
Balanced Search Trees

Binary Search Trees

Binary Search Tree

Binary Search Tree

A binary tree is a binary search tree if
I each element in the left subtree is smaller than the root,
I each element in the right subtree is larger than the root, and
I the left and the right subtree are binary search trees.

r

≤ r ≥ r

3 / 34

Implementation

42 (key, value)
parent
left / right subtree

4 / 34

Dictionary

Dictionary

A dictionary is an abstract data type which stores key-value pairs handhas the following operations:
I Insert(k, v)
I Find(k)
I Delete(k)

Insert(k, v)
I Inserts a key-value pair (k, v) into the dictionary.
Find(k)

I Returns a value with the key k.
Delete(k)

I Deletes a key-value pair with the key k.
5 / 34

BST – Insert(k, v)

Idea

I Find a a free spot in the tree and add a node which stores (k, v).

Strategy

I Start at root r .
I If k < key(r), continue in left subtree.
I If k > key(r), continue in right subtree.

What if k = key(r)?

Runtime

I O(h) (h is the height of the tree.)

6 / 34

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 24.

24

7 / 34

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 24.

24

80

7 / 34

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 24.

24

80

18

7 / 34

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 24.

24

18 80

9

7 / 34

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 24.

24

18 80

9

90

7 / 34

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 24.

24

18 80

9 90

22

7 / 34

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 24.

24

18 80

9 22 90

7 / 34

BST – Find(k)

Find the node with key k.
Strategy

I Start at root r .
I If k = key(r), return r .
I If k < key(r), continue in left subtree.
I If k > key(r), continue in right subtree.
Runtime

I O(h) (h is the height of the tree.)

8 / 34

BST – Find Example

Find the number 22.

24

18 80

9 22 90

22

9 / 34

BST – Delete(k)

Delete the node with key k.
Strategy

I n := Find(k)
I Letm be the node in the left subtree with the largest key or the nodein the right subtree with the smallest key.
I Replace n withm.
Runtime

I O(h) (h is the height of the tree.)

10 / 34

BST – Delete Example

Delete the number 24.

24

18 80

9 22 90

11 / 34

BST – Delete Example

Delete the number 24.

22

18 80

9 90

11 / 34

BST as Dictionary

Runtime of all operations isO(h).
I What is h in the worst case?
Consider inserting the sequence 1, 2, . . . , n− 1, n

1

2

n

Thus, worst case height h ∈ O(n).
I How do we keep the tree balanced?

12 / 34

Rotation

y

x

α β

γ

y

x

α

β γ

RotateR(y)

RotateL(x)

How do we use this to keep a tree balanced?
13 / 34

Red-Black Trees

Red-Black Tree

Red-Black Tree
A red-black tree is a binary search tree with the following properties:
0. The root is black.
1. A node is either red or black.
2. All Null-pointers are black.
3. If a node is red, then both its children are black.
4. Every path from a given node n to any of its descendant

Null-pointers contains the same number of black nodes. Thisnumber is called black-height of n.

15 / 34

Red-Black Tree – Example

The tree on the right validates property (0), (1), and (2).

(We will ignore Null-pointers from here.)
16 / 34

Red-Black Tree – Example

The tree on the right validates property (3).

17 / 34

Red-Black Tree – Example

Validation of property (3).

2
322

18 / 34

Red-Black Tree – Example

2
222

18 / 34

Red-Black Tree – Height

Theorem
A red-black tree with n nodes has a height of at mostO(log n).

19 / 34

Red-Black Tree – Height

T ′
h′

h

T ′ is full. Thus, h′ ≤ log n.

Because h ≤ 2h′, h ≤ 2 log n ∈ O(log n)
20 / 34

Red-Black Tree – Insert and Delete

Basic Strategy

I Use Insert(k, v) and Delete(k) as defined for BSTs.
I New added nodes are red.
I Problem: The resulting tree may violate some properties of ared-black tree.
Restoring Red-Black Property

I Done by rotation and recolouring.
I There are five cases for insertion and six for removal. We will notdiscuss them here.
I General idea: Restore properties for the current layer, move the“incorrectness" to an upper layer, and repeat this on the upper layer.
Runtime

I O(log n) for both operations
21 / 34

Red-Black Tree – Insertion Example

Given this red-black tree. We want to insert 4.

11

2 14

1 7 15

5 8

22 / 34

Red-Black Tree – Insertion Example

Given this red-black tree. We want to insert 4.

11

2 14

1 7 15

5 8

4

22 / 34

Red-Black Tree – Insertion Example

Given this red-black tree. We want to insert 4.

11

2 14

1 7 15

5 8

4

RotateL(2)

22 / 34

Red-Black Tree – Insertion Example

Given this red-black tree. We want to insert 4.

11

7 14

2 8 15

1 5

4

RotateR(11)

22 / 34

Red-Black Tree – Insertion Example

Given this red-black tree. We want to insert 4.

7

2 11

1 5 8 14

4 15

22 / 34

AVL Trees

AVL Tree

AVL Tree
A binary tree is an AVL tree if, for each node, the height of the left andright subtree differ by at most one.

24 / 34

AVL Tree – Example

1

1 −1

−1 0 0

0

25 / 34

AVL Tree – Example

0

1 −2

−1 0 0

0 0 0

25 / 34

AVL Tree – Height

Theorem
An AVL tree with n nodes has a height of at mostO(log n).

Proof. Let Nh be the min. number of nodes in an AVL tree of height h.

Nh = 1 + Nh−1 + Nh−2
≥ 2 · Nh−2

≥ 2h/2

Thus, h ≤ 2 log2 Nh, i. e., h ∈ O(log n). �

26 / 34

AVL Tree – Insert and Delete

Basic Strategy (similar to red-black trees)
I Use Insert(k, v) and Delete(k) as defined for BSTs.
I Problem: The resulting tree may violate some properties of an AVLtree.
Restoring AVL Property

I Done by rotation.
I General idea: Restore properties for the current layer and repeat thison the upper layer.
I We will not discuss the details here.

Runtime

I O(log n) for both operations
27 / 34

AVL Tree – Insertion Example

Insert(55)

41

20 65

11 26 50

23 29

1

−1 1

0 0 0

0 0

28 / 34

AVL Tree – Insertion Example

Insert(55)

41

20 65

11 26 50

23 29 55

0

−1 2

0 0 −1

0 0 0

28 / 34

AVL Tree – Insertion Example

Insert(55)

41

20 65

11 26 50

23 29 55

0

−1 2

0 0 −1

0 0 0

RotateL(50)

28 / 34

AVL Tree – Insertion Example

Insert(55)

41

20 65

11 26 55

23 29 50

0

−1 2

0 0 1

0 0 0

RotateR(65)

28 / 34

AVL Tree – Insertion Example

Insert(55)

41

20 55

11 26 50 65

23 29

1

−1 0

0 0 0 0

0 0

28 / 34

B-Trees

B-Tree

B-Tree
A B-Tree is a search tree such that, for some constant t ≥ 2,
(1) each node n stores |n| sorted keys (t − 1 ≤ |n| ≤ 2t − 1),
(2) each node which is not a leaf has |n|+ 1 subtrees, and
(3) all leaves are on the same layer.
The root r is excluded from property (1). Instead, 1 ≤ |r| ≤ 2t − 1.

2 11

1 5 7 8 14 15

30 / 34

B-Tree – Splitting and Merging

Full nodes (with 2t − 1 keys) can be slitted.
I Remove middle key.
I Include it into parent node.

c x

k l m n o

c m x

k l n o

Neighbouring nodes with t − 1 keys can be merged.
I Remove separating key from parent node.
I Add it in middle of new node.

31 / 34

B-Tree – Shifting Keys

Keys can be shifted to decrease the size of a node and increase the size ofits neighbour.

c n x

k l m o p

c m x

k l n o p

α α

32 / 34

B-Tree – Insertion

Idea

I Similar to BSTs, find leaf which would contain the key and add it.
Problem

I What if leaf is full (stores 2t − 1 keys)?
I What if leaf cannot be split because parent is full too?
Solution

I When searching for leaf, split every full node on the path.
Runtime: O(t · logt n)

I O(t) for splitting nodes.
I O(logt n) for the path from root to leaf.

33 / 34

B-Tree – Deletion

Strategy

I Search key in tree.
I For every node on path, ensure at least t keys are in the node (usingmerging and shifting).
Case 1: Key is in leaf.

I Simply delete key.
Case 2: Key is not in leaf.

I Replace key by k′, the largest key in left child or smallest key in rightchild.
I Recursively delete k′.
Runtime: O(t · logt n)

I O(t) for merging nodes.
I O(logt n) for the path from root to leaf.

34 / 34

	Binary Search Trees
	Red-Black Trees
	AVL Trees
	B-Trees

