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ABSTRACT 
The paper summarizes the authors’ current research on supporting 
model-to-model traceability.  The authors present a graph 
theoretic definition of what they mean by models and traceability 
links.  This definition is realized by the use of XML technologies 
to represent the models and traceability links.  Practical means to 
represent different types of system models (e.g., source code and 
design) using XML are discussed.  Traceability links are also 
implemented using XML technologies in an efficient and scalable 
manner.  The evolution of the system, along with the traceability 
links, is supported by a fine-grained versioning technique.  This 
allows for versioning and differencing of specific elements of the 
models versus just lines or whole files.   

Categories and Subject Descriptors 
D.2.7.  [Software Engineering]: Distribution, Maintenance, and 
Enhancement – documentation, restructuring, reverse 
engineering, and reengineering. 

General Terms 
Design, Documentation 

Keywords 
Traceability, software evolution, maintenance. 

1. INTRODUCTION 
A software system is comprised of numerous artifacts.  For the 
most part, these artifacts are models of the system at some level of 
abstraction (e.g., requirements models, specifications, design 
models etc.).  We also view the source code as a model of the 
s ships 

between two models are realized via instantiation.  For example, 
an abstract-design model is realized as source code by a 
programmer.  Other types of relationships exist between the 
requirements model and the design and source models.  Parts of a 
design are relevant to some non-functional requirement or cross-
cutting concern.  Saving and representing these relationships 
between models allows one to understand what parts of one model 
related to another model.  The ability to trace back and forth 
between models, in the context of these relationships, is 
commonly viewed as a critical feature for the evolution and 
maintenance of large scale high quality software systems [5, 21]. 

Unfortunately these relationships between models, or traceability 
links, need to be evolved and maintained as the system evolves.  
Traceability links are costly to construct.  Initial sets of links can 
be constructed automatically via forward-engineering tools.  More 
likely in today’s commercial software development setting, these 
types of tools were not used.  Either traceability links can be (are) 
constructed manually or in conjunction with tools that assist in the 
recovery of links.  Unfortunately, these recovery tools are far from 
perfect and require manual tuning and assessment of generated 
links [3, 25].   

Given this we feel the only practical approach is to maintain and 
evolve the existing traceability links as the system evolves.  So the 
goal of our work is to develop a robust and flexible representation 
of model-to-model traceability links that is evolvable along with 
the system models.  Our approach uses an XML-based 
representation of both the models and the links.  Link evolution is 
supported by a fine-grained differencing approach that allows us 
to determine exactly what syntactic structures changed within a 
model.  Current differencing approaches work at the level of file 
or line.  Our approach allows one to work at any syntactic level 
(statement, function, class diagram, use case, etc.). 

In previous work [22] we presented methods for traceability link 
conformance using a hypertext model allowing complex linking as 
well as versioning of links.  The work presented here uses that as a 
starting point and extends to practical implementation issues.  
Here we are specifically interested in source code to class model 
traceability.  We are using an XML representation of the source-
code model that we’ve developed called srcML [10, 24].  srcML 
embeds XML tags concerning syntactic information into the 
source-code document while maintaining all of the original 
source.  Additionally we are developing an XML representation 
ystem (i.e., a concrete model).  Some of the initial relation
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representation that supports addressing and analysis of the model.  
This is opposed to XMI that is solely for UML model exchange.  
Our work on meta-differencing [9, 23] is then used to identify 
specific changes to determine what traceability links are involved.  

The paper is organized as follows.  First we present a set of 
definitions to clarify our terminology and meaning of traceability.  
We then discuss our representation of the models and links.  
Following that is a presentation of how we support evolution of 
the traceability links.  Related work is covered in the Section 5.  
Section 6 concludes the paper and presents future work. 

2. DEFINING TRACEABILITY 
The following set of definitions attempts to formalize a number of 
the concepts regarding model-to-model traceability.  We feel that 
a detailed description of our interpretation of the general 
traceability problem is required to compare our research with 
other related projects. 

Definition: A traceability link l is an edge between two system 
models M and N, where M ≠ N and l(Mj, Nk, D) where Mj and Nk 
are subsets of models M and N respectively.  D determines the 
directionality of the link which could be single or bi-directional 
along with undirected.  When directionality is present, ordering is 
done from left to right.   

Traceability links are n-ary and are defined for linking multiple 
source anchor nodes to multiple target nodes.  If directionality 
exists between multiple source or target nodes, it should be the 
same.  We cannot have one link going from left to right and 
another pointing from right to left for the same link node.   

The set of all traceability links of a system is L = {l1,l2,… lp}. 

Definition: A traceability link type, t denotes the type of a link.  
We can represent it as l(Mj,Nk,D)× t.  A link type could be causal, 
non-causal or navigational.  A causal link is always directional.  
Non-causal links and navigational links could be uni-directional 
or bidirectional.  Traceability links should support different types.  
If three types for the same link are needed, then three links with 
different types are created.  See Figure 1 for the basic types of 
links shown between a UML class model and a source code 
model. 

Definition: A model M is defined as a finite set of nodes, {m1, 
m2,…,mk} where each node corresponds to some distinct part of 
the model.  Anchors can be defined on nodes.  A node can 
participate in one or more anchors in a hypertext model.   

These nodes represent anchors in the terminology of hypermedia.  
A model is a document(s), set of diagrams (e.g., class model, use 
case model, etc), or source-code program.  A model is represented 
as a set of parts or components identified by the underlying 
definition of the model.  At this time, we view relationships 
between two parts of the same model to be a component of the 
model and not a traceability link.  A model is some sort of 
structured data.  For example, source code could be constructed 
into a source model.  Similarly, class design could be represented 
as a (structured) class model.   

Definition: A subset of a model is denoted by Mi, where Mi ⊆ M.  
It consists of a subset of the nodes present in M.   

Definition: A traceability graph is a directed graph, G = (V, L) 
with nodes V = |M| ∪ |N|, where M and N are system models.  L 

denotes the set of traceability links between M and N.  They are 
ordered pairs defined over subsets of M to subsets of N, i.e., L ⊆ 
2M × 2N.  As such the maximum number of traceability links is 2|M| 
* 2|N| and not just M*N. 

 

 
Figure 1 An example of different types of links between two 

models.  On the left is a source-code model and on the right is 
a class model.  Both models are connected graphs.  The 

traceability links are also represented as a connected graph 
between the models 

The conformance value of a link gives a confidence of how valid a 
given link is with regards to the conformance of the relationship 
between the two models described by the link.  This conformance 
rating denoted as CR is a derived attribute of a link.  It is 
dependent on the tool analyzing the links for conformance.   

The next section discusses the traceability framework and its sub-
systems.   

3. REPRESENTATION 
Our traceability representation is built on XML for both data 
representation and processing.  On the data side XML 
representations, e.g., XML, XLink, XPointer, etc., are used for 
both the models and the traceability links.  On the processing side 
XML tools and technologies, i.e., DOM, SAX, XSLT, etc., are 
used for creation, validation, and evolution of links.  This section 
describes the traceability framework in terms of the definitions 
given in the previous section.  Broad issues relating to our 
infrastructure will also be discussed.  For a specific example, 
traceability links between a UML class model and source code is 
used. 

3.1. Model Representation 
Models are represented in XML with no restrictions as to the 
content, organization, or schema.  This allows for full 
interoperability and flexibility of models in our approach 
including document-oriented models, e.g., DocBook, XHTML, 
etc. and data-oriented models, e.g., UML, ASTs, etc.  Specifically, 
there are no restrictions (such as those made in XML Schema) on 
the use of certain XML features, e.g., mixed content. 

The representation utilizes external links from-and-to the models.  
By using external links, no requirements are put on the schema of 
the models and as such the links and models are completely 
decoupled.  Storing links externally allows for the straightforward 
storage of many-to-many relationships.  It also allows for the 
creation of multiple link collections on the same models. 

Traceability to source code is important for full utilization of the 
artifacts used in actual software development.  Because the 
representation of source code is as plain text, an approach is 
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needed in our infrastructure to provide an XML view of source 
code.  Although many XML-based data-oriented representations 
exist, they do not provide full transparency to the original source 
code.  For this reason a document-oriented XML representation of 
source code, srcML, (which we have developed) is used.  In the 
srcML representation the source-code text is wrapped in XML 
elements.  This allows the original source-code document to be 
addressed and transformed in XML with no loss of information 
including comments, white space, etc. 

The infrastructure is not dependent on a srcML view of source 
code and any other model (including an AST-based model) can be 
used.  However, the use of srcML demonstrates how traceability 
to source-code text can be achieved.  In addition, it demonstrates 
how traceability can be achieved to non-XML documents whose 
original form must be preserved.  The srcML representation 
currently supports C, C++ and Java. 

3.2. Link Representation 
As discussed in the previous subsection, the model representation 
is completely separate from the link representation.  Since the 
system models are represented in XML, we leverage XPath to 
refer to addresses in the models forming a path between two or 
more models. 

XPath (the XML Path Language) can select nodes from an XML 
document regardless of how they are ordered in XML hierarchies.  
This provides a standard, semantically rich way of expressing 
locations in the models.  It provides pointer-like descriptions of 
locations, for example the XML element with id value of five has 
the expression *[@id='5'].  This also provides very intuitive 
physical description of the location, e.g., the first child of the 
second child of the root has the expression 1/2/1, along with a 
very semantically-expressive description of the location, e.g., the 
condition of the first if-statement of a function has the expression 
function/block/if/condition in srcML.  The exact form of XPath 
used depends on the semantics of the models involved and the 
method used to form the link. 

An outcome of this lack of restrictions is that the model semantics 
remain inside the model.  This allows for the use of links that are 
completely decoupled from the semantics of the models that they 
are linking.  A full set of link types can be created and supported, 
and then applied to multiple applications or to multiple models. 

The location addressing in the models is only part of the link 
representation.  The meta-data of the link, e.g., type, timestamp, 
id, etc, must be stored.  In addition the links must be collected.  In 
order to store this information XLink, the XML Linking 
Language, is used.  XLink specifies how to store the meta-data 
about the links.  It also describes the use of linkbases which are 
external (to the document) collections of links. 

One important piece of meta-data about a link is a timestamp 
which provides for the versioning of a link.  This can be directly 
stored as meta-data on the link.  A better solution would be to use 
a native XML database that provides for versioning.  In this case, 
the timestamp is external to the link.  This issue is still pending 
more investigation. 

3.3. Scalability 
Of great concern is the scalability of this framework.  First we are 
concerned with the amount of storage individually needed for the 

models.  The storage of the models is not an issue if they were 
originally stored in XML.  However, if model conversion to XML 
is required then this can become an issue.  Source code can be a 
particular problem since XML representations of source code can 
be hundreds of times larger than the original text.  However, the 
document-oriented approach taken with srcML does not have this 
side effect.  In practice we have observed an increase of only a 
single-digit multiple of the srcML over the original source code 
text.  If this modest increase in space is still a problem the source 
code can remain as text and the srcML can be generated as 
needed.  The srcML translator, src2srcml, can convert source-code 
in a text format to srcML in a stream-oriented (i.e., SAX) 
approach.  In practice we have seen the translator work at 11 
KLOC per second.  The entire Linux kernel containing 161MB of 
text can be translated to a srcML representation in twenty minutes. 

The storage of the links may create an issue depending on the 
number of links.  At a minimum each link will contain an XPath 
expression with space needed for the meta-data about the link.  An 
external linkbase using XLink is not designed for compactness.  
However the expressive nature of XPath provides some space 
efficiency since a single link can refer to many locations in a 
model. 

Large numbers of links also provides a potential time efficiency 
problem.  Applications such as validation may require traversal of 
large number of links.  In addition, it may be required to follow a 
link in reverse.  For example, for a given location in the source 
code it may be necessary to find which links point to it from the 
classML model.  For a large number of links this may be very 
time consuming.  However, our recent experience with the 
evaluation of XPath expressions on srcML has shown that this 
should not be a serious problem.  We evaluated the equivalent of 
eight links to every method of an entire source-code project (over 
4,000 methods), with the entire process taking under 30 seconds.  

3.4. Applications 
The creation, editing, and deletion of links require changes to the 
XML link representation.  Because of the use of XML format, this 
becomes a form of XML editing with applications built using 
standard XML tools, e.g., XSLT, DOM, SAX, etc. They may be 
made programmatically, e.g., as the result of analysis, or they may 
be made by user action, e.g., selection using a traceability 
selection tool. 

An application on traceability links can be applied at two levels.  
The lowest level works directly in the framework with no 
knowledge of the models, e.g., deletion of a link.  These 
applications are portable to other models.  At a higher level a tool 
can be written that uses knowledge of the models, e.g., validation. 

4. EVOLUTION 
The evolution of system models creates difficulties with respect to 
the maintenance of traceability links.  While a small number of 
outdated links may be tolerated, a high rate of change in the 
models increases the percentage of outdated links.  If the 
granularity of change is too large, the detection of outdated links 
will have too low a precision leading to the unnecessary 
elimination of valid links.  The inability to deal effectively with 
model changes is one of the most important problems facing 
traceability. 
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We see the fundamental problem to be the following: How does 
one detect that the validity of a link is suspect due to evolution of 
the system model?  This issue requires the examination of both the 
link and the change.  Each may have different levels of 
granularity.  The granularity of a link, in our representation, is 
determined by what types of XML subtrees the link can 
individually refer to.  For source code this can be elements such as 
file, class, method, statement, or use/definition of an identifier.  
The granularity depends on the method used to create the link.   

The granularity of change detection is at the level a difference can 
be detected.  This depends on the change identification 
mechanism and may be at a physical (e.g., file and line) or 
syntactic level (e.g., class, statement).  The granularity of change 
detection is also quite dependent on the efficiency of the 
algorithm.  Textual differencing determines physical differences 
between text as in the commonly used utility diff which produces 
physical differences in terms of lines and columns.  By applying 
the LCS (Longest Common Subsequence) [18] on the text in the 
lines of the file it is efficient and robust.  It can be applied to 
source code in any language and in any state, and to any text 
format.  However, it is line based and crosscuts syntactic structure.  
Semantic differencing detects changes to the computation of the 
entire program.  Heuristics are used since the problem in 
undecidable and computationally expensive.  One problem with 
semantic differencing is that differences can be detected even 
though a textual change has not been performed, e.g., a change to 
the type in the declaration of a variable. 

In order to support traceability, the granularity of the links and 
changes must match.  Textual links require textual change 
detection.  Syntactic links require syntactic change detection.  So 
for example change detection with a granularity of a method will 
unnecessarily detect changes for links that have a granularity of a 
statement in that method. 

For the complete support of traceability during evolution fine-
grained syntactic differencing is required.  The primary 
application of syntactic differencing has been with merging [26] 
as was done in [17] where the LCS was applied to parse-tree 
sequences.  However, this approach has difficulties with non-
language constructs, e.g., comments and preprocessor directives 
[16].  Recently an approach has been used on AST's generated 
from source code [29], however this approach has time 
complexity problems. 

Our work on this problem [9] has produced the concept of meta-
differencing, which provides an infrastructure for analysis of fine-
grained source code difference.  The infrastructure is built on an 
XML representation of multiple versions of a source-code 
document.  Utilizing XML tools allows the determination of fine-
grained syntactic differences, e.g., changes to individual 
statements, conditions, etc.  While the tool was originally 
developed specifically for source-code changes it can be applied 
to any XML document.  So meta-differencing of class models 
represented in XMI or classML can also be done.  The meta-
differencing tool also allows one to analyze the differences 
through queries.  For example, one can write a simple query to 
find all changes to loop conditionals or formal parameter lists.  

With this we can support evolution of links in conjunction with 
evolution of the models.  Consider a link from a class model to a 
source model.  The link is from a particular relationship in the 
class model and is reflected in a variety of statements in the 

source.  If the statements in the source code are changed, then the 
link is suspect and needs to be reevaluated and possibly modified. 

This leads us to a number of different types of changes that could 
occur all at different levels of granularity.  A physical-change is 
the detection of a change at the textual level.  A file-change is the 
detection of a change at the file level and causes all links to that 
file to be suspect.  This may be very imprecise and cause a large 
number of links to be suspect, even if a single statement is 
changed.  A line-change is changes to individual lines, e.g., the 
output of the utility diff.  While at a lower level of granularity, line 
changes cannot be easily compared to syntactic elements such as 
individual statements.  Further analysis is needed to determine 
whether the line changes occur in a particular element.  

A syntactic-change agrees in type with a syntactic link and is the 
detection of a change at the syntactic level.  A class-change is a 
good match if the syntactic-level link is also at a class.  However, 
the granularity difference is still too large if the link has a finer 
granularity and would cause all links to that class to be suspect.  
Lower levels, such as method-change or statement-change have 
the same issues, except the number of misidentified suspect links 
is smaller.  A sub statement-change is the change to part of a 
statement, e.g., condition, type or name change.  If the level of the 
link is lower-level, then the set of suspect links would be as 
minimal as possible.  Other elements that are not in a typical AST, 
e.g., white space, comments, preprocessor statements, etc., can 
also serve as the source/destination of a link and have differences 
detected to them. 

5. RELATED WORK 
The need for a framework to maintain the various dimensions of 
software development as they evolve is discussed in [31].  
Constraints are placed on the various dimensions to have the 
different dimensions of software consistent during development.  
An integration mechanism, based on constraints, keeps the 
different artifacts consistent.  In more recent work [30] elaborates 
on the methods used.  Class diagrams are represented in XMI and 
links to source code are set up.  The work by [1] on tracing of 
requirements to Use Cases aims at designing a custom toolkit that 
can be used with a requirements-management tool such as 
DOORS [11]. 

Egyed [12, 13] recognizes the separation of software models and 
source code and has a tool called TraceAnalyzer that makes use of 
test cases to generate trace information during program execution.  
Palmer [27] introduces traceability and enumerates steps to 
achieve traceability in a large complex software system.  He 
describes traceability management spanning across the software-
development cycle in order to uniquely identify links.   

Zisman et al. [36] use traceability rules for automatic generation 
and maintenance of traceability relations.  XML is used to 
describe rules and artifacts.  They define three types of traceability 
relations; overlaps, realizes and requires.  Traceability relations 
are built if the rules are satisfied.  They are only concerned with 
tracing different requirements artifacts to other artifacts.  
Spanoudakis and Zisman [34, 35] present a survey in managing 
inconsistencies in software models.  Requirements traceability 
using contribution structures as used in [15] keeps track of who 
contributed to which part of the requirements.  Leite et al. [20] 
describe a scenario-based framework as their traceability strategy.  
These scenarios are described in XML.  TOOR [28] is a tool used 
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to trace requirements in an object-oriented fashion and is based on 
a database-management system.  Huang [8] describes an approach 
to create traceability links between non-functional requirements, 
design, and code using design patterns as mediators.  Dynamic 
links are maintained as publish or subscribe relationships.   

The idea of relating hypertext [32] to traceability can be traced 
back to 1989 [4].  RayTracer [14] is a tool that is able to maintain 
traceability links.  It allows each user to create and maintain their 
links from data and design.  TraceM [33] is a framework that 
automates traceability relationships.  It converts implicit 
relationships that exist into explicit ones that are easier to 
comprehend and visualize.  Method names from source code are 
used to map from design to code.  Chimera [2] is an open 
hypermedia system supporting software-engineering tasks.  Links 
are considered to be first-class objects.  A view has a set of 
anchors in an object.  A link is a set of anchors in views.  Viewers 
display objects and the Chimera client manages links.  It supports 
n-ary links but there is no directionality defined in the linkage.  
Versioning is not incorporated either.   

Cimitile et al. [7] define a traceability relation that keeps track of 
links among object models along with information related to 
decisions as to why the link exists.  RETO [19], is a requirements-
engineering tool that supports traceability.  It stores a traceability 
rules catalog that defines strong and weak traceability 
relationships.  Rules are based on the type of conceptual model.   

Numerous impact analysis [6] methods have been proposed in the 
literature however, they do not directly address the issue of 
traceability.   

6. CONCLUSIONS & FUTURE WORK  
The approach presented here has a number of advantages with 
regards to interoperability and flexibility.  Using an XML 
representation for the software artifacts and models allows for 
linking models in any manner.  Elements in one model can be 
linked to any element, at any level of granularity, in another 
model.   

Translating models into an XML representation has proven to be 
relatively efficient.  Most UML tools export to XMI and this can 
be used directly or translated into other more problem-specific 
representations.  However, one must construct the translator.  In 
the case of source code we have already done this and have a 
robust and useable tool. 

Our approach to evolve the links along with the evolving models 
is to detect syntactic changes at the same level and type as the 
link.  As changes are made, the smallest set of links that are 
subject to change can then be examined. 
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