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Abstract

Secure location verification is a recently stated problem that has a number of practical appli-
cations. The problem requires a wireless sensor network to confirm that a potentially malicious
prover is located in a designated area. The original solution to the problem, as well as solutions
to related problems, exploits the difference between propagation speeds of radio and sound waves
to estimate the position of the prover. In this paper, we propose a solution that leverages the
broadcast nature of the radio signal emitted by the prover and the distributed topology of the
network. The idea is to separate the functions of the sensors. Some sensors are placed such that
they get the signal from the prover if it is inside the protected area. The others are positioned
so that they can only get the signal from the prover outside the area. Hence the latter sensors
reject the prover if they hear its signal. Our solution is versatile and deals with provers using
either omni-directional or directional propagation of radio signals without requiring any special
hardware besides a radio transceiver. We estimate the bounds on the number of sensors required
to protect the areas of various shapes and extend our solution to handle complex radio signal
propagation, optimize sensor placement and operate without precise topology information.

Keywords: location verification, wireless sensor networks, security.

1 Introduction

The problem of secure location verification is stated by Sastry et al [12]. The problem is to confirm
the physical presence of the principal (prover) in a protection zone. Location verification has a
number of uses such as target tracking, smart inventory, location-based access control, etc. For
example, once the presence of the prover has been confirmed, it can be granted access privileges
such as connection to a private wireless network, starting a car, opening doors to a restricted area
or disabling an alarm.

Related work. The close interaction of computing devices with the physical environment requires
novel approaches to security. Naik et al. [10] adopt security techniques to the constraints and
demands of such systems. Alternatively, in this paper we exploit the properties of the environment
to solve the security task.

A number of researchers commented on the importance of location verification in wireless sensor
networks [3, 6, 12]. There are many protocols that achieve location verification by exploiting the
difference between radio signal propagation and ultra-sound, etc. Particularly, Hu et al. use temporal
packet leashes [8], Brands et al. use a time-bounded challenge-response protocol [4]. A limitation of
these schemes is the necessity of highly accurate time measurement capabilities and possibly non-RF
communication hardware on the sensor nodes.
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Balfanz et al. [3] use location-limited channels for location verification; however, the lack of
location-limited channels may abridge the suitability of this method. Moreover, this method does
not provide any strong security guarantees [12]. Corner and Noble [5] use short-range communication
to verify proximity. However, their scheme fails if a malicious user is able to send data from a distance
using a powerful transmitter. Kindber et al. [9] use constrained channels to limit transmission range
of the prover, but their protocol does not provide strong security guarantees either. Tamper-resistant
hardware is used in the industry to provide location authentication [7].

Our contribution and paper organization. We propose a location verification protocol that
relies on the broadcast nature of radio communication and cooperation of the sensor nodes. In-
tuitively, once the prover issues a radio signal, sensors in its vicinity will receive the signal, while
remote sensors will not. The sensor nodes can then compare their readings to estimate the reception
area, and thus determine the presence of the prover. Our protocol is resource efficient, and it does
not require extended sensor capabilities needed for time-of-flight location estimation approaches.

In the presentation of the paper we strive to make the material as accessible as possible. Thus,
we first discuss the solution to the simplest problem with the strongest assumptions about the
environment and security threats (e.g. perfect signal reception, omni-directional antennas of the
attackers). At first we do not discuss the distributed implementation of our algorithm. We then
relax each assumption and extend our solution to more a realistic specification. To keep our paper
focused we do not present a complete system that is capable of protecting against a wide spectrum
of security threats such as node compromise. However, in the end of the paper we discuss how our
protocol can be incorporated into such a system.

The specific contributions of this paper are as follows. We restate the location verification problem
[12] in Section 2, in a way that allows its formal treatment and suggests a range of solutions. Using
this as a basis, we present a generic protocol for location verification. We outline its properties in
Section 3.

In Section 4, we demonstrate that an arbitrary polygonal protection zone can be completely
secured with O(n) sensors where n is the number of sides in the polygon. The basic protocol may
leave out certain portions of the protection zone where the prover may or may not be accepted
(ambiguity zone). In the same section, we also show that an arbitrary (non-polygonal) zone can be
secured with O(S + P ) sensors such that the ambiguity zone occupies a band of constant thickness
around the border, where S and P are the zone’s area and perimeter respectively.

In the basic protocol, the number of verification attempts before the prover is accepted is pro-
portional to the size of the zone. In Section 6, we show that this number can be decreased to the
logarithm of the zone size by using extra verifiers. In Section 7, we show how the prover can be
accepted in the ambiguity zone with extra verification attempts, and we also estimate the number
of such attempts to be proportional to the logarithm of the protection zone size.

We provide a few extensions to our basic protocol. In addition to the simple broadcast model
using omni-directional radio signals, which defines a fixed-sized circular area of perfect reception
around the radio source, in Section 8, we extend the protocol to deal with the complex broadcast
model, which introduces a band of non-deterministic reception around the area of perfect reception.
In Section 5, we provide further modifications to defend against adversaries that use directional radio
signals to defeat the protocol. In this case the adversaries are capable of generating signals with non-
zero gain, which distorts the shape of the signal propagation area. In Section 9, we provide the
protocol for location verification where arbitrary verifier placement is used instead of a calculated,
deterministic placement. In Section 10 we conclude the paper by discussing how our protocol can be



extended to a complete security system.

2 Preliminaries

Definitions. The location verification problem requires a set of verifiers to accept a prover if it is
located in a designated protection zone. A verifier is a sensor capable of communicating with the
other verifiers as well as the prover. A prover is a mobile entity requesting access to the resources
that are guarded by the verifiers. The verifiers accept the prover, if it is present in the protection
zone and behaves according to the communication rules. Otherwise, the verifiers either reject the
prover or issue no decision.

There are two kinds of verifiers: an acceptor and a rejector. The plane is divided into three zones
according to the verifier’s ability to locate the prover: the acceptance zone — a prover in this zone is
always accepted if it behaves according to the communication rules; the ambiguity zone — a prover
in this zone may or may not be accepted (regardless of the prover’s adherence to the communication
rules); and the rejection zone — a prover in this zone is never accepted.

For a particular protection zone a verification protocol is secure if every point outside the protec-
tion zone is also in the rejection zone. The verifiers secure the protection zone. Protection gap is the
maximum distance between a point in the rejection zone and the nearest point outside the protection
zone. Notice that this distance is only meaningful for points inside the protection zone. Hence, the
protection gap is a measure of how much the rejection zone encroaches upon the protection zone.
Protection is complete if the protection gap is zero.

Assumptions and threat model. The verifiers are able to communicate securely and reliably
amongst themselves. The verifiers are trusted. That is, a malicious entity cannot either disrupt
the communication between verifiers or impersonate a verifier. We do not focus on communication
issues between verifiers. Throughout the rest of the paper, we assume that the data that one verifier
records is available to the other verifiers as needed.

If the verifiers send a message to the prover, the prover is always able to receive it. Prover
authentication is not required. That is, any entity that communicates with the verifiers is considered
a prover. The prover is able to configure its radio transmitter so that the radio signal propagates to
an arbitrary fixed distance. Both the signal transmission and reception are instantaneous.

We consider an omni-directional radio propagation model for the prover. In this model, if a
prover sends a signal, every verifier within some fixed distance of the prover receives it, while no
verifier that is further away does. This distance depends on the signal strength of the prover. We
relax the omni-directionality assumption in Section 5 and the perfect circular reception assumption
in Section 8.

The prover may be malicious. A malicious prover does not have to comply with the verification
protocol. Multiple provers may collude to defeat the verification protocol. In the case of multiple
provers, the provers may be able to synchronize their signals perfectly and time them with high
accuracy. If all malicious provers are in the rejection zone, none of them is supposed to be accepted.

Problem statement. We adapt the problem statement from [12].

Problem 1 (Location Verification) Given a closed protection zone, specify a secure location ver-
ification protocol.

Observe that the only requirement on the protection zone is that it be closed, i.e. the zone does
not have to be connected.



3 Location Verification Protocol

Verification protocol. Our verification protocol rules are as follows. The prover remains stationary
during verification. It sends a radio signal so that verifiers within the distance of the signal increment
x can hear it. If the prover does not receive their decision, it increases its signal strength by x and
rebroadcasts the signal. The procedure repeats until the verifiers respond. When one of the verifiers
hears the prover, the verifiers form a decision. They accept the prover if none of the rejectors hear
it and reject it otherwise.

Basic Protocol Properties.

Lemma 1 A certain point on the plane is in the rejection zone if and only if the distance from this
point to the nearest acceptor is no less than that to the nearest rejector.

Proof: If: We show that when multiple malicious provers are located as stated in the lemma, the
only decision that the verifiers can make is reject. Note that the cardinality of the set of malicious
provers is not limited. Also, since the signal transmission is instantaneous, we can consider that
there is a stationary prover at every point from which a mobile prover sends a signal. Hence, we can
ignore the mobility of the provers.

According to the communication rules, the accept decision is reached when at least one acceptor
and no rejectors hear the prover’s signal. For the acceptor to hear the signal, the signal strength
should be high enough to cover the distance from the prover to the acceptor. However, every
prover is no further from the nearest rejector than from an acceptor. Due to our signal propagation
assumption, if an acceptor receives the signal from the prover, then at least one rejector must have
also heard it. In this case, according to the communication rules, the verifiers reject the prover.
Thus, each point that is at least as far away from the nearest acceptor as from the nearest rejector
is in the rejection zone.

Only if: We prove the contrapositive. Suppose that for a certain point p on a plane, the distance
to the nearest acceptor is less than that to the nearest rejector. Let the prover be located at p and
broadcast with the minimal signal strength necessary for the acceptor to receive the signal. In this
case, according to the signal propagation assumptions, the rejector does not hear the prover. By the
communication rules of the protocol, the prover is accepted. By definition, a prover is never accepted
in any point of the rejection zone. Hence, p is not in the rejection zone. Thus, for every point in
the rejection zone it is necessary to be at least as far from the nearest acceptor as from the nearest
rejector. 2

To state our results more formally, we define a few terms from computational geometry. By
definition [11, Ch.5], a verifier’s Voronoi cell is the area that is closer to this verifier than to any
other verifier. Thus, any point in a rejector’s cell (including the boundary) is at least as close to the
rejector as to the nearest acceptor. The following theorem follows from Lemma 1.

Theorem 1 For the location verification protocol to be secure it is necessary and sufficient that the
union of the rejectors’ Voronoi cells covers the area outside the protection zone.

Recall that the statement of location verification problem requires that the protection zone be
finite. A non-trivial solution to the problem needs at least one acceptor. From Theorem 1, it follows
that the Voronoi cell of each acceptor must be finite. It can be easily shown that the minimum
number of objects (verifiers) to form a finite Voronoi cell is four. Moreover, these four objects
produce only one finite cell. Hence the following corollary.



Corollary 1 A non-trivial solution to the location verification problem requires at least four verifiers
(one acceptor and three rejectors).

Lemma 2 A certain point on the plane is in the acceptance zone if the nearest acceptor is at least
one signal increment (x) closer to this point than the nearest rejector.

Observe that the statement of this lemma is not symmetric to that of Lemma 1. The “only if”
part of Lemma 2 in general does not hold.
Proof: Let the nearest acceptor and the nearest rejector be at the respective distances a and
b > a + x from the point of interest. According to the communication rules, the acceptor receives
the signal from the prover after ⌈a/x⌉ tries. Hence, the distance of the signal propagation is:

⌈a

x

⌉

x ≤
(a

x
+ 1

)

x = a + x < b

Thus, when the nearest acceptor receives the signal from the prover, the rejectors are still too far
from the prover to have also received the signal. 2

Observe that Lemmas 1 and 2 delineate acceptance and rejection zones only. Yet these two zones
do not cover the whole plane. The remaining area is the ambiguity zone. In this zone, every point
is closer to the nearest acceptor than to a rejector but the difference in the respective distances is
less than the signal increment. The reason for the existence of this zone is the following. The prover
increments its signal by x each time it broadcasts. For a prover in the ambiguity zone, it is possible
that the signal is too weak for the verifiers to receive it. Yet when the signal is incremented by x and
rebroadcast, both an acceptor and a rejector hear it. According to the protocol, the verifiers reject
the prover. However, the points of the ambiguity zone are closer to an acceptor than to a rejector.
Hence, a prover that does not follow the protocol may tune its signal strength such that an acceptor
hears it even though none of the rejectors do. Thus, this prover is accepted.

In the solution that Corollary 1 suggests, the protection gap can be arbitrarily large. Indeed,
since the number of verifiers is fixed, the shape of the acceptor’s Voronoi cell is rather rigid and the
boundary of the protection zone can deviate arbitrarily far from this shape. The following lemma
allows complete protection of a polygonal protection zone.

Lemma 3 Given an n-sided convex polygonal protection zone, it is possible to secure the protection
zone completely using n + 1 verifiers.

Proof: Let us place an acceptor at an arbitrary point in the protection zone. Also, we place each
rejector so that the bisector of the line joining this rejector and the acceptor contains the side of
the protection zone as a segment. Since the protection zone is convex, the Voronoi cell of the only
acceptor matches the protection zone. Hence, the union of the rejectors’ Voronoi cells covers the
area outside the protection zone. According to Theorem 1, the protocol is secure. By definition, the
protection provided by this placement of verifiers is complete. The total number of verifiers is n + 1.

Lemma 4 Given an n-sided convex polygonal protection zone containing a circle of radius r, n + 1
verifiers can completely secure this protection zone such that the acceptance zone contains an open
disk with radius r − x/2.

Proof: To estimate the size of the acceptance zone, refer to Figure 1. The protection zone contains
a circle of radius r. We position the acceptor at the center of the circle and the rejectors outside the
protection zone, as described in the proof of Lemma 3. Note that Lemma 3 holds regardless of the



Figure 1: Zone delineation in case of a polyg-
onal protection zone. Illustration to the proof
of Lemma 4.
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Figure 2: Covering a zone of arbitrary shape with a
constant ambiguity gap. Illustration for the proof of
Theorem 3.

exact position of the acceptor inside the polygon. Consider a concentric open disk of radius r− x/2.
The distance between every point in this disk and its nearest rejector is greater than r+x/2. Hence,
for every point of the disk, the distance to the acceptor is less than that to the nearest rejector by
x. According to Lemma 2, the disk is inside the acceptance zone. 2

4 Securing Arbitrary Zones

To address the security of arbitrary polygons, we expand our protocol as follows. A protection zone
may be decomposed into a number of smaller sub-zones. The sub-zones are secured separately. In
other words, the verifiers of one sub-zone do not interact with the verifiers of another. The prover is
accepted in the aggregate zone if it is accepted by the verifiers of at least one of the constituent sub-
zones. Using the expanded protocol, we derive the upper bound on the number of verifiers needed
for protection zones of arbitrary shape. We state our results in the following two theorems.

Theorem 2 An arbitrary n-sided polygonal protection zone can be completely secured by O(n) ver-
ifiers.

Proof: The number of triangles required to triangulate an n-sided polygon is n − 2. According
to Lemma 3, it takes 4 verifiers to secure a triangle completely. Thus, the total number of verifiers
required to secure an n-sided protection zone is 4n − 8. The theorem follows. 2

Observe that the solution that the proof of Theorem 2 suggests, may potentially leave the aggre-
gate acceptance zone disconnected. This may complicate the positioning of the prover for acceptance.
The following theorem bounds the number of verifiers necessary to secure an arbitrary protection
zone such that the acceptance zone is continuous and its boundary is within a constant distance from
the boundary of the protection zone. To state this fact, we define ambiguity gap to be the maximum
distance from a point in the ambiguity zone to the nearest point outside the protection zone.

Theorem 3 The number of verifiers required to secure an arbitrary-shaped protection zone of area
S and perimeter P with a constant ambiguity gap is in O(S + P ).



Proof: Consider a tessellation of squares that covers the protection zone.1 Refer to Figure 2 for
the illustration. Let t be the length of a side of each square. We select t small enough so that in the
tessellation there is at least one square whose center is no less than t + x

√
2 away from the nearest

border. It is well-known that the number of such squares is in O(S + P ).
Let us disregard all squares with centers less than t+x

√
2 away from the border and consider each

of the remaining squares individually. By assumption there is at least one such square. Circumscribe
a circle around such a square. Its radius is t/

√
2. Consider a concentric circle with radius t/

√
2 + x.

Circumscribe a square over this circle. The distance from the center to the furthest point in this
square is t + x

√
2. By construction, the square is completely inside the protection zone. According

to Lemma 3, it takes 5 verifiers to secure this square completely. Moreover, from Lemma 4 the
internal square will be inside the acceptance zone. Repeat the process for all the squares of the
tessellation. The combined acceptance zone is continuous, and the ambiguity gap is no more than
t + x

√
2. Since it takes a constant number of verifiers to cover each square, the total number of

verifiers is in O(S + P ). 2

5 Directional Antennas

In the discussion thus far, we assume that the malicious provers follow the omni-directional broadcast
model. Malicious provers, however, may be equipped with directional antennas, allowing them to
add a non-zero gain in a particular direction, thereby distorting the shape of the reception area. A
malicious prover can exploit the directionality of the signal to defeat the verifiers. Such a prover
directs a narrow beam of radio signal such that the signal avoids reception by the rejectors but
targets acceptors. Thus, the prover may violate the security of the protocol.

Consider a maximal sector inside the propagation area of the emitted directional signal. A signal
is definitely received in every point of this sector. Beamwidth β is the minimum angle among the
sectors that correspond to propagation areas of various signal strengths. We assume that malicious
provers cannot make their beamwidth arbitrarily small, i.e. β is constant.

The following lemma is equivalent to Lemma 1. It is proven similarly.

Lemma 5 Provided that malicious provers are capable of using directional antennas with fixed min-
imum beamwidth β, a certain point on the plane is in the rejection zone if every sector of angle β
originating in this point and containing an acceptor also contains a rejector.

Observe that a benign prover uses only omni-directional antennas. Hence, the acceptance criterion
of Lemma 2 applies to it.

Theorem 4 It is possible to secure an arbitrary shaped protection zone against malicious provers
with directional antennas using O(r) verifiers where r is the size of the circle inscribed in the protec-
tion zone.

Proof: Consider a circle of radius r − k > 0 that is concentric with the circle inscribed in the
protection zone where is k is a constant independent of r. Refer to Figure 3 for illustration. Place
a single acceptor in the middle of this circle and the rejectors on its circumference at a distance of
2k · tan (β/2) from each other. Observe that conditions of Lemma 5 are satisfied for every point
outside the inscribed circle. Therefore, every point outside the protection zone is in the rejection
zone. According to the specification of the location verification problem such a placement of the
verifiers secures the protection zone.

1The proof does not depend on the shape of the polygons. The squares are used for simplicity.
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The number of required verifiers is:

1 +

⌈

2π(r − k)

2k tan (β/2)

⌉

Since k and β are constant, the number of verifiers are in O(r). 2

Observe that the verifier placement discussed in the proof of Theorem 4 can potentially yield an
empty acceptance zone. For a non-trivial solution r − k has to be large enough so that a circle with
this radius contains a polygon satisfying the conditions of Theorem 4.

6 Logarithmic Verification Time

According to the communication rules of our protocol, the prover repeatedly broadcasts its signal
until it hears from the verifiers. The prover increases its signal strength by x each time. Let d be
the largest distance between any two points in the acceptance zone. Since the acceptors and the
verifiers have to be inside the protection zone, the maximum number of broadcasts is ⌈d/x⌉, i.e. it
is proportional to the size of the protection zone. However, with a particular layout of the sensors
and a modification of the protocol, this number can be made proportional to the logarithm of the
size of the zone.

In order to do this, we put the following extra assumption on the placement of acceptors. For
every point in the acceptance zone, there exists an integer i, (i ≥ 0), such that there are no rejectors
closer to this point than x · 2i+1, and at least one acceptor between x · 2i and x · 2i+1.

We also update the communication rules as follows. The prover sends a radio signal so that the
verifiers within distance x receive the signal. If the prover does not receive their decision it doubles
its signal strength and rebroadcasts the signal. The procedure repeats until a verifier responds. When
an acceptor hears a radio broadcast from a prover claiming to be in the acceptance zone, it accepts
the prover if none of the rejectors hear the prover.

Observe that the rejection rules are not changed. Hence, the security of the protocol is not
affected. Below is our estimate of the number of broadcasts the prover needs to be accepted.

Theorem 5 For the modified protocol, the maximum number of broadcasts required for the prover



to get accepted is proportional to the logarithm of the radius of the circle circumscribed over the
protection zone.

Proof: The maximum broadcast distance for a prover is d. The prover is accepted after at most
i+2 broadcasts. The maximum distance the signal of the prover covers is x·2i+1. That is x·2i+1 ≤ d.
Taking the logarithm of both sides, we get i ≤ log(d/x) − 1.

Since x is constant, i is in O(log d). Thus, the number of broadcasts is proportional to the
logarithm of the protection zone size. 2

7 Shrinking the Ambiguity Zone

The ambiguity zone is the area where every point is closer to an acceptor than to a rejector but
where the difference in the respective distances is less than x. A prover in the ambiguity zone that
behaves according to the basic protocol is rejected even though it is inside the protection zone. In
this section, we extend the protocol so that a prover in the ambiguity zone is accepted. This, in
effect, shrinks the ambiguity zone. The extension is based on the idea of tuning the signal of the
prover so that the nearest acceptor hears it while no rejectors do.

The prover in the ambiguity zone behaves according to the communication rules stated in Sec-
tion 3. If the prover is rejected, it behaves as follows:

If the prover is rejected and the last signal increment is z, the prover decreases the signal strength
by z/2 and rebroadcasts. Alternatively, if the prover does not hear the decision of the verifiers (the
signal does not reach any verifier), the prover increases the signal strength by z/2 and rebroadcasts.
The prover continues the process until it is accepted.

Recall that no assumptions are placed on the behavior of the malicious provers. Hence, the
security of the protocol is not affected by the above modification.

acceptance(rejection)zone.Therefore, changingthe signal increment does not affect the correct-
ness of the algorithm.

Theorem 6 Let a (respectively b) be the distance between the prover in the ambiguity zone and
the nearest acceptor (rejector). It takes O(log (b − a)) extra broadcast attempts for the prover to be
accepted.

Proof: Observe that the estimate of the number of extra broadcasts does not change if we only
consider the case where the prover increases (and never decreases) its signal strength. Suppose it
takes i + 1 iterations before the prover is rejected for the first time, and that the acceptor is reached
in j additional iterations. The relation between a and the maximum distance covered by the prover’s
signal is as follows:

a < ix +
x

2
+

x

22
+ · · · + x

2j
= ix + x

(

1 − 1

2j

)

Since the prover is rejected before it tries to shrink the ambiguity zone, the distance to the prover:

b < (i + 1)x

After subtracting the first inequality from the second, simplifying and taking logarithms of both
sides we get:

j < log
x

b − a

Since x is constant, the number of extra broadcasts is proportional to the logarithm of the difference
between b and a. 2



8 Complex Signal Propagation

The discussion thus far has focused on the simple propagation model where we assume that a receiver
within a fixed distance from the source definitely hears the broadcast radio signal while any receiver
beyond this fixed distance definitely does not.

In this section, we extend the signal propagation model as follows. If the prover sends a signal,
then (i) it is definitely received by a verifier if the verifier is no more than some fixed distance r
away from the prover; (ii) it may or may not be received by a verifier whose distance to the prover is
between r and r + y where y is some constant distance; and (iii) it is not received by a verifier more
than r + y away from the prover. As with the original assumption, r depends on the signal strength
of the prover. Distance y, however, is constant and independent of the signal strength.

The following two lemmas are equivalent to Lemmas 1 and 2. The proofs are similar.

Lemma 6 For the complex signal propagation, a certain point on the plane is in the rejection zone
if and only if the nearest rejector is at least y closer than the nearest acceptor.

Lemma 7 For the complex signal propagation, every point in the acceptance zone is at least x + y
closer to the nearest acceptor than to the nearest rejector.

The results similar to the ones stated in the remainder of the Section 3 and the consequent
sections also apply to the complex signal propagation model.

9 Arbitrary Verifier Placement

Consider the following variant of the verification protocol. Rather than being placed at specific,
pre-calculated locations, the verifiers are positioned arbitrarily on the plane. We assume that the
verifiers have no knowledge of their position or the dimensions of the protection zone. Each verifier
is informed as to whether it is inside or outside the protection zone (see Figure 4). We assume the
following about the verifier placement: if there is a non-empty intersection between the verifier’s
Voronoi cell and the area outside the protection zone, then either the verifier itself or one of its
Voronoi neighbors is outside the protection zone.

The verifiers are classified as follows:

• each verifier outside the protection zone is a rejector;

• each verifier that has a Voronoi neighbor outside the protection zone is also a rejector;

• the rest of the verifiers are acceptors.

Theorem 7 The verification protocol with random placement of the verifiers solves the location
verification problem.

Proof: According to classification rules, the outside verifiers are rejectors. By assumption, the
verifiers are placed such that a verifier that is inside the protection zone but whose Voronoi cell
breaches the protection zone border has a Voronoi neighbor outside the protection zone. Again,
by the classification rules, such a verifier is a rejector. Thus, the union of the Voronoi cells of the
rejectors covers the area outside the protection zone. According to Theorem 1, the protocol complies
with the security property of the location verification problem. 2

In practice the assumptions about the Voronoi neighbors can be fulfilled by distributing the verifiers



with appropriate density. For example, there are two sets of verifiers: designated rejectors (labeled
“red”) and potential acceptors (labeled “blue”). The red verifiers are densely positioned along the
border of the protection zone. The blue verifiers are spread throughout the protection zone. However,
the density of the blue verifiers is also higher close to the border. To learn about the neighbors, each
verifier broadcasts a “hello” message that contains its label. The verifiers approximate the set of
Voronoi neighbors by the set of radio neighbors. Due to the high density of the verifiers at the
border, the blue verifier whose Voronoi cell intersects the border of the protection zone has a red
verifier as a radio neighbor. Hence, this blue verifier becomes a rejector and the above assumptions
are satisfied.

10 Practical Implementation Considerations

In the preceding sections, we presented the location verification protocol under some simplifying
assumptions for the sake of clarity. In this section, we discuss ways to relax these assumptions so
that our protocol can be used in a complete security system.

Secure communication between verifiers is vital to the proper functioning of our protocol. If an
acceptor cannot trust its neighboring rejectors, it cannot make an accurate assessment of the veracity
of the location claim of a prover. Our assumption of perfectly secure communication between verifiers
can be relaxed by employing one of the many protocols available for the same. A good scheme to
achieve communication security in wireless sensor networks is described in [13]. TinySec [2] and
TinyPK [1] are two practical security systems for wireless sensors.

The reliability of communication is another major assumption in the protocol. We assume that
the prover receives all messages sent to it by the acceptor and verifiers receive all messages sent by
the prover and among themselves. In the location verification protocol, there are several instances
when messages could be lost. First, messages sent between verifiers may be lost. These losses will
not affect the security of the protocol because the verifier that expects a message from another
verifier will not act until it eventually receives that message. Which means that if the message is
not received, the verifiers do not issue a decision, the prover is not accepted and the security of the
protocol is not compromised. To guarantee that the prover is eventually accepted, reliable message
delivery component needs to be incorporated in our protocol. Second, a message broadcast by a
prover could be lost before it gets to verifiers. The only scenario of concern is the case where an
acceptor receives the broadcast successfully but a rejector does not. In this case, the prover may be
falsely accepted. To counteract this, the rejectors have to be placed within their definite acceptance
range as described in Section 8. Another viable solution is to ensure that multiple rejectors cover
the rejection zone. For example, there are several independent sets of verifiers covering the whole
plane and securing the same protection zone. The prover is rejected when at least one set of verifiers
rejects it.

Observe that our protocol does not take into account potential latency in communication between
verifiers. This, however, can be handled by introducing appropriate wait-times and timeouts before
an acceptor makes the decision. To preserve correctness, if an acceptor does not hear from a rejector,
the prover is not accepted.

Another aspect that is not explicitly addressed in the paper is the distributed implementation
of the protocol. Notice however, that in our protocol, to issue a decision an acceptor that receives
the prover’s signal needs to only communicate with its Voronoi neighbors: it needs to communicate
with the rejectors to make sure that none of them heard the signal, and with the acceptors to check
if they received the signal and if their rejectors heard it. Hence, the implementation of our protocol
has to facilitate efficient communication between the acceptors and their Voronoi neighbors. One



way to do it is to place the required verifiers in the communication range of each other.
Observe that we assume that the prover has radio range large enough to cover potentially the

whole protection zone. However, our protocol can be extended to the case of a limited range prover.
For example the acceptors can be placed such that every point in the acceptance zone is no further
away from an acceptor than the prover’s maximum range.
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