

A Slice-Based Estimation Approach
for Maintenance Effort

Hakam W. Alomari
Faculty of Information Technology

Jerash University
Jerash 26150, Jordan
halomari@jpu.edu.jo

Michael L. Collard
Department of Computer Science

The University of Akron
Akron, OH 44325, USA

collard@uakron.edu

Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent, OH 44242, USA

jmaletic@kent.edu

Abstract—Program slicing is used as a basis for an approach
to estimate maintenance effort. A case study of the GNU Linux
kernel with over 900 versions spanning 17 years of history is
presented. For each version a system dictionary is built using a
lightweight slicing approach and encodes the forward
decomposition static slice profiles for all variables in all the files
in the system. Changes to the system are then modeled at the
behavioral level using the difference between the system
dictionaries of two versions. The three different granularities of
slice (i.e., line, function, and file) are analyzed. We use a direct
extension of srcML to represent computed change information.
The retrieved information reflects the fact that additional
knowledge of the differences can be automatically derived to help
maintainers understand code changes. We consider the
hypotheses: (1) The structured format helps create traceability
links between the changes and other software artifacts. (2) This
model is predictive of maintenance effort. The results
demonstrate that the approach accurately predicts effort in a
scalable manner.

Keywords—effort estimation; program slicing; software
metrics; software maintenance

I. INTRODUCTION
Systems must be maintained so as to remain useful [1] and

estimating the amount of effort for particular maintenance tasks
is a key aspect for any system (closed or open). As systems
grow, maintenance typically becomes more complicated and
costly. Thus, the maintenance process should be well planned
in advance through an accurate effort estimation of the
maintenance tasks [2, 3]. Traditionally, maintenance effort is
calculated using historical process and coarse-grained system
information such as person-hours, number of tasks, and system
size [4]. The predictor variables used to estimate this value
typically compose measures of the system size and complexity,
productivity factors, as well as size and number of maintenance
tasks [5].

Typically, an estimation process for maintenance effort
contains three steps: (1) Extract maintenance data, such as
maintenance effort (person-hours), number of maintenance
tasks, system size. (2) Build and validate the maintenance-
effort model. Conventionally, this is a mathematical model
that represents the maintenance effort as a function of other
software measures. The model should be validated against
additional maintenance data. (3) Predict future maintenance
effort using the maintenance-effort model.

While using maintenance-task information is very attractive
for managers of a typical closed-source system, who have to
estimate the effort required to maintain the system in terms of
the number of developers, this approach is not that useful for
larger corrective, adaptive, or perfective tasks during the
system evolution of open-source system [3]. In this case, the
effort of a maintenance period greatly depends on the amount
of source-code changes made to generate a new software
version from an earlier operational version. For open-source
systems, this data is not recorded or documented [2, 4, 6].
Additionally, because of the nature and complexity of the
maintenance tasks in open-source systems, there are many
negatives to directly using effort-estimation models built on
closed-source data. Hence, we cannot follow the same process
to estimate maintenance effort. However, the availability of
the source code and history allow for other measures that are
related to the maintenance effort. To this end we introduce a
maintenance effort estimation based directly only on source
code. It entails computing the slice for all the variables in a
system and modeling how the slice changes over time.

Specifically, we identify and validate slice-based software
measures and a corresponding process that can represent
maintenance effort in open-source systems. We analyze 974
versions of Linux kernel, and construct and validate the indirect
maintenance-effort model. The estimation approaches of
maintenance effort are built and evaluated using residual-
analysis statistics. Statistical measures include R2, adjusted-R2,
PRED25, PRED50, MMRE, MdMRE, and SPR [7, 8]. The
prediction results are encouraging and the production of the
estimate is very scalable.

The remainder of this paper is organized as follows.
Section II presents the maintenance effort estimation process in
open-source systems. Section III discusses the indirect
maintenance-effort measures. Section IV describes program-
slicing process. Section V introduces the slice-based metrics.
Section VI estimates slice-based metrics on the Linux kernel.
The approach is evaluated in Section VII. Section VIII reviews
related work followed by Section IX with the paper
conclusions and some directions for future research.

II. MAINTENANCE EFFORT ESTIMATION PROCESS
Building an accurate maintenance-effort estimation model

should be derived from accurate maintenance-effort data,
which is rarely recorded for open-source, and many closed-
source, systems [2, 3]. Therefore, we cannot apply an effort-
estimation model built from a closed-source system directly to

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.30

81

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.30

81

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.30

81

an open-source system because the absence of maintenance-
effort data prevents validation. Alternatively, we take the
following approach:

Phase 1: Identify measures that are theoretically related to
and can indirectly represent maintenance effort. The candidate
measures should be available for most systems, both closed and
open source. If such measures can be found and validated, we
can construct an indirect model for maintenance effort and use
it to predict the indirect effort of open-source systems.

Phase 2: Extract the maintenance data. The data includes
indirect maintenance-effort identified and validated in previous
phase (aka dependent variables) and the data of other related
measures that can be used to predict the indirect maintenance
effort (aka independent variables). For example, if we identify
source-code changes from version k to version k+1 as the
indirect maintenance effort, then LOC change between both
versions is a measure of source-code change.

Phase 3: Validate the correlation between the dependent
variables and independent variables. We used Spearman’s
rank-correlation coefficient since there are no assumptions
regarding the underlying distribution of the data, and its use is
recommended for hypothesis testing when the number of data
points exceeds 30 [5].

Phase 4: Multiple linear regression analysis is used to build
the effort-prediction approach. Specifically, the indirect
maintenance-effort is represented as a function of other related
measures. We validate this approach against collected
maintenance data from the Linux kernel.

Phase 5: Predict the indirect maintenance effort based on
the models built in Phase 4.

III. INDIRECT MAINTENANCE EFFORT MEASURES
In this section, we identify two software measures that are

related to maintenance effort and could possibly be used to
represent maintenance effort of open-source systems [2, 9-11].
They are lag-time and source-code change. To test this
hypothesis, we need to consider whether lag-time and/or
source-code change are a valid indirect maintenance effort
measures.

1) Lag-time: Each version of the system has its own release
date. The lag-time (measured in days) includes the duration
from the date when a base version is released, until the date the
evolved version is released. The assumption here that the
maintenance requests start when the base version is released,
and the tasks are completed when the evolved version is
released. That is, the lag-time is the sum of the individual
times for each maintenance task in a version of a system. Lag-
time data is available for most closed-source systems as well as
some open-source systems. For example, the lag-time data can
be extracted from the defect tracking system, Concurrent
Versions System (CVS), or change log [2]. Obviously, lag-
time is related to maintenance effort. That is, an increase in
lag-time is expected to indicate an increase in maintenance
effort.

However, there could be some problems with using lag-
time as an indirect maintenance effort indicator, including a

risk of over reporting maintenance effort. For example, if a
developer is sick for three weeks during the maintenance
period and no one bothered to work on the system, the lag-time
is then over reported. In addition, the importance of the bug
controls the lag-time period. Important bugs are usually
handled immediately after the assignment of the task, while
less important bugs may be ignored until the next version.
Therefore, using lag-time to represent the maintenance effort is
not 100% accurate. Though, our empirical research on the
Linux kernel will show that versions tend to cluster around two
main roles: stable versions differ from development versions in
terms of releases rate and activity. Such analysis could be used
to determine how the effort is distributed in a given period, and
to estimate future needs with respect to major versions.

2) Source-code change: We note that the maintenance
effort for open-source systems is not given as the number of
person-hours expended as the case in closed-source systems
[2, 4]. However, it has been argued [2, 10, 12-14] that source-
code change in open-source system can be used as an indirect
measure for estimating maintenance effort.

A number of researchers have observed that the source-
code change can be found using textual, syntactic, or semantic
differencing [15]. For example, previous studies [2, 3, 10, 16],
determine the source-code change between two consecutive
versions either from CVS logs, using some computer aided
software (CASE) tools, or system utilities such as diff. When
source-code changes are submitted using the Software
Configuration Management (SCM) tools (e.g., Subversion,
CVS, and ClearCase) best practice is for developers to commit
a brief explanation of the change into the change log, which is
saved collectively with the source-code deltas in the SCM
repository. Unfortunately, the quality of change logs varies
greatly. That is, it depends on the developer that submits the
changes: how well she understands the source code, and how
well she writes change log messages [17]. Imprecise or blank
change log entries make it hard for system maintainers to
understand the source code. For example, Chen et al. [18]
discussed the limitations of using the change logs to detect
source-code changes in three open-source case studies. He
shows that up to 78% of changes made to the source code are
omitted from the system’s change logs. Additionally, this
tracking data is not always available. For example, the change
logs for Linux kernel only started to be released after the major
version 2.4 (version 2.4.1, January 29, 2001). That’s why Yu
[2] in his study of the Linux kernel built two models to estimate
the maintenance effort using the change logs for major versions
2.4 and 2.5 only, with a total of 121 versions. These facts
make it difficult to build effort estimation models and
traceability links, based on the information found in the change
logs.

 Many existing software metrics are computed only using
syntactic information of the code and use that to model
semantic information. For example, cyclomatic complexity is
computed by counting the number of branch (i.e., conditionals)
to infer semantic complexity. Semantic information is much
more difficult to derive and model. For example, a semantic
change in one function might create a ripple effect among other
functions. In a maintenance context, the effort estimation is a
function of the code that is to be (was) changed. To help

828282

identify such problems, program slicers are often applied and
are a valuable tool in determining side effects. It is possible to
determine the parts with different behaviors by comparing the
slices of the base and the evolved versions with respect to
corresponding points.

IV. PROGRAM SLICING AND PROGRAM ANALYSIS
Program slicing is a widely used, and well-known,

approach for understanding and detecting the impact of
changes to software. The concept of program slicing was
originally identified by Weiser [19] as a debugging aid. The
calculation of a program slice is, with few exceptions, based on
the notion of a Program Dependence Graph (PDG) [20, 21] or
one of its variants, e.g., a System Dependence Graph (SDG)
[22]. Unfortunately, building the PDG/SDG is quite costly in
terms of computational time and space. As such, slicing
approaches generally do not scale well.

Forward static program slicing [23-25] refers to the
computation of program points that are affected by other
program points. The forward slice from program point p
includes all the program points in the forward control flow
affected by the computation at p. Here we use the initial
variable declaration as the starting point. The approach varies
from the traditional definitions in two ways. First, a PDG is
not computed for the entire program. Second, the slicing
criterion does not require a precise reference to a location in the
source (only a variable). Specifically, the approach taken here
computes a forward, static, non-executable (closure), inter-
procedural program slice for each variable in a system.

Our slicing approach [26, 27] addresses this limitation by
eliminating the time and effort needed to build the entire PDG.
In short, it combines a text-based approach, similar to Cordy’s
[28], with a lightweight static analysis infrastructure that only
computes dependence information as needed (aka on-the fly)
while computing the slice for each variable in the program.
The slicing process is performed using the srcML [29, 30]
format for source code. Source code is first converted to
srcML and then a stream-oriented approach to compute the
slice is performed. srcML augments source code with abstract
syntactic information. This syntactic information is used to
identify program dependencies as needed when computing the
slice. srcML (SouRce-Code Markup Language) is an XML
format used to augment source code with syntactic information
from the AST to add explicit structure to program source code.
The srcML format is supported with a toolkit, including
src2srcml and srcml2src, which supports conversion between
source code and the format.

We implemented our approach in a tool called srcSlice1.
The approach was first introduced in [26], and there we
conducted a small comparison study to the CodeSurfer2 tool
from GrammaTech, after that in [27], we extended this
evaluation to a total of 18 open source systems. A system
dictionary instead of PDG/SDG represents the program slice

1 Available for download at www.srcML.org under General Public License.
2 CodeSurfer is a produced of GammaTech Inc. www.gammatech.com.

generated by the srcSlice. To detect system changes of two
program slices, we compare their corresponding dictionaries.
To make the comparison process efficient and make the
comparison results reusable, we developed a system slice
encoding (SSE) algorithm that encodes a program slice to a
hash value, thereby allowing the slice hashes of a system to be
used to detect behavioral changes across versions. The slice
hashes for versions are stored in the system change information
to identify behavioral changes across versions. This
information serves as complement to the change logs to help
maintainers understand changes better. We used an extension
format to the srcML representation (denoted by sliceDiff) for
representing slice-based differences in XML. The sliceDiff
permits traceability links to be built between the change
information and other software artifacts (e.g., design and
requirement changes, test cases, bug reports, designs, and
requirements).

A. Slice Profile and System Dictionary Construction
The approach computes a slice profile that contains all the

relevant statements, from all possible slices, over a given
slicing variable. We define our slicing criterion to consist of a
file name, a function name, and a variable name. This slicing
criterion is the triple (f, m, v) where f is a file in the system, m is
a function/method in the file f, and v is a variable in the given
function m. This definition of a slicing criterion does not
require a precise reference to a statement number. This
concept of slicing is used by Gallagher et al. [31] and is
referred to as a decomposition slice. Rather than just a single
variable of interest within the original program, our definition
can retrieve the slices for all the variables inside a given
function by modifying the slicing criterion to (f, m). Moreover,
the slicing criterion (f) can be used to find all the slices of all
variables in all functions in a given file. A system dictionary is
built, referred to as (F, M, V), and includes all files in the
system, all functions in each file, all variables in each function,
and all global variables in the system. Each entry of the system
dictionary is a slice profile with the following structure:

• file, function, and variable names;
• @index, an index of each variable as declared in order

in the function;
• slines, a list of lines that comprise the slice;
• cfunctions, a list of functions called using the slicing

variable;
• dvariables, a list of variables that are data dependent on

the slice variable;
• pointers, a list of aliases of the slicing variable; and
• controledges, a list of all possible control-flow edges of

the slicing variable.

We now present a definition of our slicing criterion and
how a slice is computed using the criterion.

Definition 1 A forward decomposition slice ds of a
program p is constructed with respect to a given file f, a given
function m in f, and a given variable v in m. It consists of the
union of the static forward slices (denoted by sfs) constructed
for the criteria {({v}, s1), …, ({v}, sk)}, where {s1, …, sk} is the
set of statements in p that assign to v. It is defined as:

838383

.

This definition can be generalized to cater to a set of
variables, functions, and files. This yields a definition 2.

Definition 2 A general forward decomposition slice of a
program p is constructed with respect to the following slicing
criteria (f, m), (f), and (F, M, V), where F = {f1, f2,…, fj} is the
finite set of files in p, M = {m1, m2,…,my} is the finite set of
methods for each f ∈ F, and V = {v1, v2,…,vd} is the finite set of
variables for each m ∈ M. The general decomposition slice for
all variables (i.e., set V) inside a given function m is formed by:

,

The general decomposition slice for all variables in a given
file f is given by:

,

The general decomposition slice for all variables in all the
files F, and all global variables in the system is given by:

gds F,M ,V() = fds fi()
i=1

j
∪ .

1. int main(){
2. int sum = 0;
3. int i = 1;
4. while (i<=10){
5. sum = sum + i;
6. i++;
7.
8.

 }
 cout<<sum;

9. cout<<i;

(a)

10. }
Slice Profile(sum)= @index(1), slines={2, 5, 8}, (b)
Slice Profile(i)= @index(2), slines={3, 4, 5, 6, 9}, dvars={sum}

Figure 1. (a) Sample source code, (b) system dictionary with two slice
profiles for the source code in (a). The final slice for sum = {2, 5, 8} and the
final slice for i ={3, 4, 5, 6, 8, 9} after considering dependencies.

Let us now look at a simple example. The approach works
much like a programmer would compute a slice in their head.
Figure 1 presents a small program (a) along with the final
system dictionary (b). The dictionary includes two slice
profiles, one for each of the variables sum and i. The @index
represents the position of variables as declared in the function.
In this way, we can deal with variables of the same name
within the same scope. The slice profiles are computed by
examining each line starting from the beginning (line 1) and
determining the forward slice. Definition-use chains are
followed along with forward control dependencies. The profile
for sum is created first as it is encountered in line 2 (slines(sum)
= {2}). Then the profile for i is created in line 3 (slines(i) =
{3}). The two profiles are updated as follows for the given line
number:
4: slines(sum)={2}; slines(i)={3, 4}, controledges(i) = {(3,4)}

5: slines(sum)={2, 5}, controledges(sum) = {(2,5)}; slines(i)={3, 4,
5}, dvariables(i) = {sum}, controledges(i) = {(3,4),(4,5)}

6: slines(sum)={2, 5}, controledges(sum) = {(2,5)}; slines(i)={3, 4, 5,
6}, dvariables(i) = {sum}, controledges(i) = {(3,4),(4,5),(5,6)}

8: slines(sum)={2, 5, 8}, controledges(sum) = {(2,5),(2,8),(5,8)};
slines(i)={3, 4, 5, 6}, dvariables(i) = {sum}, controledges(i) =
{(3,4),(4,5),(5,6)}

9: slines(sum)={2, 5, 8}, controledges(sum) = {(2,5),(2,8),(5,8)};
slines(i)={3, 4, 5, 6, 9}, dvariables(i) = {sum}, controledges(i) =
{(3,4),(4,5),(4,9),(5,6),(6,9)}

These are the slice profiles for each variable, and the
complete slice is then computed by finding the control-flow
edges and then taking the union of the slines with the slice
profiles of the dvariables, cfunctions, and pointers, minus any
lines that are before the initial definition of the slice variable
(i.e., the set {1, … ,def(v) – 1}). Thus, because sum is data
dependent on i, the complete slice for i = slines(i) �
slines(sum) – {1, 2}. This comes out to {3, 4, 5, 6, 8, 9}. This
final computation can be carried out for all variables via a
single pass through the dictionary.

B. Encoding slicing information
Our system slice encoding (SSE) algorithm works on slice

profiles represented by the system dictionary. The basic
process of the SSE algorithm starts with a single pass through
the system dictionary, encoding each slice profile to a string
value, which is then fed to a hash algorithm to produce the final
results, the hashed slice encoding. There are two steps in the
SSE algorithm.

Step 1 of the SSE algorithm: Encode the slice profiles.
The complete slice for a slicing variable after taking the union
of all related slice profiles will have the following encoding
string value (denoted by dsES): variableName; @index; {ds(f,
m, v)}. For a given function, the SSE algorithm encodes the
slice profiles into a string value (denoted by mdsES). This
string consists of two parts, the functionName and the slines
defined by the mds equation (definition 2). The file encoding
string (denoted by fdsES) is equal to fileName; {fds(f)}.
Finally, the system encoding string (denoted by gdsES) is equal
to systemName; {gds(F, M, V)}. For the example program in
Figure 1, the dsES(sum) = sum; @1; {2, 5, 8}, the dsES(i) = i;
@2; {3, 4, 5, 6, 8, 9}, and the mdsES(main) = main; {2, 3, 4, 5,
6, 8, 9}.

Step 2 of the SSE algorithm: Hash the string value.
This step maps the encoding string from Step 1 to a hash value
using the MD5 hash algorithm [32]. For example, the MD5 for
the dsES(sum) is 6c9eed3c2a88b623c05347aee687d289, the
MD5 for the dsES(i) is e20426ade1655eaaaccc2a9c09429261,
and the MD5 hash for the mdsES(main) is
f65571d34f742bf9a65e53e9a6640d2b.

C. System Behavioral Change Information
To compute behavioral change information across the entire

version history of a system, we check out every pair of
consecutive versions of the system from its subversion
repository, use src2srcml to convert the source code into srcML
format, use srcSlice to build the system dictionary with slice

848484

profiles for all the slicing variables in each version, and apply
the SSE algorithm on them. We compare the slice hashes for
the dsES, mdsES, and fdsES in the later version with the
corresponding hashes in the prior version to find the behavioral
changes. Finally, we save the system behavioral change
information for each version in a database.

<changeInfo systemName="linux" versionNumber="2.2.23"
 changeKind=”changed” deltafdsES ="1" >

<sourceFileChange sourceFilePath="linux/fs/read_write.c"
 changeKind="changed" deltamdsES="1">

<sliceHash>3769c57d417347bb9c0d74a0db637744</sliceHash>
<functionChange functionName="do_readv_writev"

 changeKind="changed" deltadsES="2"\>
<sliceHash>a7df45bf6022cdef77cf49667aa6428b</sliceHash>
<sliceChange changeKind="changed">

<sliceLabel>tot_len</sliceLabel>
<sliceHash>ce2d52d65f33eb611a6030735ebe9262</sliceHash>

</sliceChange>
<sliceChange changeKind="changed">

<sliceLabel>retval</sliceLabel>
<sliceHash>3a2289b2f656d5569ea0110d07f8a1c5</sliceHash>

</sliceChange>
</functionChange>

</sourceFileChange>
</changeInfo>

Figure 2. A partial example of the changeInfo data for Linux kernel
version 2.2.23 in the sliceDiff format.

The database includes a SystemChange table. This table
has three fields, systemName, versionNumber, and changeInfo.
Each version of the system has one record in the database. The
systemName and versionNumber fields record the name of the
system and the version number of the system, respectively.
The changeInfo field contains the behavioral change
information of this version compared to its prior version,
represented in sliceDiff format. An example of the
representation for the changeInfo data can be found in Figure 2.

In our extension to the srcML representation, the element
changeInfo represents all the changes to the system at this
version and the number of fdsES hashes changed (denoted in
the sliceDiff representation by deltafdsES). The changeInfo
element contains multiple sourceFileChange elements, which
represent all of the source code files contain modified slices
and the number of mdsES hashes changed (denoted by
deltamdsES). A functionChange element records the function
name, change kind, number of dsES hashes changed (denoted
by deltadsES), and the change information for the variable
slices. The sliceChange element records change in a slice
profile of the variable. The sliceLabel element stores a label
that indicates the name of the slicing variable. Finally, the
sliceHash element contains the 32-character hash value for the
encoding string computed by the SSE algorithm.

Due to the sliceDiff representation of the system change
information, we open the door to locating components in the
change information and associating them with other software
artifacts. Once in sliceDiff, XML tools and technologies can
be used for fact extraction. For example, use of XPath and
XQuery for change extraction. The expressions that used to
locate components in the change information make it possible
to create traceability links between the change information and
other artifacts. A full explanation of this is left for future work.

V. SLICE – BASED METRICS
In the context of effort prediction, Ramil et al. [33] stated

that one may start the investigation of building an effort model
by obtaining empirical data and by estimating from such data a
productivity function f(). The final empirical data involved in
the estimation of f() are represented in the following equation:
E(t, t+1) = f(act(t, t+1)) + error(t, t+1), where, E(t, t+1)
represents the estimated effort. That is, the effort required
evolving the system from interval t to t+1. The act(t, t+1)
represents the amount of work accomplished over the time
interval. Finally, error(t, t+1) is the modeling error. In
addition, Ramil mentioned that the appropriate way to measure
the act(t, t+1) in the continuing evolution context is by
measuring some indicators of source-code change, e.g., lines of
source code (LOC) or function points (FP) [34]. However,
other metrics can also be extracted from source code with
different degrees of granularity. Once the productivity function
f() is determined, the resultant model may be used to predict
future maintenance effort requirements.

We use the information on the sliceDiff generated above to
calculate slice-based metrics. Here we compare three different
granularities of the slice hashes (dsES-level, mdsES-level, and
fdsES-level). Consequently, different levels of the number of
hashes changed (function-level, file-level, and system-level) can
be computed. In order to build the slice-based maintenance-
effort model, for each of the 974 versions of the Linux kernel,
we extract six measures from the source-code repository and
the changes between slice hashes. These measures are
described in Table I. In these measures, lagTime could be used
to indirectly represent maintenance effort (for the reasons
explained in Section VI).

TABLE I. CODE AND SLICE BASED EXTRACTED MEASURES.
Measure Description

lagTime Indirect maintenance effort on the system, time-intervals
between versions measured in the number of days

sliceSize Total slice size measured in LOC
hashSize The number of slice hashes modified
locSize Total size of the system measured in LOC
fileSize Total size of the system measured in number of files
sCoverage The slice coverage, the slice size relative to LOC

The first measure that we introduce is sliceSize, the slice

size measured in LOC. For an individual slice this is just the ds
value measured at Section IV. For a function and a file, the
sliceSize is computed using the mds and fds, respectively. For
the system level, the sliceSize is computed using the gds
equation. Additionally, the number of modified hash slices
between two versions is used to introduce hashSize. For a
function and a file, the hashSize value is the deltadsES and
deltamdsES values, respectively, as measured in the changeInfo
data. For the system level, the hashSize is calculated in the
changeInfo as a deltafdsES value. The metric hashSize at the
function-level is the number of functions that contain modified
slices and for the file-level is the number of files that contain
modified slices. These two metrics indicate how much the
changed statements in a slice profile depend on each other by
intra-procedural or inter-procedural control or data
dependencies. A high function-level value may indicate more

858585

logically complex code, and a high file-level value may
indicate that the changes in the system were very broad.

In addition, we also extract the size of the system measured
in LOC (i.e., locSize) and number of files (i.e., fileSize). By
comparing the slice size (sliceSize) to the system size (locSize),
we can measure the slice coverage using the sCoverage metric
[19]. This metric represents the active portion of the system
and is included as a factor of maintenance activity.

Considering two consecutive versions of Linux kernel, base
version and evolved version, the measures of the maintenance
data of base version are extracted as follows: locSize, fileSize,
sliceSize, and sCoverage are determined from the source code
of the base version. hashSize is determined from the change
information of the evolved version (because changes made to
the base version are recorded in the changeInfo of the evolved
version). lagTime is determined according to the date
differences between the base version and the evolved version.

VI. SLICE-BASED ESTIMATION ON THE LINUX KERNEL
As a way of showing the application of our indirect

maintenance-effort metrics on a real system, we have applied
the metrics to the Linux kernel. These metrics are then
compared to traditional measures of code effort, e.g., LOC.
The Linux versions are classified as stable or development
versions. Each major version includes several releases
identified with either a three or four digit numbering scheme.
The first digit represents the generation, i.e., Linux has three
generations, initially with generation 1 released in 1994,
generation 2 released in 1996, and generation 3 started in 2011
(not part of the dataset). The second digit represents the major
kernel versions either even or odd. Up until major version 2.4
even digits (e.g., 1.0, 1.2, 2.0, etc.) corresponded to stable
versions, whereas odd numbers (e.g., 1.1, 1.3, 2.1, etc.)
corresponded to development versions. The third digit is the
minor kernel version. However, in August 2004 this
numbering scheme was changed affecting all the versions
released after this date. A fourth digit number was added
starting with version 2.6.8.1, after that the third number in a
version indicates the development of new functionality, and the
presence of a fourth number represents bug fixes [35].

Figure 3. Files change evolution in first four versions (1.1, 1.2, 1.3, and 2.0) of

Linux kernel. This graph illustrates change property captured by slicing.

According to law number 4 of Lehman’s laws of software
evolution [36], the average work rate on an evolving system is
statistically invariant over the system life time. In order to

examine this law we should study the maintenance effort spent
on the system. Again, reliable data about person-hours or
number of developers is hard to get in closed-source systems,
and much harder in open-source systems. Additionally,
person-hours are inaccurate measure of work to begin with
[37]. Lehman et al. [36] suggests using the number of elements
handled as a proxy. However, he mentioned this also has
methodological difficulties.

We start by considering the number of elements handled.
As an example, we will study the average rate of hash slices
changed for files. That is, the likelihood that a file will change
(slice-based) from one release to the next. To assess the
likelihood of a file changing, we gather the ratio of files that
are unchanged, ratio of files that are changed, and ratio of files
that are added or removed, by comparing successive releases.
Figure 3 shows the number of files that were added, deleted,
and modified (divided into those that grew) between
consecutive releases. As may be expected, the fraction of files
that are handled seems to be relatively stable, except perhaps
for some decline in the first years. On average across all
versions we observed that 96% of the files are unchanged, 3%
are modified, and 1% are a added/removed file. Thus if we
interpret rate to mean the fraction of source code that is
modified in each release, then the data supports the claim that
the work rate is almost constant.

Figure 4. Number of releases per month for development versions, in x-axis

(2) = v1.1, (4) = v1.3, (6) = v2.1, (8) = v2.3, and (10) = v2.5.

Invariant work rate can also be interpreted with regard to
the release rate itself, i.e., how often releases occur. Based on
the structure of the Linux kernel, it seems that the growth trend
follows a consistent pattern: a new development version is
released after a number of releases of a stable version, and after
there are no more releases in that development version, a new
stable version is released. However, during the time interval
and releases of the stable version there are still releases of the
previous stable version. For example, version 2.0 had
continuous releases until the end of version 2.2.

We start analyzing the number of releases per month for the
development versions as shown in Figure 4. In the x-axis each
stub represents a year, and each bar represents a month. The
vertical lines with the version label (i.e., V1.1, V1.3, V2.1,
V2.3, and V2.5) represent the start of that new major version.
It is obvious that since the mid of 1997 the rates seem stable
(around 3 – 6 release per month) and with a minimum is equal

868686

to 1 and the maximum is 8. From Figure 5, we can see that the
stable versions are released less frequently than the
development versions. That is, usually there was one release
per month, and the maximum is 10. Starting with version 2.6
the versions are timed to be released once every ~ 3 months. It
is important to remember that the Linux releases are organized
into major releases (e.g., 1.1, 1.2, etc.) and minor releases (e.g.,
1.1.13, 2.2.3, etc.). Therefore, one should consider the intervals
between major releases independently from minor releases.

Figure 5. Number of releases per month for stable versions, in the x-axis (3) =

v1.2, (5) = v2.0, (7) = v2.2, and (9) = v2.4.

In this context, we examined the intervals of time between
consecutive releases (measured in days) inside the same major
version. Figure 6 displays the raw data of the intervals for each
version, and Figure 7 shows the statistics (median and 25th,
75th, and 95th percentiles) of the intervals for each version.
Notice that in Figure 7 versions 2.0, 2.2, and 2.4, the 95th
percentile values exceed the top of the graph and their true
values appear on the labels above their respective up-bar boxes.

Looking back at Figure 6 we can see an interesting pattern.
Generally the development versions (1.1, 1.3, 2.1, 2.3, and 2.5)
have very low values, and so does version 2.6, while the stable
versions (1.2, 2.0, 2.2, and 2.4) have much higher values. We
also notice that at the end of any development version (red line)
there is almost a simultaneous beginning of a new stable
version (blue line), the exception here we do see a significant
gap between versions 2.3 and 2.4, and between versions 2.5
and 2.6. Those two gaps are results of the structural changes in
the Linux kernel numbering scheme.

Looking at Figure 7 we can notice that the bodies of the up-
bars of the stable versions are usually higher than those of the
development versions. In addition, the high values and the
variance are usually higher in stable versions. In other words,
we can see that the stable versions are released less frequently
(usually on a weekly to monthly basis), while development
versions are released quite often (are on a daily to weekly
basis). For example, all medians, 25th, and 75th percentiles in
development versions are lower than 10 days.

Based on the above results, we can see that the release rate
performed in the development versions accounts for ~40% of
the overall amount of versions (398 versions out of 974). 15%
of the overall versions are released during the stable versions.
Finally, 45% of the versions are released during the version
2.6. Thus when expressing the effort as a function of the

performed activity (e.g., lines added, lines modified, files
added, etc.) in the Linux kernel, and taking into account the
three types of versions (development, stable, and version 2.6),
and weighing them appropriately, then the effort estimation
equation should be tailored to reflect such differentiation in
both the kind of version, and consequently the type of activity
performed (e.g., corrective, perfective, etc.), as follows:

Figure 6. Intervals between version’s releases measured in days.

Figure 7. Statistics of intervals between releases, within major version
measured in days (ordered as: 25th, median, 75th, and 95th percentile).

Where, E(t) is the maintenance effort in the Linux kernel
during a period t (daily, monthly, etc.), wd is the weight given
to the activity observed within the development versions
(actd(t)); ws the weight to the stable versions, (acts(t)); and w2.6
the weight to the version 2.6, (act2.6(t)). In the case of the
reported Linux kernel, the overall activity observed in this
project, based on the number of versions released, produces the
following weights: wd = 0.40, ws = 0.15, and w2.6 = 0.45.
These results suggest that we should differentiate between the
three types of versions during the calculation process of the
slice-based metrics. Since the data used to build our models
represents the three types of versions, therefore we omit the
weights during the building process.

We analyzed 11 major versions containing 974 separate
releases, covering a period that exceeds 17 years of software
evolution. The models were built on data from 783 versions,
and then validated on the maintenance data of 191 versions
from version 2.6. Table II shows Spearman’s rank correlations
between the dependent variable and independent variables.

878787

The correlation coefficients that are statistically significant at
the 0.01 level (2-tailed) are shown in bold. From Table II, we
can distinguish multiple significant linear correlations between
the dependent variable and all of the independent variables.
Based on this observation, we built the indirect maintenance-
effort estimation models. The correlation could serve as
guidelines to assess maintenance effort from two viewpoints;
code-based and slice-based. Therefore, we chose to build the
first model using the code-based metrics (Ecode), and the second
model, using the slice-based metrics (Eslice), as follows:

Ecode = c1 + c2 (locSize) + c3 (fileSize).

Eslice = c1 + c2 (sliceSize) + c3 (hashSize) + c4 (sCoverage).

TABLE II. THE CORRELATIONS BETWEEN DEPENDENT VARIABLE AND
INDEPENDENT VARIABLES BASED ON THE TRAINING DATASET (783) VERSIONS,

SIGNIFICANT AT 0.01 LEVEL IS SHOWN IN BOLD.

Variable Effort p-value
sliceSize 0.768 0.008
hashSize 0.757 0.005
locSize 0.767 0.008
fileSize 0.662 0.003
sCoverage 0.338 0.001

The c1 variable represents the constant factor or the

intercept, which characterizes the height of the regression line
when it crosses the y-axis where the dependent variable is
plotted, or we can say that the c1 represents the predicted value
of the dependent variable when all the independent variables
are equal to zero. The ci (where i = 2 to 4) represents the slope
of the line regression which indicates the sensitivity of the
dependent values to the changes in the independent values.
That is, ci represents the change in y for each unit change in x.

TABLE III. LINEAR REGRESSION ANALYSIS OF THE INDIRECT EFFORT
ESTIMATION MODELS.

Model Independent
variable ci p-value R2 adjusted-R2

locSize 0.012 0.004 E code fileSize 4.396 0.000
0.619 0.613

sliceSize 0.030 0.006
hashSize 4.521 0.002 E slice

sCoverage 0.554 0.000
0.744 0.739

Table III shows the linear regression analysis of the model.

The p-value demonstrates the ability of the independent
variable to have a significant predictive capability in the
presence of other variables. The R2 coefficient of
determination value is important to determine whether or not
the regression model was helpful. If the regression line
provides an estimate of the predictable values that closely
match the observed values, then the R2 value will be close to
one, and with zero indicating no relation between independent
and dependent variables. The adjusted-R2 that adjusts for the
number of independent variables in a model is also calculated.
From Table III, we can see that both models have a moderate
both R2 and adjusted-R2 values, which means, based on the
data of 783 versions, the model is by some means accurate in
predicting the indirect maintenance effort.

VII. EVALUATING MODEL PERFORMANCE
To study the quality of the proposed models for future

predictions, we apply the models to predict the indirect
maintenance effort of 191 versions from major version 2.6.
These versions range from version 2.6.25.3 released May, 10
2008 to version 2.6.37.1 released Feb, 17 2011. The predicted
results and the actual observed measurements are compared to
study the accuracy of predictions. Model validation is the most
important step in the model building process. The validation of
a model often consists of the analysis of residuals [2, 3, 10].
The residual represents the difference between the predicted
value estimated by the model and the observed value of the
dependent variable. Our analysis includes the following.

SPR statistics: is the sum of absolute value of the residuals
(e.g., prediction errors). That is, the SPR = ∑ k |Observed k –
Predicted k|.

MRE statistics: the magnitude relative error, which includes
the MMRE (mean magnitude relative error), and MdMRE
(median magnitude relative error). The MRE is defined as:
MRE k = (|Observed k – Predicted k|) / Observed k. The
MdMRE is calculated, since the MMRE is known to be very
sensitive to the extreme values, such as a few very high relative
error MRE values could influence the overall result.

Other indicators commonly used to evaluate the prediction
model based on MRE are the percentage of prediction at
specific level PRED, which measures the percentage of
predicted values within X% of the observed values. The value
of X is suggested in [38] to be at least 25% and a good
prediction model should predict 75% of the observed values.
The two variants of the measure PRED we calculated are:
PRED25: the number of predicted values for which MRE was
less than or equal to 25%. PRED50: the number of predicted
values for which MRE was less than or equal to 50%.

TABLE IV. MODELS PREDICTIVE PERFORMANCES OVER 191 RELEASES.

Measure Code-based
Model

Slice-based
Model

PRED25 % 33.91 49.31
PRED50 % 64.72 82.66
SPR 33520 25596
MdMRE % 37.56 25.35
MMRE % 42.53 31.25

The results of the application of these measures over the

191 versions test dataset are shown at Table IV. It is clearly
evident that the slice-based model performs better than the
code-based model, although the performance of the code-based
model can also be considered good. In particular, the values of
the PRED measures for slice-based model are very promising:
it predicts almost 50% of the cases within a relative error less
than 25% (PRED25) and about 83% of the cases with a relative
error less than 50% (PRED50). In addition, the relative mean
error is ~32% and can be considered outstanding. These results
suggest that the slice-based model using the slicing information
reflects both the type and the size of the maintenance process
more accurately.

888888

VIII. RELATED WORK
Many approaches to the effort-estimation problem have

been derived using different assumptions, data sources, and
methods to process the data to estimate the effort in the context
of maintaining strictly managed and closed-source systems [2,
10]. These models can be categorized into three main
categories: analogy, delphi, and parametric [39]. The first two
categories derive the estimation models based on the past
experience of similar systems, or using expert opinions.
Parametric effort estimation models involve the construction of
statistical models from empirical data, e.g., using regression
analysis. Moreover, the parametric models mathematically
relate the effort and duration (e.g., days) to the variables that
influence them.

Boehm [40] was the first to presents an algorithmic
software cost estimation model, the constructive cost model
COCOMO. Boehm et al. [41] extended the COCOMO model
to estimate maintenance effort by using a size-change factor.
This factor represents the estimation of the size of changes
expressed as the fraction from the total size of the system in
LOC, this factor over a year period. De Lucia et al. [3] called
this factor the “annual change of traffic”. Another work based
on the size of changes is presented by Hayes et al. [42] who
built a model for adaptive-maintenance effort using the
changed LOC and the number of operators changed.

Belady and Lehman [43] suggest a model to approximate
the cost and effort of releasing a new version from an old one.
The suggested model estimates the efforts that are related to
both the functionality updating and anti-regressive activities.
The maintenance-effort estimation that involves the convention
of linear regression analysis was introduced by De Lucia et al.
[16]. In this research, the authors claimed that the types of the
different maintenance tasks should be considered to improve
the outcomes of the estimation model being used.

Jorgensen [8] derived different estimation models for
maintenance effort using log linear regression, neural networks,
and pattern recognition. He compares the prediction accuracy
of these models using an industrial dataset. All the models
estimate the size of the system measured in the summation of
added, deleted, and modified LOC during the maintenance
phase. Another linear model based on the size and the number
of maintenance tasks is proposed in [3], furthermore, other
work done by Niessink et al. [13] use linear regression analysis
to extract estimation based on function points.

Coarse granularity measures have an impact on predicting
required changes during the maintenance activities of the
software project. For example, Lindvall [44] demonstrates that
the number of classes outperform the finer grained metrics in
change prediction. In contrast, non-linear cost estimation
models were proposed by several researches. For example, in
[45] a code decay and a related number of measurements were
illustrated to construct a non-linear changes prediction model.

Because of the nature and complexity of the maintenance
tasks in open-source systems, there are many negative aspects
to using existing effort estimation models directly for open-
source projects. Little work of maintenance-effort estimation
has been conducted for open-source systems. The major

guidelines and tips to build an estimation model in these crucial
systems are reported in [4]. Yu [2] derived two indirect
maintenance-effort models for the Linux kernel system using
multiple linear regression. Nevertheless, these estimation
models are based on and used factors which are derived from
the closed-source software projects. In addition the validation
process determined using the recorded maintenance
information from closed-source systems, i.e., both estimation
models depend on the number of maintenance tasks for the
next version of the system. Therefore, the models are not
applicable if the maintenance tasks for the next version are not
included.

IX. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a large-scale empirical study

aimed at building indirect maintenance-effort estimation
models for open-source systems. The dataset was obtained
from the Linux kernel and used as a case study to build and
validate the models performance using multivariate linear
regression. Our proposed maintenance-effort estimation
models are able to accurately determine the source-code
changes based only on the source code, and estimate the
maintenance effort based at the amount of changes made
maintaining the system. It is worth noting that we did not
construct a direct maintenance-effort model (person-hours) for
open-source systems. However, we decided to use the
available source code, because: (1) there is limited direct
maintenance-effort data available for open-source systems and
we therefore cannot validate the correctness of such a model;
and (2) maintenance effort represented as person-hours is less
meaningful for open-source systems.

The major threat in building the indirect maintenance-effort
models comes from the difference between the closed-source
and open-source systems. Our prediction model depends on
source-code measurement to predict the volume of changes as
an indication of the maintenance effort. However, this is not
the case for closed-source systems that use person-hours as a
metric for maintenance effort.

In order to perform slicing for multiple versions of large
systems, we used a lightweight forward static slicing approach.
That is the main reason that the analysis over all the Linux
versions was even possible. Our future research will study
other open-source systems to determine more measures that
can be used to indirectly represent maintenance effort and
construct new more accurate prediction models.

REFERENCES
[1] Lehman, M. M., "Programs, Life Cycles, and Laws of Software

Evolution", Proc of the IEEE, vol. 68, no. 9, 1980, pp. 1060-1076.
[2] Yu, L., "Indirectly Predicting the Maintenance Effort of Open-Source

Software", Journal of Software Maintenance and Evolution, vol. 18, no.
5, September 2006, pp. 311-332.

[3] De Lucia, A., Pompella, E., and Stefanucci, S., "Assessing effort
estimation models for corrective maintenance through empirical
studies", Information and Software Tech, vol. 47, no. 1, 2005, pp. 3-15.

[4] Asundi, J., "The Need for Effort Estimation Models for Open Source
Software Projects", SIGSOFT Software Engineering Notes, vol. 30, no.
4, 2005, pp. 1-3.

898989

[5] Binkley, A. B. and Schach, S. R., "Inheritance-Based Metrics for
Predicting Maintenance Effort: An Empirical Study", 97-05, T. R., Ed.
Nashville, TN: Computer Science Department, Vanderbilt Univ, 1997.

[6] Yu, L., Schach, S. R., and Chen, K., "Measuring the Maintainability of
Open-Source Software", in International Symposium on Empirical
Software Engineering (ISESE '05), vol. 0., 2005, pp. 297-303.

[7] Kendall, M. G., Stuart, A., and Ord, J. K., Kendall's Advanced Theory of
Statistics, New York, Oxford University Press, Inc., 1987.

[8] Jorgensen, M., "Experience With the Accuracy of Software Maintenance
Task Effort Prediction Models", IEEE Transactions on Software
Engineering (TSE '95), vol. 21, no. 8, August 1995, pp. 674-681.

[9] Kula, R. G., Fushida, K., Yoshida, N., and Iida, H., "Experimental Study
of Quantitative Analysis of Maintenance Effort using Program Slicing-
based Metrics", in Proceedings of the 2012 19th Asia-Pacific Software
Engineering Conference, 2012, pp. 50-57.

[10] Ramil, J. F. and Lehman, M. M., "Effort Estimation from Change
Records of Evolving Software", in Proceedings of International
Conference on Software Engineering (ICSE '00). Limerick, Ireland:
ACM, 2000, pp. 777-787.

[11] Robles, G., González-Barahona, J. M., Cervigón, C., Capiluppi, A., and
Izquierdo, D., "Estimating Development Effort in Free/Open Source
Software Projects by Mining Software Repositories: A Case Study of
OpenStack ", in Proceedings of 14th International Conference on Mining
Software Repositories (MSR '14).

[12] Alshayeb, M. and Li, W., "An Empirical Validation of Object-Oriented
Metrics in Two Different Iterative Software Processes", IEEE Trans.
Softw. Eng., vol. 29, no. 11, 2003, pp. 1043-1049.

[13] Niessink, F. and Vliet, H. V., "Predicting Maintenance Effort with
Function Points", in Proceedings of the International Conference on
Software Maintenance (ICSM' 97). Bari, Italy, 1997, pp. 32-39.

[14] Niessink, F. and Vliet, H. V., "Two Case Studies in Measuring Software
Maintenance Effort", in Proceedings of the International Conference on
Software Maintenance (ICSM '98). 1998, pp. 76-86.

[15] Maletic, J. I. and Collard, M. L., "Supporting Source Code Difference
Analysis", in Proceedings of the International Conference on Software
Maintenance (ICSM '04). Chicago, IL, USA, 2004, pp. 210-219.

[16] De Lucia, A. and Pompella, E., "Effort Estimation for Corrective
Software Maintenance", in Proceedings of the International Conference
on Software Engineering and Knowledge Engineering (SEKE '02).
Ischia, Italy: ACM, 2002, pp. 409-416.

[17] Pan, K., James Whitehead, E., and Ge, G., "Textual and Behavioral
Views of Function Changes", in Proceedings of the 3rd international
workshop on Traceability in emerging forms of software engineering,
Long Beach, California, 2005, pp. 8-13.

[18] Chen, K., Schach, S. R., Yu, L., Offutt, J., and Heller, G. Z., "Open-
Source Change Logs", Empirical Software Enginering, vol. 9, no. 3,
2004, pp. 197-210.

[19] Weiser, M. D., "Program slices: Formal, Psychological, and Practical
Investigations of an Automatic Program Abstraction Method. PhD
thesis". Ann Arbor, MI, USA: University of Michigan, 1979.

[20] Kuck, D. J., Kuhn, R. H., Padua, D. A., Leasure, B., and Wolfe, M.,
"Dependence graphs and compiler optimizations", in Proceedings of the
8th ACM SIGPLAN-SIGACT, 1981, pp. 207-218.

[21] Ferrante, J., Ottenstein, K. J., and Warren, J. D., "The Program
Dependence Graph and its Use in Optimization", ACM Trans. Program.
Lang. Syst., vol. 9, no. 3, 1987, pp. 319-349.

[22] Liang, D. and Harrold, M. J., "Slicing Objects Using System
Dependence Graphs", in Proceedings of the International Conference on
Software Maintenance (ICSM), 1998, pp. 358-367.

[23] Bergeretti, J.-F. and Carre', B. A., "Information-flow and data-flow
analysis of while-programs", in ACM Trans. Program. Lang. Syst., vol.
7: ACM, 1985, pp. 37-61.

[24] Horwitz, S., Reps, T., and Binkley, D., "Interprocedural slicing using
dependence graphs", SIGPLAN Not., vol. 23, 1988, pp. 35-46.

[25] Horwitz, S., Reps, T., and Binkley, D., "Interprocedural Slicing Using
Dependence Graphs", ACM Trans. Program. Lang. Syst., vol. 12, no. 1,
1990, pp. 26-60.

[26] Alomari, H. W., Collard, M. L., and Maletic, J. I., "A Very Efficient and
Scalable Forward Static Slicing Approach", in Proceedings of the IEEE
International Working Conference on Reverse Engineering (WCRE'12).
Kingston, Ontario, Canada, 2012, pp. 425-434.

[27] Alomari, H. W., Collard, M. L., Maletic, J. I., Alhindawi, N., and
Meqdadi, O., "srcSlice: very efficient and scalable forward static
slicing", Journal of Software Evolution and Process, DOI:
10.1002/smr.1651, 2014.

[28] Cordy, J. R., Eliot, N. L., and Robertson, M. G., "TuringTool: A User
Interface to Aid in the Software Maintenance Task", TSE, vol. 16, no. 3,
1990, pp. 294-301.

[29] Collard, M. L., Maletic, J. I., and Robinson, B. P., "A Lightweight
Transformational Approach to Support Large Scale Adaptive Changes",
in Proceedings of the IEEE International Conference on Software
Maintenance (ICSM), 2010, pp. 1-10.

[30] Collard, M. L., Decker, M., and Maletic, J. I., "Lightweight
Transformation and Fact Extraction with the srcML Toolkit", in
Proceedings of 11th IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM’11), Sept 25-26 2011.

[31] Gallagher, K. B. and Lyle, J. R., "Using Program Slicing in Software
Maintenance", TSE., vol. 17, no. 8, 1991, pp. 751-761.

[32] Rivest, R., "The MD5 Message-Digest Algorithm",
http://www.ietf.org/rfc/rfc1321.txt., 1992.

[33] Ramil, J. F. and Lehman, M. M., "Metrics of Software Evolution as
Effort Predictors - A Case Study", in Proceedings of the International
Conference on Software Maintenance (ICSM'00), 2000, pp. 163-172.

[34] Albrecht, A. J. and Gaffney, J. E., "Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science
Validation", IEEE Trans. Softw. Eng., vol. 9, no. 6, 1983, pp. 639-648.

[35] Koren, O., "A study of the Linux kernel Evolution", ACM SIGOPS
Operating Systems Review, vol. 40, no. 2, 2006, pp. 110-112.

[36] Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., and Turski,
W. M., "Metrics and Laws of Software Evolution - The Nineties View",
in Proceedings of the 4th International Symposium on Software Metrics,
1997, pp. 20.

[37] Israeli, A. and Feitelson, D. G., "The Linux kernel as a case study in
software evolution", J. Syst. Softw. no. 3, 2010, pp. 485-501.

[38] Conte, S. D., Dunsmore, H. E., and Shen, V. Y., Software Engineering
Metrics and Models, Redwood City, CA, USA, Benjamin-Cummings
Publishing Co., Inc., 1986.

[39] Shepperd, M., Schofield, C., and Kitchenham, B., "Effort Estimation
Using Analogy", in Proceedings of the International Conference on
Software Engineering (ICSE '96). Berlin, Germany, 1996, pp. 170-178.

[40] Boehm, B. W., "Software Engineering Economics", in Software
Pioneers, Springer-Verlag New York, Inc., 2002, pp. 641-686.

[41] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., and
Selby, R., "Cost Models for Future Software Life Cycle Processes:
COCOMO 2.0", Annals of SE, vol. 1, no. 1, 1995, pp. 57-94.

[42] Hayes, J. H., Patel, S. C., and Zhao, L., "A Metrics-Based Software
Maintenance Effort Model", in Proceedings of the Working Conference
on Software Maintenance and Reengineering (CSMR '04). Tampere,
Finland, 2004, pp. 254-259.

[43] Belady, L. and Lehman, M. M., "An Introduction to Program Growth
Dynamics", in Statistical Computer Performance Evaluation, 1972, pp.
503-511.

[44] Lindvall, M., "Monitoring and Measuring the Change-Prediction Process
at Different Granularity Levels: An Empirical Study", Software Process
Improvement and Practice 4 1998, pp. 3-10.

[45] Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., and Mockus, A.,
"Does Code Decay? Assessing the Evidence from Change Management
Data", TSE, vol. 27, no. 1, 2001, pp. 1-12.

909090

