Flash Crowds & Denial of Service Attacks

Characterization and Implications for CDNs and Web sites

Jaeyeon Jung
MIT Laboratory for Computer Science
Balachander Krishnamurthy and Michael Rabinovich
AT&T Labs-Research
Motivation

✔ Flash crowd is a sudden, large surge in traffic to a particular Web site
 - September 11, Ken Starr’s report, Victoria’s Secret webcast

✔ Denial of Service (DoS) attack is an explicit attempt to prevent legitimate users of a service from using that service
 - HTTP request flooding, attack to crack password-protected web pages, Code Red worm, TCP SYN flooding, etc.
Questions

✔ Part I: Flash events vs. DoS attacks
 – What properties differentiate DoS attacks from flash events?
 – How can we use them to identify and separate DoS attacks from flash events?

✔ Part II: Flash crowds and CDNs
 – What is the locality of file reference like during flash events and its implication for CDNs?
 – How can we improve protection of Web servers from flash crowds using CDNs?
Network-Aware Clusters [KW00]

- Clustering uses a large collection of unique network prefix from BGP tables
- Classify all the IP addresses that have the same longest matched prefix into a cluster
- It helps determine topological distribution of clients in FE and DoS
Flash Events

<table>
<thead>
<tr>
<th>Trace</th>
<th>Requests</th>
<th>Documents</th>
<th>Clients</th>
<th>Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play-along</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13,018,385</td>
<td>7,084</td>
<td>53,745</td>
<td>14,100</td>
</tr>
<tr>
<td>FE</td>
<td>71.0%</td>
<td>68.9%</td>
<td>63.9%</td>
<td>61.6%</td>
</tr>
<tr>
<td>Chile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,634,567</td>
<td>10,302</td>
<td>20,532</td>
<td>1,739</td>
</tr>
<tr>
<td>FE</td>
<td>88.2%</td>
<td>90.2%</td>
<td>89.0%</td>
<td>86.6%</td>
</tr>
</tbody>
</table>
DoS Attacks

- **Code Red**: In the earlier variant, each instance uses the same random number generator seed to create the list of IP addresses it scans [CERT].

<table>
<thead>
<tr>
<th>Trace</th>
<th>Requests</th>
<th>Documents</th>
<th>Clients</th>
<th>Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit.nl</td>
<td>35,657</td>
<td>1</td>
<td>11,092</td>
<td>6,155</td>
</tr>
</tbody>
</table>
Part I: Flash Events vs. DoS Attacks
✔️ **[FE]** Clients can be effectively aggregated into clusters

✔️ **[DoS]** Distribution of DoS attackers is broad
Client Characteristics - contd.

✔ [FE] Many *old* clusters are represented in flash events

 Play-along: 42.7% and Chile: 82.9%

✔ [DoS] Very few previously seen clusters are involved in DoS attacks

 creighton: 0.6%, fullnote: 0%, spccctxus: 1.8%, and rellim: 14.3%
Per-client Request Rate

✔ [FE] There is a *decline* in per-client request rate during the flash event

✔ [DoS] The per-client request rate does not change during the surge in requests
Server Strategy

✔ Monitor the clients that access the site and their request rate

✔ Periodically perform network aware clustering over the client set accumulated over the past period without flash or DoS events - *old* clusters

✔ When performance degrades to a threshold level, discard packets that come from clients that do not belong to *old clusters* as well as from non-proxy clients whose request rate deviates significantly from average
Part II: Flash Crowds and CDNs
File Reference Characteristics

- Large number of documents are accessed only during FEs (Play-along: 61% and Chile: 82%)
 - Many cache misses at the beginning of FEs
- 10% of popular documents account for more than 90% of requests.

![Graph showing fraction of requests vs fraction of documents](image)
CDN with 1,000+ cache nodes might not be able to provide an absolute protection against FE due to the peaks in the beginning of FE.
Flash Events and CDN

✔ Limiting the number of caches would increase the load on individual caches
Flash Events and CDN

✔ Limiting the number of caches would increase the load on individual caches
Flash Events and CDN

✔ Limiting the number of caches would increase the load on individual caches
Adaptive CDN

✔ Lower the peak rate forwarded to an origin server while spreading load over cache nodes
Adaptive CDN

✔ Lower the peak rate forwarded to the origin server while spreading load over cache nodes
Adaptive CDN

✔ Lower the peak rate forwarded to the origin server while spreading load over cache nodes
Dynamic Delegation

- $l > l_h$; add delegate d
 - HTTP request redirect to d
- $l < l_h$; process requests
- $l < l_1$; release delegates
- $l_1 < l < l_h$
 - redirect request to d of the lowest load
 - add a new one if $\forall d, l(d) > l_h$

✔ Load on primary cache, l, is computed as requests per second averaged over two-second interval.

✔ Cache is assigned based on cluster and used for ttl period.
✔ Peak request rates are reduced by a factor of 50 (Play-along), and 20 (Chile)

✔ It ensures that load on each cache remains low (50 rps) and that proximity-based cache selection is not compromised.
Conclusion

✔ Client clustering technique is useful for source identification and for distinguishing legitimate requests and malicious attacks.

✔ Per-client request rate drops and remains lower during the FEs unlike DoS attackers who generate requests independently of a server load

✔ Adaptive CDN is effective in terms of reduction of flows from the main server and dynamic load distribution over cache nodes.