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Binary Search Tree

Binary Search Tree

A binary tree is a binary search tree if
» each element in the left subtree is smaller than the root,
» each element in the right subtree is larger than the root, and
» the left and the right subtree are binary search trees.
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Dictionary

A dictionary is an abstract data type which stores key-value pairs hand
has the following operations:

» Insert(k, v)
» Find(k)
» Delete(k)

Insert(k, v)
> Inserts a key-value pair (k, v) into the dictionary.

Find(k)
» Returns a value with the key k.

Delete(k)
» Deletes a key-value pair with the key k.
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BST - Insert(k, v)

Idea
> Find a a free spot in the tree and add a node which stores (k, v).

Strategy
» Start atroot r.
> If k < key(r), continue in left subtree.
> If k > key(r), continue in right subtree.

What if k = key(r)?

Runtime
» O(h) (his the height of the tree.)
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Insert the numbers 22, 80, 18, 9, 90, 24.
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BST - Find(k)

Find the node with key k.

Strategy
> Startatrootr.
> If k = key(r), return r.
> If k < key(r), continue in left subtree.
>

If k > key(r), continue in right subtree.

Runtime
> O(h)

(his the height of the tree.)
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Find the number 22.
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BST - Delete(k)

Delete the node with key k.

Strategy
> n:= Find(k)
> Let mbe the node in the left subtree with the largest key or the node
in the right subtree with the smallest key.

> Replace nwith m.

Runtime
» O(h) (his the height of the tree.)
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Delete the number 24.
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Delete the number 24.
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BST as Dictionary

Runtime of all operations is O(h).
» Whatis hin the worst case?

Consider inserting the sequence 1,2,...,n—1,n

N
N

©

Thus, worst case height h € O(n).
» How do we keep the tree balanced?
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Rotation

« s
AL AR

How do we use this to keep a tree balanced?
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Red-Black Tree

Red-Black Tree

A red-black tree is a binary search tree with the following properties:
0.

. Anode is either red or black.

= Wy =

The root is black.

All Null-pointers are black.
If a node is red, then both its children are black.

Every path from a given node n to any of its descendant
Null-pointers contains the same number of black nodes. This
number is called black-height of n.
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Red-Black Tree - Example

The tree on the right validates property (0), (1), and (2).

© X

(We will ignore Null-pointers from here.)
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Red-Black Tree - Example

The tree on the right validates property (3).
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Red-Black Tree - Example

Validation of property (3).
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Red-Black Tree - Example
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©
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Red-Black Tree - Height

‘ A red-black tree with n nodes has a height of at most O(log n). \
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Red-Black Tree - Height

T’ is full. Thus, ' < log n.

Because h < 2K, h < 2logn € O(log n)
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Red-Black Tree - Insert and Delete

Basic Strategy
» Use Insert(k, v) and Delete(k) as defined for BSTs.
» New added nodes are red.

» Problem: The resulting tree may violate some properties of a
red-black tree.

Restoring Red-Black Property
» Done by rotation and recolouring.

» There are five cases for insertion and six for removal. We will not
discuss them here.

» General idea: Restore properties for the current layer, move the
“incorrectness" to an upper layer, and repeat this on the upper layer.

Runtime
> O(log n) for both operations
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Red-Black Tree - Insertion Example

Given this red-black tree. We want to insert 4.
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Red-Black Tree - Insertion Example

Given this red-black tree. We want to insert 4.

Rotatel(2)
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Red-Black Tree - Insertion Example

Given this red-black tree. We want to insert 4.

RotateR(11)
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Red-Black Tree - Insertion Example

Given this red-black tree. We want to insert 4.
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AVL Tree

A binary tree is an AVL tree if, for each node, the height of the left and
right subtree differ by at most one.
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AVL Tree - Height

An AVL tree with n nodes has a height of at most O(log n).

Proof. Let Nj be the min. number of nodes in an AVL tree of height h.

Ny=14+Ny_1+ Ny
> 2Ny,
Z 2h/2

Thus, h < 2log, Nj, i.e., h € O(log n). O
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AVL Tree - Insert and Delete

Basic Strategy (similar to red-black trees)
» Use Insert(k, v) and Delete(k) as defined for BSTs.

» Problem: The resulting tree may violate some properties of an AVL
tree.

Restoring AVL Property
» Done by rotation.
» General idea: Restore properties for the current layer and repeat this
on the upper layer.
» We will not discuss the details here.

Runtime
» O(log n) for both operations
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Insert(55)
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Insert(55)
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Insert(55)

2
RotateL(50)
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Insert(55)

RotateR(65)
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Insert(55)
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B-Tree

B-Tree

A B-Tree is a search tree such that, for some constant t > 2,

(3) all leaves are on the same layer.

(1) each node n stores |n| sorted keys (t — 1 < |n| < 2t — 1),
(2) each node which is not a leaf has |n| + 1 subtrees, and

The root r is excluded from property (1). Instead, 1 < |r| < 2t — 1.

15
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B-Tree - Splitting and Merging

Full nodes (with 2t — 1 keys) can be slitted.
» Remove middle key.
» Include it into parent node.

Neighbouring nodes with ¢ — 1 keys can be merged.

» Remove separating key from parent node.
» Add it in middle of new node.
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B-Tree - Shifting Keys

Keys can be shifted to decrease the size of a node and increase the size of
its neighbour.
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B-Tree - Insertion

Idea
» Similar to BSTs, find leaf which would contain the key and add it.

Problem
» What if leaf is full (stores 2t — 1 keys)?
» What if leaf cannot be split because parent is full too?

Solution
» When searching for leaf, split every full node on the path.

Runtime: O(¢ - log, n)
> O(¢) for splitting nodes.
> O(log, n) for the path from root to leaf.
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B-Tree - Deletion

Strategy
» Search key in tree.
» For every node on path, ensure at least t keys are in the node (using
merging and shifting).

Case 1: Key is in leaf.
» Simply delete key.

Case 2: Key is not in leaf.
> Replace key by K, the largest key in left child or smallest key in right
child.

» Recursively delete k'.

Runtime: O(¢ - log, n)
» O(t) for merging nodes.
> O(log, n) for the path from root to leaf.
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