

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

Mining Sequences of Changed-files from Version Histories
Huzefa Kagdi, Shehnaaz Yusuf, Jonathan I. Maletic

Department of Computer Science
Kent State University

Kent Ohio 44242

{hkagdi, sdawoodi, jmaletic}@cs.kent.edu

ABSTRACT
Modern source-control systems, such as Subversion, preserve
change-sets of files as atomic commits. However, the specific
ordering information in which files were changed is typically not
found in these source-code repositories. In this paper, a set of
heuristics for grouping change-sets (i.e., log-entries) found in
source-code repositories is presented. Given such groups of
change-sets, sequences of files that frequently change together are
uncovered. This approach not only gives the (unordered) sets of
files but supplements them with (partial temporal) ordering
information. The technique is demonstrated on a subset of KDE
source-code repository. The results show that the approach is able
to find sequences of changed-files.

Categories and Subject Descriptors
D.2.7. [Software Engineering]: Distribution, Maintenance, and
Enhancement – documentation, enhancement, extensibility,
version control

General Terms
Management, Experimentation

Keywords
Mining Software Repositories, Heuristics, Change Sequences

1. INTRODUCTION
Source-code repositories store metadata such as user-ids,
timestamps, and commit comments. This metadata explains the
why, who, and when dimensions of a source-code change.
Researchers have utilized this type of information for a variety of
purposes in the context of supporting and understanding software
evolution [5, 6, 9, 12-15] . This includes discovering entities (e.g.,
files) that frequently change together for the purpose of supporting
software-change prediction [3, 8, 10, 11, 16, 17, 21]. Software-
change prediction approaches based on itemset mining produce
unordered collections of the changed entities. For example, a set
of files {f1, f2} that are frequently changed or rules such as
changes in a set {f1, f2} leads to changes in a set {f3, f4}.

However, software changes are inherently (partially) ordered
along the time dimension1. Itemset mining approaches ignore the
ordering information in the mining phase. However, the ordering
must be considered at a later stage in software-change prediction.
For example if a set of changed-files {f1, f2} is equivalent to a set
{interface, implementation}, the changes are not necessarily
symmetric. The mined set {f1, f2} may be an artifact of only the
interface changes, {f1} leading to implementation changes, {f2}
and not vice-versa. Therefore, ignoring the ordering information
could lead to a false prediction of {f1} due to a change in {f2}.

Here, we explore the ordering of changed-files by utilizing the
information found in the versions log of source-code repositories.
We present an approach that processes the log-entries to deduce
the partial ordering information among changed-files. For
example, our approach discovers sequences of changed-files such
as {f1}→{f2} and {f4}→{f5}. The sequence {f1}→ {f2}
indicates that changes in {f1} happens before {f2}. We term this
problem as mining sequences of changed-files. We define six
heuristics for grouping the log-entries (i.e., change-sets) of a
source-code repository. Given such a group of log-entries we
uncover sequences of files that frequently change together. This
approach gives not only the (unordered) sets of files but
supplements them with (partial) ordering information. Therefore,
this approach of changed-files sequence-mining subsumes the
approach of changed-files itemset mining.

The rest of the paper is organized as follows. In section 2, we
discuss the available change-set records from source-code
repositories. In section 3, we present heuristics for grouping. In
section 3, we discuss frequent sequence mining. In section 4, we
describe the developed toolset. In section 5, we apply our
approach on KDE version history. In section 6, we briefly discuss
related work. Finally, we state our conclusions and future
directions in section 7.

2. CHANGE-SETS RECORDS
There is an inherent temporal ordering between various change-
sets. It is not uncommon to have a change-set either planned (e.g.,
a standard refactoring or a fix for a documented bug) or unplanned
activity (e.g., a violation of hidden dependencies) leading to
further change-sets. First, we examine how these change-sets are
recorded in repositories maintained by modern source control
systems.

Among several other improvements over CVS and alike, modern
source-control systems, such as Subversion, preserve the grouping

1 In the rest of the discussion, ordering and temporal ordering are used
interchangeably unless specified.

of several changes in multiple files to a single change-set as
performed by a committer (i.e., an atomic commit). Version-
number assignment and metadata are associated at the change-set
level and recorded as a logentry. As shown in Figure 1, a change-
set is stored as a single logentry. Subversion’s log-entries include
the (structured) dimensions committer, date, and paths (i.e., files)
involved in a change-set. As shown in Figure 1, each logentry is
uniquely identified by a revision number. There is no temporal
ordering between paths khtml_part.cpp and loader.h. Clearly, the
logentry alone is insufficient to give the temporal ordering of the
files involved in a change-set. However, there is a temporal order
between change-sets. Change-sets with greater revision numbers
occur after those with lesser revision numbers. Therefore, we can
utilize the ordering of change-sets to determine ordering of files.

A straightforward approach is to exhaustively list all the
sequences of the changed-files. For example, if a change-set {f1,
f2} occurs before {f3. f4}, the possible changed-file sequences are
{f1}→{f3}, {f1, f2}→{f3}, and so forth. However, this leads to
two major issues: 1) sequences that may not be useful for software
evolution tasks such as change predication (i.e., false positives)
and 2) examination of combinatorial explosion of changed-file
sequences. Notice that the atomic commits are serialized. The
temporal order in which log-entries appear in the log files is at
discretion of a version-control system. As a result successive log-
entries may be unrelated in the context of changes performed in
the files. Therefore, it may result in meaningless changed-file
sequences.

In an effort to avoid reporting of meaningless changed-file
sequences, we define heuristics for grouping “related” change-
sets. Furthermore, given such related change-sets, we employ
sequence mining to effectively deal with the combinatorial
explosion of search space.

3. CHANGE-SET GROUPING HEURISTICS
The heuristics are driven by grouping of log-entries based on the
dimensions committer, date, and the paths as discussed below.

Time Interval - Change-sets committed in the same time-interval
are related and change-sets committed in different time-intervals
are unrelated. This helps define ordering on the change-sets in the
same time-interval. Therefore, all the change-sets (i.e., log-entries)
committed in a given time duration are placed in a single group.
The sequences of files found using this heuristic implies that if a
file is modified in a sequence on a day, the following (preceding)
files are modified on the same day.

Committer – The change-sets modified by a committer are related
and the change-sets modified by different committers are
unrelated. This defines an order on the change-sets by a
committer. Therefore, all the change-sets (i.e., log-entries)
committed by a given committer are placed in a single group. The
sequences of files found using this heuristic implies that if a file is
modified in a sequence by a committer, the following (preceding)
files are modified by the same committer.

File – Change-sets involving a particular file are related. This
defines ordering on the change-sets by a particular file. Therefore,
all the change-sets (i.e., log-entries) committed in which a given
file is involved are placed in a single group. The sequences of
files found using this heuristic establishes a temporal position of a
file in the sequences of changes with other files.

Joins of the above heuristics lead to further groupings of change-
sets. For example, the join of heuristics Committer and File
implies committers typically do not work on a same change-set.
However, committers may work on the same file in different time
intervals. This defines an order on the changed-files by a
committer in a time interval. The sequences of files found using
this heuristic implies that if a file is modified on a day by a
committer, the following (preceding) files are modified on the
same day by the same committer.

Figure 1. A Snippet of kdelibs Subversion Log

These heuristics are the first step towards mining sequences of
changed-file sets. Heuristics helps us to define a logical grouping
of change-sets but does not directly give the order in which files
were changed within a given change-set. In the next section, we
describe our approach of mining frequent sequences of changed-
files from grouped change-sets.

4. MINING CHANGED-FILE SEQUENCES
The problem of mining sequences of changed-files is an instance
of mining frequent sequences of items. We first give definitions
of a sequence and the problem of frequent sequence mining.
Then, we show the reduction of our problem to the problem of
mining frequent sequences.

A frequent-sequence is made up of (ordered) elements. Each
element is made up of (unordered) items. The ordering of
elements imposes a partial order on the items. For example, the
frequent sequence {f1, f2}→{f3, f4}→{f5} is made up of 3
elements and 5 items. It indicates that the element {f1, f2}
happens before the element {f3, f4} and the element {f3, f4}
happens before the element {f5}. However, the happens before
relation between items f3 and f4 is unknown in the element {f3,
f4}. Therefore, a frequent-sequence establishes both the ordered
and unordered relationship between items.

The problem of finding frequent sets of sequences is formally
defined as given a set of items, α = {i1, i2, …. im}, and a set of
transactions, τ = {T1, T2, ….., Tn}, find all the sets of sequences, S
= {S1, S2, …So}, that co-occur in at least a given number (or
percentage) of transactions i.e., it satisfies a given minimum
support, σmin. Each Transaction contains an ordered list of events
and is identified by an unique id, Ti = (tid, ε) where ε = [E1, E2,
…., Ep] | ∀i,j Ei → Ej. and → is a given ordering relation on
events. Each event contains a set of items and is identified by an
unique id, Ei = (eid, ⊆ α). Each sequence is defined as an ordered
list of elements (i.e., itemsets), SI = [I1→ I2→ …..→Ip] |∀ Ii ⊆ α,

<?xml version="1.0" encoding="utf-8"?>
<log>
 <logentry revision="438663">
 <author>kling</author>
 <date>2005-07-25T17:46:20.434104Z</date>
 <paths>
 <path action="M">khtml_part.cpp</path>
 <path action="M">loader.h</path>
 </paths>
 <msg>
 Do pixmap notifications when
 running ad filters.
 </msg>
 </logentry>
</log>

and each member of an element, ij ∈ Ii is defined as an item of a
sequence. A mined sequence Si is called a frequent sequence. A
sequence consisting of k items is referred to as a k-sequence. The
number (or percentage) of transactions in which a sequence occur
is known as its support (frequency).

The problem of frequent-sequence mining was introduced by
Agrawal [1]. A number of algorithms for frequent-sequence
mining are proposed. Their discussion is out of the scope in this
paper. The reduction of our problem of mining sequences of
changed-files to that of frequent-sequence mining is
straightforward. Here, we have a set of transactions, τ, mapped to
the grouping of change-sets formed by the application of a
heuristic on the log-entries, events Ei→…→Ej in each transaction,
Ti, maps to the change-sets ordered by revision numbers.
Following this reduction, the solution to the frequent-sequence
problem, S, gives the solution to the frequent changed-files
sequences.

Figure 2. Tool-Chain for Mining Frequent Changed-files

5. MINING TOOLSET
We developed svn2inseqs and sqminer to process Subversion log-
entries and mine the sequences of changed-file. The tool-chain is
shown in Figure 2. The overall process is: 1) use the svn log
command to produce the log-entries in XML format, 2) use
svn2inseqs to apply a grouping heuristic on the log-entries and
obtain the input transactions and events, and 3) finally, use
sqminer to find the sequences of changed-files. In the following
sections, we expand on phases 2 and 3.

5.1. Log-entries to Input-Transactions
Six grouping heuristics, date (time interval), author2 (committer),
file, author-date, author-file, and date-file are implemented as
XSLT programs. The Python script svn2inseqs takes as input the
log-entries such as the one shown in Figure 1 and a XSLT
grouping heuristic, and transforms the log-entries to the
corresponding input transactions and events in a flat-file format.
One such example of input transactions obtained from the log-
entries of the kdelibs repository is shown in Figure 3. Here, the
log-entries are grouped by the heuristic author-date. The input-
transactions file contains a set of events, each specified on a
separate line. An event description consists of a generated input
transaction-id (e.g., 14). The transaction-id corresponds to an
author-date combination i.e., the change-sets performed by an
author (giessl) on a particular date (2005-07-26). The revision

2 We do not make the distinction between authors, contributors,
volunteers, and so forth.

number of a log-entry (i.e., a change-set) is used as an event-id
(e.g., 438962 and 438971). Finally, the files involved in a change-
set are listed.

Figure 3. A Snippet of Input Transactions from kdelibs Log-

entries grouped by Heuristic Author-Date.

5.2. Mining Changed-file Sequences from
Input Transactions via sqminer

The transactions constructed by the application of heuristics such
as the one shown in Figure 3 are fed to the sequence mining tool,
sqminer. The tool sqminer is realized based on the Sequential
Patten Discovery Algorithm (SPADE) [19]. The SPADE
algorithm utilizes an efficient enumeration of sequences based on
common-prefix subsequences and division of search space using
equivalence classes. Additionally, it utilizes a vertical input-
transaction format for an efficient counting of support values. The
configuration parameters of sqminer include support, max number
of items allowed in a sequence, mining of sequence (association)
rules, and output in both the flat-file and XML format.

Figure 4. A Snippet of Sequences of Changed-files from
kdelibs Log-entries grouped by Heuristic Author-Date.

Figure 4 shows an example of a sequence of changed-paths mined
from kdelib with a minimum-support value of 3. In this case, a
file (plastik.cpp) was changed twice in a sequence. Transactions
formed from (possibly different) author-date values that have
common files in their change-set(s), contribute to the support
value of a sequence of changed-files. In Figure 3, transactions 14
and 116 are not formed from the same author-date values but both
support the sequence {plastik.cpp}→{plastik.cpp}. In addition to
the number of elements (i.e., size) and support values, information
about the transactions (seqid and eventid) in which these

<frequent-sequences input="kdelibs-authordate">
<frequent-sequence size="2" support="6">
 <elements>
 <element temporal-position="1">
 <items><item>plastik.cpp</item></items>
 </element>
 <element temporal-position="2">
 <items><item>plastik.cpp</item></items>
 </element>
 </elements>
 <idpairs>
 <idpair seqid="14" eventid="438971"/>
 <idpair seqid="116" eventid="449437"/>
 <idpair seqid="116" eventid="449484"/>
 </idpairs>
</frequent-sequence>
</frequent-sequences>

...........
14 438962 plastik/plastik.cpp
14 438971 plastik.cpp
...
116 449301 plastik.cpp
116 449436 kstyle.cpp kstyle.h
116 449437 plastik.cpp
116 449483 kstyle.cpp kstyle.h
116 449484 plastik.cpp
116 449494 plastik.cpp
116 449521 plastik.cpp
.......

sequences are found (i.e., idpairs) is also stored. This provides the
user (application or human) an additional context for their tasks.

Once we have a sequence, it can easily be reduced to an itemset.
For example, if a sequences a→b and b→a are found to have the
same support (and/or same id-pairs), it can be generalized to an
itemset {a, b}. The relationship between itemsets and sequences
is one-to-many i.e., it is possible that multiple sequences are
reduced to a single itemset. For example, the sequence shown in
Figure 4 is reduced to itemset as shown in Figure 5. An itemset is
a single element sequence composing of all the items in the
corresponding sequence. Notice that our approach produces a
multi-set. This information not only gives the items that were
involved but also the number of their instances implicitly.

6. EVALUATION
The presented heuristics and mining technique are evaluated on an
open source system. The primary interest is to show that our
approach is able to find frequent sequences of changed-files.

6.1. Dataset Acquisition
The considered version history from the KDE Subversion
repository is shown in Table 1. The dataset was collected on the
25th of January 2006. The log-entries were collected separately
for each of the KDE modules and the entire KDE. The svn log
command was used to extract the logs in XML format. Table 1
shows the number of revisions, days these revisions were
committed, authors, the number of (unique) files involved in the
change-sets (i.e., changed files column), and the number of
changes performed in these files. Note that the cumulative sum of
an attribute values may not agree with the corresponding value of
KDE due to common values across modules.

Figure 5. A Snippet of Itemsets of Changed-files from kdelibs
Log-entries grouped by Heuristic Author-Date.

6.2. Application of Heuristics
After acquiring the dataset, heuristics were applied (Day, Author,
File, Author-date, Author-file, and Day-file) with the help of a tool
svn2inseqs and the input files required by sqminer were generated.
A calendar day is mapped to the heuristic Time-interval. In this
study, log-entries consisting of more than ten files were pruned.
This was done to discard noisy change-sets such as those updating
the license information. Transactions with a single event were
also ignored as there is no temporal ordering found in a singleton
transaction.

The number of transactions and events obtained from the
application of each of the heuristics is given in

Table 5. The transactions and events maintain the invariant
|events| ≤ |Revisions| on account of pruning. The events are
distributed among the transactions based on the grouping dictated
by the heuristics. Therefore, the transaction density (i.e., number
of events in a transaction) is directly dependent on the applied
grouping heuristic. The above invariant implies that more the
number of transactions, lower the transaction density. On the
other end less the number of transactions, higher the transaction
density. The maximum changed-files sequence size (i.e., number
of elements) is less than or equal to the maximum number of
events found in a transaction. Based on the above properties, we
have the following observations: 1) transactions with high-density
values are likely to find long-size sequences of changed-files with
a less number of supporting transactions and 2) transactions with
low-density values are likely to find small-size sequences of
changed-files with a more number of supporting transactions.

Table 1. Log Information of the KDE Source-Code Repository

Period: (07-25-2005 to 01-25-2006) Modules
 Revisions Days Authors Changed-

Files
Changes
in files

arts 3 2 2 3 4
kde-common 295 125 36 30 325
kdeaccesibility 164 71 12 3129 3684
kdeaddons 155 77 19 3085 3623
kdeadmin 91 53 13 2979 3396
kdeartwork 95 32 10 4423 4598
kdebase 1493 173 90 6027 13364
kdebindings 129 43 6 3214 3424
kdeedu 886 154 37 4360 8077
kdegames 216 71 21 3490 4444
kdegraphics 509 147 22 4032 6452
kdelibs 3557 184 124 5262 20604
kdemultimedia 185 84 24 3210 4493
kdenetwork 553 132 31 4860 9012
kdepim 1944 181 57 7522 15990
kdesdk 686 157 32 4178 6727
kdetoys 86 46 16 2917 3193
kdeutils 333 109 31 3947 5858
kdevelop 375 57 15 6965 9085
kdewebdev 19 16 6 2920 2950
KDE 11170 185 230 30648 82662

6.3. Mining Sequences of Changed-Files
sqminer was executed on the transactions of the KDE modules
listed in Table 5. The mining of sequences of changed-files was
performed on a number of support values. The maximum number
of files (i.e., items) in a sequence was set to 20 in all the runs.
These support values were selected taking into account the two
observations (transaction density) mentioned in the previous
section (6.2). Here, the discussion and analysis of the results are
limited to a subset of the results. Our intention is to show the
distribution of the sequences found in the context of various tool
configurations.

Table 6 shows the sequences of changed-files found from the
transactions corresponding to the heuristics used in the mining
process. The number of sequences (S) found with a configuration

<frequent-sequences input="kdelibs-authordate">
<frequent-sequence size="2" support="6">
 <elements>
 <element temporal-position="1">
 <items>
 <item>plastik.cpp</item>
 <item>plastik.cpp</item>
 </items>
 </element>
 </elements>
 <idpairs>
 <idpair seqid="14" eventid="438971"/>
 <idpair seqid="116" eventid="449437"/>
 </idpairs>
</frequent-sequence>
</frequent-sequences>

of the minimum support (σmin), the maximum sequence size (|Em|)
along with the maximum number of files (|αm|), and the run-time
(T) are presented. Sequences were found for a range of minimum
support values (σmin). The heuristics Day and Day-Author found
sequences in all the cases. The heuristic Author did not report
sequences in three cases. The heuristic File and Author-File did
not report sequences in six cases. Finally, the heuristic Day-File
did not report any sequences in seven cases. There were no
sequences found for arts, kdewebdev, and kdeartwork.

Table 2. Sequences in kdelibs

Sequences with no of Elements kdelibs
1 2 3s 4 5 6 7 8 |S| |αm|

Day (3) 900 1304 593 58 1 - - - 2856 7
Author(3) 469 20793866 44012919 1214 272 1815232 8
File (15) 219 98 23 - - - - - 340 5

Day-Author(3) 717 274 36 - - - - - 1027 5

Day-File (15) 44 26 - - - - - 70 4

Author-File (15) 157 100 10 - - - - - 267 5

Table 3. Comparison of Itemsets and Sequences in kdelibs

 Itemset Sequences Ratio
kdelibs |I| |αm| |S| |αm| |S|/|I|

Day (3) 2193 7 2856 7 1.3
Author(3) 9575 8 15232 8 1.6
File (15) 263 5 340 5 1.3
Day-Author(3) 907 5 1027 5 1.13
Day-File (15) 55 4 70 4 1.27
Author-File (15) 190 5 267 5 1.41

The results presented in Table 6 shows that sequences of changed-
files are found from the log-entries using our approach. However,
it remains to be seen that the supplementary information in
sequences is useful. To facilitate the discussion, kdelibs is taken
as a representative. Table 2 shows the sequences of changed-files
found by applying each of the six heuristics and the min-support
value (e.g., 3). In case of the heuristic Author, more than 15,000
sequences were reported. Further, the distribution of these
sequences based on the number of elements it contains is also
shown. The maximum number of elements found in sequences
was reported to be 8. The maximum number of files found in
sequences was also reported to be 8.

These results give interesting insights into the software evolution
process used by kdelib authors. The long sequences of changed-
files under the heuristic Author indicate that related changes are
committed in small increments spreading across multiple change-
sets (revisions). Furthermore, examining the results under the
heuristics Day-Author, the sequences are fewer and relatively
smaller in size. This means that related changes are typically not
committed on the same day and by the same author. This
information leads to the hypothesis that related changes for a high-
level modification (e.g., feature or bug-fix) are performed in
incremental steps. Even if this hypothesis is not verified, we at
least have the historical dependencies between high-level changes.

Moreover, the importance of ordering can be seen for tasks such
as assisting a developer with the software-change process. For

example, if a sequence consisting of eight elements is treated as an
itemset, number of candidates of the combinatorial order may
need to be considered. This may lead to lack of precision as many
of these combinations may turn-out to be false-positives.

Based on the prior discussion, we provided a case for sequences
giving more concise information for tasks such as software-
change prediction. However, there is a possibility of a large
number of sequences (combinatorial order) being produced
compared to itemsets. Our approach facilitates decision-making
on this issue. The sequences are also reduced to itemsets and
output by sqminer. Table 3 facilitates the comparison of
sequences and itemsets of changed-files for kdelibs. In this case,
the number of sequences is less than twice the number of itemsets.
Each itemset is essentially ordered. Therefore, our approach
serves both the generalization (itemsets) and specialization
(sequences) cases.

Table 4. Example of Sequences of Changed-Files in kdelibs

kdelibs Sequences

{range.h} → {katedocument.cpp , katedocument.h}
Day
(3) {KDE4PORTING.html }

→ { kstringhandler.cpp, kstringhandler.h }
Author

(3) {generic.py} → {openssl.py}

{kstyle.h}→ {plastik.cpp} → {kstyle.cpp} Day-Author
(3) { kateregression.cpp } → { kateregression.cpp }

→ { range.cpp }

We conclude this section, with examples of sequences found in
kdelibs as shown in Table 4. The sequence shown in the heuristics
Day is partially ordered. The file range.h changed before
katedocument.cpp and kdatedocument.h. However, the order of
changes between katedocument.cpp and kdatedocument.h is
undecided. The sequence in the Day-Author demonstrates the
ordering between an interface file (kstyle.h) and an
implementation file (kstyle.cpp).

7. RELATED WORK
We briefly discuss approaches utilizing information found in
source-code repositories maintained by tools such as CVS and
Subversion with a focus on software changes.

Zimmerman et al [20, 21] used CVS logs for detecting
evolutionary coupling between source-code entities. They
employed sliding window heuristics to estimate the atomic
commits (change-sets). Association-rules based on itemset
mining were formed from the change-sets and used for change-
prediction. Yang et al [18] used a similar technique for
identifying files that frequently change together. Gall et al [8]
used window-based heuristics on CVS logs for uncovering logical
couplings and change patterns, and German et al [9] for studying
characteristics of different types of changes. Hassan et al [11]
analyzed CVS logs for software-change prediction.

Van Rysselberghe et al [16] utilized CVS logs in their approach to
find frequently applied changes and presented a 2D visualization
technique to help recognize change-relevant information [17].
Bieman et al [3] used logs from software repositories to assist in

the computation of metrics for detecting change-prone classes.
Burch et al [4] presented a tool that supports visualization of
association rules and sequence rules. However, a very little
information is provided on how CVS transactions are processed
and sequences are mined. Beyer et al [2].used the log information
in visualizing clusters of frequently occurring co-changes. Dinh-

Trong et al [6] used CVS logs for validating previously developed
hypotheses on successful open source development. Chen et al [5]
incorporated the CVS commit messages in their source-code
search tool. El-Ramly et al [7] used sequence mining to detect
patterns of user activities from the system-user interaction data.

Table 5. Transactions formed by Application of Grouping Heuristics on the Log Information of the KDE Source-Code Repository

(No. of Transactions, No. of Events) Modules
Day Author File Day-Author Day-File Author-File

arts (1, 2) (1,2) (0, 0) (1, 2) (0, 0) (0, 0)
kde-common (72, 242) (8, 267) (11, 38) (64, 168) (5, 10) (9, 26)
kdeaccesibility (35 ,111) (6, 137) (63, 212) (31, 93) (12, 27) (57, 170)
kdeaddons (31, 104) (8, 133) (52 , 173) (29, 94) (18, 36) (44, 150)
kdeadmin (18, 51) (6, 73) (33, 84) (16, 46) (9, 18) (26, 60)
kdeartwork (13, 68) (5, 80) (17, 40) (13, 64) (10, 22) (15, 35)
kdebase (157, 1348) (63, 1337) (484, 1501) (235, 1049) (119, 256) (349, 879)
kdebindings (21, 94) (4, 111) (17, 121) (21, 86) (18, 64) (20, 118)
kdeedu (123, 752) (25, 760) (344, 1371) (164, 626) (168, 424) (331, 1104)
kdegames (32, 156) (9, 178) (54, 154) (30, 139) (8, 16) (46, 104)
kdegraphics (109, 427) (14, 453) (131, 520) (96, 335) (41, 95) (122, 429)
kdelibs (182, 3304) (89, 3271) (911, 3757) (605, 2720) (420, 977) (719, 2281)
kdemultimedia (37, 116) (13, 146) (55, 175) (37, 100) (8, 16) (54, 128)
kdenetwork (95, 456) (25, 482) (194, 648) (104, 390) (70, 146) (152, 464)
kdepim (166, 1668) (46, 1671) (686, 2186) (330, 1365) (203, 444) (557, 1563)
kdesdk (125, 618) (19, 637) (145, 486) (141, 517) (53, 121) (132, 427)
kdetoys (20, 58) (6, 70) (42, 132) (17, 49) (14, 28) (36, 115)
kdeutils (63, 251) (22, 281) (126, 437) (66, 212) (55, 126) (106, 344)
kdevelop (28, 294) (9, 309) (177, 713) (32, 282) (170, 592) (170, 676)
kdewebdev (2, 4) (3, 12) (6, 12) (2, 4) (0, 0) (0, 0)
KDE (185, 10092) (183, 10047) (3373, 12142) (1659,8753) (1274, 2954) (2773, 8496)

Table 6. Sequences found from the Log Information of the KDE Source-Code Repository

|S|– No. of Sequences, |Em| (|αm|)- Max Element-Size (Max) Item-size, and σmin. used in Mining,
T – Run-time in Seconds

Day Author File Day-Author Day-File Author-File Modules
|S|

(σmin) |Em| T. |S|
(σmin) |Em| T. |S|

(σmin) |Em| T. |S|
(σmin) |Em| T. |S|

(σmin) |Em| T. |S|
(σmin) |Em| T.

kde-common 30(3) 3(3) <1 223(3) 6(6) 6 0 - - 15(3) 2(2) <1 0 - - 0 - -
kdeaccesibility 22(3) 2(2) <1 1(3) 1(1) <1 44(10) 1(3) <1 12(3) 2(2) <1 0 - - 19(10) 1(2) <1
kdeaddons 14(3) 1(7) <1 1(3) 1(1) <1 - - 137(3) 1(7) <1 31(10) 1(5) <1 0 - -
kdeadmin 5(3) 1(1) <1 0 - - 1(10) 1(1) <1 5(3) 1(1) <1 0 - - 0 - -
kdebase 309(3) 2(2) 8 216(3) 3(4) 35 3(25) 1(1) <1 193(3) 2(2) 1 1(10) 1(1) <1 0 - -
kdebindings 31(3) 2(3) <1 0 - - 0 - - 27(3) 2(3) <1 4(10) 1(1) <1 2(10) 1(1) <1
kdeedu 518(3) 3(4) 3 1152(3) 5(6) 7 11(25) 2(2) <1 390(3) 3(3) 1 4(25) 1(1) <1 11(25) 2(2) <1
kdegames 12(3) 2(2) <1 6(3) 2(2) <1 5(10) 1(2) <1 8(3) 2(2) <1 0 - - 1(10) 1(1) <1
kdegraphics 138(3) 3(3) <1 55(3) 3(4) 1 0 - - 103(3) 2(4) <1 4(10) 1(1) <1 1(25) 1(1) <1
kdelibs 2856(3) 5(5) 427 15232(3) 8(8) 2247 39(25) 2(2) 10 1027(3) 3(4) 23 19(25) 2(3) <1 36(25) 2(2) 2
kdemultimedia 19(3) 1(2) <1 35(3) 4(4) <1 17(10) 1(3) <1 17(3) 1(1) <1 0 - - 23(10) 1(4) <1
kdenetwork 215(3) 2(5) 1 67(3) 2(2) <1 0 - - 186(3) 2(5) 1 163(10) 2(7) <1 0 - -
kdepim 770(3) 3(3) 17 749(3) 6(7) 20 7(25) 1(1) <1 634(3) 2(4) 3 0 - - 4(25) 1(1) <1
kdesdk 102(3) 3(3) <1 12(3) 2(3) <1 0 - - 79(3) 3(3) <1 2(10) 1(1) <1 0 - -
kdetoys 9(3) 1(2) <1 0 - - 1528(10) 2(9) 2 7(3) 1(1) <1 0 - - 1527(10) 2(9) 4
kdeutils 87(3) 3(3) <1 20(3) 2(2) <1 1(25) 1(1) <1 70(3) 3(3) <1 35(10) 2(3) <1 75(10) 3(4) 1
kdevelop 88(3) 3(4) <1 2(3) 1(1) <1 2(25) 2(2) 1 82(3) 3(4) <1 2(25) 2(2) 1 2(25) 2(2) 1
KDE 119(10) 2(3) 13 14(10) 2(2) 2 61(25) 2(2) 15 4301(3) 3(4) 350 23(25) 2(3) 1 52(25) 2(2) 4

8. CONCLUSIONS AND FUTURE WORK
We investigated the problem of mining ordered sequences of
changed-files from the change-sets found in source-code
repositories. Six heuristics were examined to form input
transactions with ordered change-sets. A toolset was developed to
uncover the sequences of changed-files from the change-sets. A
case-study on the KDE project shows that our approach is able to
find ordered sequences of changed-files ranging from none to
thousands. In our experience, the number of sequences is found to
be closely bounded to the number of itemsets. We formed a
hypothesis that sequences can be used to better predict and
analyze the software evolutionary process.

In future, we plan to assess the effectiveness of the sequences of
changed-files for the task of software-change prediction.
Sequences of source-code entities such as classes, methods,
statements, and expressions will be analyzed and compared. Also,
we plan to integrate grouping heuristics based on the textual
contents of comments in the change-sets and other repositories
(e.g., Bugzilla).

9. REFERENCES
[1] Agrawal, R. and Srikant, R. Mining Sequential Patterns in

Proceedings of Eleventh International Conference on Data
Engineering (Taipei, Taiwan, March, 1995).

[2] Beyer, D. and Noack, A. Clustering Software Artifacts
Based on Frequent Common Changes in Proceedings of
13th International Workshop on Program Comprehension
(IWPC'05) (St. Louis, Missouri, USA, May 15-16, 2005),
259-268.

[3] Bieman, J. M., Andrews, A. A., and Yang, H. J.
Understanding Change-Proneness in OO Software Through
Visualization in Proceedings of 11th IEEE International
Workshop on Program Comprehension (IWPC'03) (2003),
44-53.

[4] Burch, M., Diehl, S., and Weißgerber, P. Visual Data
Mining in Software Archives in Proceedings of Proceedings
of the 2005 ACM symposium on Software visualization (St.
Louis, Missouri, May 14-15, 2005), 37-46.

[5] Chen, A., Chou, E., Wong, J., Yao, A. Y., Zhang, Q.,
Zhang, S., and Michail, A. CVSSearch: Searching through
Source Code using CVS Comments in Proceedings of
Proceedings IEEE International Conference on Software
Maintenance (ICSM'01) (2001), 364-373.

[6] Dinh-Trong, T. T. and Bieman, J. M. The FreeBSD Project:
a Replication Case Study of Open Source Development.
IEEE Transactions on Software Engineering, 31, 6 (2005),
481-494.

[7] El-Ramly, M. and Stroulia, E. Mining Software Usage Data
in Proceedings of International Workshop on Mining
Software Repositories (MSR'04) (2004), 64-8.

[8] Gall, H., Hajek, K., and Jazayeri, M. Detection of Logical
Coupling based on Product Release History in Proceedings
of International Conference on Software Maintenance
(ICSM'98) (1998), 190-199.

[9] German, D. M. An Empirical Study of Fine-Grained
Software Modifications in Proceedings of 20th IEEE
International Conference on Software Maintenance
(ICSM'04) (2004), 316-25.

[10] German, D. M. Mining CVS Repositories, the SoftChange
Experience in Proceedings of International Workshop on
Mining Software Repositories (MSR'04) (2004), 17-21.

[11] Hassan, A. E. and Holt, R. C. Predicting Change
Propagation in Software Systems in Proceedings of 20th
IEEE International Conference on Software Maintenance
(ICSM'04) (2004), 284-93.

[12] Huang, S.-K. and Liu, K.-m. Mining Version Histories to
Verify the Learning Process of Legitimate Peripheral
Participants in Proceedings of International Workshop on
Mining Software Repositories (MSR'05) (St. Louis,
Missouri, May 17, 2005), 84-78.

[13] Lopez-Fernandez, L., Robles, G., and Gonzalez-Barahona,
J. M. Applying Social Network Analysis to the Information
in CVS Repositories in Proceedings of International
Workshop on Mining Software Repositories (MSR'04) (May
25, 2004), 101-105.

[14] Mockus, A., Fielding, T., and Herbsleb, D. Two Case
Studies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11, 3 (July 2002 2002), 309-346.

[15] Tu, Q. and Godfrey, M. W. An Integrated Approach for
Studying Architectural Evolution in Proceedings of 10th
International Workshop on Program Comprehension
(IWPC'02) (2002), 127-136.

[16] Van Rysselberghe, F. and Demeyer, S. Mining Version
Control Systems for FACs (Frequently Applied Changes) in
Proceedings of International Workshop on Mining Software
Repositories (MSR'04) (May 25, 2004), 48-52.

[17] Van Rysselberghe, F. and Demeyer, S. Studying Software
Evolution Information By Visualizing the Change History in
Proceedings of 20th IEEE International Conference on
Software Maintenance (2004), 328-37.

[18] Ying, A. T. T., Murphy, G. C., Ng, R., and Chu-Carroll, M.
C. Predicting Source Code Changes by Mining Change
History. IEEE Transactions on Software Engineering, 30, 9
(September 2004), 574 - 586.

[19] Zaki, M. J. SPADE: An Efficient Algorithm for Mining
Frequent Sequences. Machine Learning, 42, 1-2 (January
2001), 31 - 60.

[20] Zimmermann, T., Weibgerber, P., Diehl, S., and Zeller, A.
Mining version histories to guide software changes in
Proceedings of 26th International Conference on Software
Engineering (2004), 563-72.

[21] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S.
Mining Version Histories to Guide Software Changes. IEEE
Transactions on Software Engineering, 31, 6 (2005), 429-
445.

