Balanced Search Trees

Binary Search Trees

Binary Search Tree

Binary Search Tree

A binary tree is a binary search tree if
» each element in the left subtree is smaller than the root,
» each element in the right subtree is larger than the root, and
» the left and the right subtree are binary search trees.

3/34

42

(key, value)

parent

left / right subtree

‘\\

N

4/34

Dictionary

A dictionary is an abstract data type which stores key-value pairs hand
has the following operations:

» Insert(k, v)
» Find(k)
» Delete(k)

Insert(k, v)
> Inserts a key-value pair (k, v) into the dictionary.

Find(k)
» Returns a value with the key k.

Delete(k)
» Deletes a key-value pair with the key k.

5/34

BST - Insert(k, v)

Idea
> Find a a free spot in the tree and add a node which stores (k, v).

Strategy
» Start atroot r.
> If k < key(r), continue in left subtree.
> If k > key(r), continue in right subtree.

What if k = key(r)?

Runtime
» O(h) (his the height of the tree.)

6/34

Insert the numbers 22, 80, 18, 9, 90, 24.

7134

Insert the numbers 22, 80, 18, 9, 90, 24.

7134

Insert the numbers 22, 80, 18, 9, 90, 24.

7134

Insert the numbers 22, 80, 18, 9, 90, 24.

7134

Insert the numbers 22, 80, 18, 9, 90, 24.

7134

Insert the numbers 22, 80, 18, 9, 90, 24.

7134

Insert the numbers 22, 80, 18, 9, 90, 24.

7134

BST - Find(k)

Find the node with key k.

Strategy
> Startatrootr.
> If k = key(r), return r.
> If k < key(r), continue in left subtree.
>

If k > key(r), continue in right subtree.

Runtime
> O(h)

(his the height of the tree.)

8/34

Find the number 22.

9/34

BST - Delete(k)

Delete the node with key k.

Strategy
> n:= Find(k)
> Let mbe the node in the left subtree with the largest key or the node
in the right subtree with the smallest key.

> Replace nwith m.

Runtime
» O(h) (his the height of the tree.)

10/34

Delete the number 24.

11/34

Delete the number 24.

11/34

BST as Dictionary

Runtime of all operations is O(h).
» Whatis hin the worst case?

Consider inserting the sequence 1,2,...,n—1,n

N
N

©

Thus, worst case height h € O(n).
» How do we keep the tree balanced?

12/34

Rotation

« s
AL AR

How do we use this to keep a tree balanced?

13/34

Red-Black Trees

Red-Black Tree

Red-Black Tree

A red-black tree is a binary search tree with the following properties:
0.

. Anode is either red or black.

= Wy =

The root is black.

All Null-pointers are black.
If a node is red, then both its children are black.

Every path from a given node n to any of its descendant
Null-pointers contains the same number of black nodes. This
number is called black-height of n.

15/34

Red-Black Tree - Example

The tree on the right validates property (0), (1), and (2).

© X

(We will ignore Null-pointers from here.)

16/34

Red-Black Tree - Example

The tree on the right validates property (3).

17/34

Red-Black Tree - Example

Validation of property (3).

18/34

Red-Black Tree - Example

AN

©

18/34

Red-Black Tree - Height

‘ A red-black tree with n nodes has a height of at most O(log n). \

19/34

Red-Black Tree - Height

T’ is full. Thus, ' < log n.

Because h < 2K, h < 2logn € O(log n)

20/34

Red-Black Tree - Insert and Delete

Basic Strategy
» Use Insert(k, v) and Delete(k) as defined for BSTs.
» New added nodes are red.

» Problem: The resulting tree may violate some properties of a
red-black tree.

Restoring Red-Black Property
» Done by rotation and recolouring.

» There are five cases for insertion and six for removal. We will not
discuss them here.

» General idea: Restore properties for the current layer, move the
“incorrectness" to an upper layer, and repeat this on the upper layer.

Runtime
> O(log n) for both operations

21/34

Red-Black Tree - Insertion Example

Given this red-black tree. We want to insert 4.

22/34

Red-Black Tree - Insertion Example

Given this red-black tree. We want to insert 4.

22/34

Red-Black Tree - Insertion Example

Given this red-black tree. We want to insert 4.

Rotatel(2)

22/34

Red-Black Tree - Insertion Example

Given this red-black tree. We want to insert 4.

RotateR(11)

22/34

Red-Black Tree - Insertion Example

Given this red-black tree. We want to insert 4.

22/34

AVL Trees

AVL Tree

A binary tree is an AVL tree if, for each node, the height of the left and
right subtree differ by at most one.

24/34

25/34

25/34

AVL Tree - Height

An AVL tree with n nodes has a height of at most O(log n).

Proof. Let Nj be the min. number of nodes in an AVL tree of height h.

Ny=14+Ny_1+ Ny
> 2Ny,
Z 2h/2

Thus, h < 2log, Nj, i.e., h € O(log n). O

26/34

AVL Tree - Insert and Delete

Basic Strategy (similar to red-black trees)
» Use Insert(k, v) and Delete(k) as defined for BSTs.

» Problem: The resulting tree may violate some properties of an AVL
tree.

Restoring AVL Property
» Done by rotation.
» General idea: Restore properties for the current layer and repeat this
on the upper layer.
» We will not discuss the details here.

Runtime
» O(log n) for both operations

27134

Insert(55)

28/34

Insert(55)

28/34

Insert(55)

2
RotateL(50)

28/34

Insert(55)

RotateR(65)

28/34

Insert(55)

28/34

B-Trees

B-Tree

B-Tree

A B-Tree is a search tree such that, for some constant t > 2,

(3) all leaves are on the same layer.

(1) each node n stores |n| sorted keys (t — 1 < |n| < 2t — 1),
(2) each node which is not a leaf has |n| + 1 subtrees, and

The root r is excluded from property (1). Instead, 1 < |r| < 2t — 1.

15

30/34

B-Tree - Splitting and Merging

Full nodes (with 2t — 1 keys) can be slitted.
» Remove middle key.
» Include it into parent node.

Neighbouring nodes with ¢ — 1 keys can be merged.

» Remove separating key from parent node.
» Add it in middle of new node.

31/34

B-Tree - Shifting Keys

Keys can be shifted to decrease the size of a node and increase the size of
its neighbour.

32/34

B-Tree - Insertion

Idea
» Similar to BSTs, find leaf which would contain the key and add it.

Problem
» What if leaf is full (stores 2t — 1 keys)?
» What if leaf cannot be split because parent is full too?

Solution
» When searching for leaf, split every full node on the path.

Runtime: O(¢ - log, n)
> O(¢) for splitting nodes.
> O(log, n) for the path from root to leaf.

33/34

B-Tree - Deletion

Strategy
» Search key in tree.
» For every node on path, ensure at least t keys are in the node (using
merging and shifting).

Case 1: Key is in leaf.
» Simply delete key.

Case 2: Key is not in leaf.
> Replace key by K, the largest key in left child or smallest key in right
child.

» Recursively delete k'.

Runtime: O(¢ - log, n)
» O(t) for merging nodes.
> O(log, n) for the path from root to leaf.

34/34

	Binary Search Trees
	Red-Black Trees
	AVL Trees
	B-Trees

