

An XML Based Approach to Support
the Evolution of Model-to-Model Traceability Links

Jonathan I. Maletic, Michael L. Collard, Bonita Simoes

Department of Computer Science
Kent State University

Kent Ohio 44242

{jmaletic, collard, bsimoes}@cs.kent.edu

ABSTRACT
The paper summarizes the authors’ current research on supporting
model-to-model traceability. The authors present a graph
theoretic definition of what they mean by models and traceability
links. This definition is realized by the use of XML technologies
to represent the models and traceability links. Practical means to
represent different types of system models (e.g., source code and
design) using XML are discussed. Traceability links are also
implemented using XML technologies in an efficient and scalable
manner. The evolution of the system, along with the traceability
links, is supported by a fine-grained versioning technique. This
allows for versioning and differencing of specific elements of the
models versus just lines or whole files.

Categories and Subject Descriptors
D.2.7. [Software Engineering]: Distribution, Maintenance, and
Enhancement – documentation, restructuring, reverse
engineering, and reengineering.

General Terms
Design, Documentation

Keywords
Traceability, software evolution, maintenance.

1. INTRODUCTION
A software system is comprised of numerous artifacts. For the
most part, these artifacts are models of the system at some level of
abstraction (e.g., requirements models, specifications, design
models etc.). We also view the source code as a model of the
s ships

between two models are realized via instantiation. For example,
an abstract-design model is realized as source code by a
programmer. Other types of relationships exist between the
requirements model and the design and source models. Parts of a
design are relevant to some non-functional requirement or cross-
cutting concern. Saving and representing these relationships
between models allows one to understand what parts of one model
related to another model. The ability to trace back and forth
between models, in the context of these relationships, is
commonly viewed as a critical feature for the evolution and
maintenance of large scale high quality software systems [5, 21].

Unfortunately these relationships between models, or traceability
links, need to be evolved and maintained as the system evolves.
Traceability links are costly to construct. Initial sets of links can
be constructed automatically via forward-engineering tools. More
likely in today’s commercial software development setting, these
types of tools were not used. Either traceability links can be (are)
constructed manually or in conjunction with tools that assist in the
recovery of links. Unfortunately, these recovery tools are far from
perfect and require manual tuning and assessment of generated
links [3, 25].

Given this we feel the only practical approach is to maintain and
evolve the existing traceability links as the system evolves. So the
goal of our work is to develop a robust and flexible representation
of model-to-model traceability links that is evolvable along with
the system models. Our approach uses an XML-based
representation of both the models and the links. Link evolution is
supported by a fine-grained differencing approach that allows us
to determine exactly what syntactic structures changed within a
model. Current differencing approaches work at the level of file
or line. Our approach allows one to work at any syntactic level
(statement, function, class diagram, use case, etc.).

In previous work [22] we presented methods for traceability link
conformance using a hypertext model allowing complex linking as
well as versioning of links. The work presented here uses that as a
starting point and extends to practical implementation issues.
Here we are specifically interested in source code to class model
traceability. We are using an XML representation of the source-
code model that we’ve developed called srcML [10, 24]. srcML
embeds XML tags concerning syntactic information into the
source-code document while maintaining all of the original
source. Additionally we are developing an XML representation
ystem (i.e., a concrete model). Some of the initial relation

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

TEFSE 2005, November 8, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-59593-243-7/05/0011…$5.00.
for class models called classML. Like srcML it is a user-centric

67

representation that supports addressing and analysis of the model.
This is opposed to XMI that is solely for UML model exchange.
Our work on meta-differencing [9, 23] is then used to identify
specific changes to determine what traceability links are involved.

The paper is organized as follows. First we present a set of
definitions to clarify our terminology and meaning of traceability.
We then discuss our representation of the models and links.
Following that is a presentation of how we support evolution of
the traceability links. Related work is covered in the Section 5.
Section 6 concludes the paper and presents future work.

2. DEFINING TRACEABILITY
The following set of definitions attempts to formalize a number of
the concepts regarding model-to-model traceability. We feel that
a detailed description of our interpretation of the general
traceability problem is required to compare our research with
other related projects.

Definition: A traceability link l is an edge between two system
models M and N, where M ≠ N and l(Mj, Nk, D) where Mj and Nk
are subsets of models M and N respectively. D determines the
directionality of the link which could be single or bi-directional
along with undirected. When directionality is present, ordering is
done from left to right.

Traceability links are n-ary and are defined for linking multiple
source anchor nodes to multiple target nodes. If directionality
exists between multiple source or target nodes, it should be the
same. We cannot have one link going from left to right and
another pointing from right to left for the same link node.

The set of all traceability links of a system is L = {l1,l2,… lp}.

Definition: A traceability link type, t denotes the type of a link.
We can represent it as l(Mj,Nk,D)× t. A link type could be causal,
non-causal or navigational. A causal link is always directional.
Non-causal links and navigational links could be uni-directional
or bidirectional. Traceability links should support different types.
If three types for the same link are needed, then three links with
different types are created. See Figure 1 for the basic types of
links shown between a UML class model and a source code
model.

Definition: A model M is defined as a finite set of nodes, {m1,
m2,…,mk} where each node corresponds to some distinct part of
the model. Anchors can be defined on nodes. A node can
participate in one or more anchors in a hypertext model.

These nodes represent anchors in the terminology of hypermedia.
A model is a document(s), set of diagrams (e.g., class model, use
case model, etc), or source-code program. A model is represented
as a set of parts or components identified by the underlying
definition of the model. At this time, we view relationships
between two parts of the same model to be a component of the
model and not a traceability link. A model is some sort of
structured data. For example, source code could be constructed
into a source model. Similarly, class design could be represented
as a (structured) class model.

Definition: A subset of a model is denoted by Mi, where Mi ⊆ M.
It consists of a subset of the nodes present in M.

Definition: A traceability graph is a directed graph, G = (V, L)
with nodes V = |M| ∪ |N|, where M and N are system models. L

denotes the set of traceability links between M and N. They are
ordered pairs defined over subsets of M to subsets of N, i.e., L ⊆
2M × 2N. As such the maximum number of traceability links is 2|M|
* 2|N| and not just M*N.

Figure 1 An example of different types of links between two

models. On the left is a source-code model and on the right is
a class model. Both models are connected graphs. The

traceability links are also represented as a connected graph
between the models

The conformance value of a link gives a confidence of how valid a
given link is with regards to the conformance of the relationship
between the two models described by the link. This conformance
rating denoted as CR is a derived attribute of a link. It is
dependent on the tool analyzing the links for conformance.

The next section discusses the traceability framework and its sub-
systems.

3. REPRESENTATION
Our traceability representation is built on XML for both data
representation and processing. On the data side XML
representations, e.g., XML, XLink, XPointer, etc., are used for
both the models and the traceability links. On the processing side
XML tools and technologies, i.e., DOM, SAX, XSLT, etc., are
used for creation, validation, and evolution of links. This section
describes the traceability framework in terms of the definitions
given in the previous section. Broad issues relating to our
infrastructure will also be discussed. For a specific example,
traceability links between a UML class model and source code is
used.

3.1. Model Representation
Models are represented in XML with no restrictions as to the
content, organization, or schema. This allows for full
interoperability and flexibility of models in our approach
including document-oriented models, e.g., DocBook, XHTML,
etc. and data-oriented models, e.g., UML, ASTs, etc. Specifically,
there are no restrictions (such as those made in XML Schema) on
the use of certain XML features, e.g., mixed content.

The representation utilizes external links from-and-to the models.
By using external links, no requirements are put on the schema of
the models and as such the links and models are completely
decoupled. Storing links externally allows for the straightforward
storage of many-to-many relationships. It also allows for the
creation of multiple link collections on the same models.

Traceability to source code is important for full utilization of the
artifacts used in actual software development. Because the
representation of source code is as plain text, an approach is

68

needed in our infrastructure to provide an XML view of source
code. Although many XML-based data-oriented representations
exist, they do not provide full transparency to the original source
code. For this reason a document-oriented XML representation of
source code, srcML, (which we have developed) is used. In the
srcML representation the source-code text is wrapped in XML
elements. This allows the original source-code document to be
addressed and transformed in XML with no loss of information
including comments, white space, etc.

The infrastructure is not dependent on a srcML view of source
code and any other model (including an AST-based model) can be
used. However, the use of srcML demonstrates how traceability
to source-code text can be achieved. In addition, it demonstrates
how traceability can be achieved to non-XML documents whose
original form must be preserved. The srcML representation
currently supports C, C++ and Java.

3.2. Link Representation
As discussed in the previous subsection, the model representation
is completely separate from the link representation. Since the
system models are represented in XML, we leverage XPath to
refer to addresses in the models forming a path between two or
more models.

XPath (the XML Path Language) can select nodes from an XML
document regardless of how they are ordered in XML hierarchies.
This provides a standard, semantically rich way of expressing
locations in the models. It provides pointer-like descriptions of
locations, for example the XML element with id value of five has
the expression *[@id='5']. This also provides very intuitive
physical description of the location, e.g., the first child of the
second child of the root has the expression 1/2/1, along with a
very semantically-expressive description of the location, e.g., the
condition of the first if-statement of a function has the expression
function/block/if/condition in srcML. The exact form of XPath
used depends on the semantics of the models involved and the
method used to form the link.

An outcome of this lack of restrictions is that the model semantics
remain inside the model. This allows for the use of links that are
completely decoupled from the semantics of the models that they
are linking. A full set of link types can be created and supported,
and then applied to multiple applications or to multiple models.

The location addressing in the models is only part of the link
representation. The meta-data of the link, e.g., type, timestamp,
id, etc, must be stored. In addition the links must be collected. In
order to store this information XLink, the XML Linking
Language, is used. XLink specifies how to store the meta-data
about the links. It also describes the use of linkbases which are
external (to the document) collections of links.

One important piece of meta-data about a link is a timestamp
which provides for the versioning of a link. This can be directly
stored as meta-data on the link. A better solution would be to use
a native XML database that provides for versioning. In this case,
the timestamp is external to the link. This issue is still pending
more investigation.

3.3. Scalability
Of great concern is the scalability of this framework. First we are
concerned with the amount of storage individually needed for the

models. The storage of the models is not an issue if they were
originally stored in XML. However, if model conversion to XML
is required then this can become an issue. Source code can be a
particular problem since XML representations of source code can
be hundreds of times larger than the original text. However, the
document-oriented approach taken with srcML does not have this
side effect. In practice we have observed an increase of only a
single-digit multiple of the srcML over the original source code
text. If this modest increase in space is still a problem the source
code can remain as text and the srcML can be generated as
needed. The srcML translator, src2srcml, can convert source-code
in a text format to srcML in a stream-oriented (i.e., SAX)
approach. In practice we have seen the translator work at 11
KLOC per second. The entire Linux kernel containing 161MB of
text can be translated to a srcML representation in twenty minutes.

The storage of the links may create an issue depending on the
number of links. At a minimum each link will contain an XPath
expression with space needed for the meta-data about the link. An
external linkbase using XLink is not designed for compactness.
However the expressive nature of XPath provides some space
efficiency since a single link can refer to many locations in a
model.

Large numbers of links also provides a potential time efficiency
problem. Applications such as validation may require traversal of
large number of links. In addition, it may be required to follow a
link in reverse. For example, for a given location in the source
code it may be necessary to find which links point to it from the
classML model. For a large number of links this may be very
time consuming. However, our recent experience with the
evaluation of XPath expressions on srcML has shown that this
should not be a serious problem. We evaluated the equivalent of
eight links to every method of an entire source-code project (over
4,000 methods), with the entire process taking under 30 seconds.

3.4. Applications
The creation, editing, and deletion of links require changes to the
XML link representation. Because of the use of XML format, this
becomes a form of XML editing with applications built using
standard XML tools, e.g., XSLT, DOM, SAX, etc. They may be
made programmatically, e.g., as the result of analysis, or they may
be made by user action, e.g., selection using a traceability
selection tool.

An application on traceability links can be applied at two levels.
The lowest level works directly in the framework with no
knowledge of the models, e.g., deletion of a link. These
applications are portable to other models. At a higher level a tool
can be written that uses knowledge of the models, e.g., validation.

4. EVOLUTION
The evolution of system models creates difficulties with respect to
the maintenance of traceability links. While a small number of
outdated links may be tolerated, a high rate of change in the
models increases the percentage of outdated links. If the
granularity of change is too large, the detection of outdated links
will have too low a precision leading to the unnecessary
elimination of valid links. The inability to deal effectively with
model changes is one of the most important problems facing
traceability.

69

We see the fundamental problem to be the following: How does
one detect that the validity of a link is suspect due to evolution of
the system model? This issue requires the examination of both the
link and the change. Each may have different levels of
granularity. The granularity of a link, in our representation, is
determined by what types of XML subtrees the link can
individually refer to. For source code this can be elements such as
file, class, method, statement, or use/definition of an identifier.
The granularity depends on the method used to create the link.

The granularity of change detection is at the level a difference can
be detected. This depends on the change identification
mechanism and may be at a physical (e.g., file and line) or
syntactic level (e.g., class, statement). The granularity of change
detection is also quite dependent on the efficiency of the
algorithm. Textual differencing determines physical differences
between text as in the commonly used utility diff which produces
physical differences in terms of lines and columns. By applying
the LCS (Longest Common Subsequence) [18] on the text in the
lines of the file it is efficient and robust. It can be applied to
source code in any language and in any state, and to any text
format. However, it is line based and crosscuts syntactic structure.
Semantic differencing detects changes to the computation of the
entire program. Heuristics are used since the problem in
undecidable and computationally expensive. One problem with
semantic differencing is that differences can be detected even
though a textual change has not been performed, e.g., a change to
the type in the declaration of a variable.

In order to support traceability, the granularity of the links and
changes must match. Textual links require textual change
detection. Syntactic links require syntactic change detection. So
for example change detection with a granularity of a method will
unnecessarily detect changes for links that have a granularity of a
statement in that method.

For the complete support of traceability during evolution fine-
grained syntactic differencing is required. The primary
application of syntactic differencing has been with merging [26]
as was done in [17] where the LCS was applied to parse-tree
sequences. However, this approach has difficulties with non-
language constructs, e.g., comments and preprocessor directives
[16]. Recently an approach has been used on AST's generated
from source code [29], however this approach has time
complexity problems.

Our work on this problem [9] has produced the concept of meta-
differencing, which provides an infrastructure for analysis of fine-
grained source code difference. The infrastructure is built on an
XML representation of multiple versions of a source-code
document. Utilizing XML tools allows the determination of fine-
grained syntactic differences, e.g., changes to individual
statements, conditions, etc. While the tool was originally
developed specifically for source-code changes it can be applied
to any XML document. So meta-differencing of class models
represented in XMI or classML can also be done. The meta-
differencing tool also allows one to analyze the differences
through queries. For example, one can write a simple query to
find all changes to loop conditionals or formal parameter lists.

With this we can support evolution of links in conjunction with
evolution of the models. Consider a link from a class model to a
source model. The link is from a particular relationship in the
class model and is reflected in a variety of statements in the

source. If the statements in the source code are changed, then the
link is suspect and needs to be reevaluated and possibly modified.

This leads us to a number of different types of changes that could
occur all at different levels of granularity. A physical-change is
the detection of a change at the textual level. A file-change is the
detection of a change at the file level and causes all links to that
file to be suspect. This may be very imprecise and cause a large
number of links to be suspect, even if a single statement is
changed. A line-change is changes to individual lines, e.g., the
output of the utility diff. While at a lower level of granularity, line
changes cannot be easily compared to syntactic elements such as
individual statements. Further analysis is needed to determine
whether the line changes occur in a particular element.

A syntactic-change agrees in type with a syntactic link and is the
detection of a change at the syntactic level. A class-change is a
good match if the syntactic-level link is also at a class. However,
the granularity difference is still too large if the link has a finer
granularity and would cause all links to that class to be suspect.
Lower levels, such as method-change or statement-change have
the same issues, except the number of misidentified suspect links
is smaller. A sub statement-change is the change to part of a
statement, e.g., condition, type or name change. If the level of the
link is lower-level, then the set of suspect links would be as
minimal as possible. Other elements that are not in a typical AST,
e.g., white space, comments, preprocessor statements, etc., can
also serve as the source/destination of a link and have differences
detected to them.

5. RELATED WORK
The need for a framework to maintain the various dimensions of
software development as they evolve is discussed in [31].
Constraints are placed on the various dimensions to have the
different dimensions of software consistent during development.
An integration mechanism, based on constraints, keeps the
different artifacts consistent. In more recent work [30] elaborates
on the methods used. Class diagrams are represented in XMI and
links to source code are set up. The work by [1] on tracing of
requirements to Use Cases aims at designing a custom toolkit that
can be used with a requirements-management tool such as
DOORS [11].

Egyed [12, 13] recognizes the separation of software models and
source code and has a tool called TraceAnalyzer that makes use of
test cases to generate trace information during program execution.
Palmer [27] introduces traceability and enumerates steps to
achieve traceability in a large complex software system. He
describes traceability management spanning across the software-
development cycle in order to uniquely identify links.

Zisman et al. [36] use traceability rules for automatic generation
and maintenance of traceability relations. XML is used to
describe rules and artifacts. They define three types of traceability
relations; overlaps, realizes and requires. Traceability relations
are built if the rules are satisfied. They are only concerned with
tracing different requirements artifacts to other artifacts.
Spanoudakis and Zisman [34, 35] present a survey in managing
inconsistencies in software models. Requirements traceability
using contribution structures as used in [15] keeps track of who
contributed to which part of the requirements. Leite et al. [20]
describe a scenario-based framework as their traceability strategy.
These scenarios are described in XML. TOOR [28] is a tool used

70

to trace requirements in an object-oriented fashion and is based on
a database-management system. Huang [8] describes an approach
to create traceability links between non-functional requirements,
design, and code using design patterns as mediators. Dynamic
links are maintained as publish or subscribe relationships.

The idea of relating hypertext [32] to traceability can be traced
back to 1989 [4]. RayTracer [14] is a tool that is able to maintain
traceability links. It allows each user to create and maintain their
links from data and design. TraceM [33] is a framework that
automates traceability relationships. It converts implicit
relationships that exist into explicit ones that are easier to
comprehend and visualize. Method names from source code are
used to map from design to code. Chimera [2] is an open
hypermedia system supporting software-engineering tasks. Links
are considered to be first-class objects. A view has a set of
anchors in an object. A link is a set of anchors in views. Viewers
display objects and the Chimera client manages links. It supports
n-ary links but there is no directionality defined in the linkage.
Versioning is not incorporated either.

Cimitile et al. [7] define a traceability relation that keeps track of
links among object models along with information related to
decisions as to why the link exists. RETO [19], is a requirements-
engineering tool that supports traceability. It stores a traceability
rules catalog that defines strong and weak traceability
relationships. Rules are based on the type of conceptual model.

Numerous impact analysis [6] methods have been proposed in the
literature however, they do not directly address the issue of
traceability.

6. CONCLUSIONS & FUTURE WORK
The approach presented here has a number of advantages with
regards to interoperability and flexibility. Using an XML
representation for the software artifacts and models allows for
linking models in any manner. Elements in one model can be
linked to any element, at any level of granularity, in another
model.

Translating models into an XML representation has proven to be
relatively efficient. Most UML tools export to XMI and this can
be used directly or translated into other more problem-specific
representations. However, one must construct the translator. In
the case of source code we have already done this and have a
robust and useable tool.

Our approach to evolve the links along with the evolving models
is to detect syntactic changes at the same level and type as the
link. As changes are made, the smallest set of links that are
subject to change can then be examined.

7. ACKNOWLEDGEMENTS
This work was supported in part by a grant from the National
Science Foundation (C-CR 02-04175).

8. REFERENCES
[1] Alexander, I. SemiAutomatic Tracing of Requirement

Versions to Use Cases Experiences & Challenges in
Proceedings of 2nd International Workshop on Traceability
in Emerging Forms of Software Engineering (TEFSE '03)
(Montreal, Canada, October 7, 2003).

[2] Anderson, M. K., Taylor, N. R., and Whitehead, J. E.
Chimera: Hypermedia for Heterogeneous Software
Development Environments. ACM Trans. on Information
Systems, 18, 3 (2000), 211-245.

[3] Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A.
Identifying the Starting Impact Set of a Maintenance
Request: a Case Study in Proceedings of European
Conference on Software Maintenance and Reengineering
(CSMR'00) (Zurich, Switzerland, February 29 - March 3,
2000), 227-230.

[4] Balzer, R., Begeman, M., Garg, P., Schwartz, M., and
Scheiderman, B. Hypertext and Software Engineering in
Proceedings of Hypertext '89 Proceedings (1989), 395-396.

[5] Bianchi, A., Visaggio, G., and Fasolino, A. An Exploratory
Case Study of the Maintenance Effectiveness of Traceability
Models in Proceedings of 8th International Workshop on
Program Comprehension (IWPC'00) (June 10 - 11,
Limerick, Ireland, 2000), 149.

[6] Bohner, A. S. and R., A. S. Software Change Impact
Analysis. IEEE Computer Society Press, Los Alamitos, CA,
USA., 1996.

[7] Cimitile, A., Lanubile, F., and Visaggio, G. Traceability
Based on Design Decisions in Proceedings of Conference on
Software Maintenance (1992), 309-317.

[8] Cleland-Huang, J., Chang, C., and Christensen, M. Robust
Requirements Traceability for Handling Evolutionary
Change in Proceedings of IEEE Transactions on Software
Engineering (September, 2003), 796-810.

[9] Collard, M. L. Meta-Differencing: An Infrastructure for
Source Code Difference Analysis. Kent State University,
Kent, Ohio USA, Ph.D. Dissertation Thesis, 2004.

[10] Collard, M. L., Kagdi, H. H., and Maletic, J. I. An XML-
Based Lightweight C++ Fact Extractor in Proceedings of
11th IEEE International Workshop on Program
Comprehension (IWPC'03) (Portland, OR, May 10-11,
2003), 134-143.

[11] DOORS, Date Accessed: 03/28/2004,
http://www.telelogic.com/, 2003.

[12] Egyed, A. Trace Observer: A Reengineering Approach to
View Integration. Center for Software Engineering,
University of Southern California, Los Angeles, CA 90089-
0781 USCCSE-99-517, 1999.

[13] Egyed, A. A Scenario-Driven Approach to Traceability in
Proceedings of 23rd International Conference on Software
Engineering (ICSE) (Toronto, Canada, May 2001, 2001),
123-132.

[14] Gardner, F. RayTracer: Traceability for Software
Engineering in Proceedings of Third Symposium on
Assessment of Quality Software Development Tools (June
7-9 1994, 1994), 224-232.

[15] Gotel, O. and Finkelstein, A. Extended Requirements
Traceability: Results of an Industrial Case Study in
Proceedings of IEEE International Symposium on
Requirements Engineering (1997), 169-178.

71

[27] Palmer, D. J., "Traceability", in Software Engineering,
Dorfman, M. and Thayer, R. H., Eds., Wiley-IEEE
Computer Society Press, Los Alamitos, California, 1996, pp.
266-276.

[16] Hunt, J. J. Fast Semi-Semantic Differencing and Merging.
Web page, Date Accessed: 02/01/2004,
http://wwwswt.fzi.de/cocoon/mount/swt/mitarbeiter/jjh/,
2004.

[28] Pinheiro, A. C. F. and Goguen, A. J. An Object-Oriented
Tool for Tracing Requirements. IEEE Software (1996), 52-
64.

[17] Hunt, J. J. and Tichy, W. F. Extensible Language-Aware
Merging in Proceedings of IEEE International Conference
on Software Maintenance (ICSM'02) (Montreal, Canada,
October 3-6, 2002), 511-520.

[29] Raghavan, S., Rohana, R., Podgurski, A., and Augustine, V.
Dex: A Semantic-Graph Differencing Tool for Studying
Changes in Large Code Bases in Proceedings of 20th IEEE
International Conference on Software Maintenance
(ICSM'04) (Chicago, Illinois, September 11 - 14, 2004),
188-197.

[18] Hunt, J. W. and Szymanski, T. G. A Fast Algorithm for
Computing Longest Common Subsequences. CACM, 20, 5
(May 1977), 350 - 353.

[19] Insfrán, E. A Requirements Engineering Approach for
Object-Oriented Conceptual Modeling. Polytechnic
University of Valencia, Spain, 2003. [30] Reiss, P. S., Kennedy, M. C., Wooldridge, T., and

Krishnamurthi, S. CLIMB: An Environment for Constrained
Evolution in Proceedings of 25th international conference
on Software engineering, ICSE (2003), 818-819.

[20] Leite, J. and Breitman, K. Experiences Using Scenarios to
Enhance Traceability in Proceedings of 2nd International
Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE '03) (2003). [31] Reiss, S. P. Constraining Software Evolution in Proceedings

of International Conference on Software Maintenance
(ICSM'02) (Montreal, Quebec, Canada, October 03 - 06,
2002), 162-171.

[21] Lindvall, M. and Sandahl, K. Practical Implications of
Traceability. Software Practice and Experience, 26, 10
(1996), 1161-1180.

[32] Scacchi, W., "Hypertext for Software Engineering", in
Encyclopedia of Software Engineering, Marciniak, J., Ed.
John Wiley and Sons, Inc., New York, 2002.

[22] Maletic, J., Munson, E., Marcus, A., and Nguyen, T. Using a
Hypertext Model for Traceability Link Conformance
Analysis in Proceedings of Proceedings of the 2nd
International Workshop on Traceability in Emerging Forms
of Software Engineering (TEFSE '03) (Montreal, Canada,
October 7th, 2003, 2003), 47-54.

[33] Sherba, S., Anderson, A., and Faisal, M. A Framework for
Mapping Traceability Relationships in Proceedings of 2nd
International Workshop on Traceability in Emerging Forms
of Software Engineering (TEFSE '03) (October 2003, 2003).

[23] Maletic, J. I. and Collard, M. L. Supporting Source Code
Difference Analysis in Proceedings of IEEE International
Conference on Software Maintenance (ICSM'04) (Chicago,
Illinois, September 11-17, 2004), 210-219.

[34] Spanoudakis, G. Plausible and adaptive requirement
traceability structures in Proceedings of 14th International
Conference on Software engineering and Knowledge
Engineering (2002), 135-142.

[24] Maletic, J. I., Collard, M. L., and Marcus, A. Source Code
Files as Structured Documents in Proceedings of 10th IEEE
International Workshop on Program Comprehension
(IWPC'02) (Paris, France, June 27-29, 2002), 289-292.

[35] Spanoudakis, G. and Zisman, A., "Inconsistency
management in software engineering: Survey and open
research issues", in Handbook of Software Engineering and
Knowledge Engineering, Chang, S. K., Ed., 2001, pp. 24-29.

[25] Marcus, A. and Maletic, J. I. Recovering Documentation-to-
Source-Code Traceability Links using Latent Semantic
Indexing in Proceedings of 25th IEEE/ACM International
Conference on Software Engineering (ICSE'03) (Portland,
OR, May 3-10, 2003), 125-137.

[36] Zisman, A., Spanoudakis, G., Perez-Minana, E., and Krause,
P. Tracing Software Requirements Artifacts in Proceedings
of 2003 International Conference on Software Engineering
Research and Practice (SERP'03) (Las Vegas, Nevada,
USA, 2003), 448-455.

[26] Mens, T. A State-of-the-Art Survey on Software Merging.
IEEE Transactions on Software Engineering, 28, 5 (May
2002), 449 - 462.

72

	INTRODUCTION
	DEFINING TRACEABILITY
	REPRESENTATION
	Model Representation
	Link Representation
	Scalability
	Applications

	EVOLUTION
	RELATED WORK
	CONCLUSIONS & FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

