
153

C h a p t e r 10

Identifying and Analyzing
Software Design Activities

Bonita Sharif
Youngstown State University

Natalia Dragan
Cleveland State University

Andrew Sutton
Texas A&M University

Michael L. Collard
The University of Akron

Jonathan I. Maletic
Kent State University

CoNteNtS
10.1 Introduction 154
10.2 Methodology 155

10.2.1 Problem Statement and Source Material 156
10.2.2 Activity and Requirement Coding 156
10.2.3 Transcript Annotation 158
10.2.4 Visualization 161

10.3 Results and Analyses 162
10.3.1 Activity Analysis 162
10.3.2 Requirements Analysis 169
10.3.3 Interpersonal Communication 171
10.3.4 Similarities and Differences in Design 171

10.4 Observations 172
10.5 Conclusions and Future Work 173
References 173

K14386_C010.indd 153 15/05/13 7:30 PM

154 ◾ Software Designers in Action: A Human-Centric Look at Design Work

10.1 INtroDuCtIoN
How do we design software? This very important question has implications for virtually all
aspects of the software development life cycle, the participating software developers, and even
the project managers. Good software design should promote programmer productivity, lessen
the burden of maintenance, and reduce the learning curve for new developers. Despite the
seeming simplicity of the question, the answers tend to be anything but simple. An answer
may touch on aspects of the problem domain, the expertise of the designers, the quality and
completeness of the requirements, and the process models and development methods that are
followed. Much work has been done on how software should be designed, but there are compar-
atively few studies of how software is actually designed (Guindon et al. 1987; Curtis et al. 1988;
Carlos et al. 1995; Robillard et al. 1998; Detienne and Bott 2001; Ko et al. 2006; Friess 2007).

To address the aforementioned question on how software is designed, we introduce spe-
cific research questions based on the types of activities that designers engage in during
the early stages of design. These questions were chosen to cover the activities observed
in the context of the requirements met by the design. We are also interested in designer
interaction and how similar/different the team interactions were. The research questions
we attempt to address are:

RQ1: What specific types of activities do the designers engage in?

RQ2: What design strategies (activity sets) are used together?

RQ3: Are all the requirements met or discussed in the design?

RQ4: What is the level of interaction between the designers?

RQ5: What are the similarities and differences between the different design sessions?

Since this is an observational study, we do not generate hypotheses for the research ques-
tions. Instead, we try to qualitatively assess the design sessions in a structured manner that is
reproducible by others. In order to answer the earlier questions, two issues have to be addressed.
First, we need data on the design practice of professional designers; such data are extraordi-
narily difficult to obtain. Individuals and groups inside companies do not always perform all
design activities using a formal tool, but they often rely on paper or whiteboards, especially in
the early interactive stages. This, coupled with the collaborative interaction between designers,
is very challenging to capture for later study. Second, once the data have been collected, the
additional questions of how the data should be analyzed and/or processed arise.

The opportunity to conduct an in-depth study of how professional designers engage in
design presented itself in September 2009. A group at the University of California, Irvine
(2010) made available video recordings and transcripts of three two-person teams engaged
in design for the same set of software requirements. Given these data and our research ques-
tions, we decided to use an approach rooted in discourse analysis (Gee 2005): the analysis
of language with the goal of identifying problem-solving and decision-making strategies.

In order to do this, we first need to generate, refine, and analyze the data from the design
sessions. This process involves generating an XML-structured version of the transcripts,

K14386_C010.indd 154 15/05/13 7:30 PM

Identifying and Analyzing Software Design Activities ◾ 155

the manual annotation of the XML-formatted transcripts, and its visualization on a time
line. For each activity undertaken by the designers, we identified the requirement being
addressed. We annotated each design session data set with metadata corresponding to the
activities (such as drawing and agreement/disagreement between designers) taking place
along with the requirement(s) being addressed. We also analyzed the annotated data for
trends and patterns in the design process across the teams.

The results indicate that the types of design activities map nicely to the main phases
of software development, such as requirements, analysis, design, and implementa-
tion. However, the sequence and iteration of these steps were different for each team.
The decisions about the logic of the code, discussions of use cases, and the interaction
between the designers played major roles for all three teams, and all teams spent the
most time on the same three requirements. The team that took a structured approach
with systematic planning, and with much consultation and agreement, gave the most
detailed solution and covered the most requirements in the deliverables. A software
designer engaged in these types of activities, whether an expert or a novice, may benefit
from observing what does and does not work. The future goal is to develop theories
(Bryant and Charmaz 2007) on how software is designed based on our observations
and results.

10.2 MetHoDoLogy
In order to address the research questions of the study, we developed a process and a suite
of tools to support the extraction and analysis of the data from the source videos and their
transcripts. We now give a brief overview of the steps involved in the process.

 1. Preprocessing: In order to conduct a structured analysis on the data, we first trans-
formed the transcripts from a simple text-based listing into an XML format for easy
processing. This allowed us to clean up the transcripts, annotate them with addi-
tional data, and perform queries.

 2. Comprehension and Cleanup: We reviewed the videos to generate a set of codes related
to the activities we observed. This step also attempted to fix any ill-transcribed or
inaudible statements within the XML transcripts. Almost all cases were fixed by lis-
tening to the audio multiple times or at a higher volume level. Very few inaudible
sections remained.

 3. Annotation: Once the data were cleaned up and in an initial annotated format, we
reviewed the videos again, this time annotating the XML transcripts with codes indi-
cating the activities being performed and the requirements being addressed at par-
ticular points in time.

 4. Visualization: A time line visualization of the annotated XML transcripts was gen-
erated that allowed us to better see how the designers engaged the problem over the
course of the sessions. These time line visualizations were manually studied to answer
the research questions we posed.

K14386_C010.indd 155 15/05/13 7:30 PM

156 ◾ Software Designers in Action: A Human-Centric Look at Design Work

10.2.1 Problem Statement and Source Material

The three teams were charged with designing a traffic signal simulation. They were given a
two-page problem statement on paper and access to a whiteboard where they could design
a solution. They were asked to produce the user interface (UI), a high-level design, and a
high-level implementation. The design sessions ran from 1 to 2 hours. The audience for
the design was listed in the problem statement as a team of software developers whose
competency level could be compared to a basic computer science or software engineering
undergraduate degree holder. Each team was debriefed at the end of their design session.

Our analysis was conducted on the videos of the three teams, each of which depicts a
pair of professional software designers designing the traffic signal simulation. Summary
information about the videos is presented in Table 10.1. The transcripts of the designers’
discussion were also analyzed. Our approach is rooted in discourse analysis where we
examine the videos, code the transcriptions, and analyze the coding. In prior related work,
Robillard et al. (1998) used protocol analysis to build a cognitive model, devise a hierarchi-
cal coding scheme, and look at the influence of individual participant roles (d’Astous and
Robillard 2001). We concentrate on finding the design activities and strategies that the
designers used to address the requirements.

Typos, inconsistencies, or omissions between the videos and the transcripts were fixed
prior to analyzing the videos. For example, if the transcript stated “[inaudible]” but we were
able to recognize the spoken word from the video, the transcript was updated with the
corrected text. There were also instances where the transcript changed the meaning of the
spoken sentence completely. For example, on page 5 of the Adobe transcript (at 0:14:14.1),
Male 2 uses the word “interface” which is transcribed as “beginner phase.” Such incorrect
transcriptions were also fixed. For those cases where we were not able to hear the speech,
we left the text as inaudible. The counts of inaudible text are also shown in Table 10.1.
Furthermore, additional time stamps for periods of silence greater than 20 seconds were
introduced into the transcripts.

10.2.2 Activity and requirement Coding

After reviewing all three video sessions, two of the authors jointly developed two sets of
codes that can be attributed to the speech and actions in the design sessions. The first set of
codes identifies the requirements from the problem domain that the designers addressed.
The second set of codes corresponds to various kinds of software engineering activities
that the designers engaged in during the sessions. These codes are used during the tran-
script annotation process.

tABLe 10.1 Video Information

Video Number of Words Total Time
Total Number of

Inaudible
Adobe 10,043 1 hour 52 seconds 36
AmberPoint 12,328 1 hour 53 seconds 25
Intuit 5,917 ~1 hour 19

AU: Please check
that the edit made
to the sentence
‘For the cases...
inaudible’ retains
the intended
meaning.

K14386_C010.indd 156 15/05/13 7:30 PM

Identifying and Analyzing Software Design Activities ◾ 157

As the designers conversed, the main topic of conversation was the problem given.
Their discourse can be categorized into different parts of the software development pro-
cess, including requirements, analysis, design, and implementation. For each of these
parts, specific artifacts and parts of artifacts were discussed, including use cases, actors,
objects, entity–relationship (ER) or class diagrams, control and data flow, data structures,
patterns, and architecture. The different teams of designers used different aspects of the
design process with varying degrees of detail. From the problem statement, we first iden-
tified a set of basic requirements and assigned them a code. The fine-grained require-
ments identified are shown in Table 10.2.

Additionally, an examination of the videos and transcripts was performed to define a set
of activities in which the designers engaged. We differentiated between two categories of
activities: verbal and nonverbal. All speech belongs to the verbal category, while the non-
verbal activities include drawing, reading, writing, silence, and analyzing the whiteboard.
We also identified and annotated the activities that were irrelevant to the design process.
For example, in the Adobe video there was a 2-minute break with no activity due to one of
the designers leaving the room.

The verbal category consists of activities related to the design process and miscella-
neous interpersonal communication, shown in Tables 10.3 and 10.4, respectively. The ver-
bal activities related to the design process in Table 10.3 map to the engineering activities of
requirements, analysis, design, and implementation. The activities presented in Table 10.4

tABLe 10.2 Requirement Codes Identified from the Problem Statement

Code Description
map_roads_intersect Map should allow for different arrangement of intersections
road_len Map should allow for roads of varying length
intersect Map should accommodate at least six intersections if not more
light_seq Describe and interact with different light sequences at each intersection
set_light_timing Students must be able to describe and interact with different traffic light timing

schemes at each intersection
set_lights The current state of the lights should be updated when they change
left-hand_turn The system should be able to accommodate protected left-hand turns
no_crash No crashes are allowed
sensor_option Sensors detect car presence in a given lane
sensors_light A light’s behavior should change based on input from sensors
simulate Simulate traffic flows on the map based
vis_traffic Traffic levels conveyed visually to the user in real time
vis_lights The state of traffic lights conveyed visually to the user
spec_density Change traffic density on any given road
alter_update Alter and update simulation parameters
observe Observe any problems with their map’s timing scheme and see the result of their

changes on traffic patterns
wait_time Waiting is minimized by light settings for an intersection
t_time Travel time
t_speed Travel speed for cars

AU: In the text
‘simulate traffic
flows on the map
based’, the phrase
‘map based’ is
a little unclear.
Please rewrite if
possible.

K14386_C010.indd 157 15/05/13 7:30 PM

158 ◾ Software Designers in Action: A Human-Centric Look at Design Work

include general conversational aspects such as consulting, asking and answering ques-
tions, and agreeing or disagreeing with the other participant.

The nonverbal activities are mainly related to reading, drawing or writing on the white-
board, and analyzing the information on the whiteboard. These activities are shown in
Table 10.5 and include reading the requirements; drawing pictures, UIs, and diagrams;
and writing the code structure. While viewing the videos, we decided to include a separate
code for analyzing the whiteboard as a nonverbal activity because this activity occurred
with sufficient frequency. The following sections describe how the XML transcripts were
created and how the annotations were performed.

10.2.3 transcript Annotation

The transcripts were annotated with the requirement and activity codes identified in the
previous section. First, the time-stamped events from the simple text-based transcript were
converted into an XML format. The events were then annotated with the codes for ver-
bal and nonverbal activities by reading the transcript and reviewing the videos, respec-
tively. The result is an annotated XML transcript with activity and requirement codes as

tABLe 10.3 Verbal Activity Codes Related to the Design Process

Verbal Code Description
v_asu Making assumptions about the requirements
v_req_new Identifying other new requirements not specified in the design prompt
v_UC Define/refine use cases
v_DD Define/modify the data dictionary/domain objects
v_DD_assoc Add associations to domain objects
v_DD_attrib Add attributes to domain objects
v_class Adding/modifying a class
v_class_attrib Adding/modifying a class attribute
v_class_ops Adding/modifying a class operation
v_class_rel Adding/modifying a class relationship
v_ER Work on the ER diagram
v_arch Identify architectural style. Identify design patterns
v_UI Defining/modifying the UI
v_DS Identifying data structures
v_code_logic Specific implementation logic. Includes specific algorithms used, data flow, and

control flow
v_code_structure Designing code structure

tABLe 10.4 Verbal Activity Codes Related to Interpersonal Communication

Miscellaneous Code Description
v_consult Consulting with other designers, asking questions, answering questions. No

distinction is made between who asked or who answered the question.
v_agree Agreement.
v_planning Planning. This activity involves one or both designers deciding on the next step of

the design process.
v_justify Justification for a certain design decision.

K14386_C010.indd 158 15/05/13 7:30 PM

Identifying and Analyzing Software Design Activities ◾ 159

metadata. An example of an event element is given in Figure 10.1 in nonbolded font. Each
such event element corresponds to one time-stamped event. The XML element records the
time down to a tenth of a second, a label for which participant was speaking, the number
of inaudible tags in the text, and the transcription of the designer’s speech.

Annotations were then added to the generated transcript based on a manual analysis of
the text and video. As can be imagined, just entering the annotations is very labor inten-
sive and prone to errors. To help alleviate this, we developed a custom annotation tool,
TransAnn, to simplify the process of entering the annotations. A screenshot of TransAnn
is shown in Figure 10.2.

tABLe 10.5 Nonverbal Activity Codes

Nonverbal Code Description
nv_read Initial reading of problem statement.
nv_revisitreq Revisit requirements by rereading the design prompt.
nv_analyze_board Both designers analyze the whiteboard. This is accompanied by nv_silent

or other activity codes where appropriate.
nv_drawpic Draw a picture.
nv_UC_draw Draw/modify use case.
nv_CD_draw Draw/modify class diagram.
nv_ER_draw Draw/modify an ER diagram.
nv_UI_draw Draw/modify a sketch of the UI.
nv_notes Writing notes or rules.
nv_code Writing code structure.
nv_silent Silent. Usually combined with one or more of the above codes.

FIgure 10.1 XML format for an event in the video. The nonbolded text was generated from the
original text-based transcript that associates each sentence with the time spoken, the speaker, and
any inaudible words or phrases. The bolded text shows the added annotations to the transcript that
decomposes sentences into phrases and includes requirement codes, activity codes, and linked still
frames.

K14386_C010.indd 159 15/05/13 7:30 PM

160 ◾ Software Designers in Action: A Human-Centric Look at Design Work

The process of annotating was performed in the following manner (see Figure 10.3 for
the structure of the XML annotations). First, each event (time stamp) was associated with
a sentence. Each sentence consisted of one or more phrases. Each phrase was coded with
one or more activity codes. Some phrases did not fit into any activity and were not coded.
The resulting set of codes for the sentence is the union of the codes of all phrases in that
sentence. Each sentence was additionally annotated with requirement codes, and a relevant

FIgure 10.2 XML transcript annotation tool TransAnn was created to enable the tagging of
events with activity and requirements codes.

Timestamp Sentence

Phrase
Activity

Verbal

Misc

Nonverbal

Requirement
- Hr
- Min
- Sec
- Sec_tenth
- Person
- Num_inaudible

- Image - Code

- Code

FIgure 10.3 Class diagram for the annotated XML structure.

K14386_C010.indd 160 15/05/13 7:30 PM

Identifying and Analyzing Software Design Activities ◾ 161

image such as a class diagram or a still frame from the video (if available). An activity code
based on key words used in the phrase was also assigned. These key words (in the prob-
lem and the solution domains) were identified during the initial review of the videos. The
annotation decision process was done manually for each time stamp using the annotation
tool. An example of the annotated XML is shown in Figure 10.1.

The key words we identified can also be used to query the XML transcripts and this is
left as a future exercise. For example, one query could be, “When did the first instance of
the word queue occur?” The key word queue is part of the solution domain. The key word
set also includes similar-word mappings. For example, the words “signal” and “light” mean
the same thing in this domain context. We do not list the key words here however; they are
implicit in the phrases that are annotated. Additionally, since we do not lose any informa-
tion in the XML annotation process, we can easily query the XML document for these key
words.

Some events and activity codes were inserted manually into the XML transcript, specifi-
cally events having to do with silence and reading activities, the nonverbal activity codes
nv_silent and nv_read, respectively. Events for both of these were added before the first
utterance, that is, before the first entry in the transcript since the designers started the
session by reading the problem statement. In the Intuit team video, time stamps were also
added for long periods of silence because this was unique to their interaction.

Even with the annotation tool, the analysis of the videos and transcripts and their anno-
tation were quite time consuming as it took 30, 32, and 15 hours to code and annotate
the Adobe, AmberPoint, and Intuit sessions, respectively. One of the authors annotated
the Adobe video session and another author annotated the AmberPoint and Intuit video
sessions. Initially, both annotators worked together to agree on a common coding rules
convention. Other challenges included such things as when one designer was drawing and
the other was talking, which occurred quite frequently. These instances were put into the
same event. Since each video was coded by only one person, we did not calculate an inter-
coder reliability measure (Artstein and Poesio 2008). However, the two coders consulted
each other on coding that seemed unclear and they reached a consensus, which reduced
the threat to the validity of the coding scheme. The fully annotated XML transcripts were
used for subsequent analyses, queries, and visualizations.

10.2.4 Visualization

In order to help study and further analyze the data, a time line presentation for the anno-
tated XML transcripts is used. Discussion and activities are visualized as a time line matrix
in which actions and speech are mapped to the event codes described earlier. Examples of
engineering activities are shown in Figures 10.5 through 10.7. The duration of the session
is shown on the x axis divided into 5-minute chunks. The activities and speech are colored
blocks indicating the presence duration of participation. The color of the block indicates
the speaker or actor engaging in the activity or requirement.

To generate the visualization, we processed the XML transcripts via a suite of Python
scripts, extracting each event and associating it with both a requirement code (from Table
10.2) and an activity code (from Tables 10.3 through 10.5). Recall that events are frequently

AU: The text
‘presence duration
of participation’
is a little unclear.
Please rewrite
if possible. Can
‘presence’ be
deleted?

K14386_C010.indd 161 15/05/13 7:30 PM

162 ◾ Software Designers in Action: A Human-Centric Look at Design Work

annotated with multiple activity and requirement codes. Events associated with each code
are ordered sequentially by start time. Note that the transcripts are structured so that there
are no overlapping time segments for a single event. In the event that an overlap does
occur, the most recent activity simply “interrupts” the previous one.

Each of these mappings (event-to-activity and event-to-requirement) is stored in a time
line file that describes the sequence of events associated with each code. A second Python
script renders the time line file into the scalable vector graphics (SVG) format. These images
can then be rendered in a browser or converted to bitmap graphics for manual inspection.

To further improve readability, we manually ordered the y axis of the time lines in the source
data sets. This ordering attempts to group logically related activities. We also inserted missing
activity or requirements codes with an empty time line. These modifications are intended to
facilitate visual comparisons between design sessions. For example, one design team might not
have touched on a specific requirement (thus not appearing on the time line), while another
team did. A second set of time lines was generated in which the activity and requirement codes
were sorted such that the most engaged activity or the most addressed requirement would
appear at the top of the matrix. We refer to these as the sorted time line matrices.

10.3 reSuLtS AND ANALySeS
In this section, we present selected time line matrices generated from the data analysis.
The fully annotated XML transcripts and the time line matrices (including sorted matri-
ces) are published online.* Figure 10.4 depicts the time line matrix for requirements
addressed in the Adobe session. From this matrix, we can see that the Adobe team was
most actively engaged in addressing problems related to the intersections (intersect and
map_roads_intersect) and the altering or updating of simulation parameters (spec_density,
alter_update, and t_speed).

Figure 10.5 depicts the time line matrix for engineering activities in the Adobe session. It
is evident from this diagram that, early on, these designers spent time constructing the data
dictionary (v_DD_*), use cases (v_UC and nv_UC_draw), and class model for the problem
(v_class_*). They spent a great deal of time discussing code logic (v_code_logic) even while
they were building the class model. They were also consistent in analyzing the whiteboard
(nv_analyze_board), after designing the class structure and the UI (nv_UI_draw and v_UI).

The next sections attempt to address the research questions we posed in Section 10.1. From
the annotated transcripts and their time line matrices, we can make a number of observa-
tions and comparisons about the processes and strategies employed by each design team.

10.3.1 Activity Analysis

Our first research question (RQ1) seeks to determine the types of activities that the
designers engage in while solving a problem. The mapping and visualization of phrases
to activity codes directly supports answering this question. The types of activities that the
designers engage in map clearly to the main phases of the software development, such as
requirements, analysis, design, and implementation (see Table 10.6). This mapping was not

* Annotated transcripts and time line visualizations are published online at http://www.sdml.info/design-workshop.

AU: Please check
that the edits made
to the sentence ‘It
is... *).’ convey the
intended meaning.

K14386_C010.indd 162 15/05/13 7:30 PM

Identifying and Analyzing Software Design Activities ◾ 163

0:
00

:0
0

0:
00

:0
0

0:
05

:0
0

0:
05

:0
0

0:
10

:0
0

0:
10

:0
0

0:
15

:0
0

0:
15

:0
0

0:
20

:0
0

0:
20

:0
0

0:
25

:0
0

0:
25

:0
0

0:
30

:0
0

0:
30

:0
0

0:
35

:0
0

0:
35

:0
0

0:
40

:0
0

0:
40

:0
0

0:
45

:0
0

0:
45

:0
0

0:
50

:0
0

0:
50

:0
0

0:
55

:0
0

0:
55

:0
0

1:
00

:0
0

1:
00

:0
0

1:
05

:0
0

1:
05

:0
0

1:
10

:0
0

1:
10

:0
0

1:
15

:0
0

1:
15

:0
0

1:
20

:0
0

1:
20

:0
0

1:
25

:0
0

1:
25

:0
0

1:
30

:0
0

1:
30

:0
0

1:
35

:0
0

1:
35

:0
0

1:
40

:0
0

1:
40

:0
0

1:
45

:0
0

1:
45

:0
0

1:
50

:0
0

1:
50

:0
0

m
ap

_r
oa

ds
_i

nt
er

se
ct

ro
ad

_l
en

in
te

rs
ec

t
lig

ht
_s

eq
se

t_
lig

ht
_t

im
in

g
se

t_
lig

ht
s

le
ft-

ha
nd

_t
ur

n
no

_c
ra

sh
se

ns
or

_o
pt

io
n

se
ns

or
s_

lig
ht

sim
ul

at
e

vi
s_

tr
affi

c
vi

s_
lig

ht
s

sp
ec

_d
en

sit
y

al
te

r_
up

da
te

ob
se

rv
e

w
ai

t_
tim

e
t_

tim
e

t_
sp

ee
d

FI
g

u
r

e
10

.4

Re
qu

ir
em

en
ts

 a
dd

re
ss

ed
 d

ur
in

g
th

e
A

do
be

 s
es

sio
n.

 E
ve

nt
s

ar
e

co
lo

re
d

bl
oc

ks
 in

di
ca

tin
g

th
e

du
ra

tio
n

of
 th

e
pa

rt
ic

ip
at

io
n,

 w
ith

 th
e

co
lo

r o
f t

he
 b

lo
ck

 in
di

ca
tin

g
th

e
sp

ea
ke

r.

K14386_C010.indd 163 15/05/13 7:30 PM

164 ◾ Software Designers in Action: A Human-Centric Look at Design Work

0:
00

:0
0

0:
00

:0
0

0:
05

:0
0

0:
05

:0
0

0:
10

:0
0

0:
10

:0
0

0:
15

:0
0

0:
15

:0
0

0:
20

:0
0

0:
20

:0
0

0:
25

:0
0

0:
25

:0
0

0:
30

:0
0

0:
30

:0
0

0:
35

:0
0

0:
35

:0
0

0:
40

:0
0

0:
40

:0
0

0:
45

:0
0

0:
45

:0
0

0:
50

:0
0

0:
50

:0
0

0:
55

:0
0

0:
55

:0
0

1:
00

:0
0

1:
00

:0
0

1:
05

:0
0

1:
05

:0
0

1:
10

:0
0

1:
10

:0
0

1:
15

:0
0

1:
15

:0
0

1:
20

:0
0

1:
20

:0
0

1:
25

:0
0

1:
25

:0
0

1:
30

:0
0

1:
30

:0
0

1:
35

:0
0

1:
35

:0
0

1:
40

:0
0

1:
40

:0
0

1:
45

:0
0

1:
45

:0
0

1:
50

:0
0

1:
50

:0
0

v_
as

u
v_

re
q_

ne
w

nv
_r

ea
d

nv
_r

ev
isi

tr
eq

v_
U

C
nv

_U
C

_d
ra

w
v_

D
D

v_
D

D
_a

ss
oc

v_
D

D
_a

tt
rib

v_
cl

as
s

v_
cl

as
s_

at
tr

ib
v_

cl
as

s_
op

s
v_

cl
as

s_
re

l
nv

_C
D

_d
ra

w
v_

ER
nv

_E
R_

dr
aw

v_
ar

ch
v_

U
I

nv
_U

I_
dr

aw
v_

co
de

_l
og

ic
v_

D
S

v_
co

de
_s

tr
uc

tu
re

nv
_c

od
e

nv
_d

ra
w

pi
c

nv
_a

na
ly

ze
_b

oa
rd

nv
_n

ot
es

nv
_s

ile
nt

v_
co

ns
ul

t
v_

ju
st

ify
v_

ag
re

e
v_

pl
an

ni
ng

FI
g

u
r

e
10

.5

En
gi

ne
er

in
g

ac
tiv

iti
es

 e
ng

ag
ed

 in
 d

ur
in

g
th

e
A

do
be

 s
es

sio
n.

 E
ve

nt
s

ar
e

co
lo

re
d

bl
oc

ks
 in

di
ca

tin
g

th
e

du
ra

tio
n

of
 th

e
pa

rt
ic

ip
at

io
n,

w

ith
 th

e
co

lo
r o

f t
he

 b
lo

ck
 in

di
ca

tin
g

th
e

sp
ea

ke
r.

K14386_C010.indd 164 15/05/13 7:30 PM

Identifying and Analyzing Software Design Activities ◾ 165

determined a priori, rather it was observed during the analyses of the design sessions. The
main phases are shown circled in the time line matrices of Figures 10.6 (Intuit activities)
and 10.7 (AmberPoint activities).

We observed that the sequence and iteration of these steps were different for the differ-
ent teams. The AmberPoint team spent a lot of time designing the UI, whereas the Adobe
and Intuit teams spent more time designing the object model. The AmberPoint team
engaged in more verbal activity (448 events) compared to the Adobe team (414 events).
The Intuit team finished in half the time of the other teams and had the least verbal activ-
ity. The participants from only one team (AmberPoint) discussed aspects of verification
or validation with regard to their solution. Figures 10.6 and Figure 10.7 group together

tABLe 10.6 Activity Codes Mapped to Phases of a Traditional Software Engineering Process

Phase Activities
Requirements v_asu, v_req_new, nv_read, nv_revisitreq, v_UC, nv_UC_draw
Analysis v_DD, v_DD_assoc, v_DD_attrib
Design v_class, v_class_attrib, v_class_ops, v_class_rel, nv_CD_draw, v_ER, nv_ER_draw,

v_arch, v_UI, nv_UI_draw
Implementation v_code_logic, v_DS, v_code_structure, nv_code, nv_drawpic, nv_analyze_board,

nv_notes, nv_silent

0:00:00

0:00:00

0:05:00

0:05:00

0:10:00

0:10:00

0:15:00

0:15:00

0:20:00

0:20:00

0:25:00

0:25:00

0:30:00

0:30:00

0:35:00

0:35:00

0:40:00

0:40:00

0:45:00

0:45:00

0:50:00

0:50:00

0:55:00

0:55:00

v_asu
v_req_new

nv_read
nv_revisitreq

v_UC
nv_UC_draw

v_DD
v_DD_assoc
v_DD_attrib

v_class
v_class_attrib

v_class_ops
v_class_rel

nv_CD_draw
v_ER

nv_ER_draw
v_arch

v_UI
nv_UI_draw

v_code_logic
v_DS

v_code_structure
nv_code

nv_drawpic
nv_analyze_board

nv_notes
nv_silent

v_consult
v_justify
v_agree

v_planning

use cases

domain model

code logic

class diagram

FIgure 10.6 Time line matrix of activities for the Intuit session shows actions and speech mapped
to various event codes. The events are colored blocks indicating the duration of the participation,
with the color of the block indicating the speaker. The use cases, domain model, class diagram, and
code logic are circled.

K14386_C010.indd 165 15/05/13 7:30 PM

166 ◾ Software Designers in Action: A Human-Centric Look at Design Work

0:
00

:0
0

0:
00

:0
0

0:
05

:0
0

0:
05

:0
0

0:
10

:0
0

0:
10

:0
0

0:
15

:0
0

0:
15

:0
0

0:
20

:0
0

0:
20

:0
0

0:
25

:0
0

0:
25

:0
0

0:
30

:0
0

0:
30

:0
0

0:
35

:0
0

0:
35

:0
0

0:
40

:0
0

0:
40

:0
0

0:
45

:0
0

0:
45

:0
0

0:
50

:0
0

0:
50

:0
0

0:
55

:0
0

0:
55

:0
0

1:
00

:0
0

1:
00

:0
0

1:
05

:0
0

1:
05

:0
0

1:
10

:0
0

1:
10

:0
0

1:
15

:0
0

1:
15

:0
0

1:
20

:0
0

1:
20

:0
0

1:
25

:0
0

1:
25

:0
0

1:
30

:0
0

1:
30

:0
0

1:
35

:0
0

1:
35

:0
0

1:
40

:0
0

1:
40

:0
0

1:
45

:0
0

1:
45

:0
0

1:
50

:0
0

1:
50

:0
0

v_
as

u
v_

re
q_

ne
w

nv
_r

ea
d

nv
_r

ev
isi

tr
eq

v_
U

C
nv

_U
C

_d
ra

w
v_

D
D

v_
D

D
_a

ss
oc

v_
D

D
_a

tt
rib

v_
cl

as
s

v_
cl

as
s_

at
tr

ib
v_

cl
as

s_
op

s
v_

cl
as

s_
re

l
nv

_C
D

_d
ra

w
v_

ER
nv

_E
R_

dr
aw

v_
ar

ch
v_

U
I

nv
_U

I_
dr

aw
v_

co
de

_l
og

ic
v_

D
S

v_
co

de
_s

tr
uc

tu
re

nv
_c

od
e

nv
_d

ra
w

pi
c

nv
_a

na
ly

ze
_b

oa
rd

nv
_n

ot
es

nv
_s

ile
nt

v_
co

ns
ul

t
v_

ju
st

ify
v_

ag
re

e
v_

pl
an

ni
ng

us
e

ca
se

s

do
m

ai
n

m
od

el

co
de

 lo
gi

c

cl
as

s d
ia

gr
am

us
er

 in
te

rf
ac

e

FI
g

u
r

e
10

.7

Ti
m

e
lin

e
m

at
ri

x
of

 a
ct

iv
iti

es
 fo

r
th

e
A

m
be

rP
oi

nt
 s

es
sio

n
sh

ow
s

ac
tio

ns
 a

nd
 s

pe
ec

h
m

ap
pe

d
to

 v
ar

io
us

 e
ve

nt
 c

od
es

. Th
e

ev
en

ts
 a

re

co
lo

re
d

bl
oc

ks
 in

di
ca

tin
g

th
e

du
ra

tio
n

of
 th

e
pa

rt
ic

ip
at

io
n,

 w
ith

 th
e

co
lo

r
of

 th
e

bl
oc

k
in

di
ca

tin
g

th
e

sp
ea

ke
r.

Th
e

us
e

ca
se

s,
do

m
ai

n
m

od
el

, c
la

ss

di
ag

ra
m

, c
od

e
lo

gi
c,

 a
nd

 U
I a

re
 c

irc
le

d.

K14386_C010.indd 166 15/05/13 7:30 PM

Identifying and Analyzing Software Design Activities ◾ 167

chunks of activity on the x axis, as shown by the circled areas. In Figure 10.6, we observe
that the designers discussed code logic (v_code_logic) starting at 20 minutes through to
the end of the session; however, it is important to see how the logic evolved. At 20 min-
utes, they were discussing the logic with respect to the data dictionary (as seen by the
overlapping domain model oval), whereas at 30 minutes, they had progressed to building
the class model. During the entire session, they focused on the requirements, referring
back to them at regular intervals.

Our second research question (RQ2) seeks to determine the design strategies or activity
sets used by the designers. Examining the distributions of the activities in the time line
matrix provides some insights into answering this question. We can determine the design
strategies or activity sets by asking the following subquestions. We address each of these
subquestions next.

RQ 2.1: Which design activity took the longest?

RQ 2.2: What was the sequence of activities for each session?

RQ 2.3: How many of the activities were interleaved?

RQ 2.4: Did the designers add additional requirements/features and make valid assump-
tions where appropriate?

The first five activities that took the most and least time are shown in Table 10.7. These
are the first five and last five in the sorted time line matrices. Three activities (v_code_logic,
v_consult, and v_UC) were common in all three sessions but they did not appear in the
same order. In other words, in all three sessions, decisions about the logic of the code, dis-
cussions of use cases, and interactions between the designers played major roles. Other top
time-consuming activities (RQ 2.1) included analyzing the whiteboard, drawing class dia-
grams, and talking about and drawing the UI (nv_analyze_board, nv_CD_draw, v_UI, and
nv_UI_draw, respectively). Silence was much more prevalent in the Intuit session, where
they spent the time analyzing the whiteboard.

tABLe 10.7 Top Five and Bottom Five Activities on which the Most and Least Time Was Spent

Adobe AmberPoint Intuit
Most time spent v_code_logic

nv_analyze_board
v_consult
v_UC
nv_CD_draw

v_UI
v_code_logic
nv_UI_draw
v_UC
v_consult

nv_analyze_board
v_code_logic
v_consult
nv_silent
v_UC

: : :
Least time spent nv_code

v_DD_assoc
nv_UC_draw
v_ER
nv_ER_draw

nv_CD_draw
v_arch
v_DS
v_code_structure
nv_code

v_req_new
nv_UC_draw
v_ER
nv_ER_draw
nv_UI_draw

Note: Activities in italic occurred in all sessions.

K14386_C010.indd 167 15/05/13 7:30 PM

168 ◾ Software Designers in Action: A Human-Centric Look at Design Work

The sequence of activities and the interleaving of those activities for each session var-
ied, which can be attributed to individual differences in approaches to problem solving,
expertise, or prior experiences. In order to analyze the sequence of activities (RQ 2.2), we
split the time line into quarters (see Table 10.8). For the Adobe and AmberPoint sessions,
each quarter was 30 minutes, while in the Intuit session each quarter was 15 minutes since
they took only an hour for the complete session. We excluded the top five activities in this
analysis in order to focus our attention on more specific tasks; the top five tasks were fairly
general activities and were common to all sessions.

For the Adobe session, the first quarter was spent identifying the objects in the system
(data dictionary and domain model) and drawing pictures of the road intersection. The
next quarter was spent revisiting the requirements (nv_revisitreq), use cases (v_UC), and
specifying the properties of the objects. In the third quarter, they concentrated on the UI
and use cases. Finally, they focused on drawing the unified modeling language (UML)
class diagram and writing the structure of the code.

For the AmberPoint session, the first quarter was spent talking about the UI, drawing pic-
tures of the UI, and introducing domain objects and use cases. The second quarter focused
much more on the UI with some discussion about the use cases and scenarios. The third quar-
ter also focused on the UI and use cases. Finally, in the last quarter, they drew an ER diagram.

For the Intuit session, the first quarter was spent identifying domain objects and drawing
pictures. In the next quarter, they continued with long periods of silence. The focus of the next
quarter was on drawing a diagram, specifying attributes, relationships, as well as use cases. In
the final quarter, use cases were discussed, including some discussion about the UI.

Observing the activity chart for Adobe in Figure 10.5, we get a visual indication of
the types of interleaved activities in each quarter (RQ 2.3). The interleaved activities are
often related. For example, in the Adobe session, when they talked about the UI, they also
discussed user interaction (use cases). The activities of drawing pictures and identifying
domain objects were also interleaved in all three sessions. This is evidence that drawing a

tABLe 10.8 Sequence of Main (Not Necessarily Interleaved) Activities Across Time Shown in
30-minute Increments (15-minute Increments for Intuit)

Interval Activities
Adobe 30 minutes Identifying objects, drawing pictures

1 hour Attributes of objects, revisiting requirements, use cases
90 minutes UI and use cases
2 hours UML class diagram, code structure

AmberPoint 30 minutes Drawing and talking UI, identifying objects, use cases
1 hour Drawing UI, use cases, scenarios
90 minutes UI and use cases
2 hours UI and ER diagram

Intuit 15 minutes Identifying objects, drawing pictures
30 minutes Identifying objects, drawing pictures, silence
45 minutes Drawing diagram attributes and relationships, use cases
1 hour Use cases, domain objects, UI

K14386_C010.indd 168 15/05/13 7:30 PM

Identifying and Analyzing Software Design Activities ◾ 169

visual representation actually helps in identifying the data dictionary and conveying the
thought process to the designers. In the Adobe session, the logic of the code was discussed
almost consistently throughout and hence it interleaved the most with all other activities.

Next, we address RQ 2.4: coming up with new requirements and making valid assump-
tions. With respect to coming up with new requirements (v_req_new), the AmberPoint
team did this more than the Adobe team, while the Intuit team addressed the subject very
little. In the Adobe session, one of the new requirements was the ability to resize the simu-
lation window. We consider this to be an important feature of the UI and the ability of the
team to think ahead in terms of simulation usability.

In all three design sessions, assumptions (v_asu) were made about the requirements.
For example, in the Adobe session, the assumption was made that roads have two lanes
to address the left-hand turn requirement. The Adobe and AmberPoint teams made more
assumptions than the Intuit team, some of which were critical to moving the design for-
ward. One prevalent behavior in the Adobe session was to concentrate on the current topic
and if something was not clear or if they had trouble with it, they went on to the next point
and returned to it at a later stage. This observation demonstrates the iterative process of
design.

10.3.2 requirements Analysis

We now address RQ3: whether the designers took into account all or only some of the
requirements. The answer can be determined from the annotations for the requirements in
the transcript. For example, the requirements coverage over time for the Adobe session is
presented in Figure 10.4. Similar time line matrices showing the requirements coverage for
the AmberPoint and Intuit sessions can be found on our companion website. Furthermore,
we can determine which requirements were discussed most frequently (in terms of the
amount of time spent). There might be a connection between the time taken for a require-
ment and the inherent complexity involved. However, a requirement that was never dis-
cussed is not necessarily less complex or easy. Due to the lack of a gold standard, we do not
relate completeness with quality.

The top and bottom five requirements that took the most time and the least time are
shown in Table 10.9. Three requirements (intersect, alter_update, and light_seq) were com-
mon in all three sessions but did not appear in the same order. The intersect requirement
dealt with the approach used to describe and represent the intersection of the roads. It also
included constraints such as no one-way roads or T-junctions.

In the Adobe and Intuit sessions, the intersection was the top requirement discussed.
Since the AmberPoint session focused more on the UI, their top activity shows up as
alter_update. This requirement involves interaction by the student using the software (as
indicated in the problem statement), and deals with setting simulation parameters and
updating the simulation (see Table 10.2). Finally, the light_seq requirement was common
but all teams spent the least time on it: a scheme for updating the lights.

The Intuit and AmberPoint sessions both discussed the wait_time requirement, which
states that ideally the wait time needs to be minimized. This was the sixth most talked
about activity for the Adobe session. The Intuit team did not pay much attention to this

K14386_C010.indd 169 15/05/13 7:30 PM

170 ◾ Software Designers in Action: A Human-Centric Look at Design Work

nonfunctional requirement. Since they finished earlier than the other two teams, they
might have glazed over nonfunctional requirements as well as some functional require-
ments as stated in the following text.

The Adobe session addressed all the requirements of the design problem. The AmberPoint
session failed to address the t_time requirement; however, they did address the related
requirement t_speed (seventh highly discussed requirement). The Intuit session did not
address the no_crash, vis_lights, and observe requirements. The vis_lights requirement
states that the state of the lights should be visually conveyed to the user. The observation
(observe) requirement deals with the students observing problems with traffic patterns and
timing schemes. Since the Intuit team did not touch the UI aspect in detail, they missed
these requirements. The requirements distribution across time can be compared side by
side (or overlaid) with the activity distribution across time, to determine the activities
involved to satisfy a given requirement. We discuss some instances of this next.

In the Adobe session, the first 10 minutes of the session was spent on the intersect
requirement, which involved a lot of consultation between the designers as well as the
identification of domain objects. The intersect requirement was revisited after a period of
time, but then the designers described the objects and their properties in greater detail
and even started sketching out a preliminary UML class diagram. We also see that the
left-hand_turn requirement was interleaved with a discussion of the logic involved in its
implementation.

In the AmberPoint session, the intersect requirement was talked about intensively in the
second part of their discussion for ~20 minutes, which also overlapped with drawing an
ER diagram. The first part of the session dealt with traffic light timing schemes (set_light_
timing), which maps to the nonverbal activities of talking or drawing the UI (nv_UI_draw
and v_UI) and discussing use cases and code logic. During the middle of the session, they
discussed the altering of the simulation parameters (alter_update) for ~20 minutes, which
maps nicely to analyzing the whiteboard, defining use cases, and discussing code logic.
It was also interesting to note that they came up with new requirements (building mul-
tiple simulations and measuring traffic complexity) during the analysis of the alter_update
requirement.

tABLe 10.9 Top Five and Bottom Five Requirements on Which the Most and Least Time Was Spent

Adobe AmberPoint Intuit
Most time spent intersect

alter_update
map_roads_intersect
left-hand_turn
spec_density

alter_update
map_roads_intersect
set_light_timing
intersect
wait_time

intersect
set_lights
alter_update
left-hand_turn
set_light_timing

: : :
Least time spent vis_lights

light_seq
no_crash
sensor_option
t_time

simulate
light_seq
set_lights
road_len
t_time

light_seq
no_crash
vis_lights
observe
wait_time

Note: Requirements in italics occurred in all sessions.

K14386_C010.indd 170 15/05/13 7:30 PM

Identifying and Analyzing Software Design Activities ◾ 171

In contrast, the Intuit session’s talk about the intersect requirement spread through-
out the session for a total of ~20 minutes. This requirement maps to creating use cases, a
domain model, and a class diagram; analyzing and drawing pictures on the whiteboard;
and code logic. In the beginning, they discussed updating the current state of the lights
(set_lights) simultaneously with the intersect requirement. These requirements map to cre-
ating use cases and the domain model. Finally, they talked about altering the simulation
parameters (alter_update) for ~10 minutes at the end of the session, which maps to creating
a class diagram and discussing code logic. It is important to note that even though each
team worked in a different way, there was some commonality in the requirements met and
the activities discussed, as presented in the previous sections.

10.3.3 Interpersonal Communication

We also examine the interactions between the designers (RQ4), and their effects on
the resulting design. Again, we derive this information from the time line matrices by
examining the amount of time spent consulting, planning, questioning, or answering
each other. These are shown as the last five rows in the activity time series (Figures 10.5
through 10.7).

The Adobe session (see Figure 10.5) contained the most agreement between the two
designers. It also had consulting activity scattered almost uniformly. They engaged in a
lot of planning in the last three intervals and also justified their choices. The AmberPoint
team also consulted throughout their session with a lesser level of agreement between the
designers. They did much more planning almost at the very end of the session with justi-
fication provided for each decision made. The Intuit team also consulted throughout their
session and they were consistently in agreement. However, there were few justifications
made for their decisions and little planning involved. There were no silent episodes in
the Adobe or AmberPoint sessions, while the Intuit session had periods of silence spread
throughout. To conclude, we can hypothesize that planning, as well as the high degree
of agreement between the two designers of the Adobe session, played a significant role in
delivering the most detailed design that covered the most requirements.

10.3.4 Similarities and Differences in Design

We will briefly point out the similarities and differences between the approaches used
between the design teams (RQ5). The comparison of the sessions is based on the two main
deliverables asked for in the design problem: (1) the design interaction/UI and (2) the basic
structure of the code.

The Adobe team took a very structured approach to the problem. This can be seen from
the density of the activity graphs. They systematically planned what their next moves
would be and followed through. They designed both the interaction and the code struc-
tures. There was a lot of consulting and agreement between the designers. The AmberPoint
team focused on the UI and did produce the deliverable of “an interaction scheme for stu-
dents.” However, they did not spend any time on the structure of the code or even identify
associations between the main objects in the system. The Intuit team went through the
session very quickly. Their design activity time line matrix is much less dense compared to

K14386_C010.indd 171 15/05/13 7:30 PM

172 ◾ Software Designers in Action: A Human-Centric Look at Design Work

the other two teams. While they did not design a UI or outline a code structure, they did
discuss the code logic (code_logic).

The problem that the designers were given was to complete enough of a design such
that a student who had recently graduated could implement it. The results of the sessions
for teams Intuit and AmberPoint did not achieve this. Conventional wisdom leads us to
believe that a software developer would be likely to produce a correct and conforming
implementation based on the design provided by the Adobe team because it gives the most
detail and covers the most requirements.

10.4 oBSerVAtIoNS
The three teams took very different approaches to problem solving. Based on the time
line matrices, we observed clusters that clearly correspond to the design process stages,
that is, requirements, business modeling, design, and implementation; which are shown
in Figures 10.6 and 10.7. Some of the observations based on the foregoing analysis are
as follows.

•	 The requirements and use cases were spread throughout the session.

•	 The data dictionary and the domain model were done at the beginning for the Adobe
and Intuit teams and were scattered throughout for the AmberPoint team.

•	 The class diagram/design model was discussed next by the Adobe and Intuit teams
while the AmberPoint team focused on the ER diagram.

•	 The discussion about the UI was done mostly in the second part of the design ses-
sions for the Adobe and Intuit teams, but it was scattered throughout the AmberPoint
session.

•	 Code logic/implementation was also scattered throughout the session for all teams.

Overall among the three teams, the most time was spent on the requirements: inter-
sect, alter_update, map_roads_intersect, and left-hand_turn. An average amount of time
was spent on sensor_option and sensor_light, and the least amount of time was spent on
light_seq.

Without a gold standard for the design, it is not possible to state which was the overall
best or worst design. However, we can make some general points. Two teams (Adobe
and Intuit) did a better job at the code logic and system design, while the third team
(AmberPoint) did a better job describing and outlining the UI. Curiously, only one team
(AmberPoint) discussed the aspects of verification or validation with regard to their
solution. We also observed that only two teams (Adobe and Intuit) identified the fact
that they had to deal with queues in a traffic simulation problem. We consider the queue
as an important part of the design of this system. AmberPoint did not mention this at all,
possibly due to a lack of prior experience with simulation systems. In other words, the
design teams with different experiences and backgrounds focused on different aspects
of the design.

K14386_C010.indd 172 15/05/13 7:30 PM

Identifying and Analyzing Software Design Activities ◾ 173

One open question is the relationship between the problem statement and the
design process. Did the object-oriented design process help or hinder the final design?
Also, did the domain affect the design? Note, the teams were asked to come up with a
high-level design, they were not specifically asked to come up with an object-oriented
design.

10.5 CoNCLuSIoNS AND Future Work
We presented an analysis of three design videos and their associated transcripts. Analyzing
video recordings is a time-consuming process and requires an organized approach. As
such, we needed to choose a guiding principle for our investigation and develop tools to
alleviate some of the manual drudgery. In order to support the analysis, we developed an
XML format for embedding dialogs and dialog metadata and we developed an annota-
tion tool to assist in the manual annotation of speech with metadata. We also presented a
means to visually compare the data with a time line matrix that was used to analyze and
draw inferences about transcribed and videotaped conversations.

We posed a number of research questions on how developers actually design and we
addressed them individually. We conducted a fine-grained analysis of the requirements
as well as the design activities engaged in by the designers. Another contribution was the
generation of various codes for both design and requirements (albeit problem specific). The
design codes, however, span across various domains and may be reused.

As future work, we plan to further develop the visualizations, and create an interactive
time line exploration matrix that supports drill-down capabilities and overlapping event
structures. We also plan to continue developing this method of dialog analysis and the
tools used to support it. We believe that a finer-grained analysis of these interactions is
both possible and valuable. We are also interested in using these analysis methods to evalu-
ate the effectiveness of certain problem-solving paradigms. This could provide a method of
empirically evaluating problem-solving strategies or mental models (Gentner and Stevens
1983) of software engineering and program comprehension.

reFereNCeS
Artstein, R. and M. Poesio (2008). Inter-coder agreement for computational linguistics. Computational

Linguistics 34(4): 555–596.
Bryant, A. and K. Charmaz, Eds (2007). Grounded Theory. Sage, Los Angeles, CA.
Curtis, B., H. Krasner, and N. Iscoe (1988). A field study of the software design process for large

systems. Communications of the ACM 31(11): 1268–1287.
d’Astous, P. and P. N. Robillard (2001). Quantitative measurements of the influence of participant

roles during peer review meetings. Empirical Software Engineering 6: 143–159.
Detienne, F. and F. Bott (2001). Software Design: Cognitive Aspects. Springer, London.
Friess, E. (2007). Decision-making strategies in design meetings. In CHI ’07 Extended Abstracts on

Human Factors in Computing Systems. ACM Press, New York, pp. 1645–1648.
Gee, J. P. (2005). An Introduction to Discourse Analysis. Routledge, New York.
Gentner, D. and A. L. Stevens, Eds (1983). Mental Models. Erlbaum, Hillsdale, NJ.
Guindon, R., H. Krasner, and B. Curtis (1987). Breakdowns and processes during the early activi-

ties of software design by professionals. In G. M. Olson, S. Sheppard, and E. Soloway (Eds),
Empirical Studies of Programmers: Second Workshop. Ablex, Norwood, NJ, pp. 65–82.

AU: Ref. Friess
2007: Please verify
page range.

AU: AU: Ref.
Guindon et al.
1987: Please verify
third author’s
name and page
range.

K14386_C010.indd 173 15/05/13 7:30 PM

174 ◾ Software Designers in Action: A Human-Centric Look at Design Work

Ko, A. J., B. A. Myers, M. J. Coblenz, and H. H. Aung (2006). An exploratory study of how devel-
opers seek, relate, and collect relevant information during software maintenance tasks. IEEE
Transactions on Software Engineering 32(12): 971–987.

Maia, A. C. P., C. J. P. de Lucena, and A. C. B. Garcia (1995). A method for analyzing team design
activity. In Proceedings of the Conference on Designing Interactive Systems. ACM Press, Ann
Arbor, MI, pp. 149–156.

Robillard, P. N., P. d’Astous, F. Détienne, and W. Visser (1998). Measuring cognitive activities in
software engineering. In International Conference on Software Engineering. IEEE Computer
Society, Washington, DC, pp. 292–299.

University of California, Irvine (2010). Studying professional software design. An NSF-Sponsored
International Workshop. University of California, Irvine, CA.

AU: Ref. Maia et al.
1995: Please verify
authors’ names,
publisher’s name
and page range.

AU: Ref. Robillard
et al. 1998: Please
verify publisher’s
name and location
and page range.

K14386_C010.indd 174 15/05/13 7:30 PM

