
Recovering Commit Branch of Origin  
from GitHub Repositories 

Heather M. Michaud1, Drew T. Guarnera1, Michael L. Collard2, Jonathan I. Maletic1  
1Department of Computer Science 

Kent State University 
Kent, USA 

{hmichaud, dguarner, jmaletic}@kent.edu 

2Department of Computer Science  
The University of Akron  

Akron, USA 
collard@uakron.edu  

Abstract— An approach to automatically recover the name of 
the branch where a given commit is originally made within a 
GitHub repository is presented and evaluated.  This is a difficult 
task because in Git, the commit object does not store the name of 
the branch when it is created.  Here this is termed the commit’s 
branch of origin.  Developers typically use branches in Git to 
group sets of changes that are related by task or concern.  The 
approach recovers the branch of origin only within the scope of a 
single repository.  The recovery process first uses Git’s default 
merge commit messages and then examines the relationships 
between neighboring commits.  The evaluation includes a 
simulation, an empirical examination of 40 repositories of open-
source systems, and a manual verification.  The evaluations show 
that the average accuracy exceeds 97% of all commits and the 
average precision exceeds 80%.   
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I. INTRODUCTION 
A recurring challenge in Mining Software Repositories 

(MSR) regards the grouping of commits.  Grouping commits 
into logical change sets that are related is critical for 
interpreting the historical information found in software 
repositories.  However, this is difficult to do in version control 
systems (VCS) such as Subversion or CVS since there is no 
direct support for categorizing or grouping commits in the 
tools.  Hence, researchers developed various methods to 
accomplish the grouping.  Commits can be grouped according 
to such things as the author [1], a sliding time-window [2-5], 
the size [6] or type [7] of the change, by the files that were 
changed [5,8], branch patterns [9-10], or data-mining 
clustering methods [11].  However, all these commit groupings 
are an approximation of the developer’s actual actions and 
workflow.  The actual set of commits related to a particular 
change may not be able to be recovered correctly in an 
automated manner due to missing information. 

The advent and near ubiquitous use of Git [12] poses new 
challenges and opportunities [13] for research in MSR.  Git 
directly supports the creation of branches (i.e., independent, 
diverging paths from the mainline of development) which can 
later be merged back into the mainline.  Because branching and 
merging operations are so flexible and efficient in Git, it has 
been seamlessly integrated into the developer workflow [14].  
Developers use distributed version control systems, such as 
Git, quite differently than centralized version control systems 
[28].  So a typical Git (and in particular GitHub) workflow 
involves creating a short-lived topic branch to implement a 
specific feature or bug fix.  This branch is then merged back 

into the main branch upon task completion.  Long-term 
branches are used for continual development, such as 
maintaining a stable version of the software.  Developers can 
also work on multiple branches simultaneously.  This 
capability is a strong and intentional deviation from the 
previous generation of centralized version control system 
approaches, where branching and merging have limited support 
and are difficult to accomplish by comparison [28].  For 
purposes of repository mining, this also provides a direct view 
of the developer’s logical commit, since branches are typically 
created and named by developers for specific tasks. 

Thus, branches provide a natural, logical, and contextual 
way of grouping commits as they are typically categorized very 
purposefully by the developer at the time the changes are 
made.  Unfortunately, Git does not maintain the record of the 
branch name to which a commit is originally made [13, 27, 
29].  This is due to an underlying design decision of Git that 
allow for flexibility in naming branches.  We term the name of 
the branch that a commit is originated in as the commit’s 
branch of origin.  It is the branch that the commit is originally 
made.  An example of this is given in Fig. 1, we see that the 
branch of origin for commits 11 and 12 is named hotfix.  In 
general, the names of branches in Git only exist in the structure 
of the repository as instances of the present.  That is, they are 
only available for the most recent commit to the branch (e.g., 
commits 5, 10, and 12 in Fig. 1).   

Thankfully, in the case of a merge commit, the names of 
branches are incidentally recorded by Git in the default commit 
message.  In this situation, the branch of origin of the merge 
commit can be recovered.  Bird et al. [13] presented this issue 
and a proof of concept for recovering commit branch of origin 
is given utilizing the default message associated with merge 
commits.  However, as the majority of commits are not merges, 
there is a need to expand upon the contribution of that work 
and attempt to identify the branch of origin for all types of 
commits.  Due to the fact that not all information is recorded 
by Git, determining a commit's branch of origin is not a trivial 
task.  There are a number of situations where even manual 
inspection can not determine the origin with 100% certainty.  
However, recovering a commit’s branch of origin has the 
distinct advantage that it gives us the actual grouping of 
commits that the developer selected (thus modeling their 
intentions at the time).  The alternative (as is done in the case 
of centralized VCS such as Subversion) is to impose artificial 
commit groupings such as sliding time windows or file 
similarity.  The branch of origin reconstructs the context 
chosen by the developer at the actual time of a commit.  Thus, 
a commit’s origin provides insight into the patterns of 
development that relates to a feature, issue, or any other 



development task as defined by the branch names assigned by 
a developer.  The commit’s branch of origin allows us to 
identify related changes within the same branch and clearly 
distinguish separately evolving concerns across different 
branches.  Knowing the branch of origin of commits has the 
potential to greatly improve the historical analysis and 
understanding of an evolving software system.   

Here, we present an approach to automatically recover the 
previously unknown branch of origin of all types of commits 
(i.e., both merge and non-merge commits).  This is only in the 
context of a single GitHub/Git repository.  To accomplish the 
recovery process we defined a set of rules based on the 
internals of how Git stores and manages the version history.  
The recovery process is not 100% accurate as there are 
situations that can not be resolved due to the lack of 
information.  However, our evaluation shows the approach to 
be quite accurate in practice.  The main contributions of this 
paper include: 

• a novel approach and algorithm for recovering the 
branch of origin of all types of commits, 

• an empirical study on 40 open-source software systems 
to determine the types of merges and branches that 
actually occur, and 

• an evaluation of the approach. 
The paper is organized as follows.  Section 2 presents a 

graph-based representation of repository data as stored by Git 
and defines the various branching and merging operations.  
Section 3 explains the types of merge commits with respect to 
branch of origin detection, and section 4 discusses their 
prevalence in 40 open-source systems.  Section 5 presents our 
approach to recovering the branch of origin.  The evaluation is 
given in section 6.  This includes a simulation experiment, an 
empirical study, and lastly a manual evaluation.  A discussion 
of results, threats to validity, and conclusions follow. 

II. GIT 
Git has become widely popularized via the repository 

hosting service GitHub [15].  Git functions as a miniature file 
system such that each commit to the repository is a snapshot of 
the state of the entire file system at that moment [14].  This 
feature allows for efficient and easy to use branching and 
merging operations.  A branch allows for localized, parallel 
development, and can later be merged with other branches to 
form a new version with the changes from each.  Again, a 
commit’s branch of origin is defined as the name of the branch 
to which the commit is originally made.  The relationship 
between commits in the history of a Git repository, as defined 
via branches and merges, forms a directed acyclic graph 
(DAG). 

Fig. 1 shows an example of a Git repository in its DAG 
form, where each node is a commit. The commits in this figure 
are uniquely labeled, though Git uses a unique 40 character 
hexadecimal identifier for each commit, known as a SHA 
identifier.  A Git commit contains a variety of metadata 
information, including the SHA identifier for the commit and 
the SHA of the commit or commits immediately preceding it, 
known as the parents of that commit.  A merge commit is a 
special type of commit that has two or more parents, one for 
each branch that is merged. For example, in Fig. 1, there are 
three merge commits (nodes 5, 7, and 10) which are identified 
by having more than one parent. The metadata of the commit 
also contains the author (who made the changes), committer 

(who put the changes into the repository), timestamps, and 
commit message (description of changes). 
A. Branch Operations 

A critical distinction in Git is that a branch is simply a 
named pointer to a commit SHA identifier.  In Fig. 1, the 
branches develop, master, and hotfix are just pointers to 
commits 10, 5, and 12 respectively.  The creation of a Git 
repository creates a default master branch.  A special pointer 
called the HEAD references the branch that the user is 
currently on, and when a commit is made, it is made to that 
branch.  This is how the user switches between branches.  
When a commit is made to a branch, the pointer updates to the 
SHA of the most recent commit.  While the commits made to a 
branch conceptually form a continuous linear path, commits 
are not stored within a branch this way in Git’s structure.  Nor 
is the branch name that a change is committed to stored 
anywhere in the commit.  Branches in Git are just hooks to the 
present and are not recorded in the history of the repository. 

B. Merge Operations 
The concept of merging branches is the act of taking the 

union of the set of states on each branch.  Merge is an 
overloaded term as it is also the name of one of the git 
commands that performs this act.  However, the combination 
of the changes in each branch can be obtained in a variety of 
ways with git, including via a merge, a rebase, a pull-request, a 
fast-forward, or a cherry-pick.  Each of these operations 
perform the task of conceptually merging branches, but the 
results differ.  As merging in Git provides the key pieces of 
information used to recover the branch of origin for all types of 
commits, the variation in the types of merging adds a layer of 
complexity to determining this. 

A git merge of branches combines the state of the project at 
each branch using a three-way merging algorithm. Provided 
that the branches have changes to combine, the result is an 
automatically created merge commit with two parents (one for 
each branch involved in the merge) - the commit that the 
source branch points to, and the commit that the destination 
branch (current branch) pointed to at the time of the merge. 
Fig. 1 contains merge commits at nodes 5, 7, and 10. Git 
provides a default commit message that has information about 
which branches are involved in the merge.  The user has an 
opportunity to edit the message before committing primarily to 

Fig 1. An example Git repository shown as a DAG, where nodes are 
commits, and the merge commits are shaded.



append more information to the default message, such as why 
the merge is necessary.  This message comes in a variety of 
default formats depending on the merge type, but the simplest 
scenario results in “Merge source-branch into destination-
branch”, where the source-branch contains the commits that 
will be merged in and the destination-branch is where the 
commits are merged into.  More details on these merge 
messages are discussed in section 3. 

A fast-forward is the result of a merge operation in the 
event that the source branch has all of the commits that exist on 
the destination branch.  In this instance, no merging algorithm 
needs to be performed, so the destination-branch pointer 
simply updates, or fast-forwards, to the SHA of the source 
branch.  A fast-forward cannot be detected because no merge 
commit is created, unless the developer otherwise forces the 
merge commit to occur by a git command option.  For 
example, commit 2 in Fig. 1 may have been the result of work 
performed on develop which was then merged via a fast-
forward with master. 

A pull-request is a method in which any developer can 
contribute to an open-source project by requesting that the 
maintainers of the original project pull in her changes to the 
main repository via a pull-request. Specifically, we are 
referring to GitHub pull-requests.  In this scenario, a merge 
commit is always created because GitHub uses the git 
command option to force the merge commit to occur.  Commit 
10 in Fig. 1 could be a pull-request merge since a merge 
commit was created when not strictly necessary. 

A rebase operation calculates and saves the diffs (i.e., patch 
of differences between two files) of the set of commits from 
the source branch that do not exist on the destination branch, 
the source branch is fast-forwarded to the destination branch, 
and the diffs are re-applied on the source branch as new 
commits.  As a result, no merge commit is created and the 
rebase cannot be detected.  For example, in Fig. 1, it is possible 
that the work in commit 3 was performed after commit 1 on 
branch develop but rebased onto branch master after commit 2, 
with no way to determine this.   

In a cherry-pick, the diffs of one or more commits on a 
source branch are calculated and re-applied on a destination 
branch, while the source branch remains unmodified. The 
commit is duplicated across both branches. It is possible that 
commit 12 in Fig. 1 was cherry-picked from branch develop as 
a copy of commit 8. No merge commit is created and by 
default no record that the cherry-pick occurred is kept.  Thus 
there is no accurate way to determine that the work was 
originally performed on a separate branch. 

C. Remote Repositories 
Commits on a developer’s local repository can be pushed to 

the remote repository on GitHub (or any server hosting a Git 
repository), and then those changes to the remote repository 
can be pulled into another developer’s local repository for 
collaboration.  These sources do not always match, such as 
when the local repository is out of date.  If changes have been 
made on both the local and remote repository, a merge commit 
is created on the local repository when a pull operation is 
performed.  If no changes are made to the local branch on a 
pull or similarly to the remote branch on a push, then a fast-
forward occurs.  If a developer executes a pull with the rebase 
option, then the local branch is rebased on top of the remote 
branch. 

III. RECOVERING EXPLICIT MERGES 
As previously discussed, there are many variations for 

combining branches in Git.  Bird et al. [13] investigated two 
types of merge commits.  Namely, a merge of branches and a 
merge from a remote repository.  However, Git defines a wider 
variety of types.  Let us define an explicit merge as any Git 
operation that produces a merge commit.  This is also referred 
to as a true merge [14].  This includes a pull-request and a 
merge or pull operation that does not result in a fast-forward 
(e.g., merge conflicts produce a merge commit).  By definition, 
an explicit merge is guaranteed to have more than one parent, 
and by default, explicit merges contain a commit message that 
details the names of the branches that are combined.  The 
names of the branches in a default merge commit message are 
ordered with respect to the order of the parent SHA identifiers 
stored in the merge commit metadata. 

An explicit merge cannot be created from a cherry-pick, 
any rebase operation, or a fast-forward.  A merge that occurs 
and does not result in an explicit merge commit is termed an 
implicit merge.  Implicit merges cannot be detected as Git does 
not record any information about these types of merges; they 
appear as a series of regular non-merge commits. 

We now discuss the varying formats of default messages 
created by Git during an explicit merge.  The default merge 
commit message depends on the type of merge that takes place.  
This is determined by the type of the source branch and the 
destination branch. The source-branch type can be categorized 
into one or more of the following criteria: 

• is from a remote repository, 
• is a branch, which is a pointer to a commit SHA that is 
updated to the most recent commit to the branch, 

• is a tag, which is a constant pointer to a commit SHA 
that is not updated, and is usually used to tag historic 
events such as the release of a version of the software, 

• is a commit SHA, 

TABLE 1. GIT DEFAULT MESSAGES FOR EXPLICIT MERGE COMMITS BASED ON 
BRANCH TYPES, WHERE S REPRESENTS THE SOURCE BRANCH AND D 

REPRESENTS THE DESTINATION BRANCH. MESSAGES ARE SHADED WHERE THE 
DESTINATION BRANCH IS A NON-MASTER BRANCH.

Merge 
Type Source Type Default Merge Message

Branch single branch Merge branch ‘S’
Merge branch ‘S’ into D

Tag single tag Merge tag ‘S’ 
Merge tag ‘S’ into D

Commit 
SHA

single 
commit SHA

Merge commit ‘S’
Merge commit ‘S’ into D

GitHub 
Pull-
Requests

pull request
Merge pull request #N from S
Merge pull request #N from S into D

Remote 
Branch

single remote 
branch

Merge remote branch ’S’ 
Merge remote-tracking branch ‘S’
Merge remote branch ‘S’ into D 
Merge remote-tracking branch ‘S’ into D

Octopi 

multiple 
branches

Merge branch ‘S1’, …, and ‘SN'
Merge branch ‘S1’, …, and ‘SN’ into D

multiple 
commit 
SHAs

Merge commits ‘S1’, …, and ‘SN’
Merge commits ‘S1’, …, and ‘SN’ into D

multiple tags
Merge tags ‘S’, …, and ‘SN’
Merge tags ‘S1’, …, and ‘SN’ into D

multiple 
remote 
branches

Merge remote branches ‘S1’, …, and ‘SN’ 
Merge remote-tracking branches ‘S1’, …, and ‘SN’ 
Merge remote branches ‘S1’, …, and ‘SN’ into D 
Merge remote-tracking branches ‘S1’, …, and ‘SN’ 
into D



• is for a pull-request, or 
• consists of multiple branches which also meet any of 
the above criteria, known as an octopi merge due to the 
octopus merge algorithm Git uses to merge more than two 
branches. 

Regardless of its type, the source branch is ultimately a 
commit SHA or a pointer to one.  The source and destination 
branch determine the beginning and end of the default 
message, respectively.  For example, a merge from the source 
branch hotfix into the destination-branch develop will have the 
default commit message:  Merge branch ‘hotfix’ into develop. 

The varying types of merge messages are based on the 
types of source and destination branches as found from 
empirical examination and git documentation, and are shown in 
Table 1.  

Additionally, branches from remote repositories can also 
include the text “of R”, where R represents the URL.  The type 

of default message that git uses is based on the version of the 
tool at the time the commit is made. 

IV. PREVALENCE OF EXPLICIT MERGES 
The previous section describes the various types of explicit-

merge types along with their associated default commit 
message.  We now investigate whether all these types of 
merges occur regularly in open-source projects.  To address 
this we selected 40 well-known (based on Github’s star 
popularity ranking) and active source-code repositories from 
GitHub, including staple projects such as Linux, Git, 
Mongodb, Django, and Swift.  We are satisfied that the 
diversity of the projects in the context of programming 
language, size, number of commits, and domain, form a 
representative set of projects on GitHub.  The size of each 
repository ranged between 421 and 588,558 commits (at the 
time of data collection on April 1st and 2nd of 2016).  The 
names of the systems are listed based on how they appear on 
GitHub, such that the repository can be found in a web browser 
by appending the name of the system to “https://github.com/”.  

For each explicit merge found, the commit message is 
extracted and matched to one of the formats listed in Table 1.  
The total number of commits for all systems is over one 
million (1,285,267), where 10% (125,185) of those commits 
are explicit merges.  A count for each type of explicit merge is 
obtained and a summary of the resultant merge type 
distributions is shown in Table 3.  The merge types shown in 
Table 3 map to those shown in Table 1 with the exception of 
the Unknown category (which cannot be derived).  Any merge 
involving multiple branches, remote branches, tags, and 
commit SHAs are all classified collectively as the Octopi 
merge type. 

Of these explicit merge commits, the most frequently 
occurring type is a merge of two branches, which consisted of 
42% of all explicit merges.  This can be explained by the fact 
that a merge of two branches is the most simplistic form of a 
merge in a typical Git workflow.  The Git project has one of the 
highest percentages of branch merges (93%), despite a large 
number of submitted but rejected pull-requests from GitHub.  
Linus Torvalds, the creator of Git, explains this as a decision 
not to use GitHub’s pull request feature because it lacks 
required information in the commit message for his standards.   1

This highlights the importance of keeping the default message 
as supplied by Git for accurate record-keeping.  The second 
most frequent type of explicit merge is a GitHub pull-request, 
consisting of 39% of all explicit merges.  Less commonly 
occurring types of explicit merges are from tags and remote 
repositories, which account for less than 7% and 3%, 
respectively.  The least frequent types by far are octopi (i.e., 

 https://github.com/torvalds/linux/pull/17#1

TABLE 2. THE 40 OPEN-SOURCE PROJECT REPOSITORIES USED IN THE 
EMPIRICAL STUDY.

System Domain Language Total 
Commits

torvalds/linux Operating system C 588,558
mono/mono Development framework C# 116,622
rails/rails Web application 

framework
Ruby

67,445

Homebrew/homebrew Package manager Ruby 63,808
mongodb/mongo Database C++ 53,922
git/git Content management C, Shell, Perl 44,402
GNOME/gimp Image editor C 42,483
apple/swift Programming language C++, Swift 36,403
django/django Web framework Python 33,337
gitlabhq/gitlabhq Server-side content 

management
Ruby, HTML 29,414

docker/docker Application container Go, Shell 24,709
meteor/meteor Web framework JavaScript 21,152
ansible/ansible IT automation Python 20,794
mrdoob/three.js 3D library JavaScript, Python 15,182
twbs/bootstrap Web framework CSS, JavaScript 14,850
zurb/foundation Front-end framework CSS, JavaScript 12,103
joyent/node Web platform Web platform 11,176
angular/angular.js JavaScript API JavaScript 10,213
libgit2/libgit2 Content management API C 9,956
facebook/react User interface library JavaScript 7,984
jekyll/jekyll Static site generator Ruby, Cucumber 7,548
jquery/jquery JavaScript Library JavaScript 7,275
strongloop/express Web framework JavaScript 5,479
RocketChat/
Rocket.Chat

Web chat server CoffeeScript, 
JavaScript 5,278

Microsoft/vscode Code editor TypeScript, 
JavaScript 4,249

mbostock/d3 Visualization library JavaScript 3,994
robbyrussell/oh-my-zsh Configuration framework Shell 3,907
jashkenas/backbone JavaScript API JavaScript, HTML 3,301
AFNetworking/
AFNetworking

Networking framework Objective-C 3,005

moment/moment Date manipulation API JavaScript 2,857
nwjs/nw.js Webkit C++, JavaScript 2,674
github/gitignore Templates gitignore 2,115
hakimel/reveal.js Presentation framework JavaScript, CSS 1,787
fzaninotto/Faker Data generator PHP 1,619
h5bp/html5-boilerplate Front-end template JavaScript, CSS 1,592
facebook/infer Static analyzer OCaml, Java 1,160
FortAwesome/Font-
Awesome

Font toolkit HTML, CSS 1,111

blueimp/jQuery-File-
Upload

API extension for files JavaScript, HTML 947

google/roboto Font family Python 435
bpampuch/pdfmake Client/server 

documentation printing
JavaScript 421

TABLE 3. SUMMARY OF EXPLICIT MERGE TYPES IN STUDIED OPEN-SOURCE 
PROJECTS.

Merge Type Average Per 
System

Total Of All 
Systems

Percent of 
Explicit Merges

Branch 1,328 53,137 42.4%
GitHub Pull-Requests 1,219 48,767 39.0%
Unknown 205 8,217 6.6%
Tag 222 8,881 7.1%
Remote Branch 96 3,857 3.1%
Octopi 38 1,517 1.2%
Commit SHA 20 809 0.6%
Explicit Merges 3,130 125,185 100.0%
All Commits 32,132 1,285,267



more than two branches) and merges of commit SHAs, which 
each account for around 1% of the merge commits.  

For nearly 7% of explicit merges the type cannot be 
identified based on the the commit message alone, which is due 
to the ability of developers to overwrite the default message.  
The format of the merge commit message is not guaranteed.  
Some of the common non-default messages found include 
“Merge from S”, and “Automatic merge of R”, and “git5: 
git5track synced with perforce at N”. While some messages, 
such as the git5track message, are the result of an automated 
tool, others however are due to the committer rewriting the 
message.  Many of these messages are completely rewritten to 
the extent of removing all pertinent information, and these 
types cannot be used for branch name extraction. 

Thus we can now answer our question about the prevalence 
of  explicit-merge types.  Merges of branches and of pull-
requests are by far the most commonly recorded types of 
merge commits.  The remaining types of merges with tags, 
remote repositories, multiple branches, and commit SHAs each 
occur the least frequently, in less than 12% of explicit merge 
cases.  However, a notable 7% of explicit merges are of an 
unknown type due to developer interference.  Fortunately, the 
remaining 93% of known explicit-merge types contain the 
default merge commit message, which can be used to extract 
the source and destination branches from the commit message.  
This sets the baseline for our rule-based algorithm for 
recovering commit branch origins. 

V. RULES FOR ORIGIN RECOVERY 
Identifying which branch a commit is originally made to is 

no trivial task, and in some cases, an impossible one.  Explicit 
merge commits in a repository are the only commits that are 
guaranteed to have originated in the destination-branch, which 
is specified by the default merge message.  Here we direct our 
effort to recovering the branch of origin of the other types of 
commits (i.e., non-merge commits). 

The order of the parent hashes with respect to the branch 
names as they appear in the merge commit is crucial to the 
commit's branch of origin recovery process.  For example, a 
merge commit with parent SHAs 1 and 2 as identified by the 
git log command, and a commit message of “Merge branch B 
into A”, allows us to associate SHA 1 with branch A and SHA 2 
with branch B.  Thus with string matching, we can extract the 
names of each branch and match them to commit SHAs. 

Our algorithm first performs the integral task of identifying 
the origins of explicit merge commits.  As Bird et al. [13] 
detects the branch names that these explicit merges are 
committed to, this stage is most closely related to that work.  
An example Git repository is presented in Fig. 2 and shows the 
branch of origin for the merge commits based on the merge 
commit message.  Here, the message of commit 6 does not 
include the destination-branch, which indicates that the 
commit’s branch of origin is master.  As a result of stage 0, 
only the origins of explicit merge commits are identified. 

We designed four rules to expand the set of commits with 
identified origins by assigning origins to the appropriate 
neighbors of the commits that have already been identified. We 
use a combination of identifying the origins of the branch 
heads, parents of explicit merges, ancestry, and finding the 
majority-origin along the branch segment to define the rules.  
Each rule is applied sequentially and increases the number of 
commits whose origin can be recovered at each stage.  

The pseudocode for the full algorithm is shown in Fig. 3.  
The input is the entire DAG of commit objects and the output 
is an updated DAG where each commit is annotated with the 

Fig. 2. An example Git repository shown at each stage that the algorithm identifies commit origins. The branches, hotfix, develop, and master, are given 
along with the commits that the algorithm identified. First, the origins of explicit merges only are identified. Each rule is applied after the previous stage to 
monotonically increase the accuracy of commit origins.

Input: G  - DAG of commit objects 
Output G' - G annotated with the branch of origin for commits 

Algorithm IdentifyCommitOrigins(G) 
  G ← ApplyBranchHeadRule(G) 

  for c ∈ G do 
    // merge commits 
    if |c.parents| > 1 then 
      origins ← IdentifyOriginsOfMerge(c.message) 

      // If the commit contains the default message and thus the 
      // merge origin’s detection was successful 
      if |origins| > 1 then 
        c.origin ← origins[0] 
        sources ← origins 

        destinationParent ← c.parents[0] 
        G ← ApplyMergeParentRule(G, destinationParent, c.origin) 
        G ← ApplyAncestralRule(G, destinationParent, c.origin) 

        for i ← 1...|c.parents| do 
          sourceParent ← c.parents[i] 
          G ← ApplyMergeParentsRule(G,sourceParent,sources[i]) 
          G ← ApplyAncestralRule(G, sourceParent, sources[i]) 
        end for 
      end if 
    end if 
  end for 

  G ← ApplyMajorityOriginRule(G) 
  return G 

Fig. 3. Pseudocode for recovering commit origins in Git repositories.



branch of origin whenever possible.  For each merge commit 
the algorithm identifies the origins of the merge using the 
default commit message.  If that is successful, then the various 
rules are applied incrementally.  The rules will now be 
individually presented, along with a pseudocode representation 
and their application to the running example of Fig. 2. 
A. Branch Head Rule 

This rule identifies the origins of the most recent commits.  
Recall that the HEAD pointer in a Git repository points to the 
current state, usually identified by one of the branches.  A 
branch head references a current commit SHA for that branch.  
The pseudocode for this rule is given in Fig. 4. 

The branch-head rule is stage 1 of the algorithm and labels 
the commit that each branch points to as originating in that 
branch.  Fig. 2.1 shows the additional commits whose origins 
can be recovered, namely, the commits pointed to by branch 
heads.  The branches hotfix, develop, and master point to 
commits 8, 10, and 12, respectively.  Thus, those commits are 
also labeled as originating with their respective branch heads. 

B. Merge Parents Rule 
Explicit merges have a default commit message that 

specifies the source and destination branch.  In stage 2, this 
rule identifies the parent commits of the explicit merge as 
belonging to the source and destination branches.  This relies 
on the order of the parents as listed in the merge commit 
message, which corresponds to the order of the parent SHAs as 
listed in the merge commit’s metadata.  The commit matching 
the merge commit’s first parent SHA is labeled as originating 
in the destination-branch name.  The commit matching the 
second parent SHA is labeled as originating in the source-
branch name.  If the merge commit has multiple source 
branches, the remaining commits matching the rest of the 
parent SHAs are marked as belonging to the nth source branch 
name, as the order of the default commit message matches the 
order in which the parent SHAs are listed for the merge 
commit.  The pseudocode for this rule is shown in Fig. 5. 

Fig. 2.2 shows the additional commits (3 and 5) whose 
origins are identified with the merge-parents rule.  As the 
message of commit 6 indicates that the source branch is 
develop, the parent commit 3 is labeled as originating in 
develop.  As the destination branch is not specified, we can 
determine it is the master branch, so the merge-parents rule 
also identifies the parent commit 5 as originating from master. 

C. Ancestral Rule 
In stage 3 of the algorithm, once all of the previous rules 

are applied, the set of all non-merge commits whose origins 
have been identified are obtained.  For each commit in the set, 
the ancestry of that commit is labeled as originating in the 
same branch, as shown in the pseudocode in Fig. 6.  Once a 
commit is identified with an origin, its parent is obtained and 
identified with the same origin.  This process continues 
traversing based on the parent of the current commit until it 
reaches a commit that has more than one parent (i.e., is a merge 
commit) or has more than one child (i.e., branches out).  Once 
the ancestry of the commit is traversed, the next non-merge 
commit from the set of commits with identified origins is 
traversed.  This is due to the fact that any merge commit will 
be identified based on its message, so it does not need to be 
included, and any commit with more than one child  (e.g., a 
commit that forms a branch path) creates an ambiguity.  It is 
not known if the commit with more than one child has the 
same branch of origin for its first child, second, nth, or has a 
branch of origin different from all of the children. 

In addition to the previously identified commit origins, Fig. 
2.3 shows newly identified commits 2, 4, 9, and 11.  The 
ancestor of commit 8 (commit 7) can not be identified since it 
has two children.  The ancestor of 10 (commit 9) is labeled as 
having a branch of origin of develop, the same as its child.  For 
the same reason as before, the ancestor of commit 9 (commit 7) 
is not labeled.  Commit 12’s ancestors, until a merge, includes 
only commit 11, which is labeled as originating from master, 
consistent with commit 12’s origin.  In addition, the only single 
child, non-merge ancestor of commit 3 is commit 2, whose 
branch of origin is marked in the same manner.  Lastly, commit 
5’s only single child, non-merge ancestor is commit 4, which is 
labeled as originating from master. 

D. Majority Origin Rule 
In stage 4, the majority origin rule finds all of the separate 

linear paths in the repository, excluding merge commits.  In 
Fig. 2, one path contains commits 4 and 5 which begin at 
commit 1, and another path contains commits 11 and 12 which 
begin at commit 6. These paths are extracted such that each 
non-merge commit belongs to exactly one path.  All the 
commits on the path are traversed and the most commonly 
identified branch name is identified.  Each commit on or 
beginning the path that has not been identified with a branch of 
origin is labeled as originating in the most common branch of 
origin within that path.  This is shown in the pseudocode for 
this rule in Fig. 7. 

Input: G  - DAG of commit objects 
Output G' - G annotated with the branch of origin for commits 

Algorithm ApplyBranchHeadRule(G) 
  B ← Set of current branch names and pointers to commit SHAs 
  for b ∈ B do 
    commit ← b.pointer 
    G[commit].origin ← b.name 
  end for 
  return G 

Fig. 4. Pseudocode for the Branch Head Rule.

Input: G  - DAG of commit objects 
       C  - Commit whose branch of origin will be labeled 
       N  - Name of the the branch of origin for the commit 
Output G' - G annotated with the branch of origin for commits 

Algorithm ApplyMergeParentRule(G, C, N) 
  G[C].origin ← N 
  return G 

Fig. 5. Pseudocode for the Parents of Merge Rule.

Input: G  - DAG of commit objects 
       C - Commit whose ancestors will be identified 
       N - Branch name to identify C's ancestors with 
Output G' - G annotated with the branch of origin for commits 

Algorithm ApplyAncestralRule(G, C, N) 
  // Transpose G such that R is a DAG of commit objects 
  // from child to parent nodes, and the "parents" of a  
  // commit in R are the children of a commit in G 
  R ← Transpose(G) 

  nextParent ← G[C] 
  repeat 
    G[nextParent].origin ← N 
    nextParent ← G[nextParent].parents[0] 
  until |G[nextParent].parents| > 1 or 
        |R[nextParent].parents| > 1 

  return G 

Figure 6. Pseudocode for the Ancestral Rule.



This rule is designed to take advantage of the commits 
along a linear path whose origins are identified in previous 
stages to estimate the most likely branch of origin for 
neighboring commits.  For example, Fig. 2.4 shows that 
commit 7 is labeled as originating in develop as a result of the 
majority origin rule.  Only commits 7 and 1 remained 
unidentified from previous stages.  Commit 1 lies on a linear 
path by itself, whose beginning is demarcated by commit 0.  As 
no commits on the path or that begin the path have been 
labeled, commit 1 remains unidentified.  Commit 7 also lies on 
a linear path by itself, where the beginning of the path is 
demarcated by commit 3.  As commit 3’s branch of origin is 
develop, commit 7 is also marked as originating from develop. 

VI. EVALUATION 
Testing the precision of the algorithm presented requires 

that the commit branch of origin is already known in order to 
compare the results.  As previously stated, no other tool exists 
that can identify the branch of origin of all commits, nor is this 
information kept as a part of the history in the repository.  This 
complicates the evaluation, so three different methods are 
taken to measure the performance of the algorithm as 
efficiently implemented in a tool.  First, a simulation is 
performed, which includes a variety of test repositories which 
are generated with the commit branch of origin recorded in the 
history.  These records are compared to the origins as obtained 
by the algorithm when run on the test repositories, allowing for 
measurements of precision and accuracy.  Second, the 
algorithm is run on the 40 open-source systems collected from 
GitHub.  As the algorithm’s goal is to recover the origin of 
commits where it is unknown, only accuracy can be calculated 
on these systems.  To account for this, the third evaluation 
includes a two-person manual verification of a random subset 
of the commits in one of the 40 systems, with measurements of 
precision and accuracy. 

We use precision and accuracy to measure the algorithm’s 
performance.  Precision measures exactness, and is defined as: 

High precision means that the algorithm returned more 
relevant results than irrelevant.  High accuracy, which 
measures completeness, means that most of the relevant results 
are returned, and is defined as follows: 

A. Simulation 
A script is created for the generation of 22 test repositories 

varying in number of commits and number of branches.  The 
script initializes a Git repository with n branches.  One of these 
branches is checked out at random, and a commit is made to 
that branch.  After each commit, there is a 2/3 chance that a 
merge with one other branch will occur, otherwise a 1/6 chance 
that a merge of two other branches will occur.  The odds of a 
merge happening are estimated to match or exceed the 
instances of a merge, either explicit or implicit, occurring in 
actual repositories.  If either merge type occurred, the branch or 
branches to be merged in is randomly selected.  This process 
repeats until the desired number of non-merge commits has 
been reached.  If an explicit merge occurs, the text of the merge 
commit is not altered in any way, as this message will be used 
by the algorithm for branch name detection.  Recall that 
implicit merges do not create merge commits.  As this poses a 
threat to validity, we tried to recreate the issue with high merge 
probability.  These odds produce projects similar to those with 
frequent collaboration and parallel development. 

A small repository generated as an example of test 
repository generation is shown in Fig. 8.  The graph is shown 
by git’s log command and displays the first 7 characters of the 
commit SHA, then a hyphen, and the commit message.  The 
branch names are encoded in parenthesis in the commit 
message of the current commit that they reference.  For 
example, master points to commit 86b33bb, which is the 
commit with message “Commit 9 to master”.  This message is 
generated by the test script, not by Git.  However, merge 
commit 74118bc with the message “Merge branch ‘master’ 
into A” is generated by Git, along with all the other merge-
commit messages.  Also notice the extra branch name HEAD, 
which as previously stated, is a special pointer to indicate 
which branch (or commit) the developer is currently on. 

The algorithm is run on 22 generated test repositories 
ranging from 100 to 3,000 non-merge commits and 5 to 20 
branches.  The full set of the test repositories can be found on 
https://github.com/research-data.  On each repository, commit 
origins were identified at each stage 0-4 of the algorithm. This 
began with stage 0, which identified only the explicit merge, 
then at stage 1 with the application of the branch-head rule, at 
stage 2 with the added application of the merge-parents rule, at 
stage 3 with the added ancestral rule, and lastly at stage 4 with 
all of the rules applied including the majority-origin.  Thus at 

Input: G  - DAG of commit objects 
Output G' - G annotated with the branch of origin of commits 

Algorithm ApplyMajorityOriginRule(G) 
  S ← Set of linear paths and their starting point 
  for s ∈ S do 
    origins ← [] 

    for c ∈ s do 
      origins ← append(c.origin) 
    end for 

    majority ← most common item in origins 
    if majority is found then 
      for c ∈ s do 
        if G[c].origin is unidentified then 
          G[c].origin ← majority 
      end for 
    end if 
  end for 

  return G 

Fig. 7. Pseudocode for the Majority Origin Rule.

$ git log --graph --abbrev-commit --decorate --pretty=format:'%C(bold blue) \ 
%h%C(reset) - %s%C(bold green)%d %C(reset)' --all 
* a520d59 - Commit 13 to A (A) 
* dac5201 - Commit 12 to A 
*   74118bc - Merge branch 'master' into A 
|\   
| * 86b33bb - Commit 9 to master (master) 
| *   2c37d11 - Merge branch 'C' 
| |\   
| * | 8e1ff62 - Commit 6 to master 
| * | 0766069 - Commit 5 to master 
* | | 2ba39d9 - Commit 11 to A 
| | | * 750be82 - Commit 14 to C (HEAD, C) 
| | | * 755e4cb - Commit 10 to C 
| | |/   
| | * 70c0740 - Commit 4 to C 
| |/   
| * c9ea278 - Commit 3 to master 
| * 452c9af - Commit 2 to master 
| | * 9bb7521 - Commit 8 to D (D) 
| |/   
|/|    
* | a85afa2 - Commit 7 to A 
* | 90b474b - Commit 1 to A 
|/   
* 90638b6 - Commit 0 to master 

Fig. 8. An example simulated Git repository displayed by the git log 
command. Each non-merge commit message is annotated by the tool with 
the commit number and branch.

precision =
# correctly identified commit origins

# identified commit origins

accuracy =
# commit origins identified

# commits in repository



each stage, an additional rule is used for increased accuracy, 
and the commit messages which contain the branch name are 
extracted to calculate the precision. The average precision and 
accuracy accumulation over all test systems at each stage of the 
algorithm is shown in Fig. 9.  

The accuracy in stage 0 matches exactly with the number of 
explicit merges in the repositories, as these are the only ones 
identified at this stage; this is similar to the approach taken by 
Bird et al. [13]. In stage 1, which applies the branch-head 
rule, , the accuracy increases very slightly as it is completely 
dependent on the number of existing branches in the repository 
at that time.  Even though the accuracy increase is trivial at this 
stage, the branch-head rule compounds the number of 
identifiable origins when the ancestral rule is applied. In stage 
2, the addition of the merge-parents rule greatly improves the 
average accuracy because for each explicit merge point m in 
the repository, every parent of m is identified.  Recall that an 
explicit merge is guaranteed to have at least two parents.  Thus 
the accuracy that can be obtained in comparison to stage 0’s 
identification of merge origins is, at a minimum, tripled.  The 
ancestral rule is applied in stage 3, which was found to be most 
useful when branches diverge for a long series of commits 
before merging back in, as it will identify the remaining 
commits on the diverging path. Finally, the majority origin rule 
is applied last in stage 4 as it labels nearly all of the previously 
unlabeled commit origins based on the majority of the 
surrounding known origins.  This results in over 2.5 times the 
average accuracy of 33.7% obtained in stage 0.  Thus, the 
presented rule-based algorithm increases the accuracy by an 
approximate 53 percentage points when all rules are applied in 
stage 4, bringing the average accuracy to 100%.  This gives us 
high confidence that the tool implementation of the algorithm 
works properly, so that we can proceed in the evaluation using 
open-source systems. 

B. Branch of Origin in Open-Source Systems 
We applied our rule-based algorithm to the same 40 

systems listed in Table 2.  At most, this took a minute on the 
cloned repository for each system.  The accuracy is measured 
at all stages: with merge origins only, with the branch-head 
rule, with the addition of the merge-parents rule, with the 
ancestral rule also applied, and finally with all rules applied 
including the majority origin.  As previously stated, the 
precision cannot be measured as there exists no other known 
tool to accurately identify the branches on which changes were 
originally made in Git repositories.  However, the accuracy is 
still an indicator as to how well the algorithm performs on real 
systems, and the expected precision can be inferred based on 
the precision as shown in the generated test repositories, and 
manual verification. 

The full table of the accuracy values for each system is 
presented in Table 4.  To summarize, the total number of all 
commits for all repositories combined is 1,285,267.  In stage 0 
of only identifying the branch of origin of explicit merges, an 
average 16% of all commits are identified with a branch origin.  
With each rule applied, the accuracy monotonically increases.  
The addition of the branch-head rule at stage 1 increases the 
accuracy very slightly to 16.2%.  In stage 2, the parents of the 
merge rule brings this value to 36.5% of all commits in all of 
the repositories, at stage 3 the ancestral rule raises the accuracy 
to 62.3%.  By the addition of the final rule, the majority origin, 
stage 4 reveals that 97.2% of all commits in all repositories had 
origins that have been identified.  The contribution to accuracy 
that the rules provide here is invaluable, from 15.9% in stage 0 
to 97.2% in stage 4.  

The most severe disparity between the accuracy as 
measured at stage 0 and at stage 4 is that of the homebrew 
repository, in which stage 0 results in a accuracy of 0% while 
the stage 4 results in a accuracy of 100%.  However, this is 
attributed to the very low number of explicit merges with 
respect to the total number of commits in this repository. 

The Linux repository is chosen for further examination due 
to its significant number of commit contributions.  We 
recovered 8,699 different branch names. Since git does not 
track branch names in commits, branch names can be reused in 
a repository and may not be unique (e.g., deleting a branch and 

TABLE 4. ACCURACY OF RULES ON OPEN-SOURCE SYSTEMS. ACCURACY IS 
REPORTED IN STAGES WITH THE RULES APPLIED IN ORDER.

Accuracy

System
Stage 0. 
Merge 
Only

Stage 1. 
Branch 
Head

Stage 2. 
Merge 
Parents

Stage 3. 
Ancestral

Stage 4. 
Majority 

Origin
linux 7% 7% 14% 70% 98%
mono 2% 2% 5% 16% 68%
rails 18% 18% 42% 64% 90%
homebrew 0% 0% 0% 5% 100%
mongo 9% 9% 21% 43% 90%
git 23% 23% 44% 73% 100%
gimp 0% 0% 0% 23% 100%
swift 5% 5% 11% 18% 100%
django 2% 2% 5% 37% 96%
gitlabhq 30% 30% 61% 92% 100%
docker 38% 38% 77% 93% 100%
meteor 6% 8% 18% 59% 99%
ansible 25% 25% 59% 80% 100%
three.js 17% 17% 43% 72% 99%
bootstrap 26% 26% 61% 82% 100%
foundation 26% 26% 60% 78% 99%
node 4% 5% 11% 46% 100%
angular.js 0% 0% 1% 27% 100%
libgit2 22% 23% 48% 89% 100%
react 28% 28% 61% 84% 100%
jekyll 20% 20% 58% 87% 99%
jquery 3% 3% 8% 17% 61%
express 9% 9% 23% 41% 100%
Rocket.Chat 27% 28% 61% 87% 100%
vscode 7% 8% 19% 60% 100%
d3 17% 18% 39% 81% 100%
oh-my-zsh 36% 36% 72% 94% 99%
backbone 26% 27% 62% 80% 99%
AFNetworking 24% 24% 56% 77% 100%
moment 25% 25% 54% 84% 99%
nw.js 16% 17% 41% 60% 100%
gitignore 40% 40% 80% 93% 100%
reveal.js 15% 15% 38% 58% 96%
Faker 27% 27% 59% 93% 100%
html5-boilerplate 11% 12% 30% 48% 99%
infer 1% 1% 2% 94% 100%
Font-Awesome 11% 12% 28% 52% 98%
jQuery-File-Upload 8% 9% 24% 28% 100%
roboto 12% 12% 27% 51% 100%
pdfmake 14% 15% 34% 58% 100%

Fig 9. The cumulative accuracy monotonically increases at each stage of 
the algorithm, while precision decreases slightly, as measured on average 
of the 22 generated test repositories.
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making a new one later with the same name). To provide 
additional granularity, we uniquely identify each occurrence of 
these branch names with a starting and ending commit SHA 
identifier.  Adding this identifier yields 53,275 unique 
branches.  A list of the most active branches in terms of number 
of commits originating from them are shown in Table 5 and 
includes the abbreviated (6 character) commit SHA identifiers.  
A sample of other branches in which very few commits 
originated is shown in Table 6.  Of the branches in Tables 5 & 
6 for Linux, the only branch name shown in Github is the 
master branch.  Branches with more commits tend to be long 
running branches used for staging areas (for-linus, staging-
next, etc.) or for stability (master).  Branches with few commits 
were short-lived topic branches that originally implemented a 
specific bug fix or feature, e.g., x86/setup-lzma, next/hdmi-
samsung, etc.  In some cases the bug number is used as the 
name of the branch (bugzilla-13751).  This finding suggests 
that the purpose of a change made in a commit (e.g., 
maintenance task or new feature) can be determined by the 
branch classification  (e.g., staging area or topic branch). 

Recall from Table 1 that the empirical examination found 
two versions of Git’s default message during a merge with a 
remote branch.  Manual analysis of the branches in the Git 
project's source repository revealed that the branch named mm/
phrase-remote-tracking contained commits that were 
responsible for rewording the default message to use the phrase 
“remote-tracking branch” rather than “remote branch”.  This is 
an excellent example of how branch names can provide context 
of the meaning of the commits originating in that branch. 
C. Manual Verification 

As no known Git repository records a commit’s branch of 
origin, manual verification is performed using the additional 
external information that GitHub provides for development 
workflows that use pull requests.  The react system is selected 
as it is the largest project of the studied systems that most 
predominantly uses the GitHub pull-request model.  It consists 
of 7,984 commits with over 98% of the explicit merges 
identified as pull-request types.  A random selection of 400 
commits were made (5% of the total commits).  For each 

commit, two of the authors (both experienced developers) 
independently manually analyzed the commit to determine 
which branch they believe it originated from.  This manual 
process took approximately 15 hours for each subject to 
perform.  The subjects used only the data as provided by 
GitHub to gather pull-request and issue-tracking information, 
commit information, and ancestors of the commit. 

The algorithm identified the origins of all commits, and the 
origins of the 400 selected commits were extracted. Subjects 1 
and 2 separately labeled each of the 400 commits with the 
branch origin. The correct branch of origin is determined as the 
one chosen by at least 2 of the 3 participants.  Thus, the 
algorithm is considered to have correctly identified a commit's 
branch of origin if it agrees with at least one of the subjects, 
and to have incorrectly identified a commit’s branch of origin 
if it disagrees with both of the subjects. 

As shown in Table 7, the tool agrees on nearly 80% of the 
commits with each subject. Subjects 1 and 2 agree in nearly all 
cases. All subjects agree in 78% of the commits.  Of the 400 
commits, the algorithm correctly identified 319 commits (i.e., 
agreed with subject 2 or 3), producing an accuracy of 100% 
and a precision of 80%, which is consistent with the 100% 
accuracy and 87% precision obtained from the generated test 
repositories. 

VII. DISCUSSION OF RESULTS 
The evaluation of the rule-based algorithm to recover 

branch names of commits had three separate parts including the 
generated test repositories, the branch of origin of commits in 
40 open source systems, and manual verification. 

This work produced very good values of accuracy and 
precision for commit branch of origin recovery.  There is an 
average accuracy of at least 97% in all three evaluations and an 
average precision of at least 80% is obtained in the two 
evaluations where precision can be determined.  During 
manual verification, the 80% precision of the algorithm is 
especially interesting as it trails the results performed by the 
human subjects (99%) for the open-source system by 19 
percentage points.  In addition, the algorithm takes seconds to 
identify over 7,000 commit origins in the selected repository, 
while it takes each human subject at least 15 hours to identify 
400 of the commit origins.  One important fact to keep in mind 
is that the automated approach is working at a disadvantage 
compared to the human subjects as it only bases its branch of 
origin recovery using the commit messages and structure, 
while human subjects had access to all project information 
contained in the project’s GitHub repository.  The react system 
is selected specifically for its high utilization of GitHub to 
make the manual verification more accurate, but such is not the 
case in all repositories.  Additionally, even human participants 
can disagree on the branch origin, illustrating that the results 
can be subjective.  With respect to the simulation results, the 
presented algorithm not only works under ideal artificial 
circumstances, but performs well in practice.  

TABLE 5. TOP 10 LARGEST BRANCHES IN LINUX

Branch Name Commits
git://git.kernel.org/pub/scm/linux/
kernel/git/davem/net-2.6.25  
[d10f21-85040b]

1,470

git://git.kernel.org/pub/scm/linux/
kernel/git/x86/linux-2.6-x86  
[213eca-afadcd]

890

master  
[571ecf-266918]

867

staging-next 
[a504de-68cf16]

864

staging-next 
[1407a9-a4ac0d]

837

staging-next 
[0f431f-9056be]

810

git://git.kernel.org/pub/scm/linux/
kernel/git/gregkh/staging-2.6  
[874073-ba0e1e]

714

Btrfs  
[be0e5c-343530]

714

staging-next 
[9fc860-1a4b6f]

709

for_linus  
[e164b5-fd3a01]

707

TABLE 6. SAMPLE OF SMALL 
BRANCHES IN LINUX.

Branch Name Commits
bugzilla-13751  
[74b582-74b582]

1

video-error-case 
[e01ce7-e01ce7]

1

cpu-bindings  
[594f88-deeea7]

2

new-drivers  
[452c1c-c4e84b]

4

arm-build-fixes  
[fc9a57-96a301]

4

unnecessary_resour
ce_check  
[5e9b4d-aaa14f]

5

next/hdmi-samsung  
[566cf8-0a9d5a]

6

dell-laptop  
[e1fbf3-8c5d30]

6

lookup-permissions-
cleanup  
[e8e66e-18f4c6]

8

x86/setup-lzma  
[bc22c1-889c92]

13

TABLE 7. MANUAL VERIFICATION REVEALS A HIGH TOOL PRECISION AND 
AGREEMENT BETWEEN SUBJECTS, WHERE S1 AND S2 ARE THE HUMAN 

SUBJECTS AND T IS THE TOOL IMPLEMENTING THE ALGORITHM.
Subject Agreement Occurrences Percentage of Selection

S1 ∩ T 316 79%
S2 ∩ T 313 78%
S1 ∩ S2 395 99%

S1 ∩ S2 ∩ T 312 78%
(S1 ∩ T) ∪ (S2 ∩ T) 319 80%



One of the threats to validity is that the generated 
repositories do not fully mimic actual projects as they do not 
contain pull-requests, remote branches, or merges between 
commits or tags; these missing types of merges are left for 
future work. Actual repositories cannot be automatically tested 
for precision, and even the recorded merge commit message 
used for origin identification can be re-written by developers, 
limiting the ability to accurately detect that commit’s branch of 
origin and the origin of its neighboring commits. Multiple 
branches referencing the same commit have an ambiguous 
origin. Additionally, implicit merges and renamed branches 
cannot be detected given the repository history. This can cause 
the rules of the presented algorithm to incorrectly identify a 
commit’s origin. 

VIII. RELATED WORK 
The extraction of a commit message is a source of valuable 

research for many purposes, such as viewing it through the 
lenses of documentation of the source code [16], helping to 
determine if two files were modified in the same commit in 
VCS tools that do not store this metadata [17-18], ontological 
modeling [19], or the quality of the commit [20]. Though, to 
the best of the our knowledge, only one study has used this 
information for determining the branch of origin of a commit 
[13], but it is only done for explicit merge commits. 

Bird et al. present the notable difficulties and exciting new 
data available when mining Git repositories [13].  As part of 
the overall work, the merge commits of 30 open-source 
projects are examined in order to determine the source of the 
merge, i.e., the branch of origin of the merge commit.  An 
accuracy of 97.9% is obtained for the merge commits alone, 
though an accuracy of 2.1% is calculated with respect to all 
commits in the repository.  The work of this paper extends the 
work of Bird et al. by presenting a rule-based algorithm for 
recovering all commit origins in the entire repository, as well 
as an analysis of the types of explicit merges and branch 
origins as found in open source projects. 

Tarvo et al. [21] present an integration algorithm that 
allows for data collection in the presence of branches in order 
to re-collect the commit information that is typically lost after 
the merge of the branches in a centralized VCS. This is used to 
predict software-regression risk by identifying which bugs are 
fixed in different branches of the system. However, it depends 
on knowing the branch of origin of the commits at the time of 
integration.  Ghezzi et al. [22] present a VCS plug-in extension 
architecture to expand upon the information collected by the 
VCS for analysis support, where an event such as a branch or 
merge can trigger a plug-in to calculate metrics or extract 
semantic changes. This infrastructure could be extended to 
support the branch name extraction required to enhance the 
history of a project by recording it at present intervals. 

Germán et al. [27, 29] focus on continually mining a 
collection of related repositories to detect which repository a 
commit comes from as it is added to the main “blessed” 
repository.  This complements our approach, which is centered 
on the retroactive analysis of a single repository and from 
which branch a commit came from when it is added.  
However, we do not mine any additional repositories to acquire 
commit origins external to the repository under analysis, and 
instead focus on a finer level of granularity. 

In addition, a series of studies were performed using the 
branch structure for purposes of distribution metrics [9], merge 
conflict detection [23] and resolution [24], text-level authorship 

of a source-code document [25], pattern extraction [10], and 
their effect on software quality [26].  However, in all of these 
studies, the paths were unnamed and recognized only as 
diverging paths rather than textual and contextual 
categorization of commits. 

IX. CONCLUSIONS AND FUTURE WORK 
The main contribution of this work is a novel and efficient 

algorithm for recovering the branch of origin for commits in 
Git within the context of a single repository.  The algorithm is 
evaluated in three ways: with simulated test repositories, on the 
GitHub repositories of 40 open source systems, and by a two-
person manual verification on a select system.  The algorithm 
produces an average precision of at least 80%, and in all three 
evaluations produces an average accuracy of over 98% of all 
commits.  The tool implementation takes around a minute to 
recover the branch origins of over 500,000 commits when 
executed on the Linux repository. 

There is little previous work [13] on this problem and that 
work only addressed a portion of the issue in the broader 
context of examining various issues in Git.  As such it is 
difficult to directly compare as the approach described here 
subsumes the portion of that work aimed at the problem (i.e., 
they only examined explicit merge commits and this is the first 
step in our approach).  Only examining explicit merge commits 
produces an accuracy of 16% on the systems study, and in the 
case of Linux 7%. 

Another contribution is an analysis of explicit-merge types, 
where we found that the most prevalent explicit merges involve 
pull-requests and branches, while very little involve commits, 
tags, remote repositories, or an octopi merge.  Of the explicit-
merge types, 7% can not be identified due to the use of non-
default commit messages.  Additionally, we found that the 
systems contained approximately 10% merge commits. 

An analysis of the Linux repository shows that the topmost 
active branches (e.g., master, staging-next) are typically used 
as staging areas for development.  Branches with less activity 
are also of interest as their names reflect what the developer is 
working on (e.g., new-drivers, arm-build-fixes).  While our 
method for grouping commits does not replace other grouping 
methods, it does provide a view that directly shows the logical 
task of the developer.  A direct application of our approach 
would be to perform other measures on the branch-grouped 
commits, e.g., LOC, number of files, collection of changes, etc. 

Recovering this information has several benefits when 
mining software repositories and should improve the historical 
analysis and understanding of an evolving software project.  
This motivates future work into the role, activity, and 
frequency of branches within and across repositories.  The 
recovery of commit branch origins in Git allows, for the first 
time, studies to occur on the branches themselves.  Types of 
branches, such as a source or destination branch, can be found 
based on the amount of commits performed in a particular 
branch versus the number of merges to that branch.  

We plan to extend this work to consider the origins of 
commits across multiple related repositories, which will allow 
commit origins to be determined not only from the branch of 
origin, but also trace back from which external repository and 
branch the commit came from as well. This will provide a rich 
global view of the development process. 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