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Abstract—An approach is presented to automatically determine a 

class’s stereotype.  The stereotype is based on the frequency and 

distribution of method stereotypes in the class.  Method 

stereotypes are automatically determined using a defined 

taxonomy given in previous work.  The stereotypes, boundary, 

control and entity are used as a basis but refined based on an 

empirical investigation of 21 systems.  A number of heuristics, 

derived from empirical evidence, are used to determine a class’s 

stereotype.  For example, the prominence of certain types of 

methods can indicate a class’s main role.  The approach is 

applied to five open source systems and evaluated.  The results 

show that 95% of the classes are stereotyped by the approach.  

Additionally, developers (via manual inspection) agreed with the 

approach’s results. 

Keywords-method stereotypes, class stereotypes, program 

comprehension, reverse engineering 

I.  INTRODUCTION  

The work presented here investigates how to automatically 
identify a class’s stereotype in an existing object-oriented 
software system.  Stereotypes are a simple abstraction of a 
class’s role and responsibility in a system’s design.  Very few 
software systems have this sort of documentation explicit in the 
source code.  Manually documenting this type of abstraction is 
relatively easy for a small number of classes but doing so for 
entire systems would be quite costly. 

Accurate information about a class’s stereotype is useful for 
a number of software maintenance and evolution tasks.  
Knowing a class’s stereotype implies the role of the class in the 
design.  It gives clues to how a class collaborates with other 
classes in different design patterns.  A class’s stereotype may 
also be an indicator of bad smells and give clues for 
refactoring.  It can be an indicator of comprehensibility. 

A number of studies [1-6] demonstrate the benefits of using 
stereotypes, which reflect semantics, in program 
comprehension, design, and software maintenance tasks.  
Using class stereotype information [4-6] as a factor in laying 
out UML class diagrams has shown to improve the 
comprehensibility of the diagram.  Staron et al. [1] show the 
effectiveness of class stereotypes based on domain model in 
program comprehension. 

Hence, we feel this is a very important, yet unexamined 
area of object oriented design recovery.  This work directly 
leverages our prior work on recovery of method stereotypes.  

However, automatic identification of class stereotypes proved 
to be a much more difficult problem, requiring a more in-depth 
empirical study and understanding of how method stereotypes 
are used across systems and classes. 

This work has the following contributions.  First, a 
taxonomy of class stereotypes is proposed.  This taxonomy is 
derived from an empirical examination of 21 open source 
software systems.  The second contribution involves an 
approach to automatically label a given class with its 
corresponding derived stereotype.  Here we limit our study to 
one programming language, namely C++. 

Our approach starts by automatically identifying and 
labeling all methods in a system with their stereotype.  This 
information is then collected and a distribution of method 
stereotypes for each class is calculated.  Class stereotypes are 
derived from this distribution via a set of rules that map method 
stereotype distribution characteristics to the class stereotype 
taxonomy.  The approach is evaluated against human experts 
and through an empirical study. 

The paper is organized as follows.  The next section (II) 
contains a brief description of our method stereotype 
taxonomy.  This represents the main result of our previous 
work [7, 8]. Additionally, how we compute the method 
stereotype distributions is described.  The result is a class 
signature that forms the input for our automatic classification 
scheme.  In section III we present a taxonomy of class 
stereotypes.  Section IV describes our approach to 
automatically identify class stereotypes from existing C++ 
code.  Section V is an evaluation of the approach as compared 
to experts, followed by an empirical study in Section VI.  This 
is followed by a discussion of the threats to validity, related 
work and conclusions.   

II. CLASS SIGNATURES 

Here we define a class signature [8] as a frequency 
distribution of method stereotypes for a class.  We use the class 
signature to infer a class’s stereotype.  In this section, we 
summarize our previous work on defining and automatically 
identifying method stereotypes as this forms the basis for the 
signature.  Specifics of the class signature are then presented. 

A. Method Stereotypes  

The aggregates for class signature identification, method 
stereotypes (see Table I), were first presented in [7] and we 



 

 

refer the reader there for more complete details and examples.  
That work presented an approach to automatically identify 
method stereotypes.  Additionally, a taxonomy for method 
stereotypes is given that unifies and extends the previous 
literature on stereotypes to address a number of gaps and 
deficiencies.  Based on this taxonomy, method stereotypes can 
be reverse engineered using static program analysis.  We 
constructed a tool, StereoCode, that re-documents source code 
with the stereotype information for each method.  The 
assessment of this work demonstrated two things.  First, that 
the given method stereotype classification covered a very large 
percentage of the methods studied.  That is, almost all methods 
could be labeled by the classification scheme.  Second, that the 
tool redocumented systems correctly.  By correctly, we mean 
that an experienced developer agreed 90% of the time with our 
labeling of the method.  The discrepancies typically involved 
very poorly written or convoluted methods. 

The taxonomy of method stereotypes (Table I) is organized 
by the main role of a method while simultaneously 
emphasizing its creational, structural, and collaborational 
aspects with respect to a class’s design.  Structural methods 
provide and support the structure of the class.  For example, 
accessors read an object’s state, while mutators change it.  
Creational methods create or destroy objects of the class.  
Collaborational methods characterize the communication 
between objects and how objects are controlled in the system.  
Degenerate are methods where the structural or collaborational 
stereotypes are limited.  The name is based on the 
mathematical term for a case for which a stereotype cannot be 
any simpler. 

TABLE I.  TAXONOMY OF METHOD STEREOTYPES 

Stereotype 

Category 
Stereotype Description 

get Returns a data member. 

predicate 
Returns Boolean value which is 

not a data member. 

property 
Returns information about data 

members. 

Structural 

Accessor 

void-accessor 
Returns information through a 

parameter.  

set Sets a data member. 

command Structural 

Mutator non-void-

command 

Performs a complex change to 

the object’s state. 

Creational 

constructor, 

copy-const, 

destructor, 

factory 

Creates and/or destroys objects. 

collaborator 

Works with objects (parameter, 

local variable and return 

object). Collaborational 

controller 
Changes only an external 

object’s state (not this). 

incidental 
Does not read/change the 

object’s state. Degenerate 

empty Has no statements. 
 

Also, a method may have more than one stereotype.  
Methods have a single stereotype from any category and may 
have secondary stereotypes from the collaborational and 
degenerate categories.  For example, a two-stereotype method 
get collaborator returns a data member that is an object or uses 
an object as a parameter or a local variable.  We now describe 

how the method stereotypes are used for defining the class 
signatures. 

B. Method Stereotype Distributions 

In [8] we introduced the idea of system signatures and 
examined the frequency of method distributions for one open 
source system.  From this study we learned that these 
distributions of method stereotypes seemed to be indicators of 
system architecture.  Here we extend this concept to a class 
signature. 

We found it useful to present the distribution data in both a 
detailed and summarized manner.  In the detailed view we give 
the distribution counts for each individual stereotype (e.g., get, 
set, command, factory, etc).  In the summarized view we 
present counts of whole stereotype categories (e.g., all the 
accessors, all the collaborational, etc).  

The stereotype distribution highlights the role of a method 
in the class.  It deemphasizes, to a large degree, interaction with 
other classes.  An example of a detailed view for two classes 
from the open source system HippoDraw is given in Fig. 1.  

The class DataSource is largely composed of different types 

of accessors and mutators while class DisplayController 

primarily constitutes factory and controller methods, i.e., 
performs most of its work on other classes. 

The stereotype category distribution aggregates the data and 
highlights the degree of coupling and collaboration among 
classes in a system.  It also includes some internal coupling 
(cohesion) of a class through the main categories of method 
stereotypes.  Additionally, parts of the system not yet 
implemented (degenerate) are reflected.  As can be seen in Fig. 

2, the class DataSource collaborates (structurally) very little 
with other classes and has a small percentage of degenerate 
accessors and mutators.  In contrast all methods of class 

DisplayController are collaborational and there are no 
degenerate methods. 

0% 20% 40% 60% 80% 100%

DataSource

DisplayController

get predicate property voidaccessor 

set command non-void-command factory

collaborator controller incidental empty

 

Figure 1.  Distribution of stereotypes for the classes DataSource and 

DisplayController signatures (from HippoDraw).  

The methods in the taxonomy are categorized by the data 
access type (i.e., read or write to the object’s state) and by 
functionality, which is given in the creational, structural, 
behavioral and collaborational characteristics.  These two 



 

 

perspectives are reflected in the two distributions, stereotype 
and stereotype category, which complement each other and 
highlight different aspects of a class’s design.   The detailed 
view presents the class’s internal structure and responsibilities 
in terms of types of methods, i.e., we can identify what part of 
the class is responsible for its creational, structural, behavioral, 
and control tasks.  The summarized view contrasts readers of 
object’s state (accessors) versus writers (mutators) as well as 
simple readers or writers versus readers or writers that use 
external objects (e.g., accessor versus accessor collaborator).  
Additionally, it hightlights the accessors and mutators that are 
not yet implemented (degenerate).  Most likely, there is some 
plan to complete these in the future.  Note that in Fig. 1 and 

Fig. 2 the class DataSource presents two very different 

distributions.  This difference between the stereotype and 
category view is true for a majority of classes.  The charts for 

the class DisplayController are more similar because it 

has no degenerate methods and all accessors and mutators are 
collaborational. 

0% 20% 40% 60% 80% 100%

DataSource

DisplayController

accessor accessor collaborator accessor degenerate

mutator mutator collaborator mutator_degenerate

creational collaborational

 

Figure 2.  Distribution of categories for the DataSource and 

DisplayController signatures (from HippoDraw). 

These two distributions make up the class signature and 
provide us with a basis for the automatic identification of class 
stereotypes. 

III. TAXONOMY OF CLASS STEREOTYPES  

The process of creating the taxonomy of class stereotypes 
involved multiple steps.  The first step was creating the 
taxonomy of method stereotypes.  We manually examined 150 
of the HippoDraw classes in detail and found many patterns of 
design at the method and class level.  The validation of the 
method’s taxonomy on further systems gave us additional 
evidence of the existence of these patterns of design 
abstractions. 

The next step was to classify software at the system level 
based on the method stereotypes.  Automatic hierarchical 
(COBWEB) and partitional (X-Means) clustering was used to 
classify 21 open-source C++ systems listed in Table II.  The 
clusters found are characterized by the frequency and 
distribution of method stereotypes.  The results showed that 
these distributions are a good indicator of system 
architecture/design.  Additionally, we observed more patterns 

of the method stereotype distributions at the class level by 
examining about 250 classes of the systems that were clustered 
together (Qt and WxWidgets) and separately (HippoDraw, 
QuantLib, ACE, and Doxygen).  

That led to a more thorough investigation of the patterns of 
design at the class level.  We continued the exploration of these 
patterns by considering the diverse types of features that a class 
may have with respect to the method’s taxonomy and method 
stereotype distribution.  The detection rules were implemented 
and then we meticulously checked the HippoDraw system and 
a random set of classes (about 100) in the systems listed in 
Table II.  Some of the rules were refined and improved after 
this manual verification. 

To summarize, the creation of the taxonomy of class 
stereotypes started with an empirical investigation that led to 
formulation of the rules for the identification of class 
stereotypes.  The rules were validated on open source systems 
that led to the rules refinement and further validations of the 
class’s taxonomy.   

The list of class stereotypes is presented in Table III.  The 
actual class names are not used in the categorization.  While the 
name can be a good source of information it can also be 
misleading and we leave this aspect of the investigation for 
future work.  

TABLE II.  AN OVERVIEW OF THE SOFTWARE SYSTEMS EXAMINED TO 

DEVELOP THE TAXONOMY OF CLASS STEREOTYPES.  ORDERED BY THE 

NUMBER OF METHODS. 

System Domain Methods 

C++Fuzzy 0.61 fuzzy logic library 313 

CppUnit 1.12.1 framework for unit testing  1335 

CEL 1.2.1 game engine 2798 

SmartWin++ 2.0.0 GUI and SOAP library   2882 

Ivf++ 1.0.0 visualization framework 3032 

HippoDraw 1.21.3 data analysis environment 3315 

QuantLib 0.9.7 finance library 4235 

ClanLib 0.8.1 game SDK 4427 

PPTactical 0.9.6 game engine 4887 

OpenWBEM 3.2.2 management of systems  4963 

ICU 4.0.1 components for Unicode 5984 

FlightGear 1.9.1 flight stimulator  6036 

Ice 3.3.0 
internet communications  

engine 
6952 

ACE 5.6.8 communication environment 7867 

CGAL 3.4 
library of geometric 

algorithms 
11365 

Code::Blocks 8.02 IDE  11586 

KDevelop 3.5.4 IDE 11799 

CrystalSpace 1.2.1 
SDK for real-time 3D 

graphics 
12839 

Doxygen 1.5.8 documentation system 13445 

wxWidgets 2.8.9 GUI framework 34907 

Qt 4.4.3 GUI framework 59535 

Total  214502 

 



 

 

Our initial taxonomy included the standard set of 
overarching stereotypes of entity, boundary and control class 
stereotypes [9].  We expanded this simple taxonomy as 
necessary to cover recurring stereotypes that emerged from our 
empirical investigation.  We tried to adopt naming conventions 
from literature on such things as method stereotypes [7] and 
bad smells [10]. The list of class stereotypes uncovered is given 
in Table III.  A given class may take on one or more of these 
stereotypes.  That is, a class may have the characteristics of 
more than one of these stereotypes in certain cases.  

For the remainder of the section, each of the class 
stereotypes is presented along with an explanation of the role 
and responsibilities of such a class.  Additionally, examples of 
each class stereotype are presented visually along with a 
specific class and its signature from the HippoDraw system.  
Due to the space limits these class signatures are shown in a 
combined view from which the detailed and summarized views 
can be inferred.  An Entity is a class that encapsulates data and 
behavior.  It is the keeper of the data model and/or business 
logic (e.g., the Subject in the Observer pattern).  Examples of 

entity classes are the classes Range, DataSource, Rect, 

and BinnerAxis (see Fig. 3).  As can be seen by their 
signatures, they typically contain accessors and mutators in 
various proportions and might have a variable percentage of 

collaborational methods (up to 2/3).  They do not have 
controller methods. 

A Minimal Entity is a special case of Entity that has only 
get/set and command methods.  It encapsulates very trivial 

entities (e.g., Point).  It is considered separately because it is 

a very simple class that does not require much effort to 
comprehend.  It can also be considered as a Lazy Class 
(described below). 

TABLE III.  A TAXONOMY OF CLASS STEREOTYPES 

Class Stereotype Name 

Entity 

Minimal Entity 

Data Provider 

Commander 

Boundary 

Factory 

Controller 

Pure Controller 

Large Class 

Lazy Class 

Degenerate 

Data Class 

Small Class 

.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

DataClass (AxisTick)

DegenerateClass (AxisRep2D)

LazyClass (BinsBase)

LargeClass, Boundary (FunctionController)

Controller (DisplayController)

PureController, SmallClass (AxisTickXML)

Factory, PureController (BinnerAxisXML)

Factory (QtViewFacory)

Boundary (QtView)

Boundary,Commander (EpsView)

Boundary, Commander (DrawBorder)

Boundary, DataProvider (DataView)

Entity,DataProvider (BinnerAxis)

Entity,DataProvider (Rect)

Entity (DataSource)

Entity (Range)

Minimal Entity (Point)

get get collaborator predicate predicate collaborator property 

property collaborator voidaccessor voidaccessor collaborator set set collaborator 

command command collaborator non-void-command non-void-command collaborator controller collaborator 

collaborator factory degenerate
 

Figure 3.  Class stereotypes and their signatures for 17 HippoDraw classes.  Each row is labeled with the class stereotype(s) and in parentheses the 

name of the example class whose data is shown in the row.  Each stereotype is automatically identified based on the signatures using the detection 

rules.  Accessors are shown in green colors, mutators – in blue, factory – in tan, collaborational - in rose and turquoise.   The method stereotype has a 

grey fill effect if  ‘collaborator’ is a secondary stereotype for this method.



 

 

A Data Provider is a class that encapsulates data and 

consists mainly of accessors.  For example, classes Rect and 

BinnerAxis have two stereotypes: Entity and DataProvider - 

more than 75% of their methods are accessors. 

A Commander is a class that encapsulates behavior and 
mainly consists of mutators.  A large part of the logic for the 
class’s behavior is implemented in command and non-void-
command methods.  These methods execute complex changes 
of an object’s state.  The changes may also involve objects of 

different classes.  The DrawBorder and EpsView classes 

are examples of the Commander class.  More than 70% of their 
methods are mutators. 

A Boundary is a communicator in a system and has a large 
percentage of collaborational methods but a low percentage of 
controller and not many factory methods.  Alternatively this 
type of class could be a Data Provider when its main purpose is 
to get data from a model (when it has mainly accessors) or 
Commander when its main purpose is to send data and 
provides updates/output to a model (when it has mainly 

mutators).  For Example, the DataView class has both 
stereotypes Boundary and Data Provider because all of its 
methods are collaborational, there are no controller methods, 
and additionally more than 80% of the methods are accessors.  

The EpsView class has both stereotypes Boundary and 
Commander – most of its methods are collaborational, there are 
no controller methods, and additionally, 70% of the methods 
are mutators. 

A Factory is a creator of objects and has mostly factory 

methods.  The classes QtViewFactory and 

BinnerAxisXML are examples of the Factory class 
stereotype with 100% and 67% of factory methods 
respectively.   

A Controller is a class that provides functionality and 
processes data of external objects.  It updates an entity/model 
working mainly outside of itself, i.e., it has almost all controller 

and factory methods.  The DisplayController class is an 
example of this stereotype.  It has about 70% Controller and 
Factory methods. 

A Pure Controller is a special case of the Controller.  It has 
100% Controller and Factory methods and works only outside 
of itself.  We consider this stereotype separately because it is a 
candidate for the bad-smell God class [11].  A God class is a 
large controller class that monopolizes most of the system 
functionality and depends on external data.  Methods of the 
controller class work on data stored in surrounding classes.  
The Pure Controller class could be a God class if it is a 
standalone class and consists of many methods.   

A Large Class is a class which contains too many 
responsibilities and “is trying to do too much” [10] .  “Too 
much” can be interpreted in different ways using metrics such 
as LOC, number of attributes, number of methods, complexity 
metrics, etc.  However, those types of metrics do not directly 
reflect the different roles of a class.  We consider a class a 
Large Class not only if it has many methods, but also if it 
combines multiple roles, such as Data Provider, Commander, 
Controller, and Factory.  It also could be highly collaborative.  

The FunctionController class is an example of a Large 

Class.  It has a small percentage of accessors, about 50% 
mutators, 20% controller, and 25% factory.  The class is also 
100% collaborational. 

A Lazy Class is a very trivial class which does “too little” 
[10].  The Lazy Class might occur in the context of a new or 
planned feature that is not yet completed.  Similarly, “too little” 
can be interpreted using different metrics.  But we consider a 
class as Lazy if it has get/set methods and a low percentage of 
other methods.  The class is also considered Lazy if it has a 

significant number of degenerates, e.g., BinsBase has 40% 

degenerate methods besides get/set methods. 

A Degenerate Class is when the state and behavior are 
degenerate.  It has mainly methods that do not read/write to the 
object’s state - half or more methods are incidental or empty.  
If the Degenerate class is a leaf in the hierarchy, then most 
likely it needs to be examined for a possible refactoring.  An 

example of the Degenerate class is AxisRep2D. 

A Data Class is a class with degenerate behavior.  That is, 
it has only get and set methods.  This type of class passively 
stores data and does not contain methods that operate on the 

data.  An example of the Data Class is the AxisTick class 
with only get/set methods. 

A Small Class is a class that only has one or two methods.  
If it is a standalone class then it is a bad-smell because it 
degenerates the state and/or behavior.  

IV. AUTOMATICALLY IDENTIFYING STEREOTYPES  

We developed a tool to automatically identify the class 
stereotypes presented in the previous section.  The tool uses the 
class signature to assign stereotypes to a class.  The rules for 
identification are based on an empirical investigation of the 21 
open source systems in Table II.  We present the identification 
rules to reverse engineer class stereotypes from (C++) source 
code and give details of a tool that automatically labels a class 
with its stereotype(s).  

A.  Rules for Class Stereotype Identification 

The rules are based on both the stereotype and category 
distributions of the class signature. Both distributions are 
required to determine the stereotype except for the cases of 
Factory, Data, Degenerate, and Small Class, which require only 
stereotype or category distribution.  To calculate the stereotype 
we use semantic fractional thresholds of method stereotype 
frequencies and statistical, average and standard deviation, 
thresholds that are proposed in [12] as a means to characterize 
and evaluate the design of object-oriented systems.  

We use a fractional threshold of ⅔ for representign 
situations were a class consists mostly of stereotype A.  The 
thresholds for the Large, Lazy, Degenerate and Small Class 
were determined empirically by running the rules on the 
systems HippoDraw and Qt. 

We now introduce the notations used in the rules for class 
stereotype identification.  The set of the stereotype is formed as 
follows. 



 

 

Let {stereotype} be a set of method stereotypes of the type 
stereotype, e.g., {get} is a set consisting of get and get 
collaborator methods.  {methods} is a set of all the methods in a 
class.  The set of the stereotype category is formed as follows. 

 The set {accessors} consists of all the accessors (get, 
predicate, etc), accessors collaborators (get collaborator, 
predicate collaborator, etc) and accessors degenerate (predicate 
incidental, voidaccessor empty, etc).  The set {mutators} is 
constructed in a similar way.   

 The set {collaborators} consists of all the collaborational 
methods, e.g., get collaborator, set collaborator, factory 
collaborator, etc.  Thus, the set  
{non-collaborators} = {methods} - {collaborators}.   

The set {degenerate} consists of accessors degenerate 
(predicate incidental, void-accessor empty, etc), mutators 
degenerate (command incidental, non-void command 
incidental), and collaborator degenerate (collaborator 
incidental, collaborator empty).  We denote by |stereotype| the 
cardinality of the set {stereotype}. 

To identify the class stereotype Entity the following 
conditions need to be satisfied:  

• They contain an accessor besides get and a mutator 
besides set  

{accessors} - {get} ≠ ∅  &   

 {mutators} - {set} ≠ ∅ 

• The ratio of collaborational to non-collaborational 
methods is 2:1  
|collaborators| / |non-collaborators| = 2 

• They can have factory methods but no controller 
methods 
|controller| ≠ 0 

To identify the class stereotype Minimal Entity the 
following conditions need to be satisfied: 

• The only method stereotypes are get, set, and 
command/non-void-command 

{methods} - ({get}∪ {set} ∪ {command} 

 ∪ {non-void-command}) = ∅ & |get| ≠ 0 & |set| ≠ 0 

& ({command} ∪ {non-void-command}) ≠ ∅ 

• The ratio of collaborational to non-collaborational 
methods is 2:1  
|collaborators| / |non-collaborators| = 2 

To identify the class stereotype Data Provider the 
following conditions need to be satisfied: 

• It consists mostly of accessors  
|accessors| > 2 · |mutators|  

• Low control of other classes   
|accessors| > 2  (|controller| + |factory|) 

To identify the class stereotype Commander the following 
conditions need to be satisfied: 

• It consists mostly of mutators   
|mutators| > 2 · |accessors| 

• Low control of other classes   
|mutators| > 2 · (|controller| + |factory|) 

To identify the class stereotype Boundary the following 
conditions need to be satisfied: 

• More collaborators then non-collaborators  
|collaborators| > |non-collaborators|  

• Not all the methods are factory methods  

|factory| < ½ · |methods| 

• Low number of controller methods  

|controller| < ⅓ · |methods| 

To identify the class stereotype Factory the following 
conditions need to be satisfied: 

• It consists mostly of factory methods  

|factory| > ⅔ · |methods| 

To identify the class stereotype Controller the following 
conditions need to be satisfied: 

• High control of other classes  
|controller| + |factory| > ⅔ · |methods|  

• Accessor or mutator are present (not only methods that 
work on external objects exist)  

|accessors|  ≠ 0 ∨ |mutators|≠ 0 

To identify the class stereotype Pure Controller the 
following conditions need to be satisfied: 

• Only controller and factory methods with no mutator, 
accessor, or collaborator methods  
|controller| + |factory| ≠ 0 &  
|accessors| + | mutators| + |collaborator| = 0 

• There must be at least one controller method 
|controller| ≠ 0 

To identify the class stereotype Large Class the following 
conditions need to be satisfied: 

• Categories of stereotypes (accessor with mutator) and 
stereotypes, factory and controller, are approximately 
in equal proportions  
1
/5  · |methods| < |accessors| + |mutators|   

< ⅔ · |methods|  
& 

1
/5 · |methods| < |factory| + |controller|   

< ⅔ · |methods|  

• Controller and factory have to be present  

|factory|  ≠ 0 & |controller|≠ 0 

• Accessor and mutator have to be present  

|accessors|  ≠ 0 & |mutators|≠ 0 

• Number of methods in a class is high   
|methods| > average + stdev   

• Note, average and stdev of number of methods are 
calculated per system. 



 

 

To identify the class stereotype Lazy Class the following 
conditions need to be satisfied: 

• It has to contain get/set methods  
|get| + |set| ≠ 0   

• It might have a large number of degenerate methods  

|degenerate|  /  |methods| > ⅓  

• Occurrence of other stereotypes is low  
|methods| – (|get| + |set| + |degenerate|) <= 

1
/5 

To identify the class stereotype Degenerate Class the 
following conditions need to be satisfied: 

• It consists of many degenerate methods   

|degenerate|  /  |methods| > ½ 

To identify the class stereotype Data Class the following 
conditions need to be satisfied: 

• Only the simple accessor/mutators get and set are 
present:  
|get| + |set| ≠ 0 & |methods| – (|get| + |set|) = 0 

To identify the class stereotype Small Class the following 
conditions need to be satisfied: 

• Number of methods in a class is less than 3:  
|methods| < 3  

B. Implementation 

We extended our tool, StereoCode [7], to obtain class 
signatures and automatically identify the stereotypes.  
StereoCode automatically identifies method stereotypes using 
lightweight static analysis and an infrastructure based on 
srcML (SouRce Code Markup Language) [13] an XML 
representation that supports both document and data views of 
source code. 

The automatic detection of method stereotypes is based on 
static analysis of the source code using srcML.  For each 
stereotype, an XPath expression is used to detect that particular 
pattern.  StereoCode then re-documents the original source 
code with the stereotypes with a special @stereotype tag in 
the comments.  Next, for class-wide totals, these stereotype 
comment tags are collected and totaled to obtain the signature 
(both the stereotype and category distributions) for each class 
in a software system. 

Once the class signatures are generated, they are fed into 
the tool StereoClass that determines the stereotype for a given 
class using the rules described previously.  A class is assigned 
the stereotype if all conditions of a rule are satisfied.  Classes 
may satisfy more than one rule and the assigned stereotypes are 
the concatenation of all matches.  The part of StereoClass for 
the automatic identification of class stereotypes is implemented 
in C++.  The tool currently works only for C++ source code as 
input. 

V. EVALUATION 

To evaluate the approach and taxonomy we compare the 
results of our automatic classification of a class’s stereotype 

with that of human experts. In this section we will present the 
details and results of this evaluation. 

The system we chose is HippoDraw, an open source 
application that provides a data-analysis environment.  It is a 
wide-ranging application with parts for data-analysis 
processing and visualization with an application GUI interface.  
The source code is well written and follows a pretty consistent 
object-oriented style.  Additionally, the application follows the 
Model-View-Controller (MVC) architecture that is to a great 
extent reflected in our class stereotypes. 

Three experienced developers (subjects) manually 
evaluated and stereotyped classes of the HippoDraw system.  
The subjects are doctoral students in computer science with 
multiple years of academia and industry experience (OO 
development).  The students are members of our laboratory but 
were not involved in the implementation and development of 
this research.  In addition, these students were familiar with the 
design of HippoDraw. 

Each subject was given the description of the taxonomy of 
class stereotypes (as given in Section III), examples of the 
method stereotypes, and the class signatures for 45 classes from 
HippoDraw.  The subjects were not given the detection rules.  
The 45 classes were randomly picked and comprise about 15% 
of the system.  This random sample was inspected and found to 
contain a wide diversity of class stereotypes. 

Each subject spent approximately 90 minutes to complete 
the study.  First they read the descriptions of the method and 
class stereotypes, and then labeled the classes.  The subjects 
were not asked to check the code and made their decisions 
based on the class signatures. 

StereoCode was run on the entire system to generate the 
class signatures and then StereoClass was run on the class 
signatures to automatically generate the class stereotypes.  
Running both tools took less than 2 minutes for the entire 
system.  The results of the subjects’ evaluation were compared 
against the tool results and are given in Table IV.   

The results obtained by the tool are shown in the first 
column.  The tool labeled the 45 classes with 70 stereotypes.  
Almost half of the classes (22) were labeled with one 
stereotype and 23 classes with two stereotypes.  For Example, 
pairs of class stereotypes included Boundary and Data 
Provider, Boundary and Degenerate, Entity and Commander, 
Factory and Small Class. 

The columns S1, S2, and S3 show the numbers of class 
stereotypes obtained by each subject.  Two of the subjects 
identified the number of stereotypes close to that of the tool, 
while one found more: 72, 86, and 68 vs. 70 (tool).  The 
intersection columns show how the subject’s results compare to 
the results of the tool.  Those numbers (52, 47 and 50) show 
that each subject did not label some stereotypes that the tool 
found.  However, the union of all the subjects with the tool, 
shown in the last column, indicates that those missed 
stereotypes were different for each subject in almost all cases.  
That is, the tool and at least one of the subjects agreed.  

The cases where the tool disagreed with the subjects as a 
whole are of particular interest because they may indicate a 



 

 

problem with the approach or taxonomy.  The stereotype Pure 
Controller was missed (not labeled) by all three subjects in one 
case.  

TABLE IV.  SUMMARY OF ASSESSMENT STUDY.  45 CLASSES FROM 

HIPPODRAW WERE LABELED WITH CLASS STEREOTYPES BY THE TOOL AND 

THEN ASSESSED BY 3 EXPERIENCED SUBJECTS (S1-S3).   
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Entity 13 13 8 4 3 9 7 10 

Minimal Entity  3 1 1 0 0 2 0 1 

DataProvider 8 10 7 13 8 8 6 8 

Commander 7 8 6 16 6 8 6 7 

Boundary 15 21 13 28 13 18 13 15 

Factory 5 5 5 8 4 6 5 5 

Controller 6 5 5 4 3 7 6 6 

Pure Controller  2 1 1 1 1 0 0 1 

Large Class 3 4 3 5 3 3 3 3 

Lazy Class 2 0 0 3 2 0 0 2 

Degenerate 2 1 1 1 1 1 1 2 

Data Class 2 1 1 2 2 2 2 2 

Small Class 2 2 1 1 1 4 1 2 

Total 70 72 52 86 47 68 50 64 
 

However, the subjects labeled the other occurrence of this 
same stereotype.  The stereotype Minimal Entity was missed 
twice by all the subjects but was identified in a third instance.  
In the missing cases it was labeled Entity (both times) and Data 
Class (one time).  The third class labeled correctly has very 
similar distribution to the missed one.  The Entity stereotype 
was missed 3 times out of 13 cases that the tool labeled.  The 
10 cases where the subjects labeled the classes were very 
similar to the missed cases.  In all three cases the class had the 
second stereotype Data Provider which maybe the reason for 
missing the Entity stereotype.  In short, all the missed cases 
have no patterns and can be viewed as just missing a 
stereotype.  Additionally, the stereotypes identified by the 
subjects but not the tool (false positives) are different for each 
subject and there is no case when all three subjects have the 
same false positive.   

Through an analysis of the data (missing stereotypes and 
false positives) we can conclude that the tool performs better 
than each subject individually or combined.  In 91% of the 
cases (64 out of 70) the subjects were in agreement with the 
tool.  We found after careful examination that it was easy to 
miss aspects and make mistakes in stereotype identification 
during manual inspection.  Tool support will improve 
comprehension of a class’s design and role in the system. 

VI. EMPIRICAL STUDY  

To further assess our approach we applied our tools to the 
five open source systems listed in Table V, ordered by the 
number of classes in each system.  The research questions we 
address here are:  Do these stereotypes identified by the tool 
exist in nontrivial quantities in real systems?  And, do most 
classes fit into at least one class stereotype?  

The systems were chosen to represent a range of sizes, 
problem domains, and architectures.  Some of the systems are 

mentioned in Bjarne Stroustrup's list of interesting C++ 
applications

1
, while others are taken from sourceforge.net.  The 

categories of the chosen systems are: Game Programming 
library and SDK (FlightGear); Mathematical and Finance 
library (QuantLib); Development and Communication 
Environments (KDevelop, Code::Blocks); and complete 
application (HippoDraw).  For the most part, these systems can 
be considered good examples of object oriented design. 

TABLE V.  AN OVERVIEW OF THE SOFTWARE SYSTEMS EALUATED IN THE 

EMPIRICAL STUDY.  ORDERED BY THE NUMBER OF METHODS. 

System Domain Classes Methods 

HippoDraw 1.21.3 
data analysis 

environment 
308 3315 

QuantLib  

0.9.7 
finance library 808 4235 

FlightGear  

1.9.1 
flight stimulator  361 6036 

Code::Blocks 8.02 IDE  753 11586 

KDevelop 3.5.4 IDE 1023 11799 

Total  3253 36971 

 

For each system we automatically determined the 
stereotypes of each class using the StereoClass tool.  The tool 
took less than 2 minutes for each system.  The resulting 
distribution for each system is given in Table VI. 

The results show that all class stereotypes occur in all of 
these systems.  Most classes (94% to 99%) of the system fit 
into at least one of the class stereotypes.  The Commander 
stereotype occurs in large number of times in some systems, 
but less than 20% in others.  Boundary occurs at least about 
40% of the time.  Controller and Pure Controller stereotypes do 
not occur in a significant percentage for the majority of 
systems, except for the HippoDraw, which exploits the MVC 
architecture.  Data Provider stereotype shows a wide 
distribution – it varies from 1.9% in the FlightGear to 62.8% in 
QuantLib.  The stereotypes, which are candidates for bad-smell 
classes, i.e., Controller and Pure Controller, Lazy, Data, Small, 
and Large Classes, do not occur in significant numbers. 

Based on the distribution of the class stereotypes we 
observe some similarities and differences between the systems. 
The two IDE systems KDevelop and Code::Blocks show very 
similar distribution of class stereotypes.  HippoDraw and 
Quantlib have a close distribution of the Commander 
stereotype - it forms a small part of their distribution (18.5% 
and 18.9% respectively).  However, in FlightGear this 
stereotype has a significant portion (84.2%).  HippoDraw and 
FlightGear are not as much collaborative as KDevelop, 
Code::Blocks and QuantLib.  The results also show that the 
frequency and distribution of the class stereotypes across a 
system reflect an implementation of particular design decisions 
and good/bad programming practices, and might be an 
indicator of system architecture/design.  For example, the two 
IDEs we studied, Code::Blocks and KDevelop, showed very 
similar distribution of class stereotypes.  To explain this we 
surmise that there is underlying reference architecture for IDEs 
that both systems follow.  While these examples are not terribly 
surprising, the result clearly is of particular interest. 

                                                           
1 www.research.att.com/~bs/applications.html 



 

 

TABLE VI.  DISTRIBUTION OF CLASS STEREOTYPES ACROSS 5 OPEN SOURCE SYSTEMS 

KDevelop Code::Blocks FlightGear HippoDraw QuantLib 
Stereotype 

# % # % # % # % # % 

Min 

(%) 

Max 

(%) 

Aver 

(%) 

Stdev 

(%) 

Entity 42 4.1 23 3.1 31 8.6 46 14.9 20 2.5 2.5 14.9 6.6 5.2 

Minimal Entity 10 1.0 6 0.8 7 1.9 5 1.6 0 0.0 0.0 1.9 1.1 0.8 

Data Provider 57 5.6 25 3.3 7 1.9 46 14.9 511 62.8 1.9 62.8 17.7 25.7 

Commander 748 73.1 608 80.7 304 84.2 57 18.5 154 18.9 18.5 84.2 55.1 33.5 

Boundary 743 72.6 573 76.1 139 38.5 120 39.0 700 86.0 38.5 86.0 62.4 22.2 

Factory 10 1.0 9 1.2 5 1.4 38 12.3 1 0.1 0.1 12.3 3.2 5.1 

Controller 8 0.8 3 0.4 6 1.7 19 6.2 2 0.2 0.2 6.2 1.9 2.5 

Pure Controller 18 1.8 6 0.8 0 0.0 18 5.8 14 1.7 0.0 5.8 2.0 2.3 

Large Class 2 0.2 2 0.3 0 0.0 5 1.6 4 0.5 0.0 1.6 0.5 1.9 

Lazy Class 4 0.4 0 0.0 2 0.6 8 2.6 0 0.0 0.0 2.6 0.7 2.6 

Degenerate 

Class 
11 1.1 12 1.6 5 1.4 5 1.6 1 0.1 0.1 1.6 1.2 0.6 

Data Class 12 1.2 6 0.8 2 0.6 8 2.6 6 0.7 0.6 2.6 1.2 0.8 

Small Class 365 35.7 166 22.0 75 20.8 96 31.2 339 41.6 20.8 41.6 30.3 8.9 

Coverage 98% 99% 95% 94% 99% 94 99 97 2.3 

 
The chi-square test was performed to investigate the link of 

class stereotypes in different software systems.  The null 
hypothesis is that the distribution of class stereotypes in 
different software is a random phenomenon and the alternative 
hypothesis is that there is a link between class stereotypes and 
software systems.  Chi-square reports a p-value <0.0001 with 
95% confidence and 48 degrees of freedom that lets us reject 
the null hypothesis.  The critical and observed values are 
65.171 and 2143.018 respectively. 

VII. THREATS TO VALIDITY 

The assessment of class stereotypes identification and the 
StereoClass tool is subject to a number of threats to validity.  
The rules for stereotype identification are subjective and 
thresholds might vary depending on differences in subject’s 
interpretations.  The manual inspection of the results includes 
one software system and additional examples may be 
warranted.  We attempted to construct the study in an unbiased 
fashion however the selection of the subset of the system is a 
potential problem.  Also, the size of the subset inspected 
(nearly 15% of the system) could be increased however the 
assessment is very time consuming for the subjects. 

The approach was only applied to C++ systems.  However, 
the srcML format supports Java and rules for method 
stereotype identification could be adapted for Java.  The class 
stereotype rules are valid for other object-oriented languages 
and we believe that our approach is extensible to other 
languages. 

VIII. RELATED WORK 

The notion of stereotype for object-oriented modeling was 
first introduced by Wirfs-Brock to support the classification of 
objects in terms of assigning them certain features and 

properties [14].  Later, with the introduction of UML, 
stereotypes became a powerful extension mechanism in UML 
for introducing new semantics to an existing model while 
increasing the comprehension of UML diagrams [15], [16].  
Work on UML class diagrams based on class stereotypes [4], 
[5], [6] showed that layouts with additional semantic 
information about the design were most effective, and the use 
of class stereotypes plays a significant role in comprehension 
of these diagrams. 

A few approaches identify key or most important classes in 
a software system [17], [18].  Zaidman et al. [17] provide a 
mechanism based on dynamic coupling and webmining to find 
classes with a lot of “control” within the application.  Orla 
Greevy et al. [18] identify the key classes and methods which 
provide functionality for individual features.  However, 
importance of a class is defined by the specific tasks or 
activities during software maintenance.  Our approach provides 
a description of roles/responsibilities for all the classes in a 
system and not only for “control” classes. 

Gil et al. [19] introduce class-level traceable patterns for 
Java code (called micro-patterns) with the eventual goal of 
design assessment.  The approach slightly touches upon 
association and dependency relationships by considering 
classes that do not propagate calls.  A taxonomy of classes to 
identify changes in object-oriented software based on 
generalization relationships and the types of data associated 
with the class is presented by Clarke et al. [20].  Their approach 
does not reflect role and class responsibilities. A visualization 
approach to support quick class understanding is proposed by 
Lanza et al. [21].  The internal structure of a class is presented 
as a set of a few method layers and an attribute layer.  This 
approach provides semantic information at the class level, but 
collaborations between different classes are limited to 
generalization relationships.  Another visualization approach to 



 

 

support method understanding is proposed in [22].  Robbes et 
al. present microprints, pixel-based representations of methods 
enriched with semantic information such as state access, 
control flow, and invocation relationship.  This approach 
provides fine-grained information about the method’s internals 
but not a general characterization.   

All of the class categorizations given in the referenced 
works are primarily based on the access type to the data 
members.  Collaborations between classes (if they are used at 
all) are limited to inheritance relationships, while association 
and aggregation relationships are not taken into consideration.  
Our work fills this gap in class categorizations and identifies 
stereotypes with respect to a class’s architectural importance in 
the entire system.  

IX. CONCLUSIONS  

We present a taxonomy of class stereotypes that was 
derived from an empirical investigation of 21 open source 
systems written in C++.  Additionally, a tool was implemented 
that automatically reverse engineers a class’s stereotype and 
redocuments the class.  The tool can analyze an entire system 
and redocument it efficiently (in approximately two minutes for 
Hippodraw).  A developers’ assessment showed that our 
classification and the tool accurately describe a class’s 
stereotype.  

We feel automatic identification of class stereotypes can 
support better program comprehension and design recovery.  
Using both class and method stereotype information a 
developer should be able to quickly grasp the high level role of 
the class without reading the source code in detail.  Our 
approach forms a foundation for a number of applications 
based on class stereotypes.  For example, the class stereotypes 
allow us to determine architectural importance for automated 
layout of class diagrams or architectural level understanding.  It 
introduces new measures of class’s control and can be used to 
improve existing coupling metrics.  Additionally, the 
stereotypes can be used for mapping to class stereotypes in 
analysis models, to design pattern roles, and to detect bad-smell 
classes for refactoring.   

The proposed stereotypes could be used not only to 
characterize design and implementation solutions, they may be 
used to evaluate and improve design or used as indicators of 
bad design in need of refactoring.  Controller and Pure 
Controller, Lazy, Data, Small, and Large Classes are candidates 
for refactoring in particular situations and represent bad smell 
[10, 11] and we leave this for future work.  Our plans are to 
extend the empirical study to more systems.  We also plan to 
extend the detection rules to Java classes. 
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