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Abstract—Program slicing is used as a basis for an approach 
to estimate maintenance effort.  A case study of the GNU Linux 
kernel with over 900 versions spanning 17 years of history is 
presented.  For each version a system dictionary is built using a 
lightweight slicing approach and encodes the forward 
decomposition static slice profiles for all variables in all the files 
in the system.  Changes to the system are then modeled at the 
behavioral level using the difference between the system 
dictionaries of two versions.  The three different granularities of 
slice (i.e., line, function, and file) are analyzed.  We use a direct 
extension of srcML to represent computed change information. 
The retrieved information reflects the fact that additional 
knowledge of the differences can be automatically derived to help 
maintainers understand code changes.  We consider the 
hypotheses: (1) The structured format helps create traceability 
links between the changes and other software artifacts.  (2) This 
model is predictive of maintenance effort.  The results 
demonstrate that the approach accurately predicts effort in a 
scalable manner. 

Keywords—effort estimation; program slicing; software 
metrics; software maintenance 

I. INTRODUCTION 
Systems must be maintained so as to remain useful [1] and 

estimating the amount of effort for particular maintenance tasks 
is a key aspect for any system (closed or open).  As systems 
grow, maintenance typically becomes more complicated and 
costly.  Thus, the maintenance process should be well planned 
in advance through an accurate effort estimation of the 
maintenance tasks [2, 3].  Traditionally, maintenance effort is 
calculated using historical process and coarse-grained system 
information such as person-hours, number of tasks, and system 
size [4].  The predictor variables used to estimate this value 
typically compose measures of the system size and complexity, 
productivity factors, as well as size and number of maintenance 
tasks [5].  

Typically, an estimation process for maintenance effort 
contains three steps: (1) Extract maintenance data, such as 
maintenance effort (person-hours), number of maintenance 
tasks, system size.  (2) Build and validate the maintenance-
effort model.  Conventionally, this is a mathematical model 
that represents the maintenance effort as a function of other 
software measures.  The model should be validated against 
additional maintenance data.  (3) Predict future maintenance 
effort using the maintenance-effort model. 

While using maintenance-task information is very attractive 
for managers of a typical closed-source system, who have to 
estimate the effort required to maintain the system in terms of 
the number of developers, this approach is not that useful for 
larger corrective, adaptive, or perfective tasks during the 
system evolution of open-source system [3].  In this case, the 
effort of a maintenance period greatly depends on the amount 
of source-code changes made to generate a new software 
version from an earlier operational version.  For open-source 
systems, this data is not recorded or documented [2, 4, 6].  
Additionally, because of the nature and complexity of the 
maintenance tasks in open-source systems, there are many 
negatives to directly using effort-estimation models built on 
closed-source data.  Hence, we cannot follow the same process 
to estimate maintenance effort.  However, the availability of 
the source code and history allow for other measures that are 
related to the maintenance effort.  To this end we introduce a 
maintenance effort estimation based directly only on source 
code.  It entails computing the slice for all the variables in a 
system and modeling how the slice changes over time. 

Specifically, we identify and validate slice-based software 
measures and a corresponding process that can represent 
maintenance effort in open-source systems.  We analyze 974 
versions of Linux kernel, and construct and validate the indirect 
maintenance-effort model.  The estimation approaches of 
maintenance effort are built and evaluated using residual-
analysis statistics.  Statistical measures include R2, adjusted-R2, 
PRED25, PRED50, MMRE, MdMRE, and SPR [7, 8].  The 
prediction results are encouraging and the production of the 
estimate is very scalable.   

The remainder of this paper is organized as follows.  
Section II presents the maintenance effort estimation process in 
open-source systems.  Section III discusses the indirect 
maintenance-effort measures.  Section IV describes program-
slicing process.  Section V introduces the slice-based metrics.  
Section VI estimates slice-based metrics on the Linux kernel.  
The approach is evaluated in Section VII.  Section VIII reviews 
related work followed by Section IX with the paper 
conclusions and some directions for future research. 

II. MAINTENANCE EFFORT ESTIMATION PROCESS  
Building an accurate maintenance-effort estimation model 

should be derived from accurate maintenance-effort data, 
which is rarely recorded for open-source, and many closed-
source, systems [2, 3].  Therefore, we cannot apply an effort-
estimation model built from a closed-source system directly to 
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an open-source system because the absence of maintenance-
effort data prevents validation.  Alternatively, we take the 
following approach: 

Phase 1: Identify measures that are theoretically related to 
and can indirectly represent maintenance effort.  The candidate 
measures should be available for most systems, both closed and 
open source.  If such measures can be found and validated, we 
can construct an indirect model for maintenance effort and use 
it to predict the indirect effort of open-source systems. 

Phase 2: Extract the maintenance data.  The data includes 
indirect maintenance-effort identified and validated in previous 
phase (aka dependent variables) and the data of other related 
measures that can be used to predict the indirect maintenance 
effort (aka independent variables).  For example, if we identify 
source-code changes from version k to version k+1 as the 
indirect maintenance effort, then LOC change between both 
versions is a measure of source-code change.   

Phase 3: Validate the correlation between the dependent 
variables and independent variables.  We used Spearman’s 
rank-correlation coefficient since there are no assumptions 
regarding the underlying distribution of the data, and its use is 
recommended for hypothesis testing when the number of data 
points exceeds 30 [5].   

Phase 4: Multiple linear regression analysis is used to build 
the effort-prediction approach.  Specifically, the indirect 
maintenance-effort is represented as a function of other related 
measures.  We validate this approach against collected 
maintenance data from the Linux kernel.   

Phase 5: Predict the indirect maintenance effort based on 
the models built in Phase 4.   

III. INDIRECT MAINTENANCE EFFORT MEASURES 
In this section, we identify two software measures that are 

related to maintenance effort and could possibly be used to 
represent maintenance effort of open-source systems [2, 9-11]. 
They are lag-time and source-code change.  To test this 
hypothesis, we need to consider whether lag-time and/or 
source-code change are a valid indirect maintenance effort 
measures. 

1) Lag-time: Each version of the system has its own release 
date.  The lag-time (measured in days) includes the duration 
from the date when a base version is released, until the date the 
evolved version is released.  The assumption here that the 
maintenance requests start when the base version is released, 
and the tasks are completed when the evolved version is 
released.  That is, the lag-time is the sum of the individual 
times for each maintenance task in a version of a system.  Lag-
time data is available for most closed-source systems as well as 
some open-source systems.  For example, the lag-time data can 
be extracted from the defect tracking system, Concurrent 
Versions System (CVS), or change log [2].  Obviously, lag-
time is related to maintenance effort.  That is, an increase in 
lag-time is expected to indicate an increase in maintenance 
effort. 

However, there could be some problems with using lag-
time as an indirect maintenance effort indicator, including a 

risk of over reporting maintenance effort.  For example, if a 
developer is sick for three weeks during the maintenance 
period and no one bothered to work on the system, the lag-time 
is then over reported.  In addition, the importance of the bug 
controls the lag-time period.  Important bugs are usually 
handled immediately after the assignment of the task, while 
less important bugs may be ignored until the next version.  
Therefore, using lag-time to represent the maintenance effort is 
not 100% accurate.  Though, our empirical research on the 
Linux kernel will show that versions tend to cluster around two 
main roles: stable versions differ from development versions in 
terms of releases rate and activity.  Such analysis could be used 
to determine how the effort is distributed in a given period, and 
to estimate future needs with respect to major versions.  

2) Source-code change: We note that the maintenance 
effort for open-source systems is not given as the number of 
person-hours expended as the case in closed-source systems 
[2, 4].  However, it has been argued [2, 10, 12-14] that source-
code change in open-source system can be used as an indirect 
measure for estimating maintenance effort. 

A number of researchers have observed that the source-
code change can be found using textual, syntactic, or semantic 
differencing [15].  For example, previous studies [2, 3, 10, 16], 
determine the source-code change between two consecutive 
versions either from CVS logs, using some computer aided 
software (CASE) tools, or system utilities such as diff.  When 
source-code changes are submitted using the Software 
Configuration Management (SCM) tools (e.g., Subversion, 
CVS, and ClearCase) best practice is for developers to commit 
a brief explanation of the change into the change log, which is 
saved collectively with the source-code deltas in the SCM 
repository.  Unfortunately, the quality of change logs varies 
greatly.  That is, it depends on the developer that submits the 
changes: how well she understands the source code, and how 
well she writes change log messages [17].  Imprecise or blank 
change log entries make it hard for system maintainers to 
understand the source code.  For example, Chen et al. [18] 
discussed the limitations of using the change logs to detect 
source-code changes in three open-source case studies.  He 
shows that up to 78% of changes made to the source code are 
omitted from the system’s change logs.  Additionally, this 
tracking data is not always available.  For example, the change 
logs for Linux kernel only started to be released after the major 
version 2.4 (version 2.4.1, January 29, 2001).  That’s why Yu 
[2] in his study of the Linux kernel built two models to estimate 
the maintenance effort using the change logs for major versions 
2.4 and 2.5 only, with a total of 121 versions.  These facts 
make it difficult to build effort estimation models and 
traceability links, based on the information found in the change 
logs. 

 Many existing software metrics are computed only using 
syntactic information of the code and use that to model 
semantic information.  For example, cyclomatic complexity is 
computed by counting the number of branch (i.e., conditionals) 
to infer semantic complexity.  Semantic information is much 
more difficult to derive and model.  For example, a semantic 
change in one function might create a ripple effect among other 
functions.  In a maintenance context, the effort estimation is a 
function of the code that is to be (was) changed.  To help 
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identify such problems, program slicers are often applied and 
are a valuable tool in determining side effects.  It is possible to 
determine the parts with different behaviors by comparing the 
slices of the base and the evolved versions with respect to 
corresponding points. 

IV. PROGRAM SLICING AND PROGRAM ANALYSIS 
Program slicing is a widely used, and well-known, 

approach for understanding and detecting the impact of 
changes to software.  The concept of program slicing was 
originally identified by Weiser [19] as a debugging aid.  The 
calculation of a program slice is, with few exceptions, based on 
the notion of a Program Dependence Graph (PDG) [20, 21] or 
one of its variants, e.g., a System Dependence Graph (SDG) 
[22].  Unfortunately, building the PDG/SDG is quite costly in 
terms of computational time and space.  As such, slicing 
approaches generally do not scale well.   

Forward static program slicing [23-25] refers to the 
computation of program points that are affected by other 
program points.  The forward slice from program point p 
includes all the program points in the forward control flow 
affected by the computation at p.  Here we use the initial 
variable declaration as the starting point.  The approach varies 
from the traditional definitions in two ways.  First, a PDG is 
not computed for the entire program.  Second, the slicing 
criterion does not require a precise reference to a location in the 
source (only a variable).  Specifically, the approach taken here 
computes a forward, static, non-executable (closure), inter-
procedural program slice for each variable in a system. 

Our slicing approach [26, 27] addresses this limitation by 
eliminating the time and effort needed to build the entire PDG.  
In short, it combines a text-based approach, similar to Cordy’s 
[28], with a lightweight static analysis infrastructure that only 
computes dependence information as needed (aka on-the fly) 
while computing the slice for each variable in the program.  
The slicing process is performed using the srcML [29, 30] 
format for source code.  Source code is first converted to 
srcML and then a stream-oriented approach to compute the 
slice is performed.  srcML augments source code with abstract 
syntactic information.  This syntactic information is used to 
identify program dependencies as needed when computing the 
slice.  srcML (SouRce-Code Markup Language) is an XML 
format used to augment source code with syntactic information 
from the AST to add explicit structure to program source code.  
The srcML format is supported with a toolkit, including 
src2srcml and srcml2src, which supports conversion between 
source code and the format.   

We implemented our approach in a tool called srcSlice1.  
The approach was first introduced in [26], and there we 
conducted a small comparison study to the CodeSurfer2  tool 
from GrammaTech, after that in [27], we extended this 
evaluation to a total of 18 open source systems.  A system 
dictionary instead of PDG/SDG represents the program slice 

                                                             
1 Available for download at www.srcML.org under General Public License. 
2 CodeSurfer is a produced of GammaTech Inc. www.gammatech.com. 

 

generated by the srcSlice.  To detect system changes of two 
program slices, we compare their corresponding dictionaries.  
To make the comparison process efficient and make the 
comparison results reusable, we developed a system slice 
encoding (SSE) algorithm that encodes a program slice to a 
hash value, thereby allowing the slice hashes of a system to be 
used to detect behavioral changes across versions.  The slice 
hashes for versions are stored in the system change information 
to identify behavioral changes across versions.  This 
information serves as complement to the change logs to help 
maintainers understand changes better.  We used an extension 
format to the srcML representation (denoted by sliceDiff) for 
representing slice-based differences in XML.  The sliceDiff 
permits traceability links to be built between the change 
information and other software artifacts (e.g., design and 
requirement changes, test cases, bug reports, designs, and 
requirements).  

A. Slice Profile and System Dictionary Construction 
The approach computes a slice profile that contains all the 

relevant statements, from all possible slices, over a given 
slicing variable.  We define our slicing criterion to consist of a 
file name, a function name, and a variable name.  This slicing 
criterion is the triple (f, m, v) where f is a file in the system, m is 
a function/method in the file f, and v is a variable in the given 
function m. This definition of a slicing criterion does not 
require a precise reference to a statement number.  This 
concept of slicing is used by Gallagher et al. [31] and is 
referred to as a decomposition slice.  Rather than just a single 
variable of interest within the original program, our definition 
can retrieve the slices for all the variables inside a given 
function by modifying the slicing criterion to (f, m).  Moreover, 
the slicing criterion (f) can be used to find all the slices of all 
variables in all functions in a given file.  A system dictionary is 
built, referred to as (F, M, V), and includes all files in the 
system, all functions in each file, all variables in each function, 
and all global variables in the system.  Each entry of the system 
dictionary is a slice profile with the following structure: 

• file, function, and variable names; 
• @index, an index of each variable as declared in order 

in the function;  
• slines, a list of lines that comprise the slice; 
• cfunctions, a list of functions called using the slicing 

variable; 
• dvariables, a list of variables that are data dependent on 

the slice variable;  
• pointers, a list of aliases of the slicing variable; and 
• controledges, a list of all possible control-flow edges of 

the slicing variable. 

We now present a definition of our slicing criterion and 
how a slice is computed using the criterion. 

Definition 1 A forward decomposition slice ds of a 
program p is constructed with respect to a given file f, a given 
function m in f, and a given variable v in m.  It consists of the 
union of the static forward slices (denoted by sfs) constructed 
for the criteria {({v}, s1), …, ({v}, sk)}, where {s1, …, sk} is the 
set of statements in p that assign to v.  It is defined as: 
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. 

This definition can be generalized to cater to a set of 
variables, functions, and files.  This yields a definition 2. 

Definition 2 A general forward decomposition slice of a 
program p is constructed with respect to the following slicing 
criteria (f, m), (f), and (F, M, V), where F = {f1, f2,…, fj} is the 
finite set of files in p, M = {m1, m2,…,my} is the finite set of 
methods for each f ∈ F, and V = {v1, v2,…,vd} is the finite set of 
variables for each m ∈ M.  The general decomposition slice for 
all variables (i.e., set V) inside a given function m is formed by: 

, 

The general decomposition slice for all variables in a given 
file f is given by: 

, 

The general decomposition slice for all variables in all the 
files F, and all global variables in the system is given by: 

gds F,M ,V( ) = fds fi( )
i=1

j
∪ . 

1. int main(){ 
2.     int sum = 0; 
3.     int i = 1; 
4.     while (i<=10){ 
5.        sum = sum + i; 
6.        i++; 
7. 
8. 

       } 
    cout<<sum; 

9.     cout<<i; 

(a) 

10. } 
Slice Profile(sum)= @index(1), slines={2, 5, 8}, (b) 
Slice Profile(i)= @index(2), slines={3, 4, 5, 6, 9}, dvars={sum} 

Figure 1.  (a) Sample source code, (b) system dictionary with two slice 
profiles for the source code in (a).  The final slice for sum = {2, 5, 8} and the 
final slice for i ={3, 4, 5, 6, 8, 9} after considering dependencies. 

Let us now look at a simple example.  The approach works 
much like a programmer would compute a slice in their head.  
Figure 1 presents a small program (a) along with the final 
system dictionary (b).  The dictionary includes two slice 
profiles, one for each of the variables sum and i.  The @index 
represents the position of variables as declared in the function.  
In this way, we can deal with variables of the same name 
within the same scope.  The slice profiles are computed by 
examining each line starting from the beginning (line 1) and 
determining the forward slice.  Definition-use chains are 
followed along with forward control dependencies.  The profile 
for sum is created first as it is encountered in line 2 (slines(sum) 
= {2}).  Then the profile for i is created in line 3 (slines(i) = 
{3}).  The two profiles are updated as follows for the given line 
number: 
4: slines(sum)={2}; slines(i)={3, 4}, controledges(i) = {(3,4)} 

5: slines(sum)={2, 5}, controledges(sum) = {(2,5)}; slines(i)={3, 4, 
5}, dvariables(i) = {sum}, controledges(i) = {(3,4),(4,5)} 

6: slines(sum)={2, 5}, controledges(sum) = {(2,5)}; slines(i)={3, 4, 5, 
6}, dvariables(i) = {sum}, controledges(i) = {(3,4),(4,5),(5,6)} 

8: slines(sum)={2, 5, 8}, controledges(sum) = {(2,5),(2,8),(5,8)}; 
slines(i)={3, 4, 5, 6}, dvariables(i) = {sum}, controledges(i) = 
{(3,4),(4,5),(5,6)} 

9: slines(sum)={2, 5, 8}, controledges(sum) = {(2,5),(2,8),(5,8)}; 
slines(i)={3, 4, 5, 6, 9}, dvariables(i) = {sum}, controledges(i) = 
{(3,4),(4,5),(4,9),(5,6),(6,9)} 

These are the slice profiles for each variable, and the 
complete slice is then computed by finding the control-flow 
edges and then taking the union of the slines with the slice 
profiles of the dvariables, cfunctions, and pointers, minus any 
lines that are before the initial definition of the slice variable 
(i.e., the set {1, … ,def(v) – 1}).  Thus, because sum is data 
dependent on i, the complete slice for i = slines(i) � 
slines(sum) – {1, 2}.  This comes out to {3, 4, 5, 6, 8, 9}.  This 
final computation can be carried out for all variables via a 
single pass through the dictionary.   

B. Encoding slicing information  
Our system slice encoding (SSE) algorithm works on slice 

profiles represented by the system dictionary.  The basic 
process of the SSE algorithm starts with a single pass through 
the system dictionary, encoding each slice profile to a string 
value, which is then fed to a hash algorithm to produce the final 
results, the hashed slice encoding.  There are two steps in the 
SSE algorithm. 

Step 1 of the SSE algorithm: Encode the slice profiles.  
The complete slice for a slicing variable after taking the union 
of all related slice profiles will have the following encoding 
string value (denoted by dsES): variableName; @index; {ds(f, 
m, v)}.  For a given function, the SSE algorithm encodes the 
slice profiles into a string value (denoted by mdsES).  This 
string consists of two parts, the functionName and the slines 
defined by the mds equation (definition 2).  The file encoding 
string (denoted by fdsES) is equal to fileName; {fds(f)}. 
Finally, the system encoding string (denoted by gdsES) is equal 
to systemName; {gds(F, M, V)}.  For the example program in 
Figure 1, the dsES(sum) = sum; @1; {2, 5, 8}, the dsES(i) = i; 
@2; {3, 4, 5, 6, 8, 9}, and the mdsES(main) = main; {2, 3, 4, 5, 
6, 8, 9}. 

Step 2 of the SSE algorithm:  Hash the string value.  
This step maps the encoding string from Step 1 to a hash value 
using the MD5 hash algorithm [32].  For example, the MD5 for 
the dsES(sum) is 6c9eed3c2a88b623c05347aee687d289, the 
MD5 for the dsES(i) is e20426ade1655eaaaccc2a9c09429261, 
and the MD5 hash for the mdsES(main) is 
f65571d34f742bf9a65e53e9a6640d2b. 

C. System Behavioral Change Information  
To compute behavioral change information across the entire 

version history of a system, we check out every pair of 
consecutive versions of the system from its subversion 
repository, use src2srcml to convert the source code into srcML 
format, use srcSlice to build the system dictionary with slice 
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profiles for all the slicing variables in each version, and apply 
the SSE algorithm on them.  We compare the slice hashes for 
the dsES, mdsES, and fdsES in the later version with the 
corresponding hashes in the prior version to find the behavioral 
changes.  Finally, we save the system behavioral change 
information for each version in a database.   

<changeInfo  systemName="linux"  versionNumber="2.2.23"   
                      changeKind=”changed”  deltafdsES ="1" > 

<sourceFileChange  sourceFilePath="linux/fs/read_write.c"   
                                     changeKind="changed"  deltamdsES="1"> 

<sliceHash>3769c57d417347bb9c0d74a0db637744</sliceHash> 
<functionChange  functionName="do_readv_writev"   

                                      changeKind="changed"  deltadsES="2"\> 
<sliceHash>a7df45bf6022cdef77cf49667aa6428b</sliceHash> 
<sliceChange  changeKind="changed"> 

<sliceLabel>tot_len</sliceLabel> 
<sliceHash>ce2d52d65f33eb611a6030735ebe9262</sliceHash> 

</sliceChange> 
<sliceChange  changeKind="changed"> 

<sliceLabel>retval</sliceLabel> 
<sliceHash>3a2289b2f656d5569ea0110d07f8a1c5</sliceHash> 

</sliceChange> 
</functionChange> 

</sourceFileChange> 
</changeInfo> 
 

Figure 2. A partial example of the changeInfo data for Linux kernel 
version 2.2.23 in the sliceDiff format. 

The database includes a SystemChange table.  This table 
has three fields, systemName, versionNumber, and changeInfo.  
Each version of the system has one record in the database.  The 
systemName and versionNumber fields record the name of the 
system and the version number of the system, respectively.  
The changeInfo field contains the behavioral change 
information of this version compared to its prior version, 
represented in sliceDiff format.  An example of the 
representation for the changeInfo data can be found in Figure 2.   

In our extension to the srcML representation, the element 
changeInfo represents all the changes to the system at this 
version and the number of fdsES hashes changed (denoted in 
the sliceDiff representation by deltafdsES).  The changeInfo 
element contains multiple sourceFileChange elements, which 
represent all of the source code files contain modified slices 
and the number of mdsES hashes changed (denoted by 
deltamdsES).  A functionChange element records the function 
name, change kind, number of dsES hashes changed (denoted 
by deltadsES), and the change information for the variable 
slices.  The sliceChange element records change in a slice 
profile of the variable.  The sliceLabel element stores a label 
that indicates the name of the slicing variable.  Finally, the 
sliceHash element contains the 32-character hash value for the 
encoding string computed by the SSE algorithm.  

Due to the sliceDiff representation of the system change 
information, we open the door to locating components in the 
change information and associating them with other software 
artifacts.  Once in sliceDiff, XML tools and technologies can 
be used for fact extraction.  For example, use of XPath and 
XQuery for change extraction.  The expressions that used to 
locate components in the change information make it possible 
to create traceability links between the change information and 
other artifacts.  A full explanation of this is left for future work. 

V. SLICE – BASED METRICS  
In the context of effort prediction, Ramil et al. [33] stated 

that one may start the investigation of building an effort model 
by obtaining empirical data and by estimating from such data a 
productivity function f().  The final empirical data involved in 
the estimation of f() are represented in the following equation: 
E(t, t+1) = f(act(t, t+1)) + error(t, t+1), where, E(t, t+1) 
represents the estimated effort.  That is, the effort required 
evolving the system from interval t to t+1.  The act(t, t+1) 
represents the amount of work accomplished over the time 
interval.  Finally, error(t, t+1) is the modeling error.  In 
addition, Ramil mentioned that the appropriate way to measure 
the act(t, t+1) in the continuing evolution context is by 
measuring some indicators of source-code change, e.g., lines of 
source code (LOC) or function points (FP) [34].  However, 
other metrics can also be extracted from source code with 
different degrees of granularity.  Once the productivity function 
f() is determined, the resultant model may be used to predict 
future maintenance effort requirements. 

We use the information on the sliceDiff generated above to 
calculate slice-based metrics.  Here we compare three different 
granularities of the slice hashes (dsES-level, mdsES-level, and 
fdsES-level).  Consequently, different levels of the number of 
hashes changed (function-level, file-level, and system-level) can 
be computed.  In order to build the slice-based maintenance-
effort model, for each of the 974 versions of the Linux kernel, 
we extract six measures from the source-code repository and 
the changes between slice hashes.  These measures are 
described in Table I.  In these measures, lagTime could be used 
to indirectly represent maintenance effort (for the reasons 
explained in Section VI).  

TABLE I.  CODE AND SLICE BASED EXTRACTED MEASURES. 
Measure Description 

lagTime Indirect maintenance effort on the system, time-intervals 
between versions measured in the number of days 

sliceSize Total slice size measured in LOC 
hashSize The number of slice hashes modified 
locSize Total size of the system measured in LOC 
fileSize Total size of the system measured in number of files 
sCoverage The slice coverage, the slice size relative to LOC 

 
The first measure that we introduce is sliceSize, the slice 

size measured in LOC.  For an individual slice this is just the ds 
value measured at Section IV.  For a function and a file, the 
sliceSize is computed using the mds and fds, respectively.  For 
the system level, the sliceSize is computed using the gds 
equation.  Additionally, the number of modified hash slices 
between two versions is used to introduce hashSize.  For a 
function and a file, the hashSize value is the deltadsES and 
deltamdsES values, respectively, as measured in the changeInfo 
data.  For the system level, the hashSize is calculated in the 
changeInfo as a deltafdsES value.  The metric hashSize at the 
function-level is the number of functions that contain modified 
slices and for the file-level is the number of files that contain 
modified slices.  These two metrics indicate how much the 
changed statements in a slice profile depend on each other by 
intra-procedural or inter-procedural control or data 
dependencies.  A high function-level value may indicate more 
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logically complex code, and a high file-level value may 
indicate that the changes in the system were very broad.  

In addition, we also extract the size of the system measured 
in LOC (i.e., locSize) and number of files (i.e., fileSize).  By 
comparing the slice size (sliceSize) to the system size (locSize), 
we can measure the slice coverage using the sCoverage metric 
[19].  This metric represents the active portion of the system 
and is included as a factor of maintenance activity.  

Considering two consecutive versions of Linux kernel, base 
version and evolved version, the measures of the maintenance 
data of base version are extracted as follows: locSize, fileSize, 
sliceSize, and sCoverage are determined from the source code 
of the base version.  hashSize is determined from the change 
information of the evolved version (because changes made to 
the base version are recorded in the changeInfo of the evolved 
version).  lagTime is determined according to the date 
differences between the base version and the evolved version. 

VI. SLICE-BASED ESTIMATION ON THE LINUX KERNEL  
As a way of showing the application of our indirect 

maintenance-effort metrics on a real system, we have applied 
the metrics to the Linux kernel.  These metrics are then 
compared to traditional measures of code effort, e.g., LOC.  
The Linux versions are classified as stable or development 
versions.  Each major version includes several releases 
identified with either a three or four digit numbering scheme.  
The first digit represents the generation, i.e., Linux has three 
generations, initially with generation 1 released in 1994, 
generation 2 released in 1996, and generation 3 started in 2011 
(not part of the dataset).  The second digit represents the major 
kernel versions either even or odd.  Up until major version 2.4 
even digits (e.g., 1.0, 1.2, 2.0, etc.) corresponded to stable 
versions, whereas odd numbers (e.g., 1.1, 1.3, 2.1, etc.) 
corresponded to development versions.  The third digit is the 
minor kernel version.  However, in August 2004 this 
numbering scheme was changed affecting all the versions 
released after this date.  A fourth digit number was added 
starting with version 2.6.8.1, after that the third number in a 
version indicates the development of new functionality, and the 
presence of a fourth number represents bug fixes [35].  

 
Figure 3. Files change evolution in first four versions (1.1, 1.2, 1.3, and 2.0) of 

Linux kernel. This graph illustrates change property captured by slicing. 

According to law number 4 of Lehman’s laws of software 
evolution [36], the average work rate on an evolving system is 
statistically invariant over the system life time.  In order to 

examine this law we should study the maintenance effort spent 
on the system.  Again, reliable data about person-hours or 
number of developers is hard to get in closed-source systems, 
and much harder in open-source systems.  Additionally, 
person-hours are inaccurate measure of work to begin with 
[37].  Lehman et al. [36] suggests using the number of elements 
handled as a proxy.  However, he mentioned this also has 
methodological difficulties.   

We start by considering the number of elements handled.  
As an example, we will study the average rate of hash slices 
changed for files.  That is, the likelihood that a file will change 
(slice-based) from one release to the next.  To assess the 
likelihood of a file changing, we gather the ratio of files that 
are unchanged, ratio of files that are changed, and ratio of files 
that are added or removed, by comparing successive releases.  
Figure 3 shows the number of files that were added, deleted, 
and modified (divided into those that grew) between 
consecutive releases.  As may be expected, the fraction of files 
that are handled seems to be relatively stable, except perhaps 
for some decline in the first years.  On average across all 
versions we observed that 96% of the files are unchanged, 3% 
are modified, and 1% are a added/removed file.  Thus if we 
interpret rate to mean the fraction of source code that is 
modified in each release, then the data supports the claim that 
the work rate is almost constant.  

 
Figure 4. Number of releases per month for development versions, in x-axis 

(2) = v1.1, (4) = v1.3, (6) = v2.1, (8) = v2.3, and (10) = v2.5. 

Invariant work rate can also be interpreted with regard to 
the release rate itself, i.e., how often releases occur.  Based on 
the structure of the Linux kernel, it seems that the growth trend 
follows a consistent pattern: a new development version is 
released after a number of releases of a stable version, and after 
there are no more releases in that development version, a new 
stable version is released.  However, during the time interval 
and releases of the stable version there are still releases of the 
previous stable version.  For example, version 2.0 had 
continuous releases until the end of version 2.2. 

We start analyzing the number of releases per month for the 
development versions as shown in Figure 4.  In the x-axis each 
stub represents a year, and each bar represents a month.  The 
vertical lines with the version label (i.e., V1.1, V1.3, V2.1, 
V2.3, and V2.5) represent the start of that new major version.  
It is obvious that since the mid of 1997 the rates seem stable 
(around 3 – 6 release per month) and with a minimum is equal 
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to 1 and the maximum is 8.  From Figure 5, we can see that the 
stable versions are released less frequently than the 
development versions.  That is, usually there was one release 
per month, and the maximum is 10.  Starting with version 2.6 
the versions are timed to be released once every ~ 3 months.  It 
is important to remember that the Linux releases are organized 
into major releases (e.g., 1.1, 1.2, etc.) and minor releases (e.g., 
1.1.13, 2.2.3, etc.). Therefore, one should consider the intervals 
between major releases independently from minor releases. 

 
Figure 5. Number of releases per month for stable versions, in the x-axis (3) = 

v1.2, (5) = v2.0, (7) = v2.2, and (9) = v2.4. 

In this context, we examined the intervals of time between 
consecutive releases (measured in days) inside the same major 
version.  Figure 6 displays the raw data of the intervals for each 
version, and Figure 7 shows the statistics (median and 25th, 
75th, and 95th percentiles) of the intervals for each version.  
Notice that in Figure 7 versions 2.0, 2.2, and 2.4, the 95th 
percentile values exceed the top of the graph and their true 
values appear on the labels above their respective up-bar boxes.  

Looking back at Figure 6 we can see an interesting pattern.  
Generally the development versions (1.1, 1.3, 2.1, 2.3, and 2.5) 
have very low values, and so does version 2.6, while the stable 
versions (1.2, 2.0, 2.2, and 2.4) have much higher values.  We 
also notice that at the end of any development version (red line) 
there is almost a simultaneous beginning of a new stable 
version (blue line), the exception here we do see a significant 
gap between versions 2.3 and 2.4, and between versions 2.5 
and 2.6.  Those two gaps are results of the structural changes in 
the Linux kernel numbering scheme. 

Looking at Figure 7 we can notice that the bodies of the up-
bars of the stable versions are usually higher than those of the 
development versions.  In addition, the high values and the 
variance are usually higher in stable versions.  In other words, 
we can see that the stable versions are released less frequently 
(usually on a weekly to monthly basis), while development 
versions are released quite often (are on a daily to weekly 
basis).  For example, all medians, 25th, and 75th percentiles in 
development versions are lower than 10 days. 

Based on the above results, we can see that the release rate 
performed in the development versions accounts for ~40% of 
the overall amount of versions (398 versions out of 974).  15% 
of the overall versions are released during the stable versions.  
Finally, 45% of the versions are released during the version 
2.6.  Thus when expressing the effort as a function of the 

performed activity (e.g., lines added, lines modified, files 
added, etc.) in the Linux kernel, and taking into account the 
three types of versions (development, stable, and version 2.6), 
and weighing them appropriately, then the effort estimation 
equation should be tailored to reflect such differentiation in 
both the kind of version, and consequently the type of activity 
performed (e.g., corrective, perfective, etc.), as follows: 

 

 
Figure 6. Intervals between version’s releases measured in days. 

  

 
Figure 7. Statistics of intervals between releases, within major version 
measured in days (ordered as: 25th, median, 75th, and 95th percentile). 

Where, E(t) is the maintenance effort in the Linux kernel 
during a period t (daily, monthly, etc.), wd is the weight given 
to the activity observed within the development versions 
(actd(t)); ws the weight to the stable versions, (acts(t)); and w2.6 
the weight to the version 2.6, (act2.6(t)).  In the case of the 
reported Linux kernel, the overall activity observed in this 
project, based on the number of versions released, produces the 
following weights: wd = 0.40, ws = 0.15, and w2.6 = 0.45.  
These results suggest that we should differentiate between the 
three types of versions during the calculation process of the 
slice-based metrics.  Since the data used to build our models 
represents the three types of versions, therefore we omit the 
weights during the building process.   

We analyzed 11 major versions containing 974 separate 
releases, covering a period that exceeds 17 years of software 
evolution.  The models were built on data from 783 versions, 
and then validated on the maintenance data of 191 versions 
from version 2.6.  Table II shows Spearman’s rank correlations 
between the dependent variable and independent variables.  

878787



   

The correlation coefficients that are statistically significant at 
the 0.01 level (2-tailed) are shown in bold.  From Table II, we 
can distinguish multiple significant linear correlations between 
the dependent variable and all of the independent variables.  
Based on this observation, we built the indirect maintenance-
effort estimation models.  The correlation could serve as 
guidelines to assess maintenance effort from two viewpoints; 
code-based and slice-based.  Therefore, we chose to build the 
first model using the code-based metrics (Ecode), and the second 
model, using the slice-based metrics (Eslice), as follows: 

Ecode = c1 + c2 (locSize) + c3 (fileSize). 

Eslice = c1 + c2 (sliceSize) + c3 (hashSize) + c4 (sCoverage). 

TABLE II. THE CORRELATIONS BETWEEN DEPENDENT VARIABLE AND 
INDEPENDENT VARIABLES BASED ON THE TRAINING DATASET (783) VERSIONS, 

SIGNIFICANT AT 0.01 LEVEL IS SHOWN IN BOLD. 

Variable Effort p-value 
sliceSize 0.768 0.008 
hashSize 0.757 0.005 
locSize 0.767 0.008 
fileSize 0.662 0.003 
sCoverage 0.338 0.001 

 
The c1 variable represents the constant factor or the 

intercept, which characterizes the height of the regression line 
when it crosses the y-axis where the dependent variable is 
plotted, or we can say that the c1 represents the predicted value 
of the dependent variable when all the independent variables 
are equal to zero.  The ci (where i = 2 to 4) represents the slope 
of the line regression which indicates the sensitivity of the 
dependent values to the changes in the independent values.  
That is, ci represents the change in y for each unit change in x.   

TABLE III.  LINEAR REGRESSION ANALYSIS OF THE INDIRECT EFFORT 
ESTIMATION MODELS. 

Model Independent 
variable ci p-value R2 adjusted-R2 

locSize 0.012 0.004 E code fileSize 4.396 0.000 
0.619 0.613 

sliceSize 0.030 0.006 
hashSize 4.521 0.002 E slice 

sCoverage 0.554 0.000 
0.744 0.739 

 
Table III shows the linear regression analysis of the model.  

The p-value demonstrates the ability of the independent 
variable to have a significant predictive capability in the 
presence of other variables.  The R2 coefficient of 
determination value is important to determine whether or not 
the regression model was helpful.  If the regression line 
provides an estimate of the predictable values that closely 
match the observed values, then the R2 value will be close to 
one, and with zero indicating no relation between independent 
and dependent variables.  The adjusted-R2 that adjusts for the 
number of independent variables in a model is also calculated.  
From Table III, we can see that both models have a moderate 
both R2 and adjusted-R2 values, which means, based on the 
data of 783 versions, the model is by some means accurate in 
predicting the indirect maintenance effort.  

VII. EVALUATING MODEL PERFORMANCE 
To study the quality of the proposed models for future 

predictions, we apply the models to predict the indirect 
maintenance effort of 191 versions from major version 2.6.  
These versions range from version 2.6.25.3 released May, 10 
2008 to version 2.6.37.1 released Feb, 17 2011.  The predicted 
results and the actual observed measurements are compared to 
study the accuracy of predictions.  Model validation is the most 
important step in the model building process.  The validation of 
a model often consists of the analysis of residuals [2, 3, 10].  
The residual represents the difference between the predicted 
value estimated by the model and the observed value of the 
dependent variable.  Our analysis includes the following.  

SPR statistics: is the sum of absolute value of the residuals 
(e.g., prediction errors).  That is, the SPR = ∑ k |Observed k – 
Predicted k|.   

MRE statistics: the magnitude relative error, which includes 
the MMRE (mean magnitude relative error), and MdMRE 
(median magnitude relative error).  The MRE is defined as: 
MRE k = (|Observed k – Predicted k|) / Observed k.  The 
MdMRE is calculated, since the MMRE is known to be very 
sensitive to the extreme values, such as a few very high relative 
error MRE values could influence the overall result.   

Other indicators commonly used to evaluate the prediction 
model based on MRE are the percentage of prediction at 
specific level PRED, which measures the percentage of 
predicted values within X% of the observed values.  The value 
of X is suggested in [38] to be at least 25% and a good 
prediction model should predict 75% of the observed values.  
The two variants of the measure PRED we calculated are: 
PRED25: the number of predicted values for which MRE was 
less than or equal to 25%.  PRED50: the number of predicted 
values for which MRE was less than or equal to 50%.  

TABLE IV.  MODELS PREDICTIVE PERFORMANCES OVER 191 RELEASES. 

Measure Code-based  
Model  

Slice-based 
Model  

PRED25 % 33.91 49.31 
PRED50 % 64.72 82.66 
SPR 33520 25596 
MdMRE % 37.56 25.35 
MMRE % 42.53 31.25 

 
The results of the application of these measures over the 

191 versions test dataset are shown at Table IV.  It is clearly 
evident that the slice-based model performs better than the 
code-based model, although the performance of the code-based 
model can also be considered good.  In particular, the values of 
the PRED measures for slice-based model are very promising: 
it predicts almost 50% of the cases within a relative error less 
than 25% (PRED25) and about 83% of the cases with a relative 
error less than 50% (PRED50).  In addition, the relative mean 
error is ~32% and can be considered outstanding.  These results 
suggest that the slice-based model using the slicing information 
reflects both the type and the size of the maintenance process 
more accurately. 
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VIII. RELATED WORK  
Many approaches to the effort-estimation problem have 

been derived using different assumptions, data sources, and 
methods to process the data to estimate the effort in the context 
of maintaining strictly managed and closed-source systems [2, 
10].  These models can be categorized into three main 
categories: analogy, delphi, and parametric [39].  The first two 
categories derive the estimation models based on the past 
experience of similar systems, or using expert opinions.  
Parametric effort estimation models involve the construction of 
statistical models from empirical data, e.g., using regression 
analysis.  Moreover, the parametric models mathematically 
relate the effort and duration (e.g., days) to the variables that 
influence them. 

Boehm [40] was the first to presents an algorithmic 
software cost estimation model, the constructive cost model 
COCOMO.  Boehm et al. [41] extended the COCOMO model 
to estimate maintenance effort by using a size-change factor.  
This factor represents the estimation of the size of changes 
expressed as the fraction from the total size of the system in 
LOC, this factor over a year period.  De Lucia et al. [3] called 
this factor the “annual change of traffic”.  Another work based 
on the size of changes is presented by Hayes et al. [42] who 
built a model for adaptive-maintenance effort using the 
changed LOC and the number of operators changed.   

Belady and Lehman [43] suggest a model to approximate 
the cost and effort of releasing a new version from an old one.  
The suggested model estimates the efforts that are related to 
both the functionality updating and anti-regressive activities.  
The maintenance-effort estimation that involves the convention 
of linear regression analysis was introduced by De Lucia et al. 
[16].  In this research, the authors claimed that the types of the 
different maintenance tasks should be considered to improve 
the outcomes of the estimation model being used.   

Jorgensen [8] derived different estimation models for 
maintenance effort using log linear regression, neural networks, 
and pattern recognition.  He compares the prediction accuracy 
of these models using an industrial dataset.  All the models 
estimate the size of the system measured in the summation of 
added, deleted, and modified LOC during the maintenance 
phase.  Another linear model based on the size and the number 
of maintenance tasks is proposed in [3], furthermore, other 
work done by Niessink et al. [13] use linear regression analysis 
to extract estimation based on function points.  

Coarse granularity measures have an impact on predicting 
required changes during the maintenance activities of the 
software project.  For example, Lindvall [44] demonstrates that 
the number of classes outperform the finer grained metrics in 
change prediction.  In contrast, non-linear cost estimation 
models were proposed by several researches.  For example, in 
[45] a code decay and a related number of measurements were 
illustrated to construct a non-linear changes prediction model. 

Because of the nature and complexity of the maintenance 
tasks in open-source systems, there are many negative aspects 
to using existing effort estimation models directly for open-
source projects.  Little work of maintenance-effort estimation 
has been conducted for open-source systems.  The major 

guidelines and tips to build an estimation model in these crucial 
systems are reported in [4].  Yu [2] derived two indirect 
maintenance-effort models for the Linux kernel system using 
multiple linear regression.  Nevertheless, these estimation 
models are based on and used factors which are derived from 
the closed-source software projects.  In addition the validation 
process determined using the recorded maintenance 
information from closed-source systems, i.e., both estimation 
models depend on the number of maintenance tasks for the 
next version of the system.  Therefore, the models are not 
applicable if the maintenance tasks for the next version are not 
included.       

IX. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a large-scale empirical study 

aimed at building indirect maintenance-effort estimation 
models for open-source systems.  The dataset was obtained 
from the Linux kernel and used as a case study to build and 
validate the models performance using multivariate linear 
regression.  Our proposed maintenance-effort estimation 
models are able to accurately determine the source-code 
changes based only on the source code, and estimate the 
maintenance effort based at the amount of changes made 
maintaining the system.  It is worth noting that we did not 
construct a direct maintenance-effort model (person-hours) for 
open-source systems.  However, we decided to use the 
available source code, because: (1) there is limited direct 
maintenance-effort data available for open-source systems and 
we therefore cannot validate the correctness of such a model; 
and (2) maintenance effort represented as person-hours is less 
meaningful for open-source systems.  

The major threat in building the indirect maintenance-effort 
models comes from the difference between the closed-source 
and open-source systems.  Our prediction model depends on 
source-code measurement to predict the volume of changes as 
an indication of the maintenance effort.  However, this is not 
the case for closed-source systems that use person-hours as a 
metric for maintenance effort.  

In order to perform slicing for multiple versions of large 
systems, we used a lightweight forward static slicing approach.  
That is the main reason that the analysis over all the Linux 
versions was even possible. Our future research will study 
other open-source systems to determine more measures that 
can be used to indirectly represent maintenance effort and 
construct new more accurate prediction models.    
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