
Recovering Commit Branch of Origin  
from GitHub Repositories

Heather M. Michaud1, Drew T. Guarnera1, Michael L. Collard2, Jonathan I. Maletic1  
1Department of Computer Science

Kent State University
Kent, USA

{hmichaud, dguarner, jmaletic}@kent.edu

2Department of Computer Science  
The University of Akron  

Akron, USA
collard@uakron.edu  

Abstract— An approach to automatically recover the name of
the branch where a given commit is originally made within a
GitHub repository is presented and evaluated. This is a difficult
task because in Git, the commit object does not store the name of
the branch when it is created. Here this is termed the commit’s
branch of origin. Developers typically use branches in Git to
group sets of changes that are related by task or concern. The
approach recovers the branch of origin only within the scope of a
single repository. The recovery process first uses Git’s default
merge commit messages and then examines the relationships
between neighboring commits. The evaluation includes a
simulation, an empirical examination of 40 repositories of open-
source systems, and a manual verification. The evaluations show
that the average accuracy exceeds 97% of all commits and the
average precision exceeds 80%.

Keywords—mining software repositories; Git; version control;
branching; merging

I. INTRODUCTION
A recurring challenge in Mining Software Repositories

(MSR) regards the grouping of commits. Grouping commits
into logical change sets that are related is critical for
interpreting the historical information found in software
repositories. However, this is difficult to do in version control
systems (VCS) such as Subversion or CVS since there is no
direct support for categorizing or grouping commits in the
tools. Hence, researchers developed various methods to
accomplish the grouping. Commits can be grouped according
to such things as the author [1], a sliding time-window [2-5],
the size [6] or type [7] of the change, by the files that were
changed [5,8], branch patterns [9-10], or data-mining
clustering methods [11]. However, all these commit groupings
are an approximation of the developer’s actual actions and
workflow. The actual set of commits related to a particular
change may not be able to be recovered correctly in an
automated manner due to missing information.

The advent and near ubiquitous use of Git [12] poses new
challenges and opportunities [13] for research in MSR. Git
directly supports the creation of branches (i.e., independent,
diverging paths from the mainline of development) which can
later be merged back into the mainline. Because branching and
merging operations are so flexible and efficient in Git, it has
been seamlessly integrated into the developer workflow [14].
Developers use distributed version control systems, such as
Git, quite differently than centralized version control systems
[28]. So a typical Git (and in particular GitHub) workflow
involves creating a short-lived topic branch to implement a
specific feature or bug fix. This branch is then merged back

into the main branch upon task completion. Long-term
branches are used for continual development, such as
maintaining a stable version of the software. Developers can
also work on multiple branches simultaneously. This
capability is a strong and intentional deviation from the
previous generation of centralized version control system
approaches, where branching and merging have limited support
and are difficult to accomplish by comparison [28]. For
purposes of repository mining, this also provides a direct view
of the developer’s logical commit, since branches are typically
created and named by developers for specific tasks.

Thus, branches provide a natural, logical, and contextual
way of grouping commits as they are typically categorized very
purposefully by the developer at the time the changes are
made. Unfortunately, Git does not maintain the record of the
branch name to which a commit is originally made [13, 27,
29]. This is due to an underlying design decision of Git that
allow for flexibility in naming branches. We term the name of
the branch that a commit is originated in as the commit’s
branch of origin. It is the branch that the commit is originally
made. An example of this is given in Fig. 1, we see that the
branch of origin for commits 11 and 12 is named hotfix. In
general, the names of branches in Git only exist in the structure
of the repository as instances of the present. That is, they are
only available for the most recent commit to the branch (e.g.,
commits 5, 10, and 12 in Fig. 1).

Thankfully, in the case of a merge commit, the names of
branches are incidentally recorded by Git in the default commit
message. In this situation, the branch of origin of the merge
commit can be recovered. Bird et al. [13] presented this issue
and a proof of concept for recovering commit branch of origin
is given utilizing the default message associated with merge
commits. However, as the majority of commits are not merges,
there is a need to expand upon the contribution of that work
and attempt to identify the branch of origin for all types of
commits. Due to the fact that not all information is recorded
by Git, determining a commit's branch of origin is not a trivial
task. There are a number of situations where even manual
inspection can not determine the origin with 100% certainty.
However, recovering a commit’s branch of origin has the
distinct advantage that it gives us the actual grouping of
commits that the developer selected (thus modeling their
intentions at the time). The alternative (as is done in the case
of centralized VCS such as Subversion) is to impose artificial
commit groupings such as sliding time windows or file
similarity. The branch of origin reconstructs the context
chosen by the developer at the actual time of a commit. Thus,
a commit’s origin provides insight into the patterns of
development that relates to a feature, issue, or any other

development task as defined by the branch names assigned by
a developer. The commit’s branch of origin allows us to
identify related changes within the same branch and clearly
distinguish separately evolving concerns across different
branches. Knowing the branch of origin of commits has the
potential to greatly improve the historical analysis and
understanding of an evolving software system.

Here, we present an approach to automatically recover the
previously unknown branch of origin of all types of commits
(i.e., both merge and non-merge commits). This is only in the
context of a single GitHub/Git repository. To accomplish the
recovery process we defined a set of rules based on the
internals of how Git stores and manages the version history.
The recovery process is not 100% accurate as there are
situations that can not be resolved due to the lack of
information. However, our evaluation shows the approach to
be quite accurate in practice. The main contributions of this
paper include:

• a novel approach and algorithm for recovering the
branch of origin of all types of commits,

• an empirical study on 40 open-source software systems
to determine the types of merges and branches that
actually occur, and

• an evaluation of the approach.
The paper is organized as follows. Section 2 presents a

graph-based representation of repository data as stored by Git
and defines the various branching and merging operations.
Section 3 explains the types of merge commits with respect to
branch of origin detection, and section 4 discusses their
prevalence in 40 open-source systems. Section 5 presents our
approach to recovering the branch of origin. The evaluation is
given in section 6. This includes a simulation experiment, an
empirical study, and lastly a manual evaluation. A discussion
of results, threats to validity, and conclusions follow.

II. GIT
Git has become widely popularized via the repository

hosting service GitHub [15]. Git functions as a miniature file
system such that each commit to the repository is a snapshot of
the state of the entire file system at that moment [14]. This
feature allows for efficient and easy to use branching and
merging operations. A branch allows for localized, parallel
development, and can later be merged with other branches to
form a new version with the changes from each. Again, a
commit’s branch of origin is defined as the name of the branch
to which the commit is originally made. The relationship
between commits in the history of a Git repository, as defined
via branches and merges, forms a directed acyclic graph
(DAG).

Fig. 1 shows an example of a Git repository in its DAG
form, where each node is a commit. The commits in this figure
are uniquely labeled, though Git uses a unique 40 character
hexadecimal identifier for each commit, known as a SHA
identifier. A Git commit contains a variety of metadata
information, including the SHA identifier for the commit and
the SHA of the commit or commits immediately preceding it,
known as the parents of that commit. A merge commit is a
special type of commit that has two or more parents, one for
each branch that is merged. For example, in Fig. 1, there are
three merge commits (nodes 5, 7, and 10) which are identified
by having more than one parent. The metadata of the commit
also contains the author (who made the changes), committer

(who put the changes into the repository), timestamps, and
commit message (description of changes).
A. Branch Operations

A critical distinction in Git is that a branch is simply a
named pointer to a commit SHA identifier. In Fig. 1, the
branches develop, master, and hotfix are just pointers to
commits 10, 5, and 12 respectively. The creation of a Git
repository creates a default master branch. A special pointer
called the HEAD references the branch that the user is
currently on, and when a commit is made, it is made to that
branch. This is how the user switches between branches.
When a commit is made to a branch, the pointer updates to the
SHA of the most recent commit. While the commits made to a
branch conceptually form a continuous linear path, commits
are not stored within a branch this way in Git’s structure. Nor
is the branch name that a change is committed to stored
anywhere in the commit. Branches in Git are just hooks to the
present and are not recorded in the history of the repository.

B. Merge Operations
The concept of merging branches is the act of taking the

union of the set of states on each branch. Merge is an
overloaded term as it is also the name of one of the git
commands that performs this act. However, the combination
of the changes in each branch can be obtained in a variety of
ways with git, including via a merge, a rebase, a pull-request, a
fast-forward, or a cherry-pick. Each of these operations
perform the task of conceptually merging branches, but the
results differ. As merging in Git provides the key pieces of
information used to recover the branch of origin for all types of
commits, the variation in the types of merging adds a layer of
complexity to determining this.

A git merge of branches combines the state of the project at
each branch using a three-way merging algorithm. Provided
that the branches have changes to combine, the result is an
automatically created merge commit with two parents (one for
each branch involved in the merge) - the commit that the
source branch points to, and the commit that the destination
branch (current branch) pointed to at the time of the merge.
Fig. 1 contains merge commits at nodes 5, 7, and 10. Git
provides a default commit message that has information about
which branches are involved in the merge. The user has an
opportunity to edit the message before committing primarily to

Fig 1. An example Git repository shown as a DAG, where nodes are
commits, and the merge commits are shaded.

append more information to the default message, such as why
the merge is necessary. This message comes in a variety of
default formats depending on the merge type, but the simplest
scenario results in “Merge source-branch into destination-
branch”, where the source-branch contains the commits that
will be merged in and the destination-branch is where the
commits are merged into. More details on these merge
messages are discussed in section 3.

A fast-forward is the result of a merge operation in the
event that the source branch has all of the commits that exist on
the destination branch. In this instance, no merging algorithm
needs to be performed, so the destination-branch pointer
simply updates, or fast-forwards, to the SHA of the source
branch. A fast-forward cannot be detected because no merge
commit is created, unless the developer otherwise forces the
merge commit to occur by a git command option. For
example, commit 2 in Fig. 1 may have been the result of work
performed on develop which was then merged via a fast-
forward with master.

A pull-request is a method in which any developer can
contribute to an open-source project by requesting that the
maintainers of the original project pull in her changes to the
main repository via a pull-request. Specifically, we are
referring to GitHub pull-requests. In this scenario, a merge
commit is always created because GitHub uses the git
command option to force the merge commit to occur. Commit
10 in Fig. 1 could be a pull-request merge since a merge
commit was created when not strictly necessary.

A rebase operation calculates and saves the diffs (i.e., patch
of differences between two files) of the set of commits from
the source branch that do not exist on the destination branch,
the source branch is fast-forwarded to the destination branch,
and the diffs are re-applied on the source branch as new
commits. As a result, no merge commit is created and the
rebase cannot be detected. For example, in Fig. 1, it is possible
that the work in commit 3 was performed after commit 1 on
branch develop but rebased onto branch master after commit 2,
with no way to determine this.

In a cherry-pick, the diffs of one or more commits on a
source branch are calculated and re-applied on a destination
branch, while the source branch remains unmodified. The
commit is duplicated across both branches. It is possible that
commit 12 in Fig. 1 was cherry-picked from branch develop as
a copy of commit 8. No merge commit is created and by
default no record that the cherry-pick occurred is kept. Thus
there is no accurate way to determine that the work was
originally performed on a separate branch.

C. Remote Repositories
Commits on a developer’s local repository can be pushed to

the remote repository on GitHub (or any server hosting a Git
repository), and then those changes to the remote repository
can be pulled into another developer’s local repository for
collaboration. These sources do not always match, such as
when the local repository is out of date. If changes have been
made on both the local and remote repository, a merge commit
is created on the local repository when a pull operation is
performed. If no changes are made to the local branch on a
pull or similarly to the remote branch on a push, then a fast-
forward occurs. If a developer executes a pull with the rebase
option, then the local branch is rebased on top of the remote
branch.

III. RECOVERING EXPLICIT MERGES
As previously discussed, there are many variations for

combining branches in Git. Bird et al. [13] investigated two
types of merge commits. Namely, a merge of branches and a
merge from a remote repository. However, Git defines a wider
variety of types. Let us define an explicit merge as any Git
operation that produces a merge commit. This is also referred
to as a true merge [14]. This includes a pull-request and a
merge or pull operation that does not result in a fast-forward
(e.g., merge conflicts produce a merge commit). By definition,
an explicit merge is guaranteed to have more than one parent,
and by default, explicit merges contain a commit message that
details the names of the branches that are combined. The
names of the branches in a default merge commit message are
ordered with respect to the order of the parent SHA identifiers
stored in the merge commit metadata.

An explicit merge cannot be created from a cherry-pick,
any rebase operation, or a fast-forward. A merge that occurs
and does not result in an explicit merge commit is termed an
implicit merge. Implicit merges cannot be detected as Git does
not record any information about these types of merges; they
appear as a series of regular non-merge commits.

We now discuss the varying formats of default messages
created by Git during an explicit merge. The default merge
commit message depends on the type of merge that takes place.
This is determined by the type of the source branch and the
destination branch. The source-branch type can be categorized
into one or more of the following criteria:

• is from a remote repository,
• is a branch, which is a pointer to a commit SHA that is
updated to the most recent commit to the branch,

• is a tag, which is a constant pointer to a commit SHA
that is not updated, and is usually used to tag historic
events such as the release of a version of the software,

• is a commit SHA,

TABLE 1. GIT DEFAULT MESSAGES FOR EXPLICIT MERGE COMMITS BASED ON
BRANCH TYPES, WHERE S REPRESENTS THE SOURCE BRANCH AND D

REPRESENTS THE DESTINATION BRANCH. MESSAGES ARE SHADED WHERE THE
DESTINATION BRANCH IS A NON-MASTER BRANCH.

Merge
Type Source Type Default Merge Message

Branch single branch Merge branch ‘S’
Merge branch ‘S’ into D

Tag single tag Merge tag ‘S’
Merge tag ‘S’ into D

Commit
SHA

single
commit SHA

Merge commit ‘S’
Merge commit ‘S’ into D

GitHub
Pull-
Requests

pull request
Merge pull request #N from S
Merge pull request #N from S into D

Remote
Branch

single remote
branch

Merge remote branch ’S’
Merge remote-tracking branch ‘S’
Merge remote branch ‘S’ into D
Merge remote-tracking branch ‘S’ into D

Octopi

multiple
branches

Merge branch ‘S1’, …, and ‘SN'
Merge branch ‘S1’, …, and ‘SN’ into D

multiple
commit
SHAs

Merge commits ‘S1’, …, and ‘SN’
Merge commits ‘S1’, …, and ‘SN’ into D

multiple tags
Merge tags ‘S’, …, and ‘SN’
Merge tags ‘S1’, …, and ‘SN’ into D

multiple
remote
branches

Merge remote branches ‘S1’, …, and ‘SN’
Merge remote-tracking branches ‘S1’, …, and ‘SN’
Merge remote branches ‘S1’, …, and ‘SN’ into D
Merge remote-tracking branches ‘S1’, …, and ‘SN’
into D

• is for a pull-request, or
• consists of multiple branches which also meet any of
the above criteria, known as an octopi merge due to the
octopus merge algorithm Git uses to merge more than two
branches.

Regardless of its type, the source branch is ultimately a
commit SHA or a pointer to one. The source and destination
branch determine the beginning and end of the default
message, respectively. For example, a merge from the source
branch hotfix into the destination-branch develop will have the
default commit message: Merge branch ‘hotfix’ into develop.

The varying types of merge messages are based on the
types of source and destination branches as found from
empirical examination and git documentation, and are shown in
Table 1.

Additionally, branches from remote repositories can also
include the text “of R”, where R represents the URL. The type

of default message that git uses is based on the version of the
tool at the time the commit is made.

IV. PREVALENCE OF EXPLICIT MERGES
The previous section describes the various types of explicit-

merge types along with their associated default commit
message. We now investigate whether all these types of
merges occur regularly in open-source projects. To address
this we selected 40 well-known (based on Github’s star
popularity ranking) and active source-code repositories from
GitHub, including staple projects such as Linux, Git,
Mongodb, Django, and Swift. We are satisfied that the
diversity of the projects in the context of programming
language, size, number of commits, and domain, form a
representative set of projects on GitHub. The size of each
repository ranged between 421 and 588,558 commits (at the
time of data collection on April 1st and 2nd of 2016). The
names of the systems are listed based on how they appear on
GitHub, such that the repository can be found in a web browser
by appending the name of the system to “https://github.com/”.

For each explicit merge found, the commit message is
extracted and matched to one of the formats listed in Table 1.
The total number of commits for all systems is over one
million (1,285,267), where 10% (125,185) of those commits
are explicit merges. A count for each type of explicit merge is
obtained and a summary of the resultant merge type
distributions is shown in Table 3. The merge types shown in
Table 3 map to those shown in Table 1 with the exception of
the Unknown category (which cannot be derived). Any merge
involving multiple branches, remote branches, tags, and
commit SHAs are all classified collectively as the Octopi
merge type.

Of these explicit merge commits, the most frequently
occurring type is a merge of two branches, which consisted of
42% of all explicit merges. This can be explained by the fact
that a merge of two branches is the most simplistic form of a
merge in a typical Git workflow. The Git project has one of the
highest percentages of branch merges (93%), despite a large
number of submitted but rejected pull-requests from GitHub.
Linus Torvalds, the creator of Git, explains this as a decision
not to use GitHub’s pull request feature because it lacks
required information in the commit message for his standards. 1

This highlights the importance of keeping the default message
as supplied by Git for accurate record-keeping. The second
most frequent type of explicit merge is a GitHub pull-request,
consisting of 39% of all explicit merges. Less commonly
occurring types of explicit merges are from tags and remote
repositories, which account for less than 7% and 3%,
respectively. The least frequent types by far are octopi (i.e.,

 https://github.com/torvalds/linux/pull/17#1

TABLE 2. THE 40 OPEN-SOURCE PROJECT REPOSITORIES USED IN THE
EMPIRICAL STUDY.

System Domain Language Total
Commits

torvalds/linux Operating system C 588,558
mono/mono Development framework C# 116,622
rails/rails Web application

framework
Ruby

67,445

Homebrew/homebrew Package manager Ruby 63,808
mongodb/mongo Database C++ 53,922
git/git Content management C, Shell, Perl 44,402
GNOME/gimp Image editor C 42,483
apple/swift Programming language C++, Swift 36,403
django/django Web framework Python 33,337
gitlabhq/gitlabhq Server-side content

management
Ruby, HTML 29,414

docker/docker Application container Go, Shell 24,709
meteor/meteor Web framework JavaScript 21,152
ansible/ansible IT automation Python 20,794
mrdoob/three.js 3D library JavaScript, Python 15,182
twbs/bootstrap Web framework CSS, JavaScript 14,850
zurb/foundation Front-end framework CSS, JavaScript 12,103
joyent/node Web platform Web platform 11,176
angular/angular.js JavaScript API JavaScript 10,213
libgit2/libgit2 Content management API C 9,956
facebook/react User interface library JavaScript 7,984
jekyll/jekyll Static site generator Ruby, Cucumber 7,548
jquery/jquery JavaScript Library JavaScript 7,275
strongloop/express Web framework JavaScript 5,479
RocketChat/
Rocket.Chat

Web chat server CoffeeScript,
JavaScript 5,278

Microsoft/vscode Code editor TypeScript,
JavaScript 4,249

mbostock/d3 Visualization library JavaScript 3,994
robbyrussell/oh-my-zsh Configuration framework Shell 3,907
jashkenas/backbone JavaScript API JavaScript, HTML 3,301
AFNetworking/
AFNetworking

Networking framework Objective-C 3,005

moment/moment Date manipulation API JavaScript 2,857
nwjs/nw.js Webkit C++, JavaScript 2,674
github/gitignore Templates gitignore 2,115
hakimel/reveal.js Presentation framework JavaScript, CSS 1,787
fzaninotto/Faker Data generator PHP 1,619
h5bp/html5-boilerplate Front-end template JavaScript, CSS 1,592
facebook/infer Static analyzer OCaml, Java 1,160
FortAwesome/Font-
Awesome

Font toolkit HTML, CSS 1,111

blueimp/jQuery-File-
Upload

API extension for files JavaScript, HTML 947

google/roboto Font family Python 435
bpampuch/pdfmake Client/server

documentation printing
JavaScript 421

TABLE 3. SUMMARY OF EXPLICIT MERGE TYPES IN STUDIED OPEN-SOURCE
PROJECTS.

Merge Type Average Per
System

Total Of All
Systems

Percent of
Explicit Merges

Branch 1,328 53,137 42.4%
GitHub Pull-Requests 1,219 48,767 39.0%
Unknown 205 8,217 6.6%
Tag 222 8,881 7.1%
Remote Branch 96 3,857 3.1%
Octopi 38 1,517 1.2%
Commit SHA 20 809 0.6%
Explicit Merges 3,130 125,185 100.0%
All Commits 32,132 1,285,267

more than two branches) and merges of commit SHAs, which
each account for around 1% of the merge commits.

For nearly 7% of explicit merges the type cannot be
identified based on the the commit message alone, which is due
to the ability of developers to overwrite the default message.
The format of the merge commit message is not guaranteed.
Some of the common non-default messages found include
“Merge from S”, and “Automatic merge of R”, and “git5:
git5track synced with perforce at N”. While some messages,
such as the git5track message, are the result of an automated
tool, others however are due to the committer rewriting the
message. Many of these messages are completely rewritten to
the extent of removing all pertinent information, and these
types cannot be used for branch name extraction.

Thus we can now answer our question about the prevalence
of explicit-merge types. Merges of branches and of pull-
requests are by far the most commonly recorded types of
merge commits. The remaining types of merges with tags,
remote repositories, multiple branches, and commit SHAs each
occur the least frequently, in less than 12% of explicit merge
cases. However, a notable 7% of explicit merges are of an
unknown type due to developer interference. Fortunately, the
remaining 93% of known explicit-merge types contain the
default merge commit message, which can be used to extract
the source and destination branches from the commit message.
This sets the baseline for our rule-based algorithm for
recovering commit branch origins.

V. RULES FOR ORIGIN RECOVERY
Identifying which branch a commit is originally made to is

no trivial task, and in some cases, an impossible one. Explicit
merge commits in a repository are the only commits that are
guaranteed to have originated in the destination-branch, which
is specified by the default merge message. Here we direct our
effort to recovering the branch of origin of the other types of
commits (i.e., non-merge commits).

The order of the parent hashes with respect to the branch
names as they appear in the merge commit is crucial to the
commit's branch of origin recovery process. For example, a
merge commit with parent SHAs 1 and 2 as identified by the
git log command, and a commit message of “Merge branch B
into A”, allows us to associate SHA 1 with branch A and SHA 2
with branch B. Thus with string matching, we can extract the
names of each branch and match them to commit SHAs.

Our algorithm first performs the integral task of identifying
the origins of explicit merge commits. As Bird et al. [13]
detects the branch names that these explicit merges are
committed to, this stage is most closely related to that work.
An example Git repository is presented in Fig. 2 and shows the
branch of origin for the merge commits based on the merge
commit message. Here, the message of commit 6 does not
include the destination-branch, which indicates that the
commit’s branch of origin is master. As a result of stage 0,
only the origins of explicit merge commits are identified.

We designed four rules to expand the set of commits with
identified origins by assigning origins to the appropriate
neighbors of the commits that have already been identified. We
use a combination of identifying the origins of the branch
heads, parents of explicit merges, ancestry, and finding the
majority-origin along the branch segment to define the rules.
Each rule is applied sequentially and increases the number of
commits whose origin can be recovered at each stage.

The pseudocode for the full algorithm is shown in Fig. 3.
The input is the entire DAG of commit objects and the output
is an updated DAG where each commit is annotated with the

Fig. 2. An example Git repository shown at each stage that the algorithm identifies commit origins. The branches, hotfix, develop, and master, are given
along with the commits that the algorithm identified. First, the origins of explicit merges only are identified. Each rule is applied after the previous stage to
monotonically increase the accuracy of commit origins.

Input: G - DAG of commit objects
Output G' - G annotated with the branch of origin for commits

Algorithm IdentifyCommitOrigins(G)
 G ← ApplyBranchHeadRule(G)

 for c ∈ G do
 // merge commits
 if |c.parents| > 1 then
 origins ← IdentifyOriginsOfMerge(c.message)

 // If the commit contains the default message and thus the
 // merge origin’s detection was successful
 if |origins| > 1 then
 c.origin ← origins[0]
 sources ← origins

 destinationParent ← c.parents[0]
 G ← ApplyMergeParentRule(G, destinationParent, c.origin)
 G ← ApplyAncestralRule(G, destinationParent, c.origin)

 for i ← 1...|c.parents| do
 sourceParent ← c.parents[i]
 G ← ApplyMergeParentsRule(G,sourceParent,sources[i])
 G ← ApplyAncestralRule(G, sourceParent, sources[i])
 end for
 end if
 end if
 end for

 G ← ApplyMajorityOriginRule(G)
 return G

Fig. 3. Pseudocode for recovering commit origins in Git repositories.

branch of origin whenever possible. For each merge commit
the algorithm identifies the origins of the merge using the
default commit message. If that is successful, then the various
rules are applied incrementally. The rules will now be
individually presented, along with a pseudocode representation
and their application to the running example of Fig. 2.
A. Branch Head Rule

This rule identifies the origins of the most recent commits.
Recall that the HEAD pointer in a Git repository points to the
current state, usually identified by one of the branches. A
branch head references a current commit SHA for that branch.
The pseudocode for this rule is given in Fig. 4.

The branch-head rule is stage 1 of the algorithm and labels
the commit that each branch points to as originating in that
branch. Fig. 2.1 shows the additional commits whose origins
can be recovered, namely, the commits pointed to by branch
heads. The branches hotfix, develop, and master point to
commits 8, 10, and 12, respectively. Thus, those commits are
also labeled as originating with their respective branch heads.

B. Merge Parents Rule
Explicit merges have a default commit message that

specifies the source and destination branch. In stage 2, this
rule identifies the parent commits of the explicit merge as
belonging to the source and destination branches. This relies
on the order of the parents as listed in the merge commit
message, which corresponds to the order of the parent SHAs as
listed in the merge commit’s metadata. The commit matching
the merge commit’s first parent SHA is labeled as originating
in the destination-branch name. The commit matching the
second parent SHA is labeled as originating in the source-
branch name. If the merge commit has multiple source
branches, the remaining commits matching the rest of the
parent SHAs are marked as belonging to the nth source branch
name, as the order of the default commit message matches the
order in which the parent SHAs are listed for the merge
commit. The pseudocode for this rule is shown in Fig. 5.

Fig. 2.2 shows the additional commits (3 and 5) whose
origins are identified with the merge-parents rule. As the
message of commit 6 indicates that the source branch is
develop, the parent commit 3 is labeled as originating in
develop. As the destination branch is not specified, we can
determine it is the master branch, so the merge-parents rule
also identifies the parent commit 5 as originating from master.

C. Ancestral Rule
In stage 3 of the algorithm, once all of the previous rules

are applied, the set of all non-merge commits whose origins
have been identified are obtained. For each commit in the set,
the ancestry of that commit is labeled as originating in the
same branch, as shown in the pseudocode in Fig. 6. Once a
commit is identified with an origin, its parent is obtained and
identified with the same origin. This process continues
traversing based on the parent of the current commit until it
reaches a commit that has more than one parent (i.e., is a merge
commit) or has more than one child (i.e., branches out). Once
the ancestry of the commit is traversed, the next non-merge
commit from the set of commits with identified origins is
traversed. This is due to the fact that any merge commit will
be identified based on its message, so it does not need to be
included, and any commit with more than one child (e.g., a
commit that forms a branch path) creates an ambiguity. It is
not known if the commit with more than one child has the
same branch of origin for its first child, second, nth, or has a
branch of origin different from all of the children.

In addition to the previously identified commit origins, Fig.
2.3 shows newly identified commits 2, 4, 9, and 11. The
ancestor of commit 8 (commit 7) can not be identified since it
has two children. The ancestor of 10 (commit 9) is labeled as
having a branch of origin of develop, the same as its child. For
the same reason as before, the ancestor of commit 9 (commit 7)
is not labeled. Commit 12’s ancestors, until a merge, includes
only commit 11, which is labeled as originating from master,
consistent with commit 12’s origin. In addition, the only single
child, non-merge ancestor of commit 3 is commit 2, whose
branch of origin is marked in the same manner. Lastly, commit
5’s only single child, non-merge ancestor is commit 4, which is
labeled as originating from master.

D. Majority Origin Rule
In stage 4, the majority origin rule finds all of the separate

linear paths in the repository, excluding merge commits. In
Fig. 2, one path contains commits 4 and 5 which begin at
commit 1, and another path contains commits 11 and 12 which
begin at commit 6. These paths are extracted such that each
non-merge commit belongs to exactly one path. All the
commits on the path are traversed and the most commonly
identified branch name is identified. Each commit on or
beginning the path that has not been identified with a branch of
origin is labeled as originating in the most common branch of
origin within that path. This is shown in the pseudocode for
this rule in Fig. 7.

Input: G - DAG of commit objects
Output G' - G annotated with the branch of origin for commits

Algorithm ApplyBranchHeadRule(G)
 B ← Set of current branch names and pointers to commit SHAs
 for b ∈ B do
 commit ← b.pointer
 G[commit].origin ← b.name
 end for
 return G

Fig. 4. Pseudocode for the Branch Head Rule.

Input: G - DAG of commit objects
 C - Commit whose branch of origin will be labeled
 N - Name of the the branch of origin for the commit
Output G' - G annotated with the branch of origin for commits

Algorithm ApplyMergeParentRule(G, C, N)
 G[C].origin ← N
 return G

Fig. 5. Pseudocode for the Parents of Merge Rule.

Input: G - DAG of commit objects
 C - Commit whose ancestors will be identified
 N - Branch name to identify C's ancestors with
Output G' - G annotated with the branch of origin for commits

Algorithm ApplyAncestralRule(G, C, N)
 // Transpose G such that R is a DAG of commit objects
 // from child to parent nodes, and the "parents" of a
 // commit in R are the children of a commit in G
 R ← Transpose(G)

 nextParent ← G[C]
 repeat
 G[nextParent].origin ← N
 nextParent ← G[nextParent].parents[0]
 until |G[nextParent].parents| > 1 or
 |R[nextParent].parents| > 1

 return G

Figure 6. Pseudocode for the Ancestral Rule.

This rule is designed to take advantage of the commits
along a linear path whose origins are identified in previous
stages to estimate the most likely branch of origin for
neighboring commits. For example, Fig. 2.4 shows that
commit 7 is labeled as originating in develop as a result of the
majority origin rule. Only commits 7 and 1 remained
unidentified from previous stages. Commit 1 lies on a linear
path by itself, whose beginning is demarcated by commit 0. As
no commits on the path or that begin the path have been
labeled, commit 1 remains unidentified. Commit 7 also lies on
a linear path by itself, where the beginning of the path is
demarcated by commit 3. As commit 3’s branch of origin is
develop, commit 7 is also marked as originating from develop.

VI. EVALUATION
Testing the precision of the algorithm presented requires

that the commit branch of origin is already known in order to
compare the results. As previously stated, no other tool exists
that can identify the branch of origin of all commits, nor is this
information kept as a part of the history in the repository. This
complicates the evaluation, so three different methods are
taken to measure the performance of the algorithm as
efficiently implemented in a tool. First, a simulation is
performed, which includes a variety of test repositories which
are generated with the commit branch of origin recorded in the
history. These records are compared to the origins as obtained
by the algorithm when run on the test repositories, allowing for
measurements of precision and accuracy. Second, the
algorithm is run on the 40 open-source systems collected from
GitHub. As the algorithm’s goal is to recover the origin of
commits where it is unknown, only accuracy can be calculated
on these systems. To account for this, the third evaluation
includes a two-person manual verification of a random subset
of the commits in one of the 40 systems, with measurements of
precision and accuracy.

We use precision and accuracy to measure the algorithm’s
performance. Precision measures exactness, and is defined as:

High precision means that the algorithm returned more
relevant results than irrelevant. High accuracy, which
measures completeness, means that most of the relevant results
are returned, and is defined as follows:

A. Simulation
A script is created for the generation of 22 test repositories

varying in number of commits and number of branches. The
script initializes a Git repository with n branches. One of these
branches is checked out at random, and a commit is made to
that branch. After each commit, there is a 2/3 chance that a
merge with one other branch will occur, otherwise a 1/6 chance
that a merge of two other branches will occur. The odds of a
merge happening are estimated to match or exceed the
instances of a merge, either explicit or implicit, occurring in
actual repositories. If either merge type occurred, the branch or
branches to be merged in is randomly selected. This process
repeats until the desired number of non-merge commits has
been reached. If an explicit merge occurs, the text of the merge
commit is not altered in any way, as this message will be used
by the algorithm for branch name detection. Recall that
implicit merges do not create merge commits. As this poses a
threat to validity, we tried to recreate the issue with high merge
probability. These odds produce projects similar to those with
frequent collaboration and parallel development.

A small repository generated as an example of test
repository generation is shown in Fig. 8. The graph is shown
by git’s log command and displays the first 7 characters of the
commit SHA, then a hyphen, and the commit message. The
branch names are encoded in parenthesis in the commit
message of the current commit that they reference. For
example, master points to commit 86b33bb, which is the
commit with message “Commit 9 to master”. This message is
generated by the test script, not by Git. However, merge
commit 74118bc with the message “Merge branch ‘master’
into A” is generated by Git, along with all the other merge-
commit messages. Also notice the extra branch name HEAD,
which as previously stated, is a special pointer to indicate
which branch (or commit) the developer is currently on.

The algorithm is run on 22 generated test repositories
ranging from 100 to 3,000 non-merge commits and 5 to 20
branches. The full set of the test repositories can be found on
https://github.com/research-data. On each repository, commit
origins were identified at each stage 0-4 of the algorithm. This
began with stage 0, which identified only the explicit merge,
then at stage 1 with the application of the branch-head rule, at
stage 2 with the added application of the merge-parents rule, at
stage 3 with the added ancestral rule, and lastly at stage 4 with
all of the rules applied including the majority-origin. Thus at

Input: G - DAG of commit objects
Output G' - G annotated with the branch of origin of commits

Algorithm ApplyMajorityOriginRule(G)
 S ← Set of linear paths and their starting point
 for s ∈ S do
 origins ← []

 for c ∈ s do
 origins ← append(c.origin)
 end for

 majority ← most common item in origins
 if majority is found then
 for c ∈ s do
 if G[c].origin is unidentified then
 G[c].origin ← majority
 end for
 end if
 end for

 return G

Fig. 7. Pseudocode for the Majority Origin Rule.

$ git log --graph --abbrev-commit --decorate --pretty=format:'%C(bold blue) \
%h%C(reset) - %s%C(bold green)%d %C(reset)' --all
* a520d59 - Commit 13 to A (A)
* dac5201 - Commit 12 to A
* 74118bc - Merge branch 'master' into A
|\
| * 86b33bb - Commit 9 to master (master)
| * 2c37d11 - Merge branch 'C'
| |\
| * | 8e1ff62 - Commit 6 to master
| * | 0766069 - Commit 5 to master
* | | 2ba39d9 - Commit 11 to A
| | | * 750be82 - Commit 14 to C (HEAD, C)
| | | * 755e4cb - Commit 10 to C
| | |/
| | * 70c0740 - Commit 4 to C
| |/
| * c9ea278 - Commit 3 to master
| * 452c9af - Commit 2 to master
| | * 9bb7521 - Commit 8 to D (D)
| |/
|/|
* | a85afa2 - Commit 7 to A
* | 90b474b - Commit 1 to A
|/
* 90638b6 - Commit 0 to master

Fig. 8. An example simulated Git repository displayed by the git log
command. Each non-merge commit message is annotated by the tool with
the commit number and branch.

precision =
correctly identified commit origins

identified commit origins

accuracy =
commit origins identified

commits in repository

each stage, an additional rule is used for increased accuracy,
and the commit messages which contain the branch name are
extracted to calculate the precision. The average precision and
accuracy accumulation over all test systems at each stage of the
algorithm is shown in Fig. 9.

The accuracy in stage 0 matches exactly with the number of
explicit merges in the repositories, as these are the only ones
identified at this stage; this is similar to the approach taken by
Bird et al. [13]. In stage 1, which applies the branch-head
rule, , the accuracy increases very slightly as it is completely
dependent on the number of existing branches in the repository
at that time. Even though the accuracy increase is trivial at this
stage, the branch-head rule compounds the number of
identifiable origins when the ancestral rule is applied. In stage
2, the addition of the merge-parents rule greatly improves the
average accuracy because for each explicit merge point m in
the repository, every parent of m is identified. Recall that an
explicit merge is guaranteed to have at least two parents. Thus
the accuracy that can be obtained in comparison to stage 0’s
identification of merge origins is, at a minimum, tripled. The
ancestral rule is applied in stage 3, which was found to be most
useful when branches diverge for a long series of commits
before merging back in, as it will identify the remaining
commits on the diverging path. Finally, the majority origin rule
is applied last in stage 4 as it labels nearly all of the previously
unlabeled commit origins based on the majority of the
surrounding known origins. This results in over 2.5 times the
average accuracy of 33.7% obtained in stage 0. Thus, the
presented rule-based algorithm increases the accuracy by an
approximate 53 percentage points when all rules are applied in
stage 4, bringing the average accuracy to 100%. This gives us
high confidence that the tool implementation of the algorithm
works properly, so that we can proceed in the evaluation using
open-source systems.

B. Branch of Origin in Open-Source Systems
We applied our rule-based algorithm to the same 40

systems listed in Table 2. At most, this took a minute on the
cloned repository for each system. The accuracy is measured
at all stages: with merge origins only, with the branch-head
rule, with the addition of the merge-parents rule, with the
ancestral rule also applied, and finally with all rules applied
including the majority origin. As previously stated, the
precision cannot be measured as there exists no other known
tool to accurately identify the branches on which changes were
originally made in Git repositories. However, the accuracy is
still an indicator as to how well the algorithm performs on real
systems, and the expected precision can be inferred based on
the precision as shown in the generated test repositories, and
manual verification.

The full table of the accuracy values for each system is
presented in Table 4. To summarize, the total number of all
commits for all repositories combined is 1,285,267. In stage 0
of only identifying the branch of origin of explicit merges, an
average 16% of all commits are identified with a branch origin.
With each rule applied, the accuracy monotonically increases.
The addition of the branch-head rule at stage 1 increases the
accuracy very slightly to 16.2%. In stage 2, the parents of the
merge rule brings this value to 36.5% of all commits in all of
the repositories, at stage 3 the ancestral rule raises the accuracy
to 62.3%. By the addition of the final rule, the majority origin,
stage 4 reveals that 97.2% of all commits in all repositories had
origins that have been identified. The contribution to accuracy
that the rules provide here is invaluable, from 15.9% in stage 0
to 97.2% in stage 4.

The most severe disparity between the accuracy as
measured at stage 0 and at stage 4 is that of the homebrew
repository, in which stage 0 results in a accuracy of 0% while
the stage 4 results in a accuracy of 100%. However, this is
attributed to the very low number of explicit merges with
respect to the total number of commits in this repository.

The Linux repository is chosen for further examination due
to its significant number of commit contributions. We
recovered 8,699 different branch names. Since git does not
track branch names in commits, branch names can be reused in
a repository and may not be unique (e.g., deleting a branch and

TABLE 4. ACCURACY OF RULES ON OPEN-SOURCE SYSTEMS. ACCURACY IS
REPORTED IN STAGES WITH THE RULES APPLIED IN ORDER.

Accuracy

System
Stage 0.
Merge
Only

Stage 1.
Branch
Head

Stage 2.
Merge
Parents

Stage 3.
Ancestral

Stage 4.
Majority

Origin
linux 7% 7% 14% 70% 98%
mono 2% 2% 5% 16% 68%
rails 18% 18% 42% 64% 90%
homebrew 0% 0% 0% 5% 100%
mongo 9% 9% 21% 43% 90%
git 23% 23% 44% 73% 100%
gimp 0% 0% 0% 23% 100%
swift 5% 5% 11% 18% 100%
django 2% 2% 5% 37% 96%
gitlabhq 30% 30% 61% 92% 100%
docker 38% 38% 77% 93% 100%
meteor 6% 8% 18% 59% 99%
ansible 25% 25% 59% 80% 100%
three.js 17% 17% 43% 72% 99%
bootstrap 26% 26% 61% 82% 100%
foundation 26% 26% 60% 78% 99%
node 4% 5% 11% 46% 100%
angular.js 0% 0% 1% 27% 100%
libgit2 22% 23% 48% 89% 100%
react 28% 28% 61% 84% 100%
jekyll 20% 20% 58% 87% 99%
jquery 3% 3% 8% 17% 61%
express 9% 9% 23% 41% 100%
Rocket.Chat 27% 28% 61% 87% 100%
vscode 7% 8% 19% 60% 100%
d3 17% 18% 39% 81% 100%
oh-my-zsh 36% 36% 72% 94% 99%
backbone 26% 27% 62% 80% 99%
AFNetworking 24% 24% 56% 77% 100%
moment 25% 25% 54% 84% 99%
nw.js 16% 17% 41% 60% 100%
gitignore 40% 40% 80% 93% 100%
reveal.js 15% 15% 38% 58% 96%
Faker 27% 27% 59% 93% 100%
html5-boilerplate 11% 12% 30% 48% 99%
infer 1% 1% 2% 94% 100%
Font-Awesome 11% 12% 28% 52% 98%
jQuery-File-Upload 8% 9% 24% 28% 100%
roboto 12% 12% 27% 51% 100%
pdfmake 14% 15% 34% 58% 100%

Fig 9. The cumulative accuracy monotonically increases at each stage of
the algorithm, while precision decreases slightly, as measured on average
of the 22 generated test repositories.

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Cumulative Precision Cumulative Accuracy

making a new one later with the same name). To provide
additional granularity, we uniquely identify each occurrence of
these branch names with a starting and ending commit SHA
identifier. Adding this identifier yields 53,275 unique
branches. A list of the most active branches in terms of number
of commits originating from them are shown in Table 5 and
includes the abbreviated (6 character) commit SHA identifiers.
A sample of other branches in which very few commits
originated is shown in Table 6. Of the branches in Tables 5 &
6 for Linux, the only branch name shown in Github is the
master branch. Branches with more commits tend to be long
running branches used for staging areas (for-linus, staging-
next, etc.) or for stability (master). Branches with few commits
were short-lived topic branches that originally implemented a
specific bug fix or feature, e.g., x86/setup-lzma, next/hdmi-
samsung, etc. In some cases the bug number is used as the
name of the branch (bugzilla-13751). This finding suggests
that the purpose of a change made in a commit (e.g.,
maintenance task or new feature) can be determined by the
branch classification (e.g., staging area or topic branch).

Recall from Table 1 that the empirical examination found
two versions of Git’s default message during a merge with a
remote branch. Manual analysis of the branches in the Git
project's source repository revealed that the branch named mm/
phrase-remote-tracking contained commits that were
responsible for rewording the default message to use the phrase
“remote-tracking branch” rather than “remote branch”. This is
an excellent example of how branch names can provide context
of the meaning of the commits originating in that branch.
C. Manual Verification

As no known Git repository records a commit’s branch of
origin, manual verification is performed using the additional
external information that GitHub provides for development
workflows that use pull requests. The react system is selected
as it is the largest project of the studied systems that most
predominantly uses the GitHub pull-request model. It consists
of 7,984 commits with over 98% of the explicit merges
identified as pull-request types. A random selection of 400
commits were made (5% of the total commits). For each

commit, two of the authors (both experienced developers)
independently manually analyzed the commit to determine
which branch they believe it originated from. This manual
process took approximately 15 hours for each subject to
perform. The subjects used only the data as provided by
GitHub to gather pull-request and issue-tracking information,
commit information, and ancestors of the commit.

The algorithm identified the origins of all commits, and the
origins of the 400 selected commits were extracted. Subjects 1
and 2 separately labeled each of the 400 commits with the
branch origin. The correct branch of origin is determined as the
one chosen by at least 2 of the 3 participants. Thus, the
algorithm is considered to have correctly identified a commit's
branch of origin if it agrees with at least one of the subjects,
and to have incorrectly identified a commit’s branch of origin
if it disagrees with both of the subjects.

As shown in Table 7, the tool agrees on nearly 80% of the
commits with each subject. Subjects 1 and 2 agree in nearly all
cases. All subjects agree in 78% of the commits. Of the 400
commits, the algorithm correctly identified 319 commits (i.e.,
agreed with subject 2 or 3), producing an accuracy of 100%
and a precision of 80%, which is consistent with the 100%
accuracy and 87% precision obtained from the generated test
repositories.

VII. DISCUSSION OF RESULTS
The evaluation of the rule-based algorithm to recover

branch names of commits had three separate parts including the
generated test repositories, the branch of origin of commits in
40 open source systems, and manual verification.

This work produced very good values of accuracy and
precision for commit branch of origin recovery. There is an
average accuracy of at least 97% in all three evaluations and an
average precision of at least 80% is obtained in the two
evaluations where precision can be determined. During
manual verification, the 80% precision of the algorithm is
especially interesting as it trails the results performed by the
human subjects (99%) for the open-source system by 19
percentage points. In addition, the algorithm takes seconds to
identify over 7,000 commit origins in the selected repository,
while it takes each human subject at least 15 hours to identify
400 of the commit origins. One important fact to keep in mind
is that the automated approach is working at a disadvantage
compared to the human subjects as it only bases its branch of
origin recovery using the commit messages and structure,
while human subjects had access to all project information
contained in the project’s GitHub repository. The react system
is selected specifically for its high utilization of GitHub to
make the manual verification more accurate, but such is not the
case in all repositories. Additionally, even human participants
can disagree on the branch origin, illustrating that the results
can be subjective. With respect to the simulation results, the
presented algorithm not only works under ideal artificial
circumstances, but performs well in practice.

TABLE 5. TOP 10 LARGEST BRANCHES IN LINUX

Branch Name Commits
git://git.kernel.org/pub/scm/linux/
kernel/git/davem/net-2.6.25  
[d10f21-85040b]

1,470

git://git.kernel.org/pub/scm/linux/
kernel/git/x86/linux-2.6-x86  
[213eca-afadcd]

890

master  
[571ecf-266918]

867

staging-next 
[a504de-68cf16]

864

staging-next 
[1407a9-a4ac0d]

837

staging-next 
[0f431f-9056be]

810

git://git.kernel.org/pub/scm/linux/
kernel/git/gregkh/staging-2.6  
[874073-ba0e1e]

714

Btrfs  
[be0e5c-343530]

714

staging-next 
[9fc860-1a4b6f]

709

for_linus  
[e164b5-fd3a01]

707

TABLE 6. SAMPLE OF SMALL
BRANCHES IN LINUX.

Branch Name Commits
bugzilla-13751  
[74b582-74b582]

1

video-error-case 
[e01ce7-e01ce7]

1

cpu-bindings  
[594f88-deeea7]

2

new-drivers  
[452c1c-c4e84b]

4

arm-build-fixes  
[fc9a57-96a301]

4

unnecessary_resour
ce_check  
[5e9b4d-aaa14f]

5

next/hdmi-samsung  
[566cf8-0a9d5a]

6

dell-laptop  
[e1fbf3-8c5d30]

6

lookup-permissions-
cleanup  
[e8e66e-18f4c6]

8

x86/setup-lzma  
[bc22c1-889c92]

13

TABLE 7. MANUAL VERIFICATION REVEALS A HIGH TOOL PRECISION AND
AGREEMENT BETWEEN SUBJECTS, WHERE S1 AND S2 ARE THE HUMAN

SUBJECTS AND T IS THE TOOL IMPLEMENTING THE ALGORITHM.
Subject Agreement Occurrences Percentage of Selection

S1 ∩ T 316 79%
S2 ∩ T 313 78%
S1 ∩ S2 395 99%

S1 ∩ S2 ∩ T 312 78%
(S1 ∩ T) ∪ (S2 ∩ T) 319 80%

One of the threats to validity is that the generated
repositories do not fully mimic actual projects as they do not
contain pull-requests, remote branches, or merges between
commits or tags; these missing types of merges are left for
future work. Actual repositories cannot be automatically tested
for precision, and even the recorded merge commit message
used for origin identification can be re-written by developers,
limiting the ability to accurately detect that commit’s branch of
origin and the origin of its neighboring commits. Multiple
branches referencing the same commit have an ambiguous
origin. Additionally, implicit merges and renamed branches
cannot be detected given the repository history. This can cause
the rules of the presented algorithm to incorrectly identify a
commit’s origin.

VIII. RELATED WORK
The extraction of a commit message is a source of valuable

research for many purposes, such as viewing it through the
lenses of documentation of the source code [16], helping to
determine if two files were modified in the same commit in
VCS tools that do not store this metadata [17-18], ontological
modeling [19], or the quality of the commit [20]. Though, to
the best of the our knowledge, only one study has used this
information for determining the branch of origin of a commit
[13], but it is only done for explicit merge commits.

Bird et al. present the notable difficulties and exciting new
data available when mining Git repositories [13]. As part of
the overall work, the merge commits of 30 open-source
projects are examined in order to determine the source of the
merge, i.e., the branch of origin of the merge commit. An
accuracy of 97.9% is obtained for the merge commits alone,
though an accuracy of 2.1% is calculated with respect to all
commits in the repository. The work of this paper extends the
work of Bird et al. by presenting a rule-based algorithm for
recovering all commit origins in the entire repository, as well
as an analysis of the types of explicit merges and branch
origins as found in open source projects.

Tarvo et al. [21] present an integration algorithm that
allows for data collection in the presence of branches in order
to re-collect the commit information that is typically lost after
the merge of the branches in a centralized VCS. This is used to
predict software-regression risk by identifying which bugs are
fixed in different branches of the system. However, it depends
on knowing the branch of origin of the commits at the time of
integration. Ghezzi et al. [22] present a VCS plug-in extension
architecture to expand upon the information collected by the
VCS for analysis support, where an event such as a branch or
merge can trigger a plug-in to calculate metrics or extract
semantic changes. This infrastructure could be extended to
support the branch name extraction required to enhance the
history of a project by recording it at present intervals.

Germán et al. [27, 29] focus on continually mining a
collection of related repositories to detect which repository a
commit comes from as it is added to the main “blessed”
repository. This complements our approach, which is centered
on the retroactive analysis of a single repository and from
which branch a commit came from when it is added.
However, we do not mine any additional repositories to acquire
commit origins external to the repository under analysis, and
instead focus on a finer level of granularity.

In addition, a series of studies were performed using the
branch structure for purposes of distribution metrics [9], merge
conflict detection [23] and resolution [24], text-level authorship

of a source-code document [25], pattern extraction [10], and
their effect on software quality [26]. However, in all of these
studies, the paths were unnamed and recognized only as
diverging paths rather than textual and contextual
categorization of commits.

IX. CONCLUSIONS AND FUTURE WORK
The main contribution of this work is a novel and efficient

algorithm for recovering the branch of origin for commits in
Git within the context of a single repository. The algorithm is
evaluated in three ways: with simulated test repositories, on the
GitHub repositories of 40 open source systems, and by a two-
person manual verification on a select system. The algorithm
produces an average precision of at least 80%, and in all three
evaluations produces an average accuracy of over 98% of all
commits. The tool implementation takes around a minute to
recover the branch origins of over 500,000 commits when
executed on the Linux repository.

There is little previous work [13] on this problem and that
work only addressed a portion of the issue in the broader
context of examining various issues in Git. As such it is
difficult to directly compare as the approach described here
subsumes the portion of that work aimed at the problem (i.e.,
they only examined explicit merge commits and this is the first
step in our approach). Only examining explicit merge commits
produces an accuracy of 16% on the systems study, and in the
case of Linux 7%.

Another contribution is an analysis of explicit-merge types,
where we found that the most prevalent explicit merges involve
pull-requests and branches, while very little involve commits,
tags, remote repositories, or an octopi merge. Of the explicit-
merge types, 7% can not be identified due to the use of non-
default commit messages. Additionally, we found that the
systems contained approximately 10% merge commits.

An analysis of the Linux repository shows that the topmost
active branches (e.g., master, staging-next) are typically used
as staging areas for development. Branches with less activity
are also of interest as their names reflect what the developer is
working on (e.g., new-drivers, arm-build-fixes). While our
method for grouping commits does not replace other grouping
methods, it does provide a view that directly shows the logical
task of the developer. A direct application of our approach
would be to perform other measures on the branch-grouped
commits, e.g., LOC, number of files, collection of changes, etc.

Recovering this information has several benefits when
mining software repositories and should improve the historical
analysis and understanding of an evolving software project.
This motivates future work into the role, activity, and
frequency of branches within and across repositories. The
recovery of commit branch origins in Git allows, for the first
time, studies to occur on the branches themselves. Types of
branches, such as a source or destination branch, can be found
based on the amount of commits performed in a particular
branch versus the number of merges to that branch.

We plan to extend this work to consider the origins of
commits across multiple related repositories, which will allow
commit origins to be determined not only from the branch of
origin, but also trace back from which external repository and
branch the commit came from as well. This will provide a rich
global view of the development process. 

REFERENCES
1. X. Meng, B. P. Miller, W. R. Williams, and A. R. Bernat, “Mining

Software Repositories for Accurate Authorship,” in Proceedings of the
29th IEEE International Conference on Software Maintenance
(ICSM’13), Eindhoven, The Netherlands, September 22-28 2013, pp.
250–259.

2. C. Rodriguez-Bustos and J. Aponte, “How Distributed Version Control
Systems impact open source software projects.,” in Proceedings of the
9th Working Conference on Mining Software Repositories (MSR’12),
Zurich, Switzerland June 2-3 2012, pp. 36–39.

3. A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen,
“Mining Software Repositories to Study Co-Evolution of Production &
Test Code,” in Proceeding of the 1st International Conference on
Software Testing, Verification, and Validation (ICST’08), Lillehammer,
Norway April 9-11 2008, pp. 220–229

4. F. Jaafar, Y. Guéhéneuc, S. Hamel, and G. Antoniol, “An
Exploratory Study of Macro Co-changes,” in Proceedings of t h e 1 8 t h
Working Conference on Reverse Engineering
(WCRE’11), Lero, Ireland October 17-20 2011, pp. 325–334.

5. T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining Version
Histories to Guide Software Changes,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 429–445, 2005.

6. A. Alali, H. H. Kagdi, and J. I. Maletic, “What's a Typical Commit? A
Characterization of Open Source Software Repositories,” in Proceedings
of the 16th IEEE International Conference on Program Comprehension
(ICPC’08), Amsterdam, The Netherlands June 10-13 2008, pp. 182–191.

7. H. C. Gall, B. Fluri, and M. Pinzger, “Change Analysis with Evolizer
and ChangeDistiller,” IEEE Software, vol. 26, no. 1, pp. 26–33, 2009.

8. R. Premraj, A. Tang, N. Linssen, H. Geraats, and H. van Vliet, “To
branch or not to branch?,” presented at the ICSSP '11: Proceedings of
the 2011 International Conference on Software and Systems Process,
2011.

9. H. Lee, B.-K. Seo, and E. Seo, “A Git Source Repository Analysis Tool
Based on a Novel Branch-Oriented Approach,” proceeding of the 4th
International Conference on Information Science and Applications
(ICISA’13), Pattaya, Thailand June 24-26 2013, pp. 1–4.

10. M. Biazzini, M. Monperrus, and B. Baudry, “On Analyzing the
Topology of Commit Histories in Decentralized Version Control
Systems,” in Proceedings of the 2014 30th IEEE International
Conference on Software Maintenance and Evolution, (ICSME’14),
Victoria, British Columbia September 28 - October 3 2014, pp. 261–
270.

11. L. Yu and S. Ramaswamy, “Mining CVS Repositories to Understand
Open-Source Project Developer Roles,” in Proceedings of the 2007
International Working Conference on Mining Software Repositories
(MSR’07), Minneapolis, MN, May 19-20 2007, 8 pages.

12. I. Skerret (2014, June 23). Eclipse Community Survey 2014 Results
[Online]. Available: https://ianskerrett.wordpress.com/2014/06/23/
eclipse-community-survey-2014-results/

13. C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. Germán, and P. T.
Devanbu, “The promises and perils of mining git,” in Proceedings of the
6th International Working Conference on Mining Software Repositories,
(MSR’09), Vancouver, Canada May 16-17 2009, pp. 1–10.

14. S. Chacon and B. Straub, Pro Git, 2nd ed. Apress, 2014.
15. GitHub. (2015, June 23). GitHub homepage [Online]. Available: https://

github.com

16. A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and A.
Michail, “CVSSearch: Searching through Source Code Using CVS
Comments.,” in Proceedings of the 2001 International Conference on
Software Maintenance (ICSM’01), pp. 364–373, 2001.

17. D. M. Germán, “An empirical study of fine-grained software
modifications,” Empirical Software Engineering, vol. 11, no. 3, pp. 369–
393, 2006.

18. I. Turnu, M. Marchesi, and R. Tonelli, “Entropy of the degree
distribution and object- oriented software quality,” in Proceedings of the
3rd International Workshop on Emerging Trends in Software Metrics
(WETSoM’12), 2012.

19. A. Y. Sokolov, I. R. Golovko, and E. A. Cherkashin, “Extraction of
thesaurus and project structure from Linux kernel source tree,” in
Proceedings of the 2012 35th IEEE International Convention
Information and Communication Technology, Electronics and
Microelectronics (MIPRO’12), pp. 1088–1092, 2012.

20. A. Bachmann and A. Bernstein, “When process data quality affects the
number of bugs: Correlations in software engineering datasets,” in
Proceedings of the 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR’10), pp. 62–71, 2010.

21. A. Tarvo, T. Zimmermann, and J. Czerwonka, “An integration resolution
algorithm for mining multiple branches in version control systems,” in
Proceedings of the 2011 27th IEEE Conference on Software
Maintenance (ICSM’11), pp. 402–411, 2011.

22. G. Ghezzi, M. Würsch, E. Giger, and H. C. Gall, “An architectural
blueprint for a pluggable version control system for software (evolution)
analysis,” in the Proceedings of the 2012 2nd IEEE Workshop on
Developing Tools as Plug-ins (TOPI’12), 2012, pp. 13–18.

23. Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of
collaboration conflicts,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of
software engineering (ESEC/FSE’11), pp. 168–178, 2011.

24. M. Ahmed-Nacer, P. Urso, and F. Charoy, “Improving textual merge
result,” 2013 9th International Conference Conference on Collaborative
Comput ing: Networking , Appl ica t ions and Workshar ing
(Collaboratecom), pp. 390–399, 2013.

25. C. R. Prause, “Maintaining Fine-Grained Code Metadata Regardless of
Moving, Copying and Merging,” in Proceedings of the 2009 9th IEEE
International Working Conference on Source Code Analysis and
Manipulation (SCAM’09), pp. 109–118, 2009.

26. E. Shihab, C. Bird, and T. Zimmermann, “The effect of branching
strategies on software quality,” Empirical Software Engineering and
Measurement (ESEM), 2012 ACM-IEEE International Symposium on,
pp. 301–310, 2012.

27. D. M. Germán, B. Adams, and A. E.Hassan, “A Dataset of the Activity
of the git Super-repository of Linux in 2012,” in Proceedings of the
2015 12th ACM-IEEE Working Conference on Mining Software
Repositories (MSR’15), Florence, Italy, May 16-17 2015, pp. 470-473.

28. C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do
centralized and distributed version control systems impact software
changes?,” in Proceedings of the 2014 36th International Conference on
Software Engineering (ICSE’14), pp. 322–333, Hyderabad, India, May
2014.

29. D. M. Germán, B. Adams, and A. E. Hassan, “Continuously mining
distributed version control systems: an empirical study of how Linux
uses Git,” Empirical Software Engineering, vol. 21, no. 1, pp. 260–299,
2016. 

