
RECOVERY OF TRACEABILITY LINKS BETWEEN SOFTWARE
DOCUMENTATION AND SOURCE CODE

ANDRIAN MARCUS

Department of Computer Science, Wayne State University
Detroit, Michigan, 48202, USA

amarcus@wayne.edu

JONATHAN I. MALETIC
Department of Computer Science, Kent State University

Kent, Ohio, 44242, USA
jmaletic@cs.kent.edu

ANDREY SERGEYEV

Department of Computer Science, Wayne State University
Detroit, Michigan, 48202, USA

andrey@wayne.edu

Received (received date)
Revised (revised date)

Accepted (accepted date)

An approach for the semi-automated recovery of traceability links between
software documentation and source code is presented. The methodology is based
on the application of information retrieval techniques to extract and analyze the
semantic information from the source code and associated documentation. A
semi-automatic process is defined based on the proposed methodology.

The paper advocates the use of latent semantic indexing (LSI) as the
supporting information retrieval technique. Two case studies using existing
software are presented comparing this approach with others. The case studies
show positive results for the proposed approach, especially considering the
flexibility of the methods used.

Keywords: traceability, information retrieval, latent semantic indexing

1. Introduction

The issue of traceability between software artifacts is currently of great interest to the
research and commercial software engineering communities. The state of the art is
centered on model definitions, integrated development environments that support such
models, and CASE tools. Central to this research is the identification and recovery of
explicit links between documentation and source code. Very few existing approaches
address the issue of the recovery of links in legacy systems even though a wide variety of
software engineering tasks would directly benefit. These include general maintenance

tasks, impact analysis, program comprehension, and more encompassing tasks such as
reverse engineering for redevelopment and systematic reuse.

Several issues make this problem particularly difficult. First of all, the connection
between the documentation and the source is rarely explicitly represented. Second, an
inherent problem is that the documentation and the source code are represented at
different abstraction levels in the system and in different formalisms (i.e., natural or
formal languages versus programming languages). Relating some sort of natural
language analysis of the documentation with that of the source code is an obviously
difficult problem.

Traditionally, developers are aware of these links, even though they are not explicitly
or formally represented. When the information about the links is missing or the software
engineers need to deal with someone else’s code (as is often the case during maintenance
and evolution of software), they try to infer this data manually by inspecting the code, the
documentation, and by talking with the other developers. This leads to another
associated problem; the size of legacy system is often a prohibitive factor in this manual
approach. In consequence, there is a need for tools that automate, at least in part, the
process of recovering traceability links between source code and documentation.

1.1. Approach Overview

The approach taken here to the traceability problem is to utilize an advanced
information retrieval technique (i.e., latent semantic indexing) to extract the meaning
(semantics) of the documentation and source code [Maletic'01, Marcus'01]. We then use
this information to define similarity measures between elements of the documentation
(expressed in natural language) and components of the software system. These measures
are used to identify parts of the documentation that correspond to particular software
components, and vice versa.

The methodology is based on the extraction, analysis, and mathematical
representation of the comments and identifiers from the source code. A large amount of
information from the problem and solution domains is encoded in these elements by the
developers. This type of information is used regularly in supporting program
comprehension during maintenance and evolution [Anquetil'98a, b, Tjortjis'03].
Information from the documentation is also extracted and the same mathematical
representation is used for its encoding. The assumption in this approach is that the
comments and identifiers are reasonably named as the alternative bares little hope of
deriving a meaning automatically (or even manually).

The approach presents several advantages. One of the most important is its flexibility
in usage, determined by the fact that the methodology does not rely on a predefined
vocabulary or grammar for the documentation and source code. This also allows the
method to be applied without large amounts of preprocessing or manipulation of the
input, which drastically reduces the costs of link recovery.

1.2. Bibliographic Notes and Paper Organization

The work presented here extends previous results, described in one of our earlier
papers [Marcus'03], in several directions. The proposed process is refined in this paper,
in particular the last step, which is redefined here (i.e., three approaches to link recovery
are addressed based on the same underlying technology). A new set of case studies are
designed and implemented, with the express goal of evaluating the proposed extensions
to the methodology. The new results are compared with the previous ones. In addition,
another case study is presented, which completes the shortcomings of our previous
experiments (i.e., generation of the corpus at different granularity levels and recovery of
traceability links from the source code to documentation as well). A number of issues
have also been explained in more detail that was not allowed in the conference venue,
where the previous paper is published.

The paper is organized as follows: section Error! Reference source not found. gives
an extended overview of related work; section 3 presents an overview of LSI (based on
our earlier paper); section Error! Reference source not found. (re)defines the
traceability link recovery process, based on the same underlying model form our previous
paper; section Error! Reference source not found. presents each case study, their
results, and analysis. In order to make this paper self-contained, the old results are also
presented here; and section Error! Reference source not found. concludes the paper by
revisiting the main results and outlines future research directions.

2. Related Work

The work presented in this paper addresses two specific issues: using information
retrieval (IR) methods to support software engineering tasks and recovering source code
to documentation traceability links.

2.1. IR and Software Engineering

The research that has been conducted on the specific use of applying IR methods to
source code and associated documentation typically relates to indexing reusable
components [Fischer'98, Frakes'87, Maarek'91, Maarek'89]. Notable is the work of
Maarek [Maarek'91, Maarek'89] on the use of an IR approach for automatically
constructing software libraries. The success of this work along with the inefficiencies
and high costs of constructing the knowledge base associated with natural language
parsing approaches to this problem [Etzkorn'97] are the main motivations behind our
research. In short, it is very expensive (and often impractical) to construct the knowledge
base(s) necessary for parsing approaches to extract even reasonable semantic information
from source code and associated documentation. Using IR methods (based on statistical
and heuristic methods) may not produce as accurate results, but they are quite
inexpensive to apply. If this is then coupled with the structural information about the
program we hypothesis that this approach should produce high quality and low cost
results.

More recently, Maletic and Marcus [Maletic'01, Maletic'99, Marcus'01] used LSI to
derive similarity measures between source code components. These measures were used
to cluster the source code to help in the identification of abstract data types in procedural
code and the identification of concept clones. In addition, these measures were used to
define a cohesion metric for software components. The work presented here extends
these results in a new direction. At the same time, Antoniol et al. [Antoniol'02]
investigated the use of IR methods to support the traceability recovery process. In
particular, they used both a probabilistic method [Antoniol'00b, Antoniol'99] and a vector
space model [Antoniol'00a] to recover links between source code and documentation, and
between source code and requirements. Their results were promising in each case and
support the choice of vector space models over probabilistic IR.

2.2. Traceability

Requirements traceability and its importance in software development process have been
well described [Gotel'94, Watkins'94]. A number of requirements tracing tools have been
developed and integrated into software development environments [Antoniol'00a,
Antoniol'02, Antoniol'99, Marcus'03, Pinheiro'96, Pohl'96, Reiss'99]. Other research
seeks to develop a reference model for requirements traceability that defines types of
requirement documentation entities and traceability relationships [Knethen'02,
Ramesh'01, Toranzo'99]. Dick [Dick'02] extends the traceability relationships to support
more consistency analyses. Inconsistency management and impact analysis have been
studied since the late 1980s [Spanoudakis'01]. According to Spanoukadis and Zisman
[Spanoudakis'01], inconsistency management can be viewed as a process composed of
six activities: detection of overlaps between software artifacts, detection of
inconsistencies, diagnosis of inconsistencies, handling of inconsistencies, history tracking
of inconsistency management process, and specification of an inconsistency management
policy. The activities to be taken depend on the type of inconsistency being addressed
[Nuseibeh'00]. The methods and techniques developed to support inconsistency
management activities are based on logics [Hunter'98, van Lamsweerde'00], model
checking [Chan'98, Heitmeyer'96], formal frameworks [Grundy'98, Nuseibeh'94,
Sommerville'99], human-centered approaches [Cugola'96, Robinson'99, van
Lamsweerde'00], and knowledge engineering [Zisman'01]. The work of Antoniol et al.
also important from this point of view, since it deals with several aspects related to
traceability: recover of traceability links between code and documentation [Antoniol'02],
maintenance of traceability links during software evolution [Antoniol'01], and
traceability between design and code in OO systems [Antoniol'00c].

The problem with many existing approaches to traceability and inconsistency
management is that they are effective for only a limited portion of the development
process, while having little or no support for software product fragments from other parts
of the software life cycle [Strasunskas'02]. Traceability and inconsistency management
support is most frequently found between representations such as formal specifications
and program source code that are amenable to automated analysis. Most approaches use

formal methods to encode software documents and require that software artifacts share a
formal representational model such as formal specification languages, structured
requirement templates, logics, or special conceptual diagrams. No support exists for
managing relationships between these representations and less formal representations
such as natural language design documents [Strasunskas'02]. We believe that advanced
linking representation models such as Open Hypermedia Systems [Anderson'00] provide
an excellent relationship management infrastructure for traceability and inconsistency
management across a broad range of software document types.

3. Overview of Latent Semantic Indexing

We utilize an information retrieval method, latent semantic indexing (LSI), to drive the
link recovery process. LSI [Deerwester'90, Dumais'91] is a machine-learning model that
induces representations of the meaning of words by analyzing the relation between words
and passages in large bodies of text. LSI has been used in applied settings with a high
degree of success in areas like automatic essay grading and automatic tutoring to improve
summarization skills in children. As a model, LSI’s most impressive achievements have
been in human language acquisition simulations and in modeling of high-level
comprehension phenomena like metaphor understanding, causal inferences and
judgments of similarity. For complete details on LSI see [Deerwester'90].

LSI was originally developed in the context of information retrieval as a way of
overcoming problems with polysemy and synonymy that occurred with vector space
model (VSM) [Salton'83] approaches. Some words appear in the same contexts
(synonyms) and an important part of word usage patterns is blurred by accidental and
inessential information. The method used by LSI to capture the essential semantic
information is dimension reduction, selecting the most important dimensions from a co-
occurrence matrix decomposed using singular value decomposition (SVD). As a result,
LSI offers a way of assessing semantic similarity between any two samples of text in an
automatic, unsupervised way.

There is a wide variety of information retrieval methods. Traditional approaches
[Faloutsos'95, Salton'89] include such methods as signature files, inversion, classifiers,
and clustering. Other methods that attempt to capture more information about the
documents, to achieve better performance, include those using parsing, syntactic
information, natural language processing techniques, methods using neural networks, and
advanced statistical methods. Much of this work deals with natural language text and a
large number of techniques exist for indexing, classifying, summarizing, and retrieving
text documents. These methods produce a profile for each document where the profile is
an abbreviated description of the original document that is easier to manipulate. This
profile is typically represented as vector, often real valued. LSI also has an underlying
vector space model.

3.1. The Vector Space Model

The vector space model (VSM) [Salton'83] is a widely used classic method for
constructing vector representations for documents. It encodes a document collection by a
term-by-document matrix whose [i, j]th element indicates the association between the ith
term and jth document. In typical applications of VSM, a term is a word, and a document
is an article. However, it is possible to use different types of text units. For instance,
phrases or word/character n-grams can be used as terms, and documents can be
paragraphs, sequences of n consecutive characters, or sentences. The essence of VSM is
that it represents one type of text unit (documents) by its association with the other type
of text unit (terms) where the association is measured by explicit evidence based on term
occurrences in the documents. A geometric view of a term-by-document matrix is as a
set of document vectors occupying a vector space spanned by terms; we call this vector
space VSM space. The similarity between documents is typically measured by the cosine
or inner product between the corresponding vectors, which increases as more terms are
shared. In general, two documents are considered similar if their corresponding vectors
in the VSM space point in the same (general) direction.

3.2. LSI and Singular Value Decomposition

In its typical use for text analysis, LSI uses a user-constructed corpus to create a term-by-
document matrix. Then it applies Singular Value Decomposition (SVD) [Salton'83] to
the term-by-document matrix to construct a subspace, called an LSI subspace. New
document vectors (and query vectors) are obtained by orthogonally projecting the
corresponding vectors in a VSM space (spanned by terms) onto the LSI subspace.

According to the mathematical formulation of LSI, the term combinations which are
less frequently occurring in the given document collection tend to be precluded from the
LSI subspace. This fact, together with our examples above, suggests that one could argue
that LSI does “noise reduction” if it was true that less frequently co-occurring terms are
less mutually related and therefore, less sensible.

The formalism behind SVD is rather complex and to lengthy to be presented here.
The interested reader is referred to [Salton'83] for details. Intuitively, in SVD a
rectangular matrix X is decomposed into the product of three other matrices. One
component matrix (U) describes the original row entities as vectors of derived orthogonal
factor values, another (V) describes the original column entities in the same way, and the
third is a diagonal matrix (Σ) containing scaling values such that when the three
components are matrix-multiplied, the original matrix is reconstructed (i.e., X = UΣVT).
The columns of U and V are the left and right singular vectors, respectively,
corresponding to the monotonically decreasing (in value) diagonal elements of Σ which
are called the singular values of the matrix X. When fewer than the necessary number of
factors are used, the reconstructed matrix is a least-squares best fit. One can reduce the
dimensionality of the solution simply by deleting coefficients in the diagonal matrix,
ordinarily starting with the smallest. The first k columns of the U and V matrices and the
first (largest) k singular values of X are used to construct a rank-k approximation to X

through Xk = UkΣkVk
T. The columns of U and V are orthogonal, such that UTU = VTV =

Ir, where r is the rank of the matrix X. Xk constructed from the k-largest singular triplets
of X (a singular value and its corresponding left and right singular vectors are referred to
as a singular triplet), is the closest rank-k approximation (in the least squares sense) to X.

With regard to LSI, Xk is the closest k-dimensional approximation to the original
term-document space represented by the incidence matrix X. As stated previously, by
reducing the dimensionality of X, much of the “noise” that causes poor retrieval
performance is thought to be eliminated. Thus, although a high-dimensional
representation appears to be required for good retrieval performance, care must be taken
to not reconstruct X. If X is nearly reconstructed, the noise caused by variability of word
choice and terms that span or nearly span the document collection won't be eliminated,
resulting in poor retrieval performance.

Once the documents are represented in the LSI subspace, the user can compute
similarities measures between documents by the cosine between their corresponding
vectors or by their length. These measures can be used for clustering similar documents
together, to identify “concepts” and “topics” in the corpus. This type of usage is typical
for text analysis tasks. The LSI representation can also be used to map new documents
(or queries) into the LSI subspace and find which of the existing documents are similar
(relevant) to the query. This usage is typical for information retrieval tasks.

3.3. Advantages of using LSI

A common criticism of VSM is that it does not take account of relations between terms.
For instance, having "automobile" in one document and "car" in another document does
not contribute to the similarity measure between these two documents.

The fact that VSM produces zero similarity between text units that share no terms is
an issue, especially in the information retrieval task of measuring the relevance between
documents and a query submitted by a user. Typically, a user query is short and does not
cover all the vocabulary for the target concept. Using VSM, “car” in a query and
“automobile” in a document do not contribute to retrieving this document (i.e., the
synonym problem). LSI attempts to overcome this shortcoming by choosing linear
combinations of terms as dimensions of the representation space. The examples in
[Deerwester'90, Landauer'98] show that LSI may solve this synonym problem by
producing positive similarity between related documents sharing no terms.

As the LSI subspace captures the most significant factors (i.e., those associated with
the largest singular values) of a term-by-document matrix, it is also expected to capture
the relations of the most frequently co-occurring terms. This fact is understood when we
realize that the SVD factors a term-by-document matrix into the largest one-dimensional
projections of the document vectors, and that each of the document vectors can be
regarded as a linear combination of terms. In this sense, LSI can be regarded as a corpus-
based statistical method. However, the relations among terms are not modeled explicitly
in the computation of LSI subspace, making it difficult to understand LSI in general.
Although the fact that an LSI subspace provides the best low rank approximation of the

term-by-document matrix is often referred to, it does not imply that the LSI subspace
approximates the “true” semantics of documents.

Another of the criticisms of this type method, when applied to natural language texts
is that it does not make use of word order, syntactic relations, or morphology. However,
very good representations and results are derived without this information [Berry'95].
This characteristic is very well suited to the domain of source code and internal
documentation. Because much of the informal abstraction of the problem concept may
be embodied in names of key operators and operands of the implementation, word
ordering has little meaning. Source code is hardly English prose but with selective
naming, much of the high level meaning of the problem-at-hand is conveyed to the reader
(i.e., the programmer). Internal source code documentation is also commonly written in a
subset of English [Etzkorn'97] that also lends itself to the IR methods utilized. This
makes automation drastically easier and directly supports programmer defined variable
names having implied meanings but not found in the English language vocabulary (e.g.,
avg). The meanings are derived from usage rather than a predefined dictionary. This is a
stated advantage over using a traditional natural language type approach.

Like a number of other IR methods, LSI does not utilize a grammar or a predefined
vocabulary. However, it uses a list of “stop words” that can be extended by the user.
These words are excluded from the analysis. Regardless of the IR method used in text
analysis, in order to identify two documents as similar they must have in common
concepts represented by the association of terms and their context of usage. In other
words, two documents written in different languages will not appear similar. In the case
of source code, our main assumption is that developers use the same natural language
(e.g., English, Romanian, etc.) in writing internal documentation and external
documentation. In addition, the developer should have some consistency in defining and
using identifiers.

SVD

(1)Source
cource code Source S ode code LSI Corpus

(2)
preprocessing

traceability Vector Space links term frequencies ExE ternal
documen-
tation
xternal

documen-
tation
External

documentation
(5) (3)

LSI
Subspace

Similarity
measures (4)

Figure 1: The traceability recovery process. There are five phases in the process: corpus generation (1), LSI
subspace generation (2 and 3), computation of similarity measure (4), and recovery of traceability links (5).

4. The Traceability Recovery Process

Our traceability link recovery process (see Figure 1) has five steps and is partially
automated: corpus generation (1), LSI subspace generation (2 and 3), computation of
similarity measure (4), and recovery of traceability links (5). The user is involved in the
process in phases 1 and 5. The degree of user involvement depends on the type of source
code and the user’s task. The entire process is organized in a pipeline architecture; the
output from one phase constitutes the input for the next phase. In a first step, the external
documentation and the source code are used to create a corpus that is used to generate the
semantic space for information retrieval. This part is largely automated and the user is
only involved in selecting the granularity of the documents that will compose the corpus.
Details of this phase are given in the next section of the paper.

The semantic space, named the LSI subspace, is automatically generated in phases (2)
and (3). The only involvement of the user at this point is the selection of the
dimensionality reduction that SVD will generate. This step is based on the LSI
mechanism described in the previous section.

Once the LSI subspace is constructed, each part of the documentation and source code
component will be represented as a vector in this space. Based on this representation, a
semantic similarity measure is defined (see section 4.2). The measure is used to identify
elements of the source code that relate closely to a given part of the documentation or
vice-versa. The granularity used here for source code components is the one defined in
the first phase of the process. The similarity measures are automatically computed while
the user is involved in selecting the appropriate pairs (or groups) of documents that
correspond to traceability links. Phase five of the process consists of the selection of the
traceability links.

4.1. First Step - Building the Corpus

The input data consists of the source code and external documentation. In order to
construct a corpus that suits LSI, a simple preprocessing of the input texts is required.
Both the source and the documentation need to be broken up into the proper granularity
to define the documents, which will then be represented as vectors.

In general, when applying LSI to natural text, a paragraph or section is used as the
granularity of a document. Sentences tend to be to small and chapters too large. In
source code, the analogous concepts are function, structure, module, file, class, etc.
Obviously, statement granularity is too small. More than that, the choice of the
granularity level is influenced by the particular software engineering task. In previous
experiments involving LSI and source code, we used functions as documents in
procedural source code [Maletic'01, Marcus'01] and class declarations in OO source code
[Maletic'99]. The goal there was to cluster elements of the source code based on
semantic similarity, rather than mapping them to documentation. In other cases, we used
source code files as granularity for documents [Marcus'03].

In the traceability link recovery process, different granularities may be of interest. A
part of the documentation may refer to different structures in the source code (i.e., a class,
a hierarchy of classes, a set of functions or methods, a data structure, etc.). Two
approaches were investigated and implemented as part of the process. In one of them,
files granularity level is used – each file is defined as a document in the corpus.
Obviously, some files will be too large. In those situations, the files are broken up into
parts roughly the size of the average document in the corpus. This ensures that most of
the documents have a close number of words and thus may map to vectors of similar
lengths. Of course, in some cases this break up of the files could be rather unfortunate,
causing some documents from the source code to appear related to the wrong manual
sections. However, our experience [Marcus'03] shows that the results are still relatively
good in this situation. It is a trade-off we are willing to take in favor of simplicity and
low-cost of the preprocessing. This approach is also programming language independent.

If this situation is unacceptable for the user, a different granularity is available – class
level. Classes will correspond to one document in the corpus. Once again, some classes
may be too large, in which case they can broken into several smaller documents. This
approach requires a more complex parsing of the source code in order to determine where
classes start (definition) and end (implementation). This approach is of course
programming language dependent. We implemented a simple parser that identifies class
definitions and implementations for C++ and Java. It is fairly easy to extend the system
to support other similar type programming languages.

As far as documentation is concerned, the chosen granularity is determined by the
division in sections of the documents, defined by the original authors (usually
summarized in the table of content). The same decomposition is used in both approaches.

In each case, some text transformations are required to prepare the source code and
documentation to form the corpus for LSI. First, most non-textual tokens from the text
are eliminated (e.g., operators, special symbols, some numbers, keywords of the
programming language, etc.). Then the identifier names in the source code are split into
parts based simply on well-known coding standards. For examples all the following
identifiers are broken into the words “traceability” and “link”: “traceability_link”,
“Traceability_link”, “traceability_Link”, “Traceability_Link”, “TraceabilityLink”,
“TRACEABILITYLink”. This step can be customized and the users can defined their
own identifier format that needs to be split, based on regular expressions. The original
form of the identifier is also preserved in the documents. Since we do not consider n-
grams, the order of the words is not of importance. Finally, the white spaces in the text
are normalized, blank lines separate documents, and the source code and documentation
are merged.

Important to note is that in this process LSI does not use a predefined vocabulary, or a
predefined grammar, therefore no morphological analysis or transformations are required.
Thus parsing of the source code is very minimal.

One can argue that the mnemonics and words used in constructing the identifier may
not occur in the documentation. That is certainly true. It is, in fact, the reason why we
chose to also use the internal documentation (i.e., comments) in constructing the corpus.

It has been shown [Etzkorn'97] that internal source code documentation is commonly
written in a subset of the language of the developer, similar to that of external
documentation. In these situations, the performance of LSI is of great benefit since it is
able to associate the terms in the text that are in correct natural language (and also found
in the external documentation) with the mnemonics from the identifiers. These
mnemonics in turn, will contribute to the similarity between elements of the source code
that use the same identifiers. Of course, our assumption is that developers define and use
the identifiers with some rationale in mind and not completely at random.

4.2. Fourth Step - Defining the Semantic Similarity Measure

Before we give a detailed explanation of this and following steps of the process, some
mathematical background and definitions are necessary. This aligns our formal definition
with the notation introduced in section 3.

Notation. A bold lowercase letter (e.g., y) denotes a vector. A vector is equivalent to
a matrix having a single column. The ith entry of vector y is denoted by y[i].

Notation. A bold uppercase letter (e.g., X) denotes a matrix; the corresponding bold
lowercase letter with subscript i (e.g., xi) denotes the matrix's ith column vector. The
[i,j]th entry of matrix X is denoted by X[i,j]. We write X ∈ Rmxn when matrix X has m
rows and n columns whose entries are real numbers.

Definition. A diagonal matrix X ∈ Rnxn has zeroes in its non-diagonal entries, and is
denoted by X = diag(X[l,l], X[2,2], … , X[n,n]).

Definition. An identity matrix is a diagonal matrix whose diagonal entries are all one.
We denote the identity matrix in Rmxm by Im. For any X ∈ Rmxn, XIn = ImX = X. We
omit the subscript when the dimensionality is clear from the context.

Definition. The transpose of matrix X is a matrix whose rows are the columns of X,
and is denoted by XT, i.e., X[i,j] = (XT)[j,i]. The columns of X are orthonormal if XTX = I.
A matrix X is orthogonal if XTX = XXT = I.

Definition. The vector 2-norm of x ∈ Rm is defined by

[]()∑
=

==
m

i
i

T xXXx
1

2
2

we call it the length of x.
Definition. The inner product of x and y is xTy. The cosine of x and y is the length-

normalized inner product, defined by

22
),cos(

yx
yxyx

T

×
=

For x, y ≠ 0; note that cos(x, y) ∈ [-1, 1]. A larger cosine value indicates that

geometrically x and y point in similar directions. In particular, if x = y then cos(x, y) = 1,
and x and y are orthogonal if and only if cos(x, y) = 0.

Definition. In this process a source code document (or simply document) d is any
contiguous set of lines of source code and/or text. Typically a document is a file of
source code or a program entity such as a class, function, interface, etc.

Definition. An external document e is any contiguous set of lines of text from
external documentation (i.e., manual, design documentation, requirement documents, test
suites, etc.). Typically an external document is a section, a chapter, or maybe an entire
file of text.

Definition. The external documentation is also a set of documents
E = {e1, e2, …, em}. The total number of documents in the documentation is m = |E|.

Definition. The source code is also a set of documents D = {d1, d2, …, dm}. The total
number of documents in the documentation is n = |D|.

Definition. A software system is a set of documents (source code and external)
S = D ∪ E = {d1, d2, …, dn} ∪ {e1, e2, …, em}. The total number of documents in the
system is n+ m = |S|.

Definition. A file fi, is then composed of a number of documents and the union of all
files is S. Size of a file, fi, is the number of documents in the file, noted |fi|.

LSI uses the set S = {d1, d2, …, dn, e1, e2, …, em} as input and determines the
vocabulary V of the corpus. The number of words (or terms) in the vocabulary is v = |V|.
Based on the frequency of the occurrence of the terms in the documents and in the entire
collection, each term is weighted with a combination of a local log weight and a global
entropy weight. A term-document matrix X ∈ Rvxn is constructed. Based on the user-
selected dimensionality (k), SVD creates the LSI subspace. The term-document matrix is
then projected onto the k-dimensional LSI subspace. Each document di ∈ D ∪ M, will
correspond to a vector xi ∈ X projected onto the LSI subspace.

Definition. For two documents di and dj, the semantic similarity between them is
measured by the cosine between their corresponding vectors sim(di, dj) = cos(xi, yi) The
value of the measure will be between [-1, 1] with value (almost) 1 representing that the
two are (almost) identical.

4.3. Fifth Step - Recovering Traceability Links

In this step of the process, the similarities between each pair of documents from E×D are
computed and ranked. The user has the option of retrieving traceability links starting
from the documentation or the source code. For a given external document ei (also
termed as a query document), the system will return the most similar source code
document di, based on the sim(ei, di) measure. It is the user’s task to verify the validity of
the link suggested by the system. In some cases, part of the documentation may refer to
more than one source code document, or a source code document may be described by
more than one external document. In such cases, the user needs to investigate the next
suggested document. Since the process is only partially automated, the stopping criterion
is defined by the user, once all the links relevant to a query document are retrieved. The
process can be used on a single query document or multiple ones, essentially for the
entire system under analysis.

To operate at system level, the user has two options. One is to determine a threshold
ε for the similarity measure that identifies which documents are considered “linked”. In
other words among all the pairs from E×D, only those will be retrieved that have a
similarity measure greater than ε. The threshold is determined empirically and varies
from corpus to corpus. The issue of the “best” threshold for this type of corpus (i.e.,
combining source code and documentation) is still open and further research is needed.
Many IR methods (especially search engines) use this approach, where the retrieved
documents are ranked by the “relevancy” to a query.

The alternative option for the user is simply to retrieve the top θ ranked links for each
document, where θ ∈ {1, 2, 3,…, n}. In this case, a threshold on the number of
recovered links, regardless of the actual value of the similarity measure, is imposed. This
approach is preferred by Antoniol et al [Antoniol'02] and is a common way to deal with a
list of ordered solutions.

Finally, the user can opt to combine the two types of thresholds, for example to
retrieved the top θ ranked links among those that have a similarity measure greater than
ε. The different choices accommodate different user needs. Using the threshold method,
with a high enough threshold value will allow the system to suggest few false positives.
Too high of a threshold will result in missing relevant links. Using the ranking method,
the user will retrieve more relevant links at the expense of yielding more false positives.

5. Case Studies

A set of case studies was designed and executed to evaluate the proposed methodology,
centered on LSI. The case studies are designed such that we can compare the results with
related approaches proposed by Antoniol et al. [Antoniol'02]. The goal is to assess how
well LSI performs in this type of software engineering task, with respect to other IR
methods used by Antoniol et al. The remainder of the section describes the case studies
and the obtained results.

5.1. Evaluation of the Results

In order to compare the results with the methods proposed by Anotniol et al., two of
the most common measures for the quality of the results in experiments with IR methods
were used: recall and precision. In general, for a given document di, the similarity
measure and the defined threshold will be used to retrieve a number Ni of documents,
based on the LSI subspace that are deemed similar to di. Among these Ni documents, Ci
≤ Ni of them are actually similar to di. Assume that there are a total of Ri ≥ Ci documents
that are in fact similar to di. With these numbers we define the recall and precision for di
as follows:

%

#
#

correct
retrievedcorrect

R
Crecall

i

i ∧
==

%
#

#
retrieved

retrievedcorrect
N
Cprecision

i

i ∧
==

Both measures will have values between [0, 1]. If recall = 1, it means that all the
correct links are recovered, though there could be recovered links that are not correct. If
the precision = 1, it means that all the recovered links are correct, though there could be
correct links that were not recovered. For the entire system the recall and precision are
computed as follows:

%

1

1

∑

∑

+=

+== m

ni
i

m

ni
i

R

C

recall %

1

1

∑

∑

+=

+== m

ni
i

m

ni
i

N

C

precision

For each of the case studies presented in the following sections, the recall and

precision of the results were directly compared with those obtained by Antoniol et al.

5.2. First Case Study - Recovery of Traceability Links from Documentation to Source
Code in LEDA, using File Level Document Granularity

The first case study is aimed at assessing LSI with respect to the other IR methods used
by Antoniol. With that in mind, we chose to build a large corpus, with minimal
preprocessing, in order to simplify the process.

The software system used for analysis is release 3.4 of LEDA (Library of Efficient
Data types and Algorithms), a well known library developed and distributed by Max
Planck Institut für Informatik, Saarbrücken, Germany (and lately by Algorithmic
Solutions Software GmbH) together with its manual pages. This is the same release used
by Antoniol et al.

We included in the analysis the entire library, the demo programs, and the entire
manual. Table 1 contains the size of the system and manual, as well as the vocabulary
determined by LSI.

Table 1. Elements of the LEDA corpus in the first case study

LEDA 3.4 Count Documents
Source code files 491 684
Manual sections 115 119

Total # of documents 803
Classes 219 In 218 files
Vocabulary 3814 -

We used the entire manual and available source code to ensure the generation of a

rich enough semantic space and vocabulary. In the end, we recovered the links for only
the 88 manual sections (i.e., 2.1 through 11.5) that were used in Antoniol’s experiments.

In this first case study we chose to recover the traceability links from documentation
to the source code. The chosen granularity for the source code is at file level (i.e., each
document is a file form LEDA). Some larger files were broken into smaller parts (see
Table 1) in order to generate uniform size documents. No parsing of the source code is
done in this case study. However, it is interesting to note that there are many classes in
this version of LEDA that have inline implementation or they are internal classes to other
ones. This explains why 219 classes are implemented in only 218 files. Since we chose
file as document granularity, it was logical to map documents from the manual to source
code. A typical query is then to find out which parts of the source code are described by
a given manual section.

One more consideration determined our choice. Since the chosen granularity does not
require parsing of the code, it is not practical to set as starting point the implementation
of a class (which can only be determined by some syntactic parsing) to recover the
traceability links. Among the 219 classes, 116 are implemented in one file, 95 classes are
implemented in two files, 7 classes in three files, and 1 class in 12 files.

We found that the 88 manual sections relate to 80 classes (we did not consider the
children in the inheritance hierarchies) implemented in 104 files. 34 of the manual
documents relate to two source code files, 46 to one file only, and 8 to relate no class file.
10 of the files contain implementation of multiple classes, described by more than one
manual section. Essentially, we found 114 correct links against which we computed
recall and precision of our method.

Table 2. Recovered links, recall, and precision using the cosine value threshold for LEDA, with file level
document granularity, starting from the manual sections.

Cosine Correct
links retrieved

Incorrect
links retrieved

Missed
links

Total links
recovered

Precision Recall

0.70 49 20 65 69 71.05 % 42.63 %
0.65 68 58 46 126 53.97 % 59.65 %
0.60 81 109 33 190 42.98 % 71.01 %

As presented in section 4.3, the system can be used in different ways to suggest pair

of documents to the user, which correspond to traceability links. One is to use a
threshold based on the value of the similarity measure and consider that a pair of
documents determine a traceability link if their semantic similarity is larger than the
established threshold. Second (as used by Antoniol et al) is to establish a cut point and
consider as traceability links all the top ranked pairs down to the cut point.

Table 2 summarizes the results we obtained on recovering the traceability links
between the LEDA manual pages and source code. The first column (Cosine threshold)
represents the threshold value; column 2 represents the number of correct links
recovered; column 3 represents the number of incorrect links recovered; column 4
(Missed links) represents the number of correct links that were not recovered; column 5
represents the total number of recovered links (correct + incorrect); and the last two
columns is the precision and recall for each threshold.

We used 0.7 as initial threshold, and although the precision value was indeed good,
the recall was rather low. Therefore, we decided to relax the selection criteria and
lowered incrementally the threshold. As expected, the recall improved, but the precision
deteriorated. A threshold around 0.65 yields approximately equal precision and recall.

Table 3. Recovered links, recall, and precision using the cut point approach for LEDA, with file level document
granularity, starting from the manual sections.

Cut
point

Correct links
retrieved

Incorrect links
retrieved

Missed
links

Total links
retrieved

Precision Recall

1 68 20 27 88 77.27 % 59.65 %
2 95 81 19 176 53.98 % 83.33 %
3 107 157 7 264 40.53 % 93.86 %
4 109 243 5 352 30.97 % 95.61 %
5 110 330 4 440 25.00 % 96.49 %
6 110 418 4 528 20.83 % 96.49 %
7 111 505 3 616 18.02 % 97.37 %
8 111 592 3 703 15.79 % 97.37 %
9 111 680 3 791 14.03 % 97.37 %
10 112 767 2 879 12.74 % 98.25 %
11 114 853 0 967 11.79 % 100.0 %

To further validate the data, we repeated the experiment using a cut point for the best-

ranked pairs of documents, as done by Antoniol et al. [Antoniol'02]. Table 3 summarizes
the results obtained in this case. The table is defined just as Table 2, except that the first
column represents the cut point rather than similarity measure threshold. As we can see,
recall and precision seem to be a bit better than in the previous case, contradicting our
initial assumptions that the threshold method would give better precision.

Just as in their case study, we used as many number of cut points as necessary to
obtain 100% recall. Figure 2 shows the precision and recall between the two sets of
experiments. The values used for Antoniol’s experiments are the better they found
among the probabilistic and VSM. Dashed lines marked with squares and triangles show
the precision and recall, respectively, obtained by Antoniol, while the solid lines indicate
the same measures obtained using LSI.

The recall values we obtained are slightly better than the ones of Antoniol, LSI helps
reach 100% recall value one step before their methods. The precision however, is much
better for LSI in this case, with respect to the probabilistic and the VSM methods used by
Antoniol. This came as no surprise considering the very reasons that motivated our
preference for LSI to be used in this type of analysis and our choice of starting point
(documents rather than source code). In particular, the better precision is due to the fact
that LSI is able do deal with all the comments and identifier names included in the
corpus. In contrast, with Antoniol’s method, many identifiers and comments that were
not grammatically and lexically correct were not used.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12

Cut point

R
ec

al
l a

nd
 p

re
ci

si
on

Recall LSI Precision LSI Precision Antoniol Recall Antoniol

Figure 2. Recall and precision values for experiment by Antoniol and experiments with LSI using LEDA.
The x-axis represents the cut point and the y-axis represents recall/precision values

The recall values prompted a closer inspection of the results. We expected better
results by comparison (similar to the precision). As seen in Table 3, all but seven of the
correct links are recovered after selecting the top three ranked pairs of documents. More
than that, all but three of the correct links are recovered after selecting the top seven
ranked pairs of documents. We looked closer to the remaining three pairs. These were
the manual sections describing the classes: integer, integer matrix, and set, respectively
(i.e., sections 3.1, 3.6, and 4.9, respectively). As most of the other sections in the manual,
these describe the structure of the classes to help in and reflect the usage of them, rather
than describing implementation details. Therefore, files that intensively use any of these
classes will have a larger similarity measure then the files which implement the class.
Even more, these particular classes are basic types, ubiquitously used throughout the
LEDA package.

5.3. Second Case Study - Recovery of Traceability Links from Documentation to Source
Code in LEDA, using Class Level Document Granularity

The second case study is done on the same software package (i.e., LEDA). In this case
study we rebuilt the corpus such that the source code documents reflect the classes in
LEDA. The goal of the case study is to see how much the corpus definition is
influencing the results. In addition, we used all three methods for link recovery and
compared the results. We followed the same steps of the process as before.
summarizes the elements of the LEDA corpus, built for this case study.

Table 4

Table 4. Elements of the LEDA corpus in the second case study

LEDA 3.4 Count Documents
Source code files 491 140
Manual sections 88 88

Total # of documents 228
Vocabulary 2347 -

As mentioned previously, in the LEDA source code, many classes are implemented

inline, are internal classes to other, or inherited and implemented in the same file. We
did not separate these groups of related classes and kept them in the same documents.
Thus we obtained 140 documents corresponding to the 219 classes. Among these, 84
documents contain one class and 56 contain more than one class (i.e., 2, 3, or 4
maximum). For example, groups of classes such as bin_heap and bin_heap_elem,
ch_array and ch_array_elem, or skiplist and skiplist_node, etc. are in the same
documents respectively. This time we did not split the large documents. Also, we only
included the 88 documents corresponding to the manual sections used in the first case
study (i.e., sections 2.1 through 11.5). While, starting from the same source code and
manual, the corpus has quite different characteristics than in the previous case. For
example, the vocabulary is smaller since we did not use the demo files and all the manual
sections.

As explained in the previous experiment, 8 of the 88 manual sections did not relate
specifically to any one class, so there are 80 pairs (manual section, class) we needed to
recover. With this new corpus, we used the system to recover the traceability links from
the documentation to the source code (as before) in all three possible ways. First, we use
a threshold on the similarity measure starting at 0.7 and decreased it by 0.1 for each step.
For each manual section the system returned all the source code documents that have a
similarity measure to the manual section larger than the threshold. The user stopped
when all the links are retrieved (100% recall). summarizes the results in this
case. The structure of the table is the same as for in section 5.2. We had to lower
the threshold from 0.7 to 0.3 in five steps to reach 100% recall.

Table 5

Table 5. Recovered links, recall, and precision using the cosine value threshold for LEDA, with class level
document granularity, starting from the manual sections.

Table 2

Cosine Correct
links retrieved

Incorrect
links retrieved

Missed
links

Total links
recovered

Precision Recall

0.70 23 1 57 24 95.83% 28.75%
0.60 55 22 25 77 71.42% 68.75%
0.50 69 69 11 180 38.33% 86.25%
0.40 76 337 4 413 18.40% 95.00%
0.30 80 757 0 837 9.55% 100.00%

The next experiment in the case study is to recover the same links using the ranked
pairs of documents, establishing a cut point for each step, as we did in the previous case
study. summarizes the results in this case. The structure of the table is the same
as for in section 5.2. It took 5 steps to reach 100% recall.

Table 6

Table 6. Recovered links, recall, and precision using the cut point approach for LEDA, with class level
document granularity, starting from the manual sections.

Table 3

Table 3

Cut
point

Correct
links retrieved

Incorrect
links retrieved

Missed
links

Total links
recovered

Precision Recall

1 71 8 9 88 80.68% 88.75%
2 75 96 5 176 42.61% 93.75%
3 77 184 3 264 29.17% 96.25%
4 79 272 1 352 22.44% 98.75%
5 80 360 0 440 18.18% 100.00%

Finally, we used the combined approach with the cut point and the 0.3 threshold for

the similarity measure. In other words, we retrieved on pair in each step only of the
similarity measure was higher than 0.3. summarizes the results in this case. The
structure of the table is the same as for in section 5.2. It took 5 steps to reach
100% recall. shows the recall and precision values for each of the three
approaches.

Table 7

Figure 3

Figure 3. Recall and precision values for the recovery of traceability links for LEDA from manual documents
to source code. All the three methods are represented: using a threshold, using a cut point, and combined. For

the cut point and combined methods the recall values are the same (lines overlap).

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3 4 5

Cut point/thershold

R
ec

al
l a

nd
 p

re
ci

si
on

 %

Recall threshold Precision threshold Recall cut point

Precision cut point Recall combined Precision combined

Table 7. Recovered links, recall, and precision using the combined approach with cut point and 0.3 threshold
for LEDA, with class level document granularity, starting from the manual sections.

Cut
point

Correct
links retrieved

Incorrect
links retrieved

Missed
links

Total links
recovered

Precision Recall

1 71 8 9 88 80.68% 88.75%
2 75 82 5 162 46.29% 93.75%
3 77 144 3 224 34.37% 96.25%
4 79 200 1 280 28.21% 98.75%
5 80 253 0 333 24.02% 100.00%

The results largely confirmed our hypothesis, based on the type of corpus we built

from LEDA. Since the manual is in part generated from the documentation, we expected
that the recall and precision curves for the threshold value (solid lines) will intersect for a
relative high threshold value (i.e., 0.6) with good results (i.e., about 70% recall and
precision). On the other hand, we expected to reach 100% recall with a higher precision.

As expected the best result (highest precision for 100% recall) is given by the
combined approach, using both a threshold and the cut point. More importantly, the cut
point and the combined methods gave better results than those obtained with the previous
corpus (see Figure 2). This is a clear indication that it is worth performing a little extra
source code parsing (yet still quite simple) to obtain a document decomposition that

5.4. Third C
Documentation in LEDA, using Class Level Document Granularity

With th larity) we
could perform another one, in which we recovered traceability links form the source code
to th i w o io nd we
could compa he results b . The same steps of th ocess we e used
the c oin thod to rec the links. ing f 40 nt nting
the L A es we retrieved in each st one d ent fro a tions.
Table 8 summarizes the res n this case he str e of the table is th s for
Tabl in section 5.2. It to XX steps t ach 10 all.

better reflects the source code decomposition (i.e., classes).

ase Study - Recovery of Traceability Links from Source Code to

e same corpus as in the previous case study (i.e., class level granu

e documentation. Th s is the same ay Ant niol et al did [Anton l'02] a
re t est e pr re follow d and we

ut p t me over Start rom the 1 docume s represe
ED class ep ocum m the m nual sec

ults i . T uctur e same a
e 3 ok X o re 0% rec

Table 8. Recovered links, recall, and precision using the cut point approach for LEDA, with class level
document granularity, starting from the source code.

Cut
point

Correct
links retrieved

Incorrect
links retrieved

Missed
links

Total links
recovered

Precision Recall

1
2
3
4
5

We need to fill in this table and discuss the results. Andrey is supposed to get the
data by 2:30 pm.

5.5. Fourth Case Study - Recovery of Traceability Links in Albergate

The LSI based method is versatile enough to accommodate different languages with
min

 results significantly. In
this case, only three files contained the implementation for more than one class. We
bro or
this experiment is almost identical to the one described in [Antoniol'00a, Antoniol'02],
since a document in our spac nds t s m ng to
note t e s 300 lines of internal
docum tatio (i.e., commen

No that all the docum tation is written in Italian. Our process was essentially
uncha d du to the fact ou ethod is not nden on a langua e or gram ar.

Al system than LEDA. First, it is im lemented n Java and
has documentation in Italian. Second the external documentation is in the form of
req

en the manual pages referred to elements of the solution domain (much
better represented in the source code). In addition, the requirement documents are

de any parts of the
internal documentation or the source code. Finally, the requirement documents are very

 work on very large corpora. That is, the larger and richer (in
sem

or or no modifications to the process and tools. Since the LEDA manual was largely
generated, another case study was done on a different software, with different kind of
documentation available.

For the next case study, we used the Albergate system, kindly provided by Giuliano
Antoniol and Massimiliano Di Penta. Albergate is implemented in Java by Italian
students and has 95 classes. Antoniol et al [Antoniol'00a, Antoniol'02] analyzed 60

together with 16 requirements documents. We had only 58 of the classes and 13
equirement documents. This fact did not influence the

classes

ke those files so that each file contained only one class. In other words, the setup f

of the r

e correspo o a class (in most ca es). One ore thi
is tha the Albergat source code contain less than
en n ts).
te en

nge e r m depe t g m
bergate is a very different p i

uirement documents which describe elements of the problem domain, while in the

case of LEDA oft

purported to have been written before implementation and do not inclu

short and have a fixed format with common headings. These headings have nothing in
common with the problem domain and are the same in each document.

The size of the system was also a concern for us. IR methods in general and LSI in
particular, are designed to

antics) the corpus, the better results. The entire philosophy of LSI is on the reduction
of this large corpus to a manageable size without loss of information (using SVD). When
the corpus is small with terms and concepts distributed scarcely throughout the LSI
subspace, reduction of the dimensionality could result in significant loss of information.
In consequence, and considering previous results, we expected lower recall and precision
values than in the case of LEDA.

Table 9 summarizes the results of the traceability recovery process for Albergate.
The structure of the table is the same as Table 3, described in section 5.2. Confirming
our hypothesis, the initial precision was lower, however the 100% recall target was

rea
rgate.

ched faster than in the case of LEDA and with better precision. The explanation is
that, unlike in the LEDA case, the coupling between classes is less intensive in Albe

Table 9. Recovered links, recall, and precision using the cut point approach for Albergate, with class level
document granularity, starting from the source code.

Cut
point

Correct links
retrieved

Incorrect links
retrieved

Missed
links

Total links
retrieved

Precision Recall

1 26 32 31 58 44.83 % 45.61 %
2 33 83 24 116 28.45 % 57.89 %
3 43 131 14 174 24.71 % 75.44 %
4 49 183 8 232 21.12 % 85.96 %
5 52 238 5 290 17.93 % 91.23 %
6 57 291 0 348 16.38 % 100.00 %

Figure 4 shows graphically how our results compare with those obtained by Antoniol

et al [Antoniol'00a, Antoniol'00b, '02]. This time the setup of the experiments and the
benchmark mapping are almost identical. The results are very similar and the only
significant difference is that 100% recall is reached one step sooner (selecting the top 6
ranked pairs, rather than 7) with LSI.

0%

30.00%
40.00%

60.00%

1 2 3 4 5 6

C nt

R
ec

al

Preci LSI R
Recal ntoniol P tonio

50.00%

 a
nd

 p
re

c 70.00%
80.00%
90.00%

100.00%

is
io

n

0.0
10.00%
20.00%

7

ut poi

sion ecal LSI
l A recision An l

Figure 4. Recall and precision values for experiment by Antoniol and experiments with LSI using Albergate.
The x-axis represents the cut point and The y-axis represents recall/precision values

The LSI-based method performed just as well as the other IR methods (from the recall
and precision point of view). The major difference that needs to be reiterated is that,
since LSI does not need a predefined vocabulary or grammar, we did not need to use any
additional tools when migrating from C++ to Java and English to Italian, respectively.

6

The paper presents a method to recover traceability links between documentation and
source code, using an information retrieval method, namely Latent Semantic Indexing
(LSI). A set of case studies is presented and the results analyzed by comparing them with
previous related research by Antoniol et al [Antoniol'02]. The case studies are designed
to assess the use of LSI as the underlying technology for traceability link recovery versus
other IR methods, used by Antoniol et al. In addition, the results of the different case
studies provide insight into the better techniques for build the corpus.

The results show that the method using LSI performs better than Antoniol’s methods
using probabilistic and vector space model-based IR methods combined with full parsing
of the source code and morphological analysis of the documentation.

Using LSI requires less preprocessing of the source code and documentation and
implicitly less computation. It is entirely domain independent with respect to natural
language, programming language, and programming paradigm, therefore it is more
flexible and better suited for automation. These characteristics allow us to use internal
documentation in the analysis (not used by Antoniol), which allows LSI to produce better
results. Th ts in the
source code, LSI does perform at least as well as the other methods.

he
LSI space is built, the subsequent steps in the process are computationally fast, allowing

tw in real-time. With this in mind, we plan to

m the National
Sci

e Relevance of
ngs of Annual IBM

. Conclusions and Future Work

e Albergate case supports this hypothesis. With almost no commen

The case studies also highlight the importance of building the corpus in such a way
that it reflects the original source decomposition. While it requires more processing, the
results of the link recovery process are also better. Building the corpus is a one-time
expense in the process and it is done automatically. Once the corpus is generated and t

sof are engineers to use the system
incorporate the system into existing development environments, such as Eclipse or
Microsoft Studio .NET. Thus, the proposed methodology can be used during
development to help improve the quality of the newly created (internal or external)
documentation, such that it will preserve existing traceability links while creating new
ones that are unambiguous.

7. Acknowledgements

We greatly appreciate and thank Giuliano Antoniol and Massimiliano DiPenta for
sharing their results and experience. We also thank Denys Poshyvanyk for his support in
verifying the results. This work was supported in part by a grant fro

ence Foundation (CCR-02-04175).

References

[Anderson'00] Anderson, K. M., Taylor, R. N., and Whitehead, E. J. J., (2000),
"Chimera: hypermedia for heterogeneous software development enviroments",
ACM Transactions on Information Systems, vol. 18, no. 3, pp. 211-245.

[Anquetil'98a] Anquetil, N. and Lethbridge, T., (1998a), "Assessing th
Identifier Names in a Legacy Software System", in Proceedi

Centers for Advanced Studies Conference (CASCON'98), December, pp. 213-
222.

[Anquetil'98b] Anquetil, N. and Lethbridge, T., (1998b), "Extracting Concepts from File
Names; a New File Clustering Criterion", in Proceedings of 20th International
Conference on Software Engineering (ICSE'98), Kyoto, Japan, pp. 84-93.

[Antoniol'00a] Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A., (2000a),
"Information Retrieval Models for Recovering Traceability Links between Code
and Documentation", in Proceedings of IEEE International Conference on
Software Maintenance (ICSM'00), San Jose, CA, October 11-14, pp. 40-51.

[Antoniol'01] Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A., (2001),
"Maintaining Traceability Links During Object-Oriented Software Evolution",
Software - Practice

[Antoniol'00b] Antoniol, G., Canfora
 and Experience, vol. 31, no. 4, April, pp. 331-355.

, G., Casazza, G., De Lucia, A., and Merlo, E.,
 Object-Oriented Code into Functional Requirements", in
h International Workshop on Program Comprehension

 Antoniol, G., Canfora, G., De Lucia, A., and Merlo, E., (1999),
covering Code to Documentation Links in OO Systems", in Proceedings of

lanta,

[Antonio esign-

[Berry'95
ra for Intelligent Information Retrieval", SIAM: Review, vol. 37, no. 4, pp.

[Chan'98

[Cugola'

p.

[Deerwe
l of the

[Dick'02 e

[Dumais' nformation from
s,

[Etzkorn
ble OO Legacy Code", IEEE Computer, vol. 30, no. 10, October, pp. 66-

72.

(2000b), "Tracing
Proceedings of 8t
(IWPC'00), Limerick, Ireland, June 10-11, pp. 79 - 87.

[Antoniol'02] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E.,
(2002), "Recovering Traceability Links between Code and Documentation",
IEEE Transactions on Software Engineering, vol. 28, no. 10, October, pp. 970 -
983.

[Antoniol'99]
"Re
6th IEEE Working Conference on Reverse Engineering (WCRE'99), At
GA, October 6-8, pp. 136-144.
l'00c] Antoniol, G., Caprile, B., Potrich, A., and Tonella, P., (2000c), "D
Code Traceability for Object Oriented Systems", Annals of Software
Engineering, vol. 9, no. 1/4, pp. 35-58.
] Berry, M. W., Dumais, S. T., and O'Brien, G. W., (1995), "Using Linear
Algeb
573-595.
] Chan, W., Anderson, R., Beame, P., Burns, S., Modugno, F., Notkin, D., and
Reese, J., (1998), "Model checking large software specifications", IEEE
Transactions on Software Engineering, vol. 24, no. 7, pp. 498-520.
96] Cugola, G., Nitto, E. D., Fugetta, A., and Ghezzi, C., (1996), "A framework
for formalizing inconsistencies and deviations in human-centered systems",
ACM Transactions on Software Engineering and Methodology, vol. 5, no. 3, p
191-230.
ster'90] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and
Harshman, R., (1990), "Indexing by Latent Semantic Analysis", Journa
American Society for Information Science, vol. 41, pp. 391-407.
] Dick, J., (2002), "Rich traceability", in Proceedings of Automated Softwar
Engineering, Edinburgh, Scotland.
91] Dumais, S. T., (1991), "Improving the retrieval of i
external sources", Behavior Research Methods, Instruments, and Computer
vol. 23, no. 2, pp. 229 - 236.
'97] Etzkorn, L. H. and Davis, C. G., (1997), "Automatically Identifying
Reusa

[Faloutsos'95] Faloutsos, C. and Oard, D. W., (1995), "A Survey of Informatio
Retrieval and Filtering Methods": University of Maryland.
98] Fischer, B., (1998), "Specification-Based Browsing of Software Compone
Libraries", in Proceedings of 13

n

[Fischer' nt
th ASE, pp. 74-83.

[Gotel'9 "An analysis of the requirement

[Grundy y, J., Hosking, J., and Mugridge, W., (1998), "Inconsistency

[Heitme utomated

[Hunter'
 analysis, and action", ACM Transactions on Software Engineering

[Knethe
cotland.

o
se Processes, vol. 25, no. 2&3, pp. 259-284.

ion

neering, vol. 17, no. 8, pp. 800-813.
n

R89, Cambridge, MA, June, pp. 198-206.
ension

 of 23rd

nal

[Marcus' Concept
ring

[Marcus' n-to-

-

[Frakes'87] Frakes, W., (1987), "Software Reuse Through Information Retrieval", in
Proceedings of 20th Annual HICSS, Kona, HI, Jan., pp. 530-535.

4] Gotel, O. and Ginkelstein, A., (1994),
traceability problem", in Proceedings of International Conference on
Requirements Engineering, Colorado Springs, Colorado, pp. 94-102.
'98] Grund
management for multiple-view software development environments", IEEE
Transactions on Software Engineering, vol. 24, no. 11, pp. 960-981.

yer'96] Heitmeyer, C. L., Jeffords, R. D., and Labaw, B. G., (1996), "A
consistency checking of requirements specifications", ACM Transactions on
Software Engineering and Methodology, vol. 5, no. 3, pp. 231-261.

98] Hunter, A. and Nuseibeh, B., (1998), "Managing inconsistent specifications:
reasoning,
and Methodology, vol. 7, no. 4, pp. 335-367.

n'02] Knethen, A., (2002), "Automatic change support based on a trace model",
in Proceedings of Automated Software Engineering, Edinburgh, S

[Landauer'98] Landauer, T. K., Foltz, P. W., and Laham, D., (1998), "An Introduction t
Latent Semantic Analysis", Discour

[Maarek'91] Maarek, Y. S., Berry, D. M., and Kaiser, G. E., (1991), "An Informat
Retrieval Approach for Automatically Constructing Software Libraries", IEEE
Transactions on Software Engi

[Maarek'89] Maarek, Y. S. and Smadja, F. A., (1989), "Full Text Indexing Based o
Lexical Relations, an Application: Software Libraries", in Proceedings of
SIGI

[Maletic'01] Maletic, J. I. and Marcus, A., (2001), "Supporting Program Compreh
Using Semantic and Structural Information", in Proceedings
International Conference on Software Engineering (ICSE'01), Toronto, Ontario,
Canada, May 12-19, pp. 103-112.

[Maletic'99] Maletic, J. I. and Valluri, N., (1999), "Automatic Software Clustering via
Latent Semantic Analysis", in Proceedings of 14th IEEE Internatio
Conference on Automated Software Engineering (ASE'99), Cocoa Beach
Florida, October, pp. 251-254.
01] Marcus, A. and Maletic, J. I., (2001), "Identification of High-Level
Clones in Source Code", in Proceedings of Automated Software Enginee
(ASE'01), San Diego, CA, November 26-29, pp. 107-114.
03] Marcus, A. and Maletic, J. I., (2003), "Recovering Documentatio
Source-Code Traceability Links using Latent Semantic Indexing", in
Proceedings of 25th IEEE/ACM International Conference on Software
Engineering (ICSE'03), Portland, OR, May 3-10, pp. 125-137.

[Nuseibeh'00] Nuseibeh, B., Easterbrook, S., and Russo, A., (2000), "Leveraging
inconsistency in software development", IEEE Computer, vol. 33, no. 4, pp. 24
29.

[Nuseibeh'94] Nuseibeh, B., Kramer, J., and Finkelstein, A., (1994), "A framework for
expressing the relationships between multiple views in requirements

specification", IEEE Transactions on SoftwareEngineering, vol. 20, no. 10, pp.
760-773.

[Pinheiro'96] Pinheiro, F. and Goguen, J., (1996), "An Object-Oriented Tool for Tracin
Requirements", IEEE Software, vol. 13, no. 2, pp. 52-64.
] Pohl, K., (1996), "PRO-ART: Enabling requirements pre-traceabili

g

[Pohl'96 ty", in

[Ramesh reference model for

[Reiss'99
8, no. 4, pp. 297-342.

 Software

[Salton'8 c Text Processing: The Transformation, Analysis

[Salton'8

ocess
ineering,

[Spanou cy management
f

[Strasun Strasunskas, D., (2002), "Traceability in collaborative systems

[Tjortjis'
nsion by Mining Association Rules from Source Code", in

el to

bstacles in

26, no. 10, pp. 978-1005.

nia.

Proceedings of International Conference on Requirements Engineering,
Colorado Springs, Colorado, pp. 76-85.
'01] Ramesh, B. and Jarke, M., (2001), "Toward
requirements traceability", IEEE Transactions on Software Engineering, vol. 27,
no. 1, pp. 58-93.
] Reiss, S., (1999), "The Desert environment", ACM Transactions on Software
Engineering and Methodology, vol.

[Robinson'99] Robinson, W. and Pawlowski, S., (1999), "Managing requirements
inconsistency with development goal monitors", IEEE Transactions on
Engineering, vol. 25, no. 6, pp. 816-835.
9] Salton, G., (1989), Automati
and Retrieval of Information by Computer, Addison-Wesley.
3] Salton, G. and McGill, M., (1983), Introduction to Modern Information
Retrival, McGraw-Hill.

[Sommerville'99] Sommerville, I., Sawyer, P., and Viller, S., (1999), "Managing pr
inconsistency using viewpoints", IEEE Transactions on Software Eng
vol. 25, no. 6, pp. 784-799.

dakis'01] Spanoudakis, G. and Zisman, A., (2001), "Inconsisten
in software engineering: Survey and open research issues", in Handbook o
Software Engineering and Knowledge Engineering, S. K. Chang, Ed., pp. 24-29.

skas'02]
development from lifecycle perspective - position paper", in Proceedings of
Automated Software Engineering, Edinburgh, Scotland.
03] Tjortjis, C., Sinos, L., and Layzell, P. J., (2003), "Facilitating Program
Comprehe
Proceedings of 11th IEEE International Workshop on Program Comprehension
(IWPC'03), Portland, May 10-11, pp. 125-133.

[Toranzo'99] Toranzo, M. and Castro, J., (1999), "A comprehensive traceability mod
support the design of interactive systems", in Proceedings of ECOOP
Workshops, pp. 283-284.

[van Lamsweerde'00] van Lamsweerde, A. and Letier, E., (2000), "Handling o
goal-oriented requirements engineering", IEEE Transactions on Software
Engineering, vol.

[Watkins'94] Watkins, R. and Neal, M., (1994), "Why and how of requirements tracing",
IEEE Software, vol. 11, no. 4, pp. 104-106.

[Zisman'01] Zisman, A. and Kozlenkov, A., (2001), "Knowledge-based approach to
consistency management of UML specifications", in Proceedings of Automated
Software Engineering, San Diego, Califor

	Introduction
	Approach Overview
	Bibliographic Notes and Paper Organization

	Related Work
	IR and Software Engineering
	Traceability

	Overview of Latent Semantic Indexing
	The Vector Space Model
	LSI and Singular Value Decomposition
	Advantages of using LSI

	The Traceability Recovery Process
	First Step - Building the Corpus
	Fourth Step - Defining the Semantic Similarity Measure
	Fifth Step - Recovering Traceability Links

	Case Studies
	Evaluation of the Results
	First Case Study - Recovery of Traceability Links from Documentation to Source Code in LEDA, using File Level Document Granularity
	Second Case Study - Recovery of Traceability Links from Documentation to Source Code in LEDA, using Class Level Document Granularity
	Third Case Study - Recovery of Traceability Links from Source Code to Documentation in LEDA, using Class Level Document Granularity
	Fourth Case Study - Recovery of Traceability Links in Albergate

	Conclusions and Future Work
	Acknowledgements
	References

