaborational methods but a low percentage of
controller and not many factory methods. Alternatively this
type of class could be a Data Provider when its main purpose is
to get data from a model (when it has mainly accessors) or
Commander when its main purpose is to send data and
provides updates/output to a model (when it has mainly

mutators). For Example, the DataView class has both
stereotypes Boundary and Data Provider because all of its
methods are collaborational, there are no controller methods,
and additionally more than 80% of the methods are accessors.

The EpsView class has both stereotypes Boundary and
Commander – most of its methods are collaborational, there are
no controller methods, and additionally, 70% of the methods
are mutators.

A Factory is a creator of objects and has mostly factory

methods. The classes QtViewFactory and

BinnerAxisXML are examples of the Factory class
stereotype with 100% and 67% of factory methods
respectively.

A Controller is a class that provides functionality and
processes data of external objects. It updates an entity/model
working mainly outside of itself, i.e., it has almost all controller

and factory methods. The DisplayController class is an
example of this stereotype. It has about 70% Controller and
Factory methods.

A Pure Controller is a special case of the Controller. It has
100% Controller and Factory methods and works only outside
of itself. We consider this stereotype separately because it is a
candidate for the bad-smell God class [11]. A God class is a
large controller class that monopolizes most of the system
functionality and depends on external data. Methods of the
controller class work on data stored in surrounding classes.
The Pure Controller class could be a God class if it is a
standalone class and consists of many methods.

A Large Class is a class which contains too many
responsibilities and “is trying to do too much” [10] . “Too
much” can be interpreted in different ways using metrics such
as LOC, number of attributes, number of methods, complexity
metrics, etc. However, those types of metrics do not directly
reflect the different roles of a class. We consider a class a
Large Class not only if it has many methods, but also if it
combines multiple roles, such as Data Provider, Commander,
Controller, and Factory. It also could be highly collaborative.

The FunctionController class is an example of a Large

Class. It has a small percentage of accessors, about 50%
mutators, 20% controller, and 25% factory. The class is also
100% collaborational.

A Lazy Class is a very trivial class which does “too little”
[10]. The Lazy Class might occur in the context of a new or
planned feature that is not yet completed. Similarly, “too little”
can be interpreted using different metrics. But we consider a
class as Lazy if it has get/set methods and a low percentage of
other methods. The class is also considered Lazy if it has a

significant number of degenerates, e.g., BinsBase has 40%

degenerate methods besides get/set methods.

A Degenerate Class is when the state and behavior are
degenerate. It has mainly methods that do not read/write to the
object’s state - half or more methods are incidental or empty.
If the Degenerate class is a leaf in the hierarchy, then most
likely it needs to be examined for a possible refactoring. An

example of the Degenerate class is AxisRep2D.

A Data Class is a class with degenerate behavior. That is,
it has only get and set methods. This type of class passively
stores data and does not contain methods that operate on the

data. An example of the Data Class is the AxisTick class
with only get/set methods.

A Small Class is a class that only has one or two methods.
If it is a standalone class then it is a bad-smell because it
degenerates the state and/or behavior.

IV. AUTOMATICALLY IDENTIFYING STEREOTYPES

We developed a tool to automatically identify the class
stereotypes presented in the previous section. The tool uses the
class signature to assign stereotypes to a class. The rules for
identification are based on an empirical investigation of the 21
open source systems in Table II. We present the identification
rules to reverse engineer class stereotypes from (C++) source
code and give details of a tool that automatically labels a class
with its stereotype(s).

A. Rules for Class Stereotype Identification

The rules are based on both the stereotype and category
distributions of the class signature. Both distributions are
required to determine the stereotype except for the cases of
Factory, Data, Degenerate, and Small Class, which require only
stereotype or category distribution. To calculate the stereotype
we use semantic fractional thresholds of method stereotype
frequencies and statistical, average and standard deviation,
thresholds that are proposed in [12] as a means to characterize
and evaluate the design of object-oriented systems.

We use a fractional threshold of ⅔ for representign
situations were a class consists mostly of stereotype A. The
thresholds for the Large, Lazy, Degenerate and Small Class
were determined empirically by running the rules on the
systems HippoDraw and Qt.

We now introduce the notations used in the rules for class
stereotype identification. The set of the stereotype is formed as
follows.

Let {stereotype} be a set of method stereotypes of the type
stereotype, e.g., {get} is a set consisting of get and get
collaborator methods. {methods} is a set of all the methods in a
class. The set of the stereotype category is formed as follows.

 The set {accessors} consists of all the accessors (get,
predicate, etc), accessors collaborators (get collaborator,
predicate collaborator, etc) and accessors degenerate (predicate
incidental, voidaccessor empty, etc). The set {mutators} is
constructed in a similar way.

 The set {collaborators} consists of all the collaborational
methods, e.g., get collaborator, set collaborator, factory
collaborator, etc. Thus, the set
{non-collaborators} = {methods} - {collaborators}.

The set {degenerate} consists of accessors degenerate
(predicate incidental, void-accessor empty, etc), mutators
degenerate (command incidental, non-void command
incidental), and collaborator degenerate (collaborator
incidental, collaborator empty). We denote by |stereotype| the
cardinality of the set {stereotype}.

To identify the class stereotype Entity the following
conditions need to be satisfied:

• They contain an accessor besides get and a mutator
besides set

{accessors} - {get} ≠ ∅ &

 {mutators} - {set} ≠ ∅

• The ratio of collaborational to non-collaborational
methods is 2:1
|collaborators| / |non-collaborators| = 2

• They can have factory methods but no controller
methods
|controller| ≠ 0

To identify the class stereotype Minimal Entity the
following conditions need to be satisfied:

• The only method stereotypes are get, set, and
command/non-void-command

{methods} - ({get}∪ {set} ∪ {command}

 ∪ {non-void-command}) = ∅ & |get| ≠ 0 & |set| ≠ 0

& ({command} ∪ {non-void-command}) ≠ ∅

• The ratio of collaborational to non-collaborational
methods is 2:1
|collaborators| / |non-collaborators| = 2

To identify the class stereotype Data Provider the
following conditions need to be satisfied:

• It consists mostly of accessors
|accessors| > 2 · |mutators|

• Low control of other classes
|accessors| > 2 (|controller| + |factory|)

To identify the class stereotype Commander the following
conditions need to be satisfied:

• It consists mostly of mutators
|mutators| > 2 · |accessors|

• Low control of other classes
|mutators| > 2 · (|controller| + |factory|)

To identify the class stereotype Boundary the following
conditions need to be satisfied:

• More collaborators then non-collaborators
|collaborators| > |non-collaborators|

• Not all the methods are factory methods

|factory| < ½ · |methods|

• Low number of controller methods

|controller| < ⅓ · |methods|

To identify the class stereotype Factory the following
conditions need to be satisfied:

• It consists mostly of factory methods

|factory| > ⅔ · |methods|

To identify the class stereotype Controller the following
conditions need to be satisfied:

• High control of other classes
|controller| + |factory| > ⅔ · |methods|

• Accessor or mutator are present (not only methods that
work on external objects exist)

|accessors| ≠ 0 ∨ |mutators|≠ 0

To identify the class stereotype Pure Controller the
following conditions need to be satisfied:

• Only controller and factory methods with no mutator,
accessor, or collaborator methods
|controller| + |factory| ≠ 0 &
|accessors| + | mutators| + |collaborator| = 0

• There must be at least one controller method
|controller| ≠ 0

To identify the class stereotype Large Class the following
conditions need to be satisfied:

• Categories of stereotypes (accessor with mutator) and
stereotypes, factory and controller, are approximately
in equal proportions
1
/5 · |methods| < |accessors| + |mutators|

< ⅔ · |methods|
&

1
/5 · |methods| < |factory| + |controller|

< ⅔ · |methods|

• Controller and factory have to be present

|factory| ≠ 0 & |controller|≠ 0

• Accessor and mutator have to be present

|accessors| ≠ 0 & |mutators|≠ 0

• Number of methods in a class is high
|methods| > average + stdev

• Note, average and stdev of number of methods are
calculated per system.

To identify the class stereotype Lazy Class the following
conditions need to be satisfied:

• It has to contain get/set methods
|get| + |set| ≠ 0

• It might have a large number of degenerate methods

|degenerate| / |methods| > ⅓

• Occurrence of other stereotypes is low
|methods| – (|get| + |set| + |degenerate|) <=

1
/5

To identify the class stereotype Degenerate Class the
following conditions need to be satisfied:

• It consists of many degenerate methods

|degenerate| / |methods| > ½

To identify the class stereotype Data Class the following
conditions need to be satisfied:

• Only the simple accessor/mutators get and set are
present:
|get| + |set| ≠ 0 & |methods| – (|get| + |set|) = 0

To identify the class stereotype Small Class the following
conditions need to be satisfied:

• Number of methods in a class is less than 3:
|methods| < 3

B. Implementation

We extended our tool, StereoCode [7], to obtain class
signatures and automatically identify the stereotypes.
StereoCode automatically identifies method stereotypes using
lightweight static analysis and an infrastructure based on
srcML (SouRce Code Markup Language) [13] an XML
representation that supports both document and data views of
source code.

The automatic detection of method stereotypes is based on
static analysis of the source code using srcML. For each
stereotype, an XPath expression is used to detect that particular
pattern. StereoCode then re-documents the original source
code with the stereotypes with a special @stereotype tag in
the comments. Next, for class-wide totals, these stereotype
comment tags are collected and totaled to obtain the signature
(both the stereotype and category distributions) for each class
in a software system.

Once the class signatures are generated, they are fed into
the tool StereoClass that determines the stereotype for a given
class using the rules described previously. A class is assigned
the stereotype if all conditions of a rule are satisfied. Classes
may satisfy more than one rule and the assigned stereotypes are
the concatenation of all matches. The part of StereoClass for
the automatic identification of class stereotypes is implemented
in C++. The tool currently works only for C++ source code as
input.

V. EVALUATION

To evaluate the approach and taxonomy we compare the
results of our automatic classification of a class’s stereotype

with that of human experts. In this section we will present the
details and results of this evaluation.

The system we chose is HippoDraw, an open source
application that provides a data-analysis environment. It is a
wide-ranging application with parts for data-analysis
processing and visualization with an application GUI interface.
The source code is well written and follows a pretty consistent
object-oriented style. Additionally, the application follows the
Model-View-Controller (MVC) architecture that is to a great
extent reflected in our class stereotypes.

Three experienced developers (subjects) manually
evaluated and stereotyped classes of the HippoDraw system.
The subjects are doctoral students in computer science with
multiple years of academia and industry experience (OO
development). The students are members of our laboratory but
were not involved in the implementation and development of
this research. In addition, these students were familiar with the
design of HippoDraw.

Each subject was given the description of the taxonomy of
class stereotypes (as given in Section III), examples of the
method stereotypes, and the class signatures for 45 classes from
HippoDraw. The subjects were not given the detection rules.
The 45 classes were randomly picked and comprise about 15%
of the system. This random sample was inspected and found to
contain a wide diversity of class stereotypes.

Each subject spent approximately 90 minutes to complete
the study. First they read the descriptions of the method and
class stereotypes, and then labeled the classes. The subjects
were not asked to check the code and made their decisions
based on the class signatures.

StereoCode was run on the entire system to generate the
class signatures and then StereoClass was run on the class
signatures to automatically generate the class stereotypes.
Running both tools took less than 2 minutes for the entire
system. The results of the subjects’ evaluation were compared
against the tool results and are given in Table IV.

The results obtained by the tool are shown in the first
column. The tool labeled the 45 classes with 70 stereotypes.
Almost half of the classes (22) were labeled with one
stereotype and 23 classes with two stereotypes. For Example,
pairs of class stereotypes included Boundary and Data
Provider, Boundary and Degenerate, Entity and Commander,
Factory and Small Class.

The columns S1, S2, and S3 show the numbers of class
stereotypes obtained by each subject. Two of the subjects
identified the number of stereotypes close to that of the tool,
while one found more: 72, 86, and 68 vs. 70 (tool). The
intersection columns show how the subject’s results compare to
the results of the tool. Those numbers (52, 47 and 50) show
that each subject did not label some stereotypes that the tool
found. However, the union of all the subjects with the tool,
shown in the last column, indicates that those missed
stereotypes were different for each subject in almost all cases.
That is, the tool and at least one of the subjects agreed.

The cases where the tool disagreed with the subjects as a
whole are of particular interest because they may indicate a

problem with the approach or taxonomy. The stereotype Pure
Controller was missed (not labeled) by all three subjects in one
case.

TABLE IV. SUMMARY OF ASSESSMENT STUDY. 45 CLASSES FROM

HIPPODRAW WERE LABELED WITH CLASS STEREOTYPES BY THE TOOL AND

THEN ASSESSED BY 3 EXPERIENCED SUBJECTS (S1-S3).

T
o
o

l

S
1

S
1
 ∩∩ ∩∩

 T
o

o
l

S
2

S
2
 ∩∩ ∩∩

T
o
o
l

S
3

S
3
 ∩∩ ∩∩

 T
o

o
l

(S
1
∪∪ ∪∪

S
2
∪∪ ∪∪

S
3
)

∩∩ ∩∩

T
o
o

l

Entity 13 13 8 4 3 9 7 10

Minimal Entity 3 1 1 0 0 2 0 1

DataProvider 8 10 7 13 8 8 6 8

Commander 7 8 6 16 6 8 6 7

Boundary 15 21 13 28 13 18 13 15

Factory 5 5 5 8 4 6 5 5

Controller 6 5 5 4 3 7 6 6

Pure Controller 2 1 1 1 1 0 0 1

Large Class 3 4 3 5 3 3 3 3

Lazy Class 2 0 0 3 2 0 0 2

Degenerate 2 1 1 1 1 1 1 2

Data Class 2 1 1 2 2 2 2 2

Small Class 2 2 1 1 1 4 1 2

Total 70 72 52 86 47 68 50 64

However, the subjects labeled the other occurrence of this
same stereotype. The stereotype Minimal Entity was missed
twice by all the subjects but was identified in a third instance.
In the missing cases it was labeled Entity (both times) and Data
Class (one time). The third class labeled correctly has very
similar distribution to the missed one. The Entity stereotype
was missed 3 times out of 13 cases that the tool labeled. The
10 cases where the subjects labeled the classes were very
similar to the missed cases. In all three cases the class had the
second stereotype Data Provider which maybe the reason for
missing the Entity stereotype. In short, all the missed cases
have no patterns and can be viewed as just missing a
stereotype. Additionally, the stereotypes identified by the
subjects but not the tool (false positives) are different for each
subject and there is no case when all three subjects have the
same false positive.

Through an analysis of the data (missing stereotypes and
false positives) we can conclude that the tool performs better
than each subject individually or combined. In 91% of the
cases (64 out of 70) the subjects were in agreement with the
tool. We found after careful examination that it was easy to
miss aspects and make mistakes in stereotype identification
during manual inspection. Tool support will improve
comprehension of a class’s design and role in the system.

VI. EMPIRICAL STUDY

To further assess our approach we applied our tools to the
five open source systems listed in Table V, ordered by the
number of classes in each system. The research questions we
address here are: Do these stereotypes identified by the tool
exist in nontrivial quantities in real systems? And, do most
classes fit into at least one class stereotype?

The systems were chosen to represent a range of sizes,
problem domains, and architectures. Some of the systems are

mentioned in Bjarne Stroustrup's list of interesting C++
applications

1
, while others are taken from sourceforge.net. The

categories of the chosen systems are: Game Programming
library and SDK (FlightGear); Mathematical and Finance
library (QuantLib); Development and Communication
Environments (KDevelop, Code::Blocks); and complete
application (HippoDraw). For the most part, these systems can
be considered good examples of object oriented design.

TABLE V. AN OVERVIEW OF THE SOFTWARE SYSTEMS EALUATED IN THE

EMPIRICAL STUDY. ORDERED BY THE NUMBER OF METHODS.

System Domain Classes Methods

HippoDraw 1.21.3
data analysis

environment
308 3315

QuantLib

0.9.7
finance library 808 4235

FlightGear

1.9.1
flight stimulator 361 6036

Code::Blocks 8.02 IDE 753 11586

KDevelop 3.5.4 IDE 1023 11799

Total 3253 36971

For each system we automatically determined the
stereotypes of each class using the StereoClass tool. The tool
took less than 2 minutes for each system. The resulting
distribution for each system is given in Table VI.

The results show that all class stereotypes occur in all of
these systems. Most classes (94% to 99%) of the system fit
into at least one of the class stereotypes. The Commander
stereotype occurs in large number of times in some systems,
but less than 20% in others. Boundary occurs at least about
40% of the time. Controller and Pure Controller stereotypes do
not occur in a significant percentage for the majority of
systems, except for the HippoDraw, which exploits the MVC
architecture. Data Provider stereotype shows a wide
distribution – it varies from 1.9% in the FlightGear to 62.8% in
QuantLib. The stereotypes, which are candidates for bad-smell
classes, i.e., Controller and Pure Controller, Lazy, Data, Small,
and Large Classes, do not occur in significant numbers.

Based on the distribution of the class stereotypes we
observe some similarities and differences between the systems.
The two IDE systems KDevelop and Code::Blocks show very
similar distribution of class stereotypes. HippoDraw and
Quantlib have a close distribution of the Commander
stereotype - it forms a small part of their distribution (18.5%
and 18.9% respectively). However, in FlightGear this
stereotype has a significant portion (84.2%). HippoDraw and
FlightGear are not as much collaborative as KDevelop,
Code::Blocks and QuantLib. The results also show that the
frequency and distribution of the class stereotypes across a
system reflect an implementation of particular design decisions
and good/bad programming practices, and might be an
indicator of system architecture/design. For example, the two
IDEs we studied, Code::Blocks and KDevelop, showed very
similar distribution of class stereotypes. To explain this we
surmise that there is underlying reference architecture for IDEs
that both systems follow. While these examples are not terribly
surprising, the result clearly is of particular interest.

1 www.research.att.com/~bs/applications.html

TABLE VI. DISTRIBUTION OF CLASS STEREOTYPES ACROSS 5 OPEN SOURCE SYSTEMS

KDevelop Code::Blocks FlightGear HippoDraw QuantLib
Stereotype

% # % # % # % # %

Min

(%)

Max

(%)

Aver

(%)

Stdev

(%)

Entity 42 4.1 23 3.1 31 8.6 46 14.9 20 2.5 2.5 14.9 6.6 5.2

Minimal Entity 10 1.0 6 0.8 7 1.9 5 1.6 0 0.0 0.0 1.9 1.1 0.8

Data Provider 57 5.6 25 3.3 7 1.9 46 14.9 511 62.8 1.9 62.8 17.7 25.7

Commander 748 73.1 608 80.7 304 84.2 57 18.5 154 18.9 18.5 84.2 55.1 33.5

Boundary 743 72.6 573 76.1 139 38.5 120 39.0 700 86.0 38.5 86.0 62.4 22.2

Factory 10 1.0 9 1.2 5 1.4 38 12.3 1 0.1 0.1 12.3 3.2 5.1

Controller 8 0.8 3 0.4 6 1.7 19 6.2 2 0.2 0.2 6.2 1.9 2.5

Pure Controller 18 1.8 6 0.8 0 0.0 18 5.8 14 1.7 0.0 5.8 2.0 2.3

Large Class 2 0.2 2 0.3 0 0.0 5 1.6 4 0.5 0.0 1.6 0.5 1.9

Lazy Class 4 0.4 0 0.0 2 0.6 8 2.6 0 0.0 0.0 2.6 0.7 2.6

Degenerate

Class
11 1.1 12 1.6 5 1.4 5 1.6 1 0.1 0.1 1.6 1.2 0.6

Data Class 12 1.2 6 0.8 2 0.6 8 2.6 6 0.7 0.6 2.6 1.2 0.8

Small Class 365 35.7 166 22.0 75 20.8 96 31.2 339 41.6 20.8 41.6 30.3 8.9

Coverage 98% 99% 95% 94% 99% 94 99 97 2.3

The chi-square test was performed to investigate the link of

class stereotypes in different software systems. The null
hypothesis is that the distribution of class stereotypes in
different software is a random phenomenon and the alternative
hypothesis is that there is a link between class stereotypes and
software systems. Chi-square reports a p-value <0.0001 with
95% confidence and 48 degrees of freedom that lets us reject
the null hypothesis. The critical and observed values are
65.171 and 2143.018 respectively.

VII. THREATS TO VALIDITY

The assessment of class stereotypes identification and the
StereoClass tool is subject to a number of threats to validity.
The rules for stereotype identification are subjective and
thresholds might vary depending on differences in subject’s
interpretations. The manual inspection of the results includes
one software system and additional examples may be
warranted. We attempted to construct the study in an unbiased
fashion however the selection of the subset of the system is a
potential problem. Also, the size of the subset inspected
(nearly 15% of the system) could be increased however the
assessment is very time consuming for the subjects.

The approach was only applied to C++ systems. However,
the srcML format supports Java and rules for method
stereotype identification could be adapted for Java. The class
stereotype rules are valid for other object-oriented languages
and we believe that our approach is extensible to other
languages.

VIII. RELATED WORK

The notion of stereotype for object-oriented modeling was
first introduced by Wirfs-Brock to support the classification of
objects in terms of assigning them certain features and

properties [14]. Later, with the introduction of UML,
stereotypes became a powerful extension mechanism in UML
for introducing new semantics to an existing model while
increasing the comprehension of UML diagrams [15], [16].
Work on UML class diagrams based on class stereotypes [4],
[5], [6] showed that layouts with additional semantic
information about the design were most effective, and the use
of class stereotypes plays a significant role in comprehension
of these diagrams.

A few approaches identify key or most important classes in
a software system [17], [18]. Zaidman et al. [17] provide a
mechanism based on dynamic coupling and webmining to find
classes with a lot of “control” within the application. Orla
Greevy et al. [18] identify the key classes and methods which
provide functionality for individual features. However,
importance of a class is defined by the specific tasks or
activities during software maintenance. Our approach provides
a description of roles/responsibilities for all the classes in a
system and not only for “control” classes.

Gil et al. [19] introduce class-level traceable patterns for
Java code (called micro-patterns) with the eventual goal of
design assessment. The approach slightly touches upon
association and dependency relationships by considering
classes that do not propagate calls. A taxonomy of classes to
identify changes in object-oriented software based on
generalization relationships and the types of data associated
with the class is presented by Clarke et al. [20]. Their approach
does not reflect role and class responsibilities. A visualization
approach to support quick class understanding is proposed by
Lanza et al. [21]. The internal structure of a class is presented
as a set of a few method layers and an attribute layer. This
approach provides semantic information at the class level, but
collaborations between different classes are limited to
generalization relationships. Another visualization approach to

support method understanding is proposed in [22]. Robbes et
al. present microprints, pixel-based representations of methods
enriched with semantic information such as state access,
control flow, and invocation relationship. This approach
provides fine-grained information about the method’s internals
but not a general characterization.

All of the class categorizations given in the referenced
works are primarily based on the access type to the data
members. Collaborations between classes (if they are used at
all) are limited to inheritance relationships, while association
and aggregation relationships are not taken into consideration.
Our work fills this gap in class categorizations and identifies
stereotypes with respect to a class’s architectural importance in
the entire system.

IX. CONCLUSIONS

We present a taxonomy of class stereotypes that was
derived from an empirical investigation of 21 open source
systems written in C++. Additionally, a tool was implemented
that automatically reverse engineers a class’s stereotype and
redocuments the class. The tool can analyze an entire system
and redocument it efficiently (in approximately two minutes for
Hippodraw). A developers’ assessment showed that our
classification and the tool accurately describe a class’s
stereotype.

We feel automatic identification of class stereotypes can
support better program comprehension and design recovery.
Using both class and method stereotype information a
developer should be able to quickly grasp the high level role of
the class without reading the source code in detail. Our
approach forms a foundation for a number of applications
based on class stereotypes. For example, the class stereotypes
allow us to determine architectural importance for automated
layout of class diagrams or architectural level understanding. It
introduces new measures of class’s control and can be used to
improve existing coupling metrics. Additionally, the
stereotypes can be used for mapping to class stereotypes in
analysis models, to design pattern roles, and to detect bad-smell
classes for refactoring.

The proposed stereotypes could be used not only to
characterize design and implementation solutions, they may be
used to evaluate and improve design or used as indicators of
bad design in need of refactoring. Controller and Pure
Controller, Lazy, Data, Small, and Large Classes are candidates
for refactoring in particular situations and represent bad smell
[10, 11] and we leave this for future work. Our plans are to
extend the empirical study to more systems. We also plan to
extend the detection rules to Java classes.

REFERENCES

[1] M. Staron, L. Kuzniarz, and C. Wohlin, "Empirical assessment of using
stereotypes to improve comprehension of UML models: A set of
experiments," Journal of Systems and Software, vol. 79, pp. 727-742,
2006.

[2] M. Genero, J. A. Cruz-Lemus, D. Caivano, S. M. Abrahão, E. Insfrán,
and J. A. Carsí, "Does the use of stereotypes improve the comprehension
of UML sequence diagrams?," in 2nd International Symposium on

Empirical Software Engineering and Measurement (ESEM'08),
Kaiserslautern, Germany, 2008, pp. 300-302.

[3] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato,
"Influence Web Application Comprehension Tasks Supported by UML
Stereotypes: A Series of Four Experiments," IEEE Transactions on
Software Engineering, vol. 36, pp. 96-118, 2010.

[4] O. Andriyevska, N. Dragan, B. Simoes, and J. I. Maletic, "Evaluating
UML Class Diagram Layout based on Architectural Importance," in 3rd

IEEE International Workshop on Visualizing Software for

Understanding and Analysis (VISSOFT'05), Budapest, Hungary 2005,
pp. 14-20.

[5] S. Yusuf, H. Kagdi, and J. I. Maletic, "Assessing the Comprehension of
UML Diagrams via Eye Tracking " in 15th IEEE International

Conference on Program Comprehension (ICPC 2007), Banff, Canada,
2007, pp. 113-122. .

[6] B. Sharif and J. I. Maletic, "The Effect of Layout on the Comprehension
of UML Class Diagrams: A Controlled Experiment," in IEEE

International Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT'09), Edmonton, Canada 2009, pp. 11-18.

[7] N. Dragan, M. L. Collard, and J. I. Maletic, "Reverse Engineering
Method Stereotypes," in 22nd IEEE International Conference on

Software Maintenance (ICSM'06), Philadelphia, Pennsylvania USA,
2006, pp. 24-34.

[8] N. Dragan, M. L. Collard, and J. I. Maletic, "Using Method Stereotype
Distribution as a Signature Descriptor for Software Systems," in IEEE

International Conference on Software Maintenance (ICSM'09),
Edmonton, Canada 2009, pp. 567-570.

[9] G. Booch, I. Jacobson, and J. Rumbaugh, The Unified Software
Development Process: Addison-Wesley, 1999.

[10] M. Fowler, Refactoring: Improving the Design of Existing Code:
Addison-Wesley, 1999.

[11] A. J. Riel, Object-Oriented Design Heuristics: Addison-Wesley, 1996.

[12] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice -

Using Software Metrics to Characterize, Evaluate, and Improve the
Design of Object-Oriented Systems: Springer, 2006.

[13] M. L. Collard, J. I. Maletic, and A. Marcus, "Supporting Document and
Data Views of Source Code," in ACM Symposium on Document
Engineering (DocEng’02), McLean VA, 2002, pp. 34-41.

[14] R. Wirfs-Brock, "Stereotyping: a technique for characterizing objects
and their interactions," Object Magazine, vol. 3, pp. 50-53, 1993.

[15] M. Gogolla and B. Henderson-Sellers, "Analysis of UML Stereotypes
within the UML Metamodel," in UML, 2002, pp. 84-99.

[16] C. Atkinson, T. Kuhne, and B. Henderson-Sellers, "Stereotypical
Encounters of the Third Kind," in UML, 2002, pp. 100-114.

[17] A. Zaidman and S. Demeyer, "Automatic Identification of Key Classes
in a Software System Using Webmining Techniques," Journal of

Software Maintenance and Evolution: Research and Practice, vol. 20,
pp. 387-417 2008.

[18] O. Greevy and S. Ducasse, "Characterizing the Functional Roles of
Classes and Methods by Analyzing Feature Traces " in 6th International
Workshop on Object-Oriented Reengineering (WOOR'05), 2005.

[19] J. Gil and I. Maman, "Micro Patterns in Java Code," in Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA'05),
San-Diego, California USA, 2005.

[20] P. J. Clarke, B. A. Malloy, and J. P. Gibson, "Using a Taxonomy Tool to
Identify Changes in OO Software," in 7th European Conference on
Software Maintenance and Reengineering, 2003, pp. 213-222.

[21] M. Lanza and S. Ducasse, "A Categorization of classes based on the
visualization of their Internal Structure: the Class Blueprint," in 16th

ACM Conference on Object-Oriented Programming, Systems.
Languages and Applications (OOPSLA ' 01), 2001, pp. 300-311.

[22] R. Robbes, S. Ducasse, and M. Lanza, "Microprints: A pixelbased
semantically rich visualization of methods," in ESUG 2005 (13th

International Smalltalk Conference - Academic Track) 2005, pp. 172 -
188.

