
A General Framework for Heterogeneous Associative Logic
Programming

A. K. Bansal
Department of Mathematics and Computer Science
Kent State University, Kent, OH 44242 - 0001, USA

E-mail: arvind@mcs.kent.edu

August 6, 1996

Associative computation is characterized by search by content and data parallel computation. Search
by content paradigm is natural to scalable high performance heterogeneous computing since use of
tagged data makes data independent of implicit addressing mechanisms. In this paper, we present an
algebra for associative logic programming, an associative resolution scheme, and a generic framework
of associative abstract instruction set. The model is based on integration of data alignment and use of
two types of bags: data element bags and filter bags of boolean values to select and restrict computation
on data elements. Use of filter bags integrated with data alignment reduces the computation and data
transfer overhead; use of tagged data reduces overhead of preparing data before data transmission. The
abstract instruction set has been illustrated by an example. Performance results for a simulation in a
homogeneous address space are presented.

Keywords: Artificial intelligence, Associative computing, Data parallel computing, Heteroge-
neous computing, Scalable high performance computing, Logic programming.

1 Introduction

Associative computation is characterized by seamless intertwining of search by content and data paral-
lel computation [14]. This intertwining facilitates the integration of logic programming paradigm and
data parallel computations on a heterogeneous collection of massive parallel machines. This work gen-
eralizes the associative computation model which started with our earlier work to exploit associative
computation on SIMD architectures [1, 2].

Heterogeneous collection of machines have different address space, and there is no uniform mecha-
nism to handle this heterogeneity. Current popular approaches to handle heterogeneity [15] use mes-
sage passing paradigm for information transfer. However, the structured data, if transferred across
heterogeneous address space, has to be linearized (unpacked) in one address space, and restructured
(packed) in another address space to make use of message passing paradigm.

1. Unpacking algorithm goes through chain of references to linearize the data,

2. Packing algorithm has to build up chain of references, and

3. Many implicit attributes have to be tagged during message transfer.

In order to reduce this overhead, associative computing paradigm uses sedentary data, uses dupli-
cate copies of tagged data in heterogeneous address space to reduce data transfer whenever possible,
and exploits intertwining of search by content and data parallel computation. The motivation for this
paper is to formalize the rules for associative computation model of logic programming, and develop a
general framework of the instruction set which will facilitate implementation of the associative model
of logic programming on a heterogeneous collection of different massive parallel architectures. The
major contribution in this paper is the extension of associative computation formalism to resolution
process of logic programming, and description of a generic framework of the abstract instruction set.
This formal framework is the basis for our effort to develop heterogeneous abstract machines suitable
for heterogeneous collection of high performance machines having heterogeneous address space.

In addition, the associative computational model has direct applications for a class of problems
which require integration of high performance symbolic computing, knowledge retrieval, and scien-
tific computation. Some examples are geographical knowledge bases, genome sequence analysis, and
intelligent simulation of complex engine processes.

2 Preliminaries

Basic definitions of logic programming are available in [11]. A logic program is a set of Horn clauses
of the form A :- B1, ..., BN (N ≥ 0). Facts, known as the data base part, are clauses with empty
body; Rules are clauses with non-empty body. Solving a logical query is based on repeated resolution
of a goal to conjunction of subgoals using unification - a combination of pattern matching and value
binding process - until the goal can be looked up in the database (facts).

A multiple-occurrence variable occurs more than once in a goal. A shared variable occurs in more
than one subgoals of a clause. A producer is the first occurrence of a shared variable, and generates a
bag of values for a shared variable. Other occurrences of the shared variable are consumers. Aliased
variables share the same value; binding one of the aliased variables automatically binds others with
the same value. Aliasing is an equivalence relationship. We will denote aliasing by symbol '.

A simple fact has no multiple occurrence variable, and a complex fact has at least one multiple
occurrence variable. A complex clause is either a complex fact, or a clause with non-empty clause-body.

2.1 Associative Computation

Associative computation has two major components: search by content and data parallel computation.
Use of search by content facilitates the use of heterogeneous address space since no implicit indexing
scheme is used to address a data element. Using this facility, data can be distributed across different
address space, and different processors may work on different data elements exploiting data parallelism.

A generic architecture on which an associative computation model can be implemented is an
ordered collection of processing cells: each cell is a quadruple < Ci, Ri, Si, Mi > where Ci denotes a
processing element (PE), Ri denotes a set of local registers, Si denotes local storage, and Mi denotes
a mask-bit. An associative search of a field for a specific value sets up a bag of Boolean results
which are used to filter an abstract unit of computation on different data elements of a bag. An
instruction is broadcast to each cell simultaneously to initiate the same abstract computation 1 on
different data elements. The flow of control is effected by generating, saving, and transferring the

1an abstract computation may have multiple different mutually exclusive definitions, and each definition may be a
sequence of commands

2

bit-vectors corresponding to Boolean results. A SIMD architecture satisfies this criteria. However,
the only major difference between SIMD computation and other generic architecture is that SIMD
architecture supports fine grain implicit synchronization for every data parallel computation.

2.2 Abstract Data Representation

A bag is a collection of data items with multiple possible occurrences of a value. Two bags are
associated if the individual elements in the bags are indexwise paired. The advantage of pairing is
that the knowledge of an element in one bag is sufficient to derive the value of the corresponding
element in the other bag. We define two types of data structures, namely, a D-bag and an F-bag to
explain associative computations. Intuitively, D-bags are used to represent data elements, and F-bags
are used to filter the data elements.

A D-bag, denoted by D, is defined as an ordered bag which includes null value ⊥ and top value >.
⊥ denotes the absence of any value, and > denotes an undefined value. > can be instantiated with
any value. For example, { 2, ⊥, 3 } is a D-bag. However, { 2, ⊥, 3 } 6= { ⊥, 2, 3 } since D-bags
are ordered. The null element ⊥ � every element in the D-bag. We denote a D-bag with all elements
equal to ⊥ as φ. A D-bag is mapped on a generic architecture such that by accessing same index on
Si - the local storage on the architecture - all the elements of a D-bag can be accessed from different
cells.

A D-bag of M-tuples of the form { < d11, ..., d1M ..., < dN1, ..., dM > } is stored as an association
of M D-bags indexwise aligned to each other such that accessing Ith element of one bag also gives
access to Ith element of other D-bags. We denote the aligned D-bags as D1

⊕D2
⊕

...,
⊕ DM . An

F-bag is a D-bag with Boolean values true and false. The Boolean values true and false are treated
synonymously with the values “1” and “0” respectively. We treat false (or “0”) ≺ true (or “1”). A
F-bag of 1s is denoted by F1, and a F-bag of 0s is denoted by F0.

We also define the notion of D-inclusion, D-equality, D-union, and D-intersection of two D-subbags.
These notions are different from there set-theoretic counterparts due to the presence of order in D-bags
and F-bags, and inclusion of ⊥ and > in D-bags, and pairwise comparison of corresponding elements.
A D-bag D1 = { d11, ..., d1N} is included in another D-bag D2 = {d21, ..., d2N } if ∀I(1≤I≤N) d1I � d2I .
For the sake of clarity, We refer to the inclusion of a D-bag by D-inclusion, and denote D-inclusion
by v. For example, { 4, ⊥, 5, 6 } v { 4, 3, 5, 6 } since ⊥ ≺ 3. D-union of two D-subbags {d11, ...,
d1N} and {d21, ..., d2N} derives a new D-bag { d31, ..., d3N } such that ∀I(1≤I≤N) d3I = d1I if d2I �
d1I , d3I = d2I if d1I � d2I . We denote D-union by

⊔
. For example, { ⊥, b, c } ⊔ { a, b, ⊥ } derives

{ a, b, c }. D-intersection of two D-subbags {d11, ..., d1N} and {d21, ..., d2N} derives a new D-bag
such that ∀I(1≤I≤N) d3I = d1I if d1I � d2I , d3I = d2I if d2I � d1I . we denote D-intersection by u.
For example, { 2, 3, ⊥ } u { ⊥, 3, 4 } derives the D-subbag { ⊥, 3, ⊥ }. D-equality of two D-bags
D1 and D2 derives an F-bag F such that ∀I1≤I≤N d3I (∈ F) = 0 if d1I 6= d2I or d1I = ⊥ or d2I = ⊥;
d3I = 1 if d1I = d2I and d1I 6= ⊥ and d2I 6= ⊥. We denote D-equality by .

=. For example, { a, b, ⊥}
.= {a, c, ⊥} derives the F-bag {1, 0, 0}.

We denote application of an F-bag on a D-bag by D ⊗ F . Under the assumption false ≺ true,
D-union of F-bags is implemented by logical-OR of the corresponding logical bit-vectors, and D-
intersection of F-bags is implemented by logical-AND of the corresponding logical bit-vectors.

3

3 An Algebra for Associative Computation

Our model is based upon seventeen rules of associative computation. There are five types of laws of
associative computation: laws for data association, laws for associative search, laws for selection, laws
for data parallel computations and laws for data parallel update.

3.1 Laws of Data Association

This subsection describes three rules of association of data. Rule (1) describes the formation of
association, Rule (2) describes the isomorphism of nested associations, and Rule (3) describes the
isomorphism under permutation of an association. The implication of isomorphism of association is
that the information in an association is not altered by nesting or by permutation.

Rule (1) states that a D-bag of M-tuples is given by the association of M D-bags such that corre-
sponding elements are aligned by index. For example, { a, 2, 3, 4 } ⊕ { b, 5, 6, 7 } is equivalent to
{ < a, b >, < 2, 5 >, < 3, 6 >, < 4 , 7 > }.

Rule (2) states that nested associations are isomorphic For example, { 1, 2 } ⊕ ({ 3, 4 } ⊕ { 5,
6 }) is isomorphic to ({ 1, 2 } ⊕ { 3, 4 }) ⊕ { 5, 6 }, and both are isomorphic to { < 1, 3, 5 >, <
2, 4, 6 > }.

Rule (3) states that permutations in an association are not symmetric but isomorphic: a pair (x,
y) ∈ D1

⊕ D2 (such that x ∈ D1 and y ∈ D2) has a bijective mapping to (y, x) ∈ D2
⊕ D1.

3.2 Laws of Associative Search

This subsection describes two laws of associative search. Rule (4) describes the mapping of a D-bag
to an F-bag based upon an associative search of an element, and Rule (5) describes the derivation
of information from other D-bags by searching in one of the D-bags in an association. Rule (4)
is necessary for data-parallel goal reduction, and Rule (5) is necessary for deriving the bindings of
variables in a goal after unification.

Rule (4) states that associative search of a data element d in a D-bag D1 (of the form < d1, ..., dN
> derives an F-bag F such that if dj = d then the corresponding element in F is “1” otherwise “0”.
For example, associative search of an element 4 in the D-bag { 3, 5, 4, 7, 4, 9 } gives an F-bag {0, 0,
1, 0, 1, 0 }.

Rule (5) states that by associatively searching in one field, the associated data elements in the
other field can be extracted. For example, associative search for a tuple {4, >, > } from the tuple {
< 4, 5, 6 >, < 3, 7, 9 >, < 4, 9, 10 > } gives an F-bag { 1, 0, 1 } which gives the selected D-subbag
as { < 4, 5, 6 >, ⊥, < 4, 9, 10 > }.

3.3 Laws of Selection

In this subsection, we describe six rules for selection of data elements from an association using an F-
bag or computation on F-bags. Computation on F-bags reduces computation overhead when selecting
subbag of data elements; transmission of F-bags across heterogeneous address space reduces data
movement overhead in comparison to the transmission of association of D-bags. Rule (6) is used to
pick up data elements from the corresponding tuples; Rule (7) - Rule (10) are used to reduce the
data movement if D-bags of an association are present on different address space; Rule (8) is used to

4

reduces the creation overhead of subbags of a D-bag. Rules (11) and (12) have been implicitly used
to derive the property of many low level computations.

Rule (6) states that association of an F-bag with a D-bag selects the data elements whenever the
corresponding element in F-bag is 1. For example, { 3, 5, 6 } ⊗ {0, 1, 0} derives { ⊥, 5, ⊥ }.

Rule (7) states that selecting data elements from two associated D-bags is same as selecting data
elements from individual bags and then associating them. For example, ({ 4, 5, 6 }⊗ { 1, 0, 1 }) ⊕
({ a, b, c }⊗ { 1, 0, 1 }) is equivalent to { < 4, a >, < 5, b >, < 6, c > }⊗ { 1, 0, 1 } which derives
the D-bag { < 4, a >, ⊥, < 6, c > }. Similarly, {(2, 3), (4, 5), (6, 7)} ⊗ { 1, 1, 0 } is equivalent to
({2, 4, 6} ⊗ { 1, 1, 0 }) ⊕ ({3, 5, 7} ⊗ { 1, 1, 0 }). The computation derives {2, 4, ⊥} ⊕ {3, 5, ⊥
} which is equivalent to { < 2, 3>, <4, 5>, ⊥}.

Rule (8) states that data elements of a D-bag selected using an F-bag F1 includes the data elements
selected using another F-bag F2 if F1 v F2. For example, { 5, 6, 7 }⊗ { 1, 0, 1 } derives the D-bag
{ 5, ⊥, 6 }. While { 5, 6, 7 } ⊗ { 1, 0, 0 } derives the D-bag { 5, ⊥, ⊥ }.

Rule (9) states that data elements of a D-bag selected by D-union of two different F-bags is same as
results of selecting the data elements by applying individual F-bag on the D-bag and then performing
D-union on the resulting D-subbags. For example, {2, 3, 4} ⊗ ({1, 0, 0} ⊔ {0, 1, 0 }) ≡ ({2, 3, 4}⊗ {1, 0, 0}) ⊔ ({2, 3, 4} ⊗ {0, 1, 0 }) ≡ {2, 3, 4} ⊗ {1, 1, 0} which derives { 2, 3, ⊥ } ≡ { 2, ⊥,
⊥} ⊔ { ⊥, 3, ⊥}.

Rule (10) states that data elements of a D-bag selected by D-intersection of two different F-bags
is same as results of selecting the data elements by applying individual F-bag on the D-bag and then
performing D-intersection on the resulting D-subbags of data elements. For example, {2, 3, 4}⊗ ({1,
1, 0} u {0, 1, 1 }) ≡ {2, 3, 4} ⊗ {0, 1, 0} which derives { ⊥, 3, ⊥ } ≡ {⊥, 3, 4} u {3, ⊥, 4}.

Rule (11) states that F-bag formed by D-equality on two associations of D-bags D11
⊕

... D1M

and D21
⊕

... D2M is equivalent to D11
.= D21 u ... D1M

.= D2M . For example, { ⊥, < 2, 3, 4 >, <
5, 6, 7 > } .= { ⊥, < 2, 3, 4 >, < 6, 6, 7 > ≡ { ⊥, 2, 6} .= { ⊥, 2, 6} u { ⊥, 3, 6} .= { ⊥, 3, 6} u {
⊥, 4, 7} .= { ⊥, 4, 7} ⇒ { 0, 1, 0 } u { 0, 1, 1 } u { 0, 1, 1 } ⇒ { 0, 1, 0 }.

Rule (12) states that Cartesian product of a bag D with true is equivalent to the set obtained by
associating F1 with any D-bag, and is equivalent to D itself. For example, {2, 3, 4} × { true } ≡ {2,
3, 4} ⊗ {1, 1, 1} which results into the D-bag {2, 3, 4}.

Rule (13) states that Cartesian product of a D-bag D with false is equivalent to D ⊗ F0 ⇒ φ.

3.4 Laws of Data Parallel Computation

In this subsection, we describe two rules for data parallel computation.
Rule (14) states that if any two D-bags are associated and a data parallel computation is performed

on the data elements of each bag then the operation is equivalent to performing the same abstract
computation on every element of the associated fields. Any computation involving ⊥ maps onto ⊥.
For example, {2, 3, ⊥} ∗D {3, 4, ⊥} derives {6, 12, ⊥}.

Rule (15) states that if a scalar value Val is operated on a D-bag using a data parallel computation,
then the data parallel computation is equivalent to taking Cartesian product of the singleton set { Val
} with F1, and performing data parallel computation on the association ({ Val } × F1)

⊕ D1. For
example, 4 * {2, 3, 4} is equivalent to {4, 4, 4} ∗D {2, 3, 4} which derives the D-bag {8, 12, 16}.

5

3.5 Laws of Associative Update

In this subsection, we describes two rules for associative update: Rule (16) describes associative
insertion of a tuple in an association, and Rule (17) describes data parallel release of tuples from an
association.

Rule (16) states that if a tuple of the form < d1, ..., dN > is inserted in an association of bags D1⊕
, ...,

⊕ DN , then the association is updated to (DU1
⊕

, ...,
⊕ DUN) where DUI denotes the updated

bag. Each DUI = DI
⋃ {dI}.

Rule (17) states that by associatively searching in one field, the associated data elements in the
other field can be released in constant number of computations. For example, associative search for a
tuple {4, >, > } from the tuple { < 4, 5, 6 >, < 3, 7, 9 >, 4, 9, 10 > } derives an F-bag { 1, 0, 1 }.
Complement of { 1, 0, 1 } derives { 0, 1, 0}. Application of { 0, 1, 0} derives the D-subbag as { <
⊥, < 3, 7, 9 >, ⊥ > } deleting all the tuples which have value 4.

3.6 Extending Associative Rules for Logic Programming

In this Section, we extend the algebra of associative computing to handle logical variables and their
bindings. A D-bag in logic program contains both constants and variables. These extended rules have
been used to exploit associative computation for binding, goal reduction, identification of bag unifiable
clauses, and selection of a unifiable clause. We will refer to D-bag of substitutions as D-substitution.

Rule (18) states if a variable X is matched with a D-bag then it generates an F-bag F1 and the
D-bag of resulting substitutions is given by a D-bag XI/ {d1, ..., dN} which is also equivalent to
D-substitution { XI/d1, ..., XI/dN}.

Rule (19) states that if a constant is matched with a D-bag { d1, ..., dN} then it generates an
F-bag { f1, ..., fN} as follows:

fI = 1 if dI = the given constant
fI = 1 if dI is a variable
fI = 0 otherwise

The resulting D-bag of substitutions { σD1 , ..., σDN} is given by:

σDI = > if dI = the given constant
σDI = dI/the constant value if dI is a variable
σDI = ⊥ otherwise

For example, matching a value d with the D-bag { X, Y, d, b} gives the F-bag {1, 1, 1, 0 } and
the correspondingD-bag of substitutions as { X/d, Y/d, >, ⊥}.

Rule (20) states that data-parallel matching a pair of multiple occurrence-variable < X, X> with
a pair of D-bags < d11, ..., d1N> and < d21, ..., d2N > derives an F-bag { f1, ..., fN } by extending
data parallel equality as follows:

fI = 1 if d1I u d2I and d1I and d2I are not variables
fI = 1 if d1I 6' d2I and d1I or d2I is a variable
fI = 1 if d1I ' d2I

fI = 0 otherwise

The resulting D-bag of substitutions for above four cases are given as follows:

6

σDI = X/(d1I u d2I)
σDI = {X/d1I , d1I/d2I} or {X/d1I , d1I/d2I}
σDI = {d1I/X, d2I/X}
σDI = X/⊥ otherwise

For example, matching a multiple-occurrence variable < X, X > with a pair of D-bags of the form
< {a, b, Z}, {c, b, W} > will derive the F-bag {0, 1, 1} and the D-bag of substitution as {X/⊥, X/>,
{ X/W, W/Z} }.

3.7 Substitution and Composition

Our definition of substitution and application is similar as [12]. Given a substitution θ and a logical
term t, the application of θ on t is denoted by t θ. A D-substitution is a D-bag of substitutions such
that every element is a ⊥ meaning that match has failed, a > meaning that matching is syntactically
successful, or a set of the form { XI1/tI1, ..., XIN/tIN } where tI could either be a constant symbol,
a variable, or a D-bag of constants, a ⊥, or a>. Given two D-substitutions ΣD

1 of the form { σD11, ...,
σD1I , ..., σD1N} and ΣD

2 of the form { σD21, ..., σD2I , ..., σD2N}, the composition ΣD
1 • ΣD

2 is given by a
D-bag { σD31, ..., σD3I , ..., σD3N }. Each σD1I is either a ⊥, a >, a variable, a constant symbol, a singleton
value XI/tI , or a set of values { XI1/t1, ..., XIN/tIN }; each σD2I is either a ⊥, a >, a variable, a
constant symbol, a singleton value YI/wI , or a set of values { YI1/wI1, ..., YIN/wIN }. Each σD3I is:

(i) ⊥ if σD1I = ⊥ or σD2I = ⊥
(iia) σD1I if σD2I = >
(iib) σD2I if σD1I = >
(iii) XI/t1I u t2I if XI = YI
(iv) { XI/tI , YI/wI } if XI 6= YI and tI ' wI
(v) { XI1/tI1s2I , ..., XI1/tI1s2I}

⋃
s2I

Application of ⊥ on a logical term will derive ⊥, and application of > on a logical term will derive
the logical term. For example, given the D-substitutions { ⊥, >, X3/a, {X41/P, X42/c}} and { Y1/a,
Y2/b, X3/b, {P/d} } derives D-substitution { ⊥, Y2/b, X3/⊥, { X41/d, P/d, X42/c} }.

4 Associative Model of Logic Programming

In this section, we define abstract data representations, a set of basic computations on these data
representations, and describe the computation model for associative logic programming.

The associative computation model maps a logic program as a pair of associations of the form <
L ⊕ N ⊕ P ⊕ A1

⊕
,...,

⊕ AN , L ⊕ C >. The first element of the pair represents a D-bag of
clause-head tuples, and second element of the pair represents the clause-body tuples. L is the D-bag
of labels connecting clause-heads to sequence of compiled abstract instructions of the corresponding
clause-body; N is the priority of the clause-heads to be selected for resolution; P is the D-bag of
procedure-names; AI (1 ≤ I ≤ N) is the D-bag of Ith argument in set of the clause-heads in a program;
C is a D-bag of sequence of compiled instructions corresponding to set of clause-bodies in the program
such that each element ci ∈ C is a sequence of instructions corresponding to one clause-body.

Binding environment contains two parts: data parallel binding environment and shared space
(popularly called heap). The binding environment in the model is represented as an association of

7

D-bags and F-bags. The binding is associated with time stamp for efficient recovery (based upon
associative search on time stamp) of previous environment upon backtracking and is associated with
index SI of the local address space for reference. An association of D-bags is used to represent a set
of tuples such that each D-bag represents the elements occurring at the same position in the tuples.
Searching for a data item in a D-bag derives an F-bag which is used to select a D-subbag. A data
parallel computation performs the same computation on every element of a D-bag or F-bag. The
details of a binding environment for an implementation for a SIMD based architecture is given in [2],
and is outside the scope of this paper. Readers can come with their own scheme within this framework
of computation.

4.1 Associative Resolution

A goal is represented as a tuple of data elements. Given a conjunctive goal of the form :- A1
∧

, ...,∧
AN (N ≥ 0), a subgoal AI is picked at random, and each individual argument is matched with the

corresponding D-bag using rules (18), (19), or (20). At the end of each matching, the resulting F-bag
FI is D-intersected with uJ=I−1

J=0 FJ (where F0 is F1) - the cumulative result of previous F-bags. The
corresponding D-substitution is given by ΣD

I . If uJ=I
J=0FJ = F0 then further data parallel reduction

is terminated and backtracking occurs. At the end of successful data parallel goal reduction, the
D-substitution, denoted by ΘD, is given by ΣD

1 • ... • ΣD
N . During composition of D-substitution,

associative computation and full data parallelism is exploited for rules (i) to (iv). However, in presence
of aliased variables, rule (v) enforces unification. To avoid the sequentiality, unification of aliased
variables is deferred until a specific clause is picked up for resolution.

The D-bag of unifiable clauses is selected by applying < L ⊕ N ⊕ P ⊕ A1
⊕

,...,
⊕ AN> ⊗

uI=NI=0 FI . The search strategy for the resolution tree is based upon prioritizing the selection of the
unifiable clauses in the order simple facts followed by complex facts and complex rules. The rationale
for this selection is to avoid the nonterminating branches, and to improve the execution efficiency
to derive solutions. This strategy is directly supported by search-by-content, and is more powerful
compared to textual order strategy as illustrated:
Example 1:

p(X, Y) :- q(X, Z), r(Z, Y).
p(a, b).
q(X, Y) :- q(Y, X).
q(b, c).
r(c, 4).
r(c, 5).
In the above example, a the simple fact in procedure p/2 is picked up first to get an early solution.

For an alternate solution of p/2 complex clause is picked. However, nonterminating branch in q/2 is
avoided; execution of q/2 gives value of variable Z as c which when applied in subgoal r/2 returns a
D-bag { 4, 5 }.

The cumulative D-substitution ΣD
1 • ... • ΣD

N , denoted by ΘD, is of the form { θD1 , ..., θDN} where
θDI is a partial unifier for each potentially unifiable clause-head. The corresponding substitution for
alised variables, denoted by θSI is derived after selecting the potentially unifiable clause. The final mgu
θI is derived by θDI • θSI . θI is ⊥ if either θDI or θSI is ⊥. It can easily be verified that if an element
in uI=NI=0 FI is 0 then the corresponding θDI is ⊥. if a goal AJ is used for resolution with a clause of
the form A :- B1, ..., BQ (Q ≥ 0) then, after the resolution the resolvent, is given by :- (A1, ..., AI−1,

8

B1, ..., BQ, ... AI+1, ..., AN) θ. If θ = ⊥ then application of ⊥ to previous substitutions derives ⊥
which is equivalent to failure; alternate θI is selected according to associative search strategy. Other
than this difference, the treatment for resolution tree and the proof for soundness is very similar to
[12], and has been omitted from this paper.

5 An Associative Abstract Machine

In this section, we describe briefly an associative abstract instruction set based on the above model.
A detailed scheme for the implementation of associative computation model on SIMD architecture is
given in [2]. Readers can come up with their own implementation model based on this framework.

5.1 An Abstract Instruction Set

The Abstract instruction set of the Dprolog compiler has been divided into five classes: instructions for
data parallel goal reduction, instructions for data selection instructions for data movement, instructions
for control flow, and instructions for data-parallel computation. Data movement instructions are
used to transfer data between registers, transfer data between between D-bags in the data parallel
binding environment, between heap and registers, and between two heterogeneous address spaces.
Control instructions are used to test F0, backtrack to select another binding for a producer, and save
environment on the control stack. Logical parallel instructions are used to select the unifiable clauses
by deriving the D-intersection of the corresponding F-bags, finding the D-union of aliased sets. and
partial handling of negation for facts using complement. Arithmetic computation instructions are of
three types, namely, scalar-scalar → scalar, vector-vector → vector, and scalar-vector → vector. A
description of key abstract instructions is given in Figure 1.

5.2 Applying Instruction Set to Solve a Query

For associative goal reduction, a sequence of instructions data parallel arg match or data parallel unify,
d intersect F-bag, and backtrack if F0 are called repeatedly until all the goal-arguments are processed
or the F-bag of unifiable clauses is empty.

For handling simple facts, select next simple fact derives the alternate fact to be processed. In
case, there are no alternate simple facts, the control is transferred to code area where complex clauses
are handled.

For handling complex clauses, compliment F-bag and d intersect F-bag are used to remove D-bag of
simple unifiable facts from D-bag of unifiable facts; select next clause is used to process next unifiable
complex clause; unify is used for handling aliased variables; and copy reference is used to pass the
bindings from a goal to a subgoal.

Producer consumer relationships are divided in two categories:

1. A producer produces a D-bag D1, and the corresponding consumer is a function working on
consumer occurrence. This is handled by data parallel computation on every data-element
bound to the consumer variable. The example for the first case is a user-defined goal followed
by an arithmetic operation, a set operation, or a comparison operation.

2. A producer produces a D-bag and consumer is in a goal which consumes one scalar value at
a time. This case includes goals with the corresponding consumer occurrence using associative

9

data parallel arg match AI , UI matches a goal argument with the corresponding D-
bag AI (see Rules 18 and 19), derives the F-bag FI
which is D-intersected with UI−1 = uJ=I−1

J=0 FJ) to
derive new value of UI = uJ=I

J=0FJ)

data parallel unify AI , AJ , UI perform data parallel equality test between two D-
bags DI and DJ to handle multiple-occurrence goal
variables (see Rule 20). The resulting F-bag is d-
intersected with UI−1 = uJ=I−1

J=0 FJ) to derive new
value of UI = uJ=I

J=0FJ)

unify A1, A2 performs conventional unification of two logical terms
A1 and A2, and is used to unify aliased variables

d intersect F-bag FI , FJ , FK computes and stores FI u FJ into FK

d union F-bag FI , FJ , FK computes and stores F1 t F2 into FK

d compliment F-bag FI , FJ computes and stores ¬ FI into FJ

save bag id AI , DI stores the reference of D-substitution (of variable in
AI) DI in the heap. DI itself is stored in the data-
parallel environment

save subbag id AI , DI , FI saves the references D-bag DI and F-bag FI needed
to compute D-subbag DI

⊗ FI .
load next binding AI picks up next binding from D-substitution of a vari-

able argument corresponding if all the elements of the
corresponding D-substitutions are not ⊥. If all the
elements of DI are ⊥ then backtracking takes place.
After an element is picked, the corresponding element
in D-substitutions is replaced by ⊥

Figure 1: A Generic Framework of Associative Abstract Instruction Set

10

load scalar binding AI picks up a scalar binding for a variable in argument
AI

copy reference A1, A2 copies the reference of the binding of a variable in ar-
gument A1 of a goal to a variable in argument A2 of a
subgoal. The data may require transfer of data from
one address space SI to another address space SJ .
The advantage of copying the reference is that com-
munication and structuring overhead moving large D-
bags of attributes of a data element are reduced

backtrack if F0 FI backtracks and restores previous environment if FI is
F0

repeat until F0 LabelI saves label LabelI on the control stack, and reverts the
direction of control flow from backtracking to forward
flow

select next simple fact FI , LabelI selects another unifiable simple fact from< L⊕N ⊕
P ⊕A1

⊕
,...,

⊕AN , L⊕ C >⊕ FI . After selection
of clause, new value of FI is derived by marking that
entry 0 in FI . If FI is F0 then control is passed to
code sequence starting from label LabelI

select next clause FI selects randomly another unifiable complex clauses
identified by < L ⊕ N ⊕ P ⊕ A1

⊕
,...,

⊕ AN ,
L ⊕ C > ⊗ FI . After the selection of a clause, new
value of FI is derived by marking that entry 0 in FI .
If FI is F0 then backtracking occurs.

call LabelI saves the current environment on the control stack,
and passes control to label LabelI corresponding to
first instruction of a procedure

return restores the previous environment, and returns from
the called procedure

Figure 1: A Generic Framework of Associative Abstract Instruction Set (continued)

11

search in the clause-heads. This is handled by repeated backtracking to fetch a new value and
processing the value until the D-bag bound to the producer is empty. This repeated backtracking
is achieved by a pair of abstract instructions repeat until F0 and load next binding.

In addition, there are multiple data parallel arithmetic operations, data parallel arithmetic com-
parison operations, data parallel logical operations.

6 An Illustrative Example

In this section, we explain commonly used abstract instructions through a compiled program. Example
2 illustrates the compilation of programs with simple facts, complex facts, and complex clause with
shared variables.

Example 2:
The program has three procedures, namely, p/2, q/2, r/2. The procedure p/2 illustrates compi-

lation of simple ground facts and complex facts caused by presence of aliasing. The procedure q/2 is
a D-bag of simple facts. The procedure r/2 is a mixture of simple fact and a complex clause. The
right hand side of the complex clause in r/2 exhibits producer-consumer relationship: variable Y has
producer occurrence in subgoal p/2 and consumer occurrence in subgoal q/2.

p(1, 2). p(2, 3). p(3, 4).
p(X, X). * Complex fact due to aliasing *

q(2, 1). q(3, 2). q(4, 3).
q(5, 4). * Simple facts *

r(2, 2).
r(X, Y) :- p(X, Y), q(2, Y). * Complex clause *

6.1 The Compiled Code

We give the compiled code for the above program, and the corresponding operational semantics of
the abstract instructions. we will denote Ith argument of a goal by AGI and the corresponding D-bag
in the program by DI . AI denotes both AGI and DI ; UK denotes uJ=I−1

J=0 FJ); FFK denotes F-bag of
simple facts; FUFK denotes F-bag of unifiable simple facts; FCK indicates unifiable complex clauses; and
FTK denotes a F-bag to store temporary result. We give abstract description of the instructions:

% Data parallel goal reduction for procedure p/2.

p/2: data parallel arg match A1, FU0 % match first argument of goal and
store F-bag in FU0

backtrack if F0 FU0 % backtrack if F-bag FU0 is empty
data parallel arg match A2, FU0 % match second argument and store

cumulative result in F-bag FU0
backtrack if F0 FU0 % backtrack if F-bag FU0 is empty
d intersect F-bag F0, FU0 , FUF0 % Identify unifiable simple facts in

FUF0

12

save bag id A1 FUF0 % save D-substitution for first
argument

save bag id A2 FUF0 % save D-substitution for second
argument

% Handling simple facts for procedure p/2

compliment F-bag FF0 , FT1 % store all complex clauses in F-bag
FT1

d intersect F-bag FT1 , FU0 , FUC0 % identify F-bag of unifiable com-
plex clauses

select next simple fact FUF0 , Label10 % select another unifiable simple fact
if present else jump to process com-
plex clause

% Complex fact processing for procedure p/2

Label10: select next clause FUC0 % select one unprocessed unifiable
complex clause

CF p/2: unify A1, A2 % unify aliased variable X in p/2
return % return from p/2

% Instructions for procedure q/2. Instructions have same meaning as in p/2

q/2: data parallel arg match A1, FU0
backtrack if F0 FU0
data parallel arg match A2, FU0
backtrack if F0 FU0
d intersect F-bag FF0 , FU0 , FUF0

save bag id A1, FUF0

save bag id A2, FUF0

compliment F-bag FF0 , FT1
d intersect F-bag FT1 , FU0 , FUC0

select next simple fact FUF0 , Label23

Label23: select next clause FUC0

% Instructions for procedure r/2. Data parallel goal reduction has same meaning as p/2.

r/2: data parallel arg match A1, FU0
backtrack if F0 FU0
data parallel arg match A2, FU0
backtrack if F0 FU0
d intersect F-bag FF0 , FU0 , FUF0

save bag id A1, FUF0

save bag id A2, FUF0

13

compliment F-bag FF0 , FT1
d intersect F-bag FT1 , FU0 , FUC0

select next simple fact FUF0 , Label34

Label34: select next clause FUC0

% Instructions to Handle Complex Rule

CC R1: copy reference A1, A1 % copy X in r/2 to X in subgoal p/2
copy reference A2, A2 % copy Y in r/2 to Y in subgoal p/2
call DP p/2 % call procedure p/2

Label39: load data A1, 2 % load 2 in A1

copy reference A2, A2 % copy Y in r/2 in Y in subgoal q/2
repeat until F0 Label42 % load Label42 on stack and go to

next instruction if binding of A2 is
non-empty else backtrack

Label42: load next binding A2

call DP q/2 % call procedure q/2
return % return to top level

6.2 Performance Evaluation

We developed and implemented the associative computation model and its generic abstract instruction
set for a homogeneous address space. The emulator is portable to any architecture which supports data
parallel version of C. The results demonstrate that the number of operations needed for associative
lookup is independent of number of ground facts. Thirty operations are needed to match a ground fact
with two arguments. The number of operations is linearly dependent upon the number of arguments
in a query. For each extra argument, nine extra operations are needed to load the value in registers,
perform data parallel match, and perform logical ANDing of the previous bit-vector with the new
bit-vector obtained during data parallel match.

For a 10 ns clock supported by current technology, and three clock cycles (load-execute-store cycle),
the associative look up speed is 1.2 million × number of facts for a set of facts with two arguments.
In the presence of data parallel scientific computations intertwined with associative lookup, the peek
execution speed is limited by the associative look-up speed which will be one hundred and twenty
MCPS (million computations per second) for thousand facts.

When two subgoals of a rule share variables, and the second subgoal is not a data parallel com-
putation, the data elements in vector bindings for shared variables are processed one at a time. This
scenario is the worst case for execution, and the execution speed reduces to four hundred thousand
logical inferences per second (LIPS) for one shared variable. The slow down is caused primarily due to
the overhead of storing the control thread during forward control flow, register set up, and retrieving
the control thread during backtracking. Our results show that the overhead of data parallel matching
is less than the overhead of storing the control thread during forward control flow which makes the
model suitable for handling flat programs with relations having a large number of arguments.

14

7 Conclusion

In this paper, we describe a formal model of associative logic programming for heterogeneous address
space and a generic abstract instruction set. The model and the abstract instruction set will act as
a framework which can be altered to exploit the advantages of specific architecture. The advantage
of data parallel goal reduction is that data can be distributed on different machine and each machine
may execute same piece of code on different data sets. The use of bit-vectors reduces the data transfer
overhead when data is distributed across different machines. The simulation results for homogeneous
address space is very encouraging. We are currently modifying the abstract machine for heterogeneous
address space using popular message passing paradigm tools [15].

References

[1] Bansal, A., and Potter, J., “An Associative Model to Minimize Matching and Backtracking Over-
head in Logic Programs with Large Knowledge Bases”, The International Journal of Engineering
Applications of Artificial Intelligence, Permagon Press, Volume 5, Number 3, (1992), pp. 247 -
262.

[2] Bansal, A., “An Associative Model to Integrate Knowledge Retrieval and Data Parallel Compu-
tation”, International Journal on Artificial Intelligence Tools, Volume 3, Number 1, 1994, pp. 97
- 125.

[3] Bansal, A., “Towards a Formal Computational Model for Associative Logic Programming”, Pro-
ceedings of the International Workshop on Data Parallel Implementation of Declarative Lan-
guages, Geneoa, Italy, 1994, Uppsala University, Sweden, pp. 11 - 20.

[4] Bansal, A., Prasad, L., and Ghandikota, M., “A Formal Associative Model of Logic Programming
and its Abstract Instruction Set”, International Conference of Tools with Artificial Intelligence,
November 1994, pp. 145 - 151.

[5] Dwork, C., Kanellakis, P., and Mitchell, J., “ On the Sequential Nature of Unification”, The
Journal of Logic Programming, (June 1984), pp. 35-50.

[6] Feldman, J. A., and Rovner, D., “An Algol Based Associative Language,” Communications of
the ACM, Volume 12, No. 8, August 1969, pp. 439 - 449.

[7] Gries, D., “The Science of Programming”, Monograph, Springer Verlag, Newyork, 1987.

[8] Hwang, K., and Briggs, F. A., Computer Architecture and Parallel Processing, Mcgraw Hill Book
Company, New york, USA, (1984).

[9] Kacsuk, P., and Bale, A., “DAP Prolog: A Set Oriented Approach to Prolog,” The Computer
Journal, Vol. 30, No. 5, 1987, pp. 393-403.

[10] Knobe, K., Lukas, J. D., Steele, G., “Massively Data Parallel Optimization”, The 2nd Symposium
of Massively Parallel Computation, Fairfax, Virginia, 1988, pp. 551 - 558.

[11] Kowalski, R., Logic for Problem Solving, Elsevier-North Holland, (1979).

15

[12] Lloyd, J., Foundations of Logic Programming, (Springer-verlag, New York, 1984).

[13] Manna, Z., and Waldinger, R., “The Logical Basis for Computer Programming”, Volume1: De-
ductive Reasoning, Addison Wesley, 1985.

[14] Potter, J. L., Associative Computing, Plenum Publishers, Newyork, (1992).

[15] Sunderam, V. S., “ PVM: A Framework for Parallel Distributed Computing”, Concurrency:
Practice and Experience, 2, pp. 315-339 (1990).

[16] Takeuchi, A., and Furukawa, K., “Parallel Logic Programming Languages”, Lecture Notes In
Computer Science, Vol. 225, Springer Verlag, Newyork, (July 1986), pp. 242 - 254.

[17] Warren, D. H. D., “An Abstract Prolog Instruction Set”, Technical Report 309, SRI International,
(October 1983).

16

