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ABSTRACT 
Modern source-control systems, such as Subversion, preserve 
change-sets of files as atomic commits.  However, the specific 
ordering information in which files were changed is typically not 
found in these source-code repositories.  In this paper, a set of 
heuristics for grouping change-sets (i.e., log-entries) found in 
source-code repositories is presented.  Given such groups of 
change-sets, sequences of files that frequently change together are 
uncovered.  This approach not only gives the (unordered) sets of 
files but supplements them with (partial temporal) ordering 
information.  The technique is demonstrated on a subset of KDE 
source-code repository.  The results show that the approach is able 
to find sequences of changed-files. 

Categories and Subject Descriptors 
D.2.7. [Software Engineering]: Distribution, Maintenance, and 
Enhancement – documentation, enhancement, extensibility, 
version control  

General Terms 
Management, Experimentation 

Keywords 
Mining Software Repositories, Heuristics, Change Sequences 

1. INTRODUCTION 
Source-code repositories store metadata such as user-ids, 
timestamps, and commit comments.  This metadata explains the 
why, who, and when dimensions of a source-code change.  
Researchers have utilized this type of information for a variety of 
purposes in the context of supporting and understanding software 
evolution [5, 6, 9, 12-15] .  This includes discovering entities (e.g., 
files) that frequently change together for the purpose of supporting 
software-change prediction [3, 8, 10, 11, 16, 17, 21].  Software-
change prediction approaches based on itemset mining produce 
unordered collections of the changed entities.  For example, a set 
of files {f1, f2} that are frequently changed or rules such as 
changes in a set {f1, f2} leads to changes in a set {f3, f4}. 

However, software changes are inherently (partially) ordered 
along the time dimension1.  Itemset mining approaches ignore the 
ordering information in the mining phase.  However, the ordering 
must be considered at a later stage in software-change prediction.  
For example if a set of changed-files {f1, f2} is equivalent to a set 
{interface, implementation}, the changes are not necessarily 
symmetric.  The mined set {f1, f2} may be an artifact of only the 
interface changes, {f1} leading to implementation changes, {f2} 
and not vice-versa.  Therefore, ignoring the ordering information 
could lead to a false prediction of {f1} due to a change in {f2}.  

Here, we explore the ordering of changed-files by utilizing the 
information found in the versions log of source-code repositories.  
We present an approach that processes the log-entries to deduce 
the partial ordering information among changed-files.  For 
example, our approach discovers sequences of changed-files such 
as {f1}→{f2} and {f4}→{f5}.  The sequence {f1}→ {f2} 
indicates that changes in {f1} happens before {f2}.  We term this 
problem as mining sequences of changed-files.  We define six 
heuristics for grouping the log-entries (i.e., change-sets) of a 
source-code repository.  Given such a group of log-entries we 
uncover sequences of files that frequently change together.  This 
approach gives not only the (unordered) sets of files but 
supplements them with (partial) ordering information.  Therefore, 
this approach of changed-files sequence-mining subsumes the 
approach of changed-files itemset mining. 

The rest of the paper is organized as follows.  In section 2, we 
discuss the available change-set records from source-code 
repositories.  In section 3, we present heuristics for grouping.  In 
section 3, we discuss frequent sequence mining.  In section 4, we 
describe the developed toolset.  In section 5, we apply our 
approach on KDE version history.  In section 6, we briefly discuss 
related work.  Finally, we state our conclusions and future 
directions in section 7. 

2. CHANGE-SETS RECORDS 
There is an inherent temporal ordering between various change-
sets.  It is not uncommon to have a change-set either planned (e.g., 
a standard refactoring or a fix for a documented bug) or unplanned 
activity (e.g., a violation of hidden dependencies) leading to 
further change-sets.  First, we examine how these change-sets are 
recorded in repositories maintained by modern source control 
systems. 

Among several other improvements over CVS and alike, modern 
source-control systems, such as Subversion, preserve the grouping 

                                                           
1 In the rest of the discussion, ordering and temporal ordering are used 
interchangeably unless specified. 



   

 

of several changes in multiple files to a single change-set as 
performed by a committer (i.e., an atomic commit).  Version-
number assignment and metadata are associated at the change-set 
level and recorded as a logentry.  As shown in Figure 1, a change-
set is stored as a single logentry.  Subversion’s log-entries include 
the (structured) dimensions committer, date, and paths (i.e., files) 
involved in a change-set.  As shown in Figure 1, each logentry is 
uniquely identified by a revision number.  There is no temporal 
ordering between paths khtml_part.cpp and loader.h.  Clearly, the 
logentry alone is insufficient to give the temporal ordering of the 
files involved in a change-set.  However, there is a temporal order 
between change-sets.  Change-sets with greater revision numbers 
occur after those with lesser revision numbers.  Therefore, we can 
utilize the ordering of change-sets to determine ordering of files. 

A straightforward approach is to exhaustively list all the 
sequences of the changed-files.  For example, if a change-set {f1, 
f2} occurs before {f3. f4}, the possible changed-file sequences are 
{f1}→{f3}, {f1, f2}→{f3}, and so forth.  However, this leads to 
two major issues: 1) sequences that may not be useful for software 
evolution tasks such as change predication (i.e., false positives) 
and 2) examination of combinatorial explosion of changed-file 
sequences.  Notice that the atomic commits are serialized.  The 
temporal order in which log-entries appear in the log files is at 
discretion of a version-control system.  As a result successive log-
entries may be unrelated in the context of changes performed in 
the files.  Therefore, it may result in meaningless changed-file 
sequences. 

In an effort to avoid reporting of meaningless changed-file 
sequences, we define heuristics for grouping “related” change-
sets.  Furthermore, given such related change-sets, we employ 
sequence mining to effectively deal with the combinatorial 
explosion of search space. 

3. CHANGE-SET GROUPING HEURISTICS 
The heuristics are driven by grouping of log-entries based on the 
dimensions committer, date, and the paths as discussed below. 

Time Interval - Change-sets committed in the same time-interval 
are related and change-sets committed in different time-intervals 
are unrelated.  This helps define ordering on the change-sets in the 
same time-interval. Therefore, all the change-sets (i.e., log-entries) 
committed in a given time duration are placed in a single group. 
The sequences of files found using this heuristic implies that if a 
file is modified in a sequence on a day, the following (preceding) 
files are modified on the same day. 

Committer – The change-sets modified by a committer are related 
and the change-sets modified by different committers are 
unrelated.  This defines an order on the change-sets by a 
committer.  Therefore, all the change-sets (i.e., log-entries) 
committed by a given committer are placed in a single group.  The 
sequences of files found using this heuristic implies that if a file is 
modified in a sequence by a committer, the following (preceding) 
files are modified by the same committer. 

File – Change-sets involving a particular file are related.  This 
defines ordering on the change-sets by a particular file.  Therefore, 
all the change-sets (i.e., log-entries) committed in which a given 
file is involved are placed in a single group.  The sequences of 
files found using this heuristic establishes a temporal position of a 
file in the sequences of changes with other files. 

Joins of the above heuristics lead to further groupings of change-
sets.  For example, the join of heuristics Committer and File 
implies committers typically do not work on a same change-set.  
However, committers may work on the same file in different time 
intervals.  This defines an order on the changed-files by a 
committer in a time interval.  The sequences of files found using 
this heuristic implies that if a file is modified on a day by a 
committer, the following (preceding) files are modified on the 
same day by the same committer. 

 
Figure 1.  A Snippet of kdelibs Subversion Log 

These heuristics are the first step towards mining sequences of 
changed-file sets.  Heuristics helps us to define a logical grouping 
of change-sets but does not directly give the order in which files 
were changed within a given change-set.  In the next section, we 
describe our approach of mining frequent sequences of changed-
files from grouped change-sets. 

4. MINING CHANGED-FILE SEQUENCES 
The problem of mining sequences of changed-files is an instance 
of mining frequent sequences of items.  We first give definitions 
of a sequence and the problem of frequent sequence mining.  
Then, we show the reduction of our problem to the problem of 
mining frequent sequences. 

A frequent-sequence is made up of (ordered) elements.  Each 
element is made up of (unordered) items.  The ordering of 
elements imposes a partial order on the items.  For example, the 
frequent sequence {f1, f2}→{f3, f4}→{f5} is made up of 3 
elements and 5 items.  It indicates that the element {f1, f2} 
happens before the element {f3, f4} and the element {f3, f4} 
happens before the element {f5}.  However, the happens before 
relation between items f3 and f4 is unknown in the element {f3, 
f4}. Therefore, a frequent-sequence establishes both the ordered 
and unordered relationship between items. 

The problem of finding frequent sets of sequences is formally 
defined as given a set of items, α = {i1, i2, …. im}, and a set of 
transactions, τ = {T1, T2, ….., Tn}, find all the sets of sequences, S 
= {S1, S2, …So}, that co-occur in at least a given number (or 
percentage) of transactions i.e., it satisfies a given minimum 
support, σmin.  Each Transaction contains an ordered list of events 
and is identified by an unique id, Ti = (tid, ε) where ε = [E1, E2, 
…., Ep] | ∀i,j Ei → Ej. and → is a given ordering relation on 
events.  Each event contains a set of items and is identified by an 
unique id, Ei = (eid, ⊆ α).  Each sequence is defined as an ordered 
list of elements (i.e., itemsets), SI  = [I1→ I2→ …..→Ip] |∀ Ii ⊆ α, 

<?xml version="1.0" encoding="utf-8"?> 
<log> 
  <logentry  revision="438663"> 
    <author>kling</author> 
    <date>2005-07-25T17:46:20.434104Z</date> 
    <paths> 
      <path action="M">khtml_part.cpp</path> 
      <path action="M">loader.h</path> 
    </paths> 
    <msg> 
       Do pixmap notifications when  
       running ad filters. 
    </msg> 
  </logentry>  
</log> 



   

 

and each member of an element, ij ∈ Ii is defined as an item of a 
sequence.  A mined sequence Si is called a frequent sequence.  A 
sequence consisting of k items is referred to as a k-sequence.  The 
number (or percentage) of transactions in which a sequence occur 
is known as its support (frequency). 

The problem of frequent-sequence mining was introduced by 
Agrawal [1].  A number of algorithms for frequent-sequence 
mining are proposed.  Their discussion is out of the scope in this 
paper.  The reduction of our problem of mining sequences of 
changed-files to that of frequent-sequence mining is 
straightforward.  Here, we have a set of transactions, τ, mapped to 
the grouping of change-sets formed by the application of a 
heuristic on the log-entries, events Ei→…→Ej in each transaction, 
Ti, maps to the change-sets ordered by revision numbers.  
Following this reduction, the solution to the frequent-sequence 
problem, S, gives the solution to the frequent changed-files 
sequences. 

 

 
Figure 2.  Tool-Chain for Mining Frequent Changed-files 

5. MINING TOOLSET  
We developed svn2inseqs and sqminer to process Subversion log-
entries and mine the sequences of changed-file.  The tool-chain is 
shown in Figure 2.  The overall process is: 1) use the svn log 
command to produce the log-entries in XML format, 2) use 
svn2inseqs to apply a grouping heuristic on the log-entries and 
obtain the input transactions and events, and 3) finally, use 
sqminer to find the sequences of changed-files.  In the following 
sections, we expand on phases 2 and 3. 

5.1. Log-entries to Input-Transactions 
Six grouping heuristics, date (time interval), author2 (committer), 
file, author-date, author-file, and date-file are implemented as 
XSLT programs.  The Python script svn2inseqs takes as input the 
log-entries such as the one shown in Figure 1 and a XSLT 
grouping heuristic, and transforms the log-entries to the 
corresponding input transactions and events in a flat-file format.  
One such example of input transactions obtained from the log-
entries of the kdelibs repository is shown in Figure 3.  Here, the 
log-entries are grouped by the heuristic author-date.  The input-
transactions file contains a set of events, each specified on a 
separate line.  An event description consists of a generated input 
transaction-id (e.g., 14).  The transaction-id corresponds to an 
author-date combination i.e., the change-sets performed by an 
author (giessl) on a particular date (2005-07-26).  The revision 
                                                           
2 We do not make the distinction between authors, contributors, 
volunteers, and so forth. 

number of a log-entry (i.e., a change-set) is used as an event-id 
(e.g., 438962 and 438971).  Finally, the files involved in a change-
set are listed. 

 
Figure 3.  A Snippet of Input Transactions from kdelibs Log-

entries grouped by Heuristic Author-Date. 

5.2. Mining Changed-file Sequences from 
Input Transactions via sqminer 

The transactions constructed by the application of heuristics such 
as the one shown in Figure 3 are fed to the sequence mining tool, 
sqminer.  The tool sqminer is realized based on the Sequential 
Patten Discovery Algorithm (SPADE) [19].  The SPADE 
algorithm utilizes an efficient enumeration of sequences based on 
common-prefix subsequences and division of search space using 
equivalence classes.  Additionally, it utilizes a vertical input-
transaction format for an efficient counting of support values.  The 
configuration parameters of sqminer include support, max number 
of items allowed in a sequence, mining of sequence (association) 
rules, and output in both the flat-file and XML format. 

 
Figure 4.  A Snippet of Sequences of Changed-files from 
kdelibs Log-entries grouped by Heuristic Author-Date. 

Figure 4 shows an example of a sequence of changed-paths mined 
from kdelib with a minimum-support value of 3.  In this case, a 
file (plastik.cpp) was changed twice in a sequence.  Transactions 
formed from (possibly different) author-date values that have 
common files in their change-set(s), contribute to the support 
value of a sequence of changed-files.  In Figure 3, transactions 14 
and 116 are not formed from the same author-date values but both 
support the sequence {plastik.cpp}→{plastik.cpp}.  In addition to 
the number of elements (i.e., size) and support values, information 
about the transactions (seqid and eventid) in which these 

<frequent-sequences input="kdelibs-authordate"> 
<frequent-sequence size="2" support="6"> 
  <elements> 
    <element temporal-position="1"> 
      <items><item>plastik.cpp</item></items> 
    </element> 
    <element temporal-position="2"> 
       <items><item>plastik.cpp</item></items> 
    </element> 
  </elements> 
  <idpairs> 
    <idpair seqid="14" eventid="438971"/> 
    <idpair seqid="116" eventid="449437"/> 
    <idpair seqid="116" eventid="449484"/> 
  </idpairs> 
</frequent-sequence> 
</frequent-sequences> 

........... 
14  438962 plastik/plastik.cpp 
14  438971 plastik.cpp 
... 
116  449301 plastik.cpp 
116  449436 kstyle.cpp kstyle.h 
116  449437 plastik.cpp 
116  449483 kstyle.cpp kstyle.h 
116  449484 plastik.cpp 
116  449494 plastik.cpp 
116  449521 plastik.cpp 
....... 



   

 

sequences are found (i.e., idpairs) is also stored.  This provides the 
user (application or human) an additional context for their tasks. 

Once we have a sequence, it can easily be reduced to an itemset.  
For example, if a sequences a→b and b→a are found to have the 
same support (and/or same id-pairs), it can be generalized to an 
itemset {a, b}.  The relationship between itemsets and sequences 
is one-to-many i.e., it is possible that multiple sequences are 
reduced to a single itemset.  For example, the sequence shown in 
Figure 4 is reduced to itemset as shown in Figure 5.  An itemset is 
a single element sequence composing of all the items in the 
corresponding sequence.  Notice that our approach produces a 
multi-set.  This information not only gives the items that were 
involved but also the number of their instances implicitly. 

6. EVALUATION 
The presented heuristics and mining technique are evaluated on an 
open source system.  The primary interest is to show that our 
approach is able to find frequent sequences of changed-files. 

6.1. Dataset Acquisition 
The considered version history from the KDE Subversion 
repository is shown in Table 1.  The dataset was collected on the 
25th of January 2006.  The log-entries were collected separately 
for each of the KDE modules and the entire KDE.  The svn log 
command was used to extract the logs in XML format.  Table 1 
shows the number of revisions, days these revisions were 
committed, authors, the number of (unique) files involved in the 
change-sets (i.e., changed files column), and the number of 
changes performed in these files.  Note that the cumulative sum of 
an attribute values may not agree with the corresponding value of 
KDE due to common values across modules. 

Figure 5.  A Snippet of Itemsets of Changed-files from kdelibs 
Log-entries grouped by Heuristic Author-Date. 

6.2. Application of Heuristics 
After acquiring the dataset, heuristics were applied (Day, Author, 
File, Author-date, Author-file, and Day-file) with the help of a tool 
svn2inseqs and the input files required by sqminer were generated. 
A calendar day is mapped to the heuristic Time-interval.  In this 
study, log-entries consisting of more than ten files were pruned.  
This was done to discard noisy change-sets such as those updating 
the license information.  Transactions with a single event were 
also ignored as there is no temporal ordering found in a singleton 
transaction. 

The number of transactions and events obtained from the 
application of each of the heuristics is given in  

Table 5.  The transactions and events maintain the invariant 
|events| ≤ |Revisions| on account of pruning.  The events are 
distributed among the transactions based on the grouping dictated 
by the heuristics.  Therefore, the transaction density (i.e., number 
of events in a transaction) is directly dependent on the applied 
grouping heuristic.  The above invariant implies that more the 
number of transactions, lower the transaction density.  On the 
other end less the number of transactions, higher the transaction 
density.  The maximum changed-files sequence size (i.e., number 
of elements) is less than or equal to the maximum number of 
events found in a transaction.  Based on the above properties, we 
have the following observations: 1) transactions with high-density 
values are likely to find long-size sequences of changed-files with 
a less number of supporting transactions and 2) transactions with 
low-density values are likely to find small-size sequences of 
changed-files with a more number of supporting transactions. 

Table 1.  Log Information of the KDE Source-Code Repository 

Period: (07-25-2005 to 01-25-2006) Modules 
 Revisions Days Authors Changed-

Files 
Changes 
in files 

arts 3 2 2 3 4 
kde-common 295 125 36 30 325 
kdeaccesibility 164 71 12 3129 3684 
kdeaddons 155 77 19 3085 3623 
kdeadmin 91 53 13 2979 3396 
kdeartwork 95 32 10 4423 4598 
kdebase 1493 173 90 6027 13364 
kdebindings 129 43 6 3214 3424 
kdeedu 886 154 37 4360 8077 
kdegames 216 71 21 3490 4444 
kdegraphics 509 147 22 4032 6452 
kdelibs 3557 184 124 5262 20604 
kdemultimedia 185 84 24 3210 4493 
kdenetwork 553 132 31 4860 9012 
kdepim 1944 181 57 7522 15990 
kdesdk 686 157 32 4178 6727 
kdetoys 86 46 16 2917 3193 
kdeutils 333 109 31 3947 5858 
kdevelop 375 57 15 6965 9085 
kdewebdev 19 16 6 2920 2950 
KDE 11170 185 230 30648 82662 

6.3. Mining Sequences of Changed-Files 
sqminer was executed on the transactions of the KDE modules 
listed in Table 5.  The mining of sequences of changed-files was 
performed on a number of support values.  The maximum number 
of files (i.e., items) in a sequence was set to 20 in all the runs.  
These support values were selected taking into account the two 
observations (transaction density) mentioned in the previous 
section (6.2).  Here, the discussion and analysis of the results are 
limited to a subset of the results.  Our intention is to show the 
distribution of the sequences found in the context of various tool 
configurations. 

Table 6 shows the sequences of changed-files found from the 
transactions corresponding to the heuristics used in the mining 
process.  The number of sequences (S) found with a configuration 

<frequent-sequences input="kdelibs-authordate"> 
<frequent-sequence size="2" support="6"> 
  <elements> 
    <element temporal-position="1"> 
       <items> 
         <item>plastik.cpp</item> 
         <item>plastik.cpp</item> 
       </items> 
    </element> 
  </elements> 
  <idpairs> 
    <idpair seqid="14" eventid="438971"/> 
    <idpair seqid="116" eventid="449437"/> 
  </idpairs> 
</frequent-sequence> 
</frequent-sequences> 



   

 

of the minimum support (σmin), the maximum sequence size (|Em|) 
along with the maximum number of files (|αm|), and the run-time 
(T) are presented.  Sequences were found for a range of minimum 
support values (σmin).  The heuristics Day and Day-Author found 
sequences in all the cases.  The heuristic Author did not report 
sequences in three cases.  The heuristic File and Author-File did 
not report sequences in six cases.  Finally, the heuristic Day-File 
did not report any sequences in seven cases.  There were no 
sequences found for arts, kdewebdev, and kdeartwork. 

Table 2.  Sequences in kdelibs 

Sequences with no of Elements   kdelibs 
1 2 3s 4 5 6 7 8 |S| |αm|

Day (3) 900 1304 593 58 1 - - - 2856 7 
Author(3) 469 20793866 44012919 1214 272 1815232 8 
File (15) 219 98 23 - - - - - 340 5 

Day-Author(3) 717 274 36 - - - - - 1027 5 

Day-File (15) 44 26  - - - - - 70 4 

Author-File (15) 157 100 10 - - - - - 267 5 

 

Table 3. Comparison of Itemsets and Sequences in kdelibs 

 Itemset Sequences Ratio 
kdelibs |I| |αm| |S| |αm| |S|/|I| 

Day (3) 2193 7 2856 7 1.3 
Author(3) 9575 8 15232 8 1.6 
File (15) 263 5 340 5 1.3 
Day-Author(3) 907 5 1027 5 1.13 
Day-File (15) 55 4 70 4 1.27 
Author-File (15) 190 5 267 5 1.41 

 

The results presented in Table 6 shows that sequences of changed-
files are found from the log-entries using our approach.  However, 
it remains to be seen that the supplementary information in 
sequences is useful.  To facilitate the discussion, kdelibs is taken 
as a representative.  Table 2 shows the sequences of changed-files 
found by applying each of the six heuristics and the min-support 
value (e.g., 3).  In case of the heuristic Author, more than 15,000 
sequences were reported.  Further, the distribution of these 
sequences based on the number of elements it contains is also 
shown.  The maximum number of elements found in sequences 
was reported to be 8.  The maximum number of files found in 
sequences was also reported to be 8. 

These results give interesting insights into the software evolution 
process used by kdelib authors.  The long sequences of changed-
files under the heuristic Author indicate that related changes are 
committed in small increments spreading across multiple change-
sets (revisions).  Furthermore, examining the results under the 
heuristics Day-Author, the sequences are fewer and relatively 
smaller in size.  This means that related changes are typically not 
committed on the same day and by the same author.  This 
information leads to the hypothesis that related changes for a high-
level modification (e.g., feature or bug-fix) are performed in 
incremental steps.  Even if this hypothesis is not verified, we at 
least have the historical dependencies between high-level changes. 

Moreover, the importance of ordering can be seen for tasks such 
as assisting a developer with the software-change process.  For 

example, if a sequence consisting of eight elements is treated as an 
itemset, number of candidates of the combinatorial order may 
need to be considered.  This may lead to lack of precision as many 
of these combinations may turn-out to be false-positives.   

Based on the prior discussion, we provided a case for sequences 
giving more concise information for tasks such as software-
change prediction.  However, there is a possibility of a large 
number of sequences (combinatorial order) being produced 
compared to itemsets.  Our approach facilitates decision-making 
on this issue.  The sequences are also reduced to itemsets and 
output by sqminer.  Table 3 facilitates the comparison of 
sequences and itemsets of changed-files for kdelibs.  In this case, 
the number of sequences is less than twice the number of itemsets.  
Each itemset is essentially ordered.  Therefore, our approach 
serves both the generalization (itemsets) and specialization 
(sequences) cases. 

Table 4.  Example of Sequences of Changed-Files in kdelibs 

kdelibs Sequences 

{range.h} → {katedocument.cpp , katedocument.h}
Day 
(3) {KDE4PORTING.html } 

→ { kstringhandler.cpp, kstringhandler.h } 
Author 

(3) {generic.py} → {openssl.py} 

{kstyle.h}→ {plastik.cpp} → {kstyle.cpp} Day-Author
(3) { kateregression.cpp } →  { kateregression.cpp } 

→  { range.cpp } 
 

We conclude this section, with examples of sequences found in 
kdelibs as shown in Table 4.  The sequence shown in the heuristics 
Day is partially ordered.  The file range.h changed before 
katedocument.cpp and kdatedocument.h.  However, the order of 
changes between katedocument.cpp and kdatedocument.h is 
undecided.  The sequence in the Day-Author demonstrates the 
ordering between an interface file (kstyle.h) and an 
implementation file (kstyle.cpp). 

7. RELATED WORK 
We briefly discuss approaches utilizing information found in 
source-code repositories maintained by tools such as CVS and 
Subversion with a focus on software changes. 

Zimmerman et al [20, 21] used CVS logs for detecting 
evolutionary coupling between source-code entities.  They 
employed sliding window heuristics to estimate the atomic 
commits (change-sets).  Association-rules based on itemset 
mining were formed from the change-sets and used for change-
prediction.  Yang et al [18] used a similar technique for 
identifying files that frequently change together.  Gall et al [8] 
used window-based heuristics on CVS logs for uncovering logical 
couplings and change patterns, and German et al [9] for studying 
characteristics of different types of changes.  Hassan et al [11] 
analyzed CVS logs for software-change prediction.   

Van Rysselberghe et al [16] utilized CVS logs in their approach to 
find frequently applied changes and presented a 2D visualization 
technique to help recognize change-relevant information [17].  
Bieman et al [3] used logs from software repositories to assist in 



   

 

the computation of metrics for detecting change-prone classes.  
Burch et al [4] presented a tool that supports visualization of 
association rules and sequence rules.  However, a very little 
information is provided on how CVS transactions are processed 
and sequences are mined.  Beyer et al [2].used the log information 
in visualizing clusters of frequently occurring co-changes.  Dinh-

Trong et al [6] used CVS logs for validating previously developed 
hypotheses on successful open source development.  Chen et al [5] 
incorporated the CVS commit messages in their source-code 
search tool.  El-Ramly et al [7] used sequence mining to detect 
patterns of user activities from the system-user interaction data.   

 

Table 5.  Transactions formed by Application of Grouping Heuristics on the Log Information of the KDE Source-Code Repository 

(No. of Transactions, No. of Events) Modules 
Day Author File Day-Author Day-File Author-File 

arts (1, 2) (1,2) (0, 0) (1, 2) (0, 0) (0, 0) 
kde-common (72, 242) (8, 267) (11, 38) (64, 168) (5, 10) (9, 26) 
kdeaccesibility (35 ,111) (6, 137) (63, 212) (31, 93) (12, 27) (57, 170) 
kdeaddons (31, 104) (8, 133) (52 , 173) (29, 94) (18, 36) (44, 150) 
kdeadmin (18, 51) (6, 73) (33, 84) (16, 46) (9, 18) (26, 60) 
kdeartwork (13, 68) (5, 80) (17, 40) (13, 64) (10, 22) (15, 35) 
kdebase (157, 1348) (63, 1337) (484, 1501) (235, 1049) (119, 256) (349, 879) 
kdebindings (21, 94) (4, 111) (17, 121) (21, 86) (18, 64) (20, 118) 
kdeedu (123, 752) (25, 760) (344, 1371) (164, 626) (168, 424) (331, 1104) 
kdegames (32, 156) (9, 178) (54, 154) (30, 139) (8, 16) (46, 104) 
kdegraphics (109, 427) (14, 453) (131, 520) (96, 335) (41, 95) (122, 429) 
kdelibs (182, 3304) (89, 3271) (911, 3757) (605, 2720) (420, 977) (719, 2281) 
kdemultimedia (37, 116) (13, 146) (55, 175) (37, 100) (8, 16) (54, 128) 
kdenetwork (95, 456) (25, 482) (194, 648) (104, 390) (70, 146) (152, 464) 
kdepim (166, 1668) (46, 1671) (686, 2186) (330, 1365) (203, 444) (557, 1563) 
kdesdk (125, 618) (19, 637) (145, 486) (141, 517) (53, 121) (132, 427) 
kdetoys (20, 58) (6, 70) (42, 132) (17, 49) (14, 28) (36, 115) 
kdeutils (63, 251) (22, 281) (126, 437) (66, 212) (55, 126) (106, 344) 
kdevelop (28, 294) (9, 309) (177, 713) (32, 282) (170, 592) (170, 676) 
kdewebdev (2, 4) (3, 12) (6, 12) (2, 4) (0, 0) (0, 0) 
KDE (185, 10092) (183, 10047) (3373, 12142) (1659,8753) (1274, 2954) (2773, 8496) 

 

Table 6.  Sequences found from the Log Information of the KDE Source-Code Repository 

|S|– No. of Sequences,  |Em| (|αm|)- Max Element-Size (Max) Item-size, and σmin. used in Mining,
T – Run-time in Seconds 

Day Author File Day-Author Day-File Author-File Modules 
|S|  

(σmin) |Em| T. |S| 
(σmin) |Em| T. |S| 

(σmin) |Em| T. |S| 
(σmin) |Em| T. |S| 

(σmin) |Em| T. |S| 
(σmin) |Em| T.

kde-common 30(3) 3(3) <1 223(3) 6(6) 6 0 - - 15(3) 2(2) <1 0 - - 0 - -
kdeaccesibility 22(3) 2(2) <1 1(3) 1(1) <1 44(10) 1(3) <1 12(3) 2(2) <1 0 - - 19(10) 1(2) <1
kdeaddons 14(3) 1(7) <1 1(3) 1(1) <1 - -  137(3) 1(7) <1 31(10) 1(5) <1 0 - -
kdeadmin 5(3) 1(1) <1 0 - - 1(10) 1(1) <1 5(3) 1(1) <1 0 - - 0 - -
kdebase 309(3) 2(2) 8 216(3) 3(4) 35 3(25) 1(1) <1 193(3) 2(2) 1 1(10) 1(1) <1 0 - -
kdebindings 31(3) 2(3) <1 0 - - 0 - - 27(3) 2(3) <1 4(10) 1(1) <1 2(10) 1(1) <1
kdeedu 518(3) 3(4) 3 1152(3) 5(6) 7 11(25) 2(2) <1 390(3) 3(3) 1 4(25) 1(1) <1 11(25) 2(2) <1
kdegames 12(3) 2(2) <1 6(3) 2(2) <1 5(10) 1(2) <1 8(3) 2(2) <1 0 - - 1(10) 1(1) <1
kdegraphics 138(3) 3(3) <1 55(3) 3(4) 1 0 - - 103(3) 2(4) <1 4(10) 1(1) <1 1(25) 1(1) <1
kdelibs 2856(3) 5(5) 427 15232(3) 8(8) 2247 39(25) 2(2) 10 1027(3) 3(4) 23 19(25) 2(3) <1 36(25) 2(2) 2
kdemultimedia 19(3) 1(2) <1 35(3) 4(4) <1 17(10) 1(3) <1 17(3) 1(1) <1 0 - - 23(10) 1(4) <1
kdenetwork 215(3) 2(5) 1 67(3) 2(2) <1 0 - - 186(3) 2(5) 1 163(10) 2(7) <1 0 - -
kdepim 770(3) 3(3) 17 749(3) 6(7) 20 7(25) 1(1) <1 634(3) 2(4) 3 0 - - 4(25) 1(1) <1
kdesdk 102(3) 3(3) <1 12(3) 2(3) <1 0 - - 79(3) 3(3) <1 2(10) 1(1) <1 0 - -
kdetoys 9(3) 1(2) <1 0 - - 1528(10) 2(9) 2 7(3) 1(1) <1 0 - - 1527(10) 2(9) 4
kdeutils 87(3) 3(3) <1 20(3) 2(2) <1 1(25) 1(1) <1 70(3) 3(3) <1 35(10) 2(3) <1 75(10) 3(4) 1
kdevelop 88(3) 3(4) <1 2(3) 1(1) <1 2(25) 2(2) 1 82(3) 3(4) <1 2(25) 2(2) 1 2(25) 2(2) 1
KDE 119(10) 2(3) 13 14(10) 2(2) 2 61(25) 2(2) 15 4301(3) 3(4) 350 23(25) 2(3) 1 52(25) 2(2) 4

 



   

 

8. CONCLUSIONS AND FUTURE WORK 
We investigated the problem of mining ordered sequences of 
changed-files from the change-sets found in source-code 
repositories.  Six heuristics were examined to form input 
transactions with ordered change-sets.  A toolset was developed to 
uncover the sequences of changed-files from the change-sets.  A 
case-study on the KDE project shows that our approach is able to 
find ordered sequences of changed-files ranging from none to 
thousands.  In our experience, the number of sequences is found to 
be closely bounded to the number of itemsets.  We formed a 
hypothesis that sequences can be used to better predict and 
analyze the software evolutionary process.  

In future, we plan to assess the effectiveness of the sequences of 
changed-files for the task of software-change prediction.  
Sequences of source-code entities such as classes, methods, 
statements, and expressions will be analyzed and compared.  Also, 
we plan to integrate grouping heuristics based on the textual 
contents of comments in the change-sets and other repositories 
(e.g., Bugzilla). 
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