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30 Algorithms for Parallel Computers

As parallel-processing computers have proliferated, interest has increased
in parallel algorithms: algorithms that perform more than one operation at
a time. The study of parallel algorithms has now developed into a research
area in its own right. Indeed, parallel algorithms have been developed for
many of the problems we have solved in this text using ordinary serial algo
rithms. In this chapter, we shall describe a few simple parallel algorithm
that illustrate fundamental issues and techniques.

In order to study parallel algorithms, we must choose an appropriat
model for parallel computing. The random-access machine, or RAM
which we have used throughout most of this book, is, of course, serial
rather than parallel. The parallel models we have studied—sorting ne
works (Chapter 28) and circuits (Chapter 29)—are too restrictive for m-
vestigating, for example, algorithms on data structures.

The parallel algorithms in this chapter are presented in terms of one
popular theoretical model: the parallel random-access machine, or PRAM
(pronounced “PEE-ram”). Many parallel algorithms for arrays, lists, tree:
and graphs can be easily described in the PRAM model. Although th
PRAM ignores many important aspects of real parallel machines, the es-
sential attributes of parallel algorithms tend to transcend the models fi
which they are designed. If one PRAM algorithm outperforms another
PRAM algorithm, the relative performance is not likely to change substal
tially when both algorithms are adapted to run on a real parallel compute

The PRAM model

. Figure 30.1 shows the basic architecture of the parallel random-access m
chine (PRAM). There are p ordinary (serial) processors Py, P, .. - P, th
have as storage a shared, global memory. All processors can read from
write to the global memory “in parallel” (at the same time). The processo
can also perform various arithmetic and logical operations in parallel.

The key assumption regarding algorithmic performance in the PRA
model is that running time can be measured as the number of parallel
memory accesses an algorithm performs. This assumption is a straigh
forward generalization of the ordinary RAM model, in which the numb
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Figure 30.1 The basic architecture of the PRAM. There are D Drocessors
Py, P, ..., P,_; connected to a shared memory. Each processor can access an arbi-
trary word of shared memory in unit time.

of memory accesses is asymptotically as good as any other measure of
running time. This simple assumption will serve us well in our survey of
parallel algorithms, even though real parallel computers cannot perform
parallel accesses to global memory in unit time: the time for a memory
access grows with the number of processors in the parallel computer.

Nevertheless, for parallel algorithms that access data in an arbitrary
fashion, the assumption of unit-time memory operations can be justified.
Real parallel machines typically have a communication network that can
support the abstraction of a global memory. Accessing data through the
network is a relatively slow operation in comparison with arithmetic and
other operations. Thus, counting the number of parallel memory accesses
executed by two parallel algorithms does, in fact, yield a fairly accurate es-
timate of their relative performances. The principal way in which real ma-
chines violate the unit-time abstraction of the PRAM is that some memory-
access patterns are faster than others. As a first approximation, however,
the unit-time assumption in the PRAM model is quite reasonable.

The running time of a parallel algorithm depends on the number of
processors executing the algorithm as well as the size of the problem input.
generally, therefore, we must discuss both time and processor count when
analyzing PRAM algorithms; this contrasts with serial algorithms, in whose
analysis we have focused mainly on time. Typically, there is a trade-off
between the number of processors used by an algorithm and its running
time. Section 30.3 discusses these trade-offs.

Concurrent versus exclusive memory accesses

A concurrent-read algorithm is a PRAM algorithm during whose execu-
tion multiple processors can read from the same location of shared mem-
ory at the same time. An exclusive-read algorithm is a PRAM algorithm
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in which no two processors ever read the same memory location at thev
same time. We make a similar distinction with respect to whether or not
multiple processors can write into the same memory location at the same
time, dividing PRAM algorithms into concurrent-write and exclusive-writy
algorithms. Commonly used abbreviations for the types of algorithms we
encounter are :

« EREW:- exclusive read and exclusive write,

o CREW:- concurrent read and exclusive write,

« ERCW: exclusive read and concurrent write, and
« CRCW: concurrent read and concurrent write.

(These abbreviations are usually pronounced not as words but rather
strings of letters.)

Of these types of algorithms, the extremes—EREW and CRCW—-—are'th
most popular. A PRAM that supports only EREW algorithms is called a
EREW PRAM, and one that supports CRCW algorithms is called a CRC]
PRAM. A CRCW PRAM can, of course, execute EREW algorithms, b
an EREW PRAM cannot directly support the concurrent memory acce
required in CRCW algorithms. The underlying hardware of an ERE
PRAM is relatively simple, and therefore fast, because it needn’t handl
conflicting memory reads and writes. A CRCW PRAM requires mo;
hardware support if the unit-time assumption is to provide a reasonab
accurate measure of algorithmic performance, but it provides a progr.
ming model that is arguably more straightforward than that of an ER
PRAM.

Of the remaining two algorithmic types—CREW and ERCW—more a
tention has been paid in the literature to the CREW. From a practic
point of view, however, supporting concurrency for writes is no harder
than supporting concurrency for reads. In this chapter, we shall gener
treat an algorithm as being CRCW if it contains either concurrent re
or concurrent writes, without making further distinctions. We discuss
finer points of this distinction in Section 30.2.

When multiple processors write to the same location in a CRCW
gorithm, the effect of the parallel write is not well defined without ad
tional elaboration. In this chapter, we shall use the common-CRCW mod
when several processors write into the same memory location, they m
all write a common (the same) value. There are several alternative ty
of PRAM’s in the literature that handle this problem with a differen
sumption. Other choices include

* arbitrary: an arbitrary value from among those written is actually sto
« priority: the value written by the lowest-indexed processor is stored, @

« combining: the value stored is some specified combination of the valu
written, '
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In the last case, the specified combination is typically some associative and
commutative function such as addition (store the sum of all the values
written) or maximum (store only the maximum value written).

Synchronization and control

PRAM algorithms must be highly synchronized to work correctly. How is
this synchronization achieved? Also, the processors in PRAM algorithms
must often detect termination of loop conditions that depend on the state
of all processors. How is this control function implemented?

We won’t discuss these issues extensively. Many real parallel computers
employ a control network connecting the processors that helps with syn-
chronization and termination conditions. Typically, the control network
can implement these functions as fast as a routing network can implement
global memory references.

For our purposes, it suffices to assume that the processors are inherently
tightly synchronized. All processors execute the same statements at the
same time. No processor races ahead while others are further back in the
code. As we go through our first parallel algorithm, we shall point out
where we assume that processors are synchronized.

For detecting the termination of a paraliel loop that depends on the state
of all processors, we shall assume that a parallel termination condition
can be tested through the control network in O(1) time. Some EREW
PRAM models in the literature do not make this assumption, and the
(logarithmic) time for testing the loop condition must be included in the
overall running time (see Exercise 30.1-8). As we shall see in Section 30.2,
CRCW PRAM’s do not need a control network to test termination: they
can detect termination of a parallel loop in O(1) time through the use of
concurrent writes.

Chapter outline

Section 30.1 introduces the technique of pointer jumping, which provides
a fast way to manipulate lists in parallel. We show how pointer jumping
can be used to perform prefix computations on lists and how fast algo-
rithms on lists can be adapted for use on trees. Section 30.2 discusses the
relative power of CRCW and EREW algorithms and shows that concurrent
memory accessing provides increased power.

Section 30.3 presents Brent’s theorem, which shows how combinational
circuits can be efficiently simulated by PRAM’s. The section also dis-
cusses the important issue of work efficiency and gives conditions under
which a p-processor PRAM algorithm can be efficiently translated into a
p'-processor PRAM algorithm for any p’ < p. Section 30.4 reprises the
problem of performing a prefix computation on a linked list and shows how
a randomized algorithm can perform the computation in a work-efficient
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fashion. Finally, Section 30.5 shows how symmetry can be broken in p
allel in much less than logarithmic time using a deterministic algorithm

The parallel algorithms in this chapter have been drawn principally from
the area of graph theory. They represent only a scant selection of ¢
present array of parallel algorithms. The techniques introduced in thig
chapter, however, are quite representative of the techniques used for p
allel algorithms in other areas of computer science.

30.1 Pointer jumping

Among the more interesting PRAM algorithms are those that involve poi
ers. In this section, we investigate a powerful technique called pointer
jumping, which yields fast algorithms for operating on lists. Specifica
we introduce an O(lg n)-time algorithm that computes the distance to
end of the list for each object in an n-object list. We then modify {
algorithm to perform a “parallel prefix” computation on an n-object list
O(lgn) time. Finally, we investigate a technique that allows many pr
lems on trees to be converted to list problems, which can then be solv
by pointer jumping. All of the algorithms in this section are EREW al
rithms: no concurrent accesses to global memory are required.

30.1.1 List ranking

Our first parallel algorithm operates on lists. We can store a list in a PRA
much as we store lists in an ordinary RAM. To operate on list obje
in parallel, however, it is convenient to assign a “responsible” proces
to each object. We shall assume that there are as many Processors
list objects, and that the ith processor is responsible for the ith obj
Figure 30.2(a), for example, shows a linked list consisting of the seque:
of objects (3,4,6,1,0,5). Since there is one processor per list object, ev
object in the list can be operated on by its responsible processor in0
time.

Suppose that we are given a singly linked list L with n objects and
to compute, for each object in L, its distance from the end of the
More formally, if next is the pointer field, we wish to compute a value
for each object i in the list such that

dril = 0 if next{i] = NIL ,
[11= d[next[il]+ 1 if next[i] # NIL .

We call the problem of computing the d values the list-ranking proble

One solution to the list-ranking problem is simply to propagate distar
back from the end of the list. This method takes ©(n) time, since the
object from the end must wait for the k— 1 objects following it to determ
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Figure 30.2 Finding the distance from each object in an n-object list to the end
(a) A linked list represented

of the list in O(lg n) time using pointer jumping.
in a PRAM with d values initialized. At the end of the algorithm, each d value
holds the distance of its object from the end of the list. Each object’s responsible

processor appears above the object. (b)—(d) The pointers and d values after each
iteration of the while loop in the algorithm LisT-RANK.

their distances from the end before it can determine its OWI. This solution

is essentially a serial algorithm.
An efficient parallel solution,

following parallel pseudocode.

requiring only O(lg n) time, is given by the

LisT-RANK(L)
1 for cach processor i,in parallel
2 do if nextli] = NIL

3 then d[i] — 0
4 else dli] <1

5 while there exists an object i such that next[i] # NIL
6 do for each processor i, in parallel

7 do if next[i] # NIL

8 then d[i] — dlil+ d{nexti]]

9 next[i] < next{next[i]]

utes the distances. Each part

of the figure shows the state of the list before an iteration of the while loop
of lines 5-9. Part (a) shows the list just after initialization. In the first

iteration, the first 5 list objects have non-NIL pointers, sO that lines 8-9 are
executed by their responsible processors. The result appears in part (b)
of the figure. In the second iteration, only the first 4 objects have non-
NIL pointers; the result of this iteration is shown in part (c). In the third
iteration, only the first 2 objects are operated on, and the final result, in
which all objects have NIL pointers, appears in part (d)-

Figure 30.2 shows how the algorithm comp
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The idea implemented by line 9, in which we set nextfi] « next{nexy;y
for all non-n1L pointers next[i], is called Ppointer jumping. Note that th
pointer fields are changed by pointer Jjumping, thus destroying the Structy
of the list. If the list structure must be preserved, then we make copieg
the next pointers and use the copies to compute the distances.

Correctness

LisT-RANK maintains the invariant that at the beginning of each iteratig
of the while loop of lines 5-9, for each object i, if we add the ¢ values j
the sublist headed by i, we obtain the correct distance from ; to the en,
of the original list L. In Figure 30.2(b), for example, the sublist heade,
by object 3 is the sequence (3, 6,0) whose d values 2,2, and 1 sum to
its distance from the end of the original list. The reason the invariant
maintained is that when each object “splices out” its successor in the gt
it adds its successor’s ¢ value to its own.

Observe that for this pointer-jumping algorithm to work correctly, th

right-hand side of the assignment (reading next[next[i]]) occurring before
any of the memory writes (writing next[i]) on the left-hand side,

Now let us see why Li1ST-RANK is an EREW algorithm. Because eg
processor is responsible for at most one object, every read and write
lines 2-7 is exclusive, as are the writes in lines 8-9. Observe that point
jumping maintains the invariant that for any two distinct objects ; and
either next[i] next[j] or nexti] = next[j] = NIL. This invariant
certainly true for the initial list, and it is maintained by line 9. Becaus
all non-NIL nexs values are distinct, all reads in line 9 are exclusive,

We do need to assume that some synchronization is performed in line
if all reads are to be exclusive. In particular, we require that al processors:
read d[i] and then d[next[i]). With this synchronization, if an objectf
has nexi[i] # NiL and there is another object j pointing to ; (that i
next[j] = i), then the first read fetches d[i] for processor i and the secon

consistent, synchronized manner, with all processors executing reads and
writes at the same time,

Analysis

We now show that if there are 7 objects in list L, then LisT-RANK tak
O(lgn) time. Since the Initialization takes O(1) time and each iteratio
of the while loop takes O(1) time, it suffices to show that there are exau:,t,
[lg n] iterations. The key observation is that each step of pointer jumpin,
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transforms each list into two interleaved lists: one consisting of the objects
in even positions and the other consisting of objects in odd positions.
Thus, each pointer-jumping step doubles the number of lists and halves
their lengths. By the end of [lgn] iterations, therefore, all lists contain
only one object. '

We are assuming that the termination test in line 5 takes O(1) time,
presumably due to a control network in the EREW PRAM. Exercise 30.1-8
asks you to describe an O(lg n)-time EREW implementation of LisT-RANK
that performs the termination test explicitly in the pseudocode.

Besides parallel running time, there is another interesting performance

measure for parallel algorithms. We define the weork performed by a par-
allel algorithm as the product of its running time and the number of pro-
cessors it requires. Intuitively, the work is the amount of computing that
a serial RAM performs when it simulates the parallel algorithm.
. The procedure LisT-RANK performs ©(nlgn) work, since it requires »
processors and runs in ©(lgn) time. The straightforward serial algorithm
for the list-ranking problem runs in @(n) time, indicating that more work
is performed by LisT-RANK than is absolutely necessary, but only by a
logarithmic factor.

‘We define a PRAM algorithm A4 to be work-efficient with respect to
another (serial or parallel) algorithm B for the same problem if the work
performed by A is within a constant factor of the work performed by B.
We also say more simply that a PRAM algorithm A is work-efficient if
it is work-efficient with respect to the best possible algorithm on a serial
RAM. Since the best possible serial algorithm for list ranking runs in ©(n)
time on a serial RAM, LisT-RANK is not work-efficient. We shall present
a work-efficient parallel algorithm for list ranking in Section 30.4.

30.1.2 Parallel prefix on a list

The technique of pointer jumping extends well beyond the application
of list ranking. Section 29.2.2 shows how, in the context of arithmetic
circuits, a “prefix” computation can be used to perform binary addition
quickly. We now investigate how pointer jumping can be used to perform
prefix computations. Our EREW algorithm for the prefix problem runs in
O(lg n) time on n-object lists.

A prefix computation is defined in terms of a binary, associative oper-
ator ®. The computation takes as input a sequence (X, X2,...,X,) and
produces as output a sequence (¥, V2,..., V) such that y; = x; and

Yi = Yi—1 @ X
X1 QX ®--- @ Xy

]

for k = 2,3,...,n. In other words, each y, is obtained by “multiplying”
together the first k elements of the sequence of x,—hence, the term “pre-
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fix.” (The definition in Chapter 29 indexes the sequences from 0, Wher/
this definition indexes from 1—an inessential difference.)

As an example of a prefix computation, suppose that every element g
an n-object list contains the value 1, and let ® be ordinary addition, §
the kth element of the list contains the value x; = 1 for k = 1, 2.,
prefix computation produces y; = k, the index of the kth element, Thu;
another way to perform list ranking is to reverse the list (which can
done in O(1) time), perform this prefix computation, and subtract |
each value computed.

We now show how an EREW algorithm can compute parallel prefixe
O(lg n) time on n-object lists. For convenience, we define the notation

for integers i and j in the range | < i < j < n. Then, [k, k] = X
k=1,2,...,n, and

[i,k]=[i,j]®[1+ 1,k]

for 0 < i < j <k < n. Interms of this notation, the goal of a pref
computation is to compute y, = [1,k]fork=1,2,...,n

When we perform a prefix computation on a list, we wish the orde
the input sequence (xj, X3, ...,X,) to be determined by how the objects
linked together in the list, and not by the.index of the object in the a
of memory that stores objects. (Exercise 30.1-2 asks for a prefix algori
for arrays.) The following EREW algorithm starts with a value x[i] ine
object i in a list L. If object i is the kth object from the beginning of t
list, then x[i] = x; is the kth element of the input sequence. Thus,
parallel prefix computation produces y[i] =y, =[1,k].

LisT-PrREFIX(L)

1 for each processor i, in parallel
2 do y[i] « x[{]

3 while there exists an object i such that nexi[i] # NIL
4 do for each processor i, in parallel

5 do if nexit[i] # NIL

6 then y[next[i]] — y[i] ® y[next[i]]
7 next{i] « nexi[next[i]]

The pseudocode and Figure 30.3 indicate the similarity between t
algorithm and LisT-RANK. The only differences are the initialization ai
the updating of d or y values. In LisT-RANK, processor i updates d[i ]—-1
own d value—whereas in LisT-PREFIX, processor i updates y[next[i
another processor’s y value. Note that LisT-PREFIX is EREW for the sam
reason as LIST-RANK: pointer jumping maintains the invariant that I
distinct objects i and j, either next[i] # next[j] or next[i] = next[j]=

Figure 30.3 shows the state of the list before each iteration of the W

ecution of the while loop, the kth processor stores [max(1,k — 2/ +1)
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@ [l

Figure 30.3 The parallel prefix algorithm LIST-PREFIX on 2 linked list. (a) The
initial y value of the kth object in the list is [k,k]. The next pointer of the kth
object points to the (k + 1)st object, or NIL for the last object. (b)-(d) The y and
next values before each test in line 3. The final answer is in part (d), in which the
y value for the kth object is [1, k] for all k.

fork=1,2,...,n. Inthe first iteration, the kth list object points initially
to the (k + 1)st object, except that the last object has a NIL pointer. Line 6
causes the kth object, for k = 1,2,...,n=1,10 fetch the value [k + 1,k + 1]
from its successor. It then performs the operation [k, k] ® [k+1,k+1],
yielding [k, k + 1], which it stores back into its successor. The next point-
ers are then jumped as in LisT-RANK, and the result of the first iteration
appears in Figure 30.3(b). We can view the second iteration similarly. For
k=1,2,....,n—2,the kth object fetches the value [k + 1,k + 2] from its
successor (as defined by the new value in its field next), and then it stores
k—1Lkl®k+1Lk+ 2] = [k — 1,k +2] into its successor. The result is
shown in Figure 30.3(c). In the third and final iteration, only the first two
list objects have non-NIL pointers, and they fetch values from their suc-
cessors in their respective lists. The final result appears in Figure 30.3(d).
The key observation that makes LisT-PREFIX work is that at each step, if
we perform a prefix computation on each of the several existing lists, each
object obtains its correct value.

Since the two algorithms use the same pointer-jumping mechanism,
LisT-PREFIX has the same analysis as LisT-RANK: the running time is
O(lgn) on an EREW PRAM, and the total work performed is ©(nlg n).

30.1.3 The Euler-tour technique

In this section, we shall introduce the Euler-tour technique and show how
it can be applied to the problem of computing the depth of each node in
an n-node binary tree. A key step in this O(lg n)-time EREW algorithm is

a parallel prefix computation.
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To store binary trees in a PRAM, we use a simple binary-tree reprege
tion of the sort presented in Section 11.4. Each node i has fields parent;
lefi[i], and right[i], which point to node /’s parent, left child, and
child, respectively. Let us assume that each node is identified by 3 non.
negative integer. For reasons that will soon become apparent, we associay
not one but three processors with each node; we call these the node’s 4, B
and C processors. We should be able to map between a node and its thye,
processors easily; for example, node i might be associated with processos
3i,3i+ 1, and 37 + 2.

Computing the depth of each node in an n-node tree takes O(n) time
a serial RAM. A simple parallel algorithm to compute depths propagate
a “wave” downward from the root of the tree. The wave reaches all ng
at the same depth simultaneously, and thus by incrementing a cou
carried along with the wave, we can compute the depth of each nod;
This parallel algorithm works well on a complete binary tree, since it run
in time proportional to the tree’s height. The height of the tree cou]
be as large as n — 1, however, in which case the algorithm would ry
in ©(n) time—no better than the serial algorithm. Using the Euler-tou
technique, however, we can compute node depths in O(Ig n) time on
EREW PRAM, whatever the height of the tree.

An Euler tour of a graph is a cycle that traverses each edge exactly o
although it may visit a vertex more than once. By Problem 23-3, a ¢
nected, directed graph has an Euler tour if and only if for all vertices 1
the in-degree of v equals the out-degree of v. Since each undirected e
(u,v) in an undirected graph maps to two directed edges (u,v) and (v,
in the directed version, the directed version of any connected, undirecte
graph—and therefore of any undirected tree—has an Euler tour. "

To compute the depths of nodes in a binary tree 7', we first form an Eul
tour of the directed version of T (viewed as an undirected graph). Th
tour corresponds to a walk of the tree and is represented in Figure 30.4(z
by a linked list running through the nodes of the tree. Its structure is'
follows:

* A node’s A processor points to the 4 processor of its left child, 1f
exists, and otherwise to its own B processor.

+ A node’s B processor points to the 4 processor of its right child, if
exists, and otherwise to its own C processor.

« A node’s C processor points to the B processor of its parent if it is
left child and to the C processor of its parent if it is a right child. Tt
root’s C processor points to NIL.

Thus, the head of the linked list formed by the Euler tour is the root
A processor, and the tail is the root’s C processor. Given the pointe
composing the original tree, an Euler tour can be constructed in O(1) tim

Once we have the linked list representing the Euler tour of 7, we pla
a 1 in each 4 processor, a 0 in each B processor, and a —1 in ea‘ch‘
processor, as shown in Figure 30.4(a). We then perform a parallel pret
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computatmn using ordinary addition as the associative operation, ag Wg
did in Section 30.1.2. Figure 30.4(b) shows the result of the paralle] pre
computation.

We claim that after performing the parallel prefix computation, the
depth of each node resides in the node’s C processor. Why? The number,
are placed into the 4, B, and C processors in such a way that the net effeéjt
of visiting a subtree is to add 0 to the running sum. The A4 processor of
each node i contributes 1 to the running sum in i’s left subtree, reflectip
the depth of i’s left child being one greater than the depth of i. The B
processor contributes 0 because the depth of node /s left child equals thy
depth of node i’s right child. The C processor contributes —1, so that from
the perspective of node i’s parent, the entire visit to the subtree rooted a
node i has no effect on the running sum.

The list representing the Euler tour can be computed in O(1) time. It ha
3n objects, and thus the the parallel prefix computation takes only O(ign
time. Thus, the total amount of time to compute all node depths is O(lgn)
Because no concurrent memory accesses are needed, the algorithm is a
EREW algorithm.

Exercises

30.1-1
Give an O(lg )-time EREW algorithm that determines for each object 1
an n-object list whether it is the middle (|n/2]th) object. ‘

¢ 30.1- 2 D
“Give an O(lg n)-time EREW algorithm to perform the prefix computatio
on an array x[1 ..n]. Do not use pointers, but perform index computatxon

directly.

30.1-3
Suppose that each object in an n-object list L is colored either red or blu
Give an efficient EREW algorithm to form two lists from the objects in
one consisting of the blue objects and one consisting of the red objects:

30.1-4
An EREW PRAM has n objects distributed among several disjoint circul
lists. Give an efficient algorithm that determines an arbitrary represe
tative object for each list and acquaints each object in the list with t
identity of the representative. Assume that each processor knows its 0
unique index.

30.1-5 =
Give an O(lgn)-time EREW algorithm to compute the size of the subtree
rooted at each node of an n-node binary tree. (Hint: Take the difference
of two values in a running sum along an Euler tour.)

e e
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30.1-6
Give an efficient EREW algorithm to compute preorder, inorder, and post-
order numberings for an arbitrary binary tree.

30.1-7

Extend the Euler-tour technique from binary trees to ordered trees with
arbitrary node degrees. Specifically, describe a representation for ordered
trees that allows the Euler-tour technique to be applied. Give an EREW
algorithm to compute the node depths of an n-node ordered tree in O(lg n)
time. )

30.1-8

Describe an O(lgn)-time EREW implementation of LisT-RANK that per-
forms the loop-termination test explicitly. (Hint: Interleave the test with
the loop body.)

30.2 CRCW algorithms versus EREW algorithms

The debate about whether or not concurrent memory accesses should be
provided by the hardware of a parallel computer is a messy one. Some
argue that hardware mechanisms to support CRCW algorithms are too ex-
pensive and used too infrequently to be justified. Others complain that
EREW PRAM’s provide too restrictive a programming model. The an-
swer to this debate probably lies somewhere in the middle, and various
compromise models have been proposed. Nevertheless, it is instructive to
examine what algorithmic advantage is provided by concurrent accesses to
memory,

In this section, we shall show that there are problems on which a CRCW
algorithm outperforms the best possible EREW algorithm. For the prob-
lem of finding the identities of the roots of trees in a forest, concurrent
reads allow for a faster algorithm. For the problem of finding the maxi-
mum element in an array, concurrent writes permit a faster algorithm.

A problem in which concurrent reads help

Suppose we are given a forest of binary trees in which each node i has a
pointer parent[i] to its parent, and we wish each node to find the identity of
the root of its tree. Associating processor | with each node 7 in a forest F,
the following pointer-jumping algorithm stores the identity of the root of
each node i’s tree in root[i].
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FIND-RoOOTS(F)

1 for each processor i, in parallel

do if parent[i] = NiL

then root[i] « i

while there exists a node i such that parent[i] # NiL

do for each processor i, in paraliel

do if parent[i] # NIL
then root|i] « root{parent{i]]
parent[i] «— parent[parent[i]]

RO bW

Figure 30.5 illustrates the operation of this algorithm. After the initig].
ization performed by lines 1-3, shown in Figure 30.5(a), the only nodes
that know the identities of their roots are the roots themselves. The while
loop of lines 4-8 performs the pointer jumping and fills in the roor fields,
Figures 30.5(b)-(d) show the state of the forest after the first, second, and
third iterations of the loop. As you can see, the algorithm maintains the
invariant that if parent{i] = NiL, then root[i] has been assigned the identity
of the node’s root.

We claim that FIND-RooTs is a CREW algorithm that runs in O(lgd)
time, where d is the depth of the maximum-depth tree in the forest. The
only writes occur on lines 3, 7, and 8, and these are all exclusive because
in each one, processor i writes into only node /. The reads in lines 7-8
are concurrent, however, because several nodes may have pointers to the
same node. In Figure 30.5(b), for example, we see that during the second
iteration of the while loop, root[4] and parent[4] are read by processors 18,
2, and 7.

The running time of FIND-RooTs is O(lgd) for essentially the same
reason as for LisT-Rank: the length of each path is halved in each iteration.
Figure 30.5 shows this characteristic plainly.

How fast can » nodes in a forest determine the roots of their binary trees
using only exclusive reads? A simple argument shows that Q(lg ) time is
required. The key observation is that when reads are exclusive, each step
of the PRAM allows a given piece of information to be copied to at most
one other memory location; thus the number of locations that can contain
a given piece of information at most doubles with-each step. Looking at
a single tree, we have initially that at most 1 memory location stores the
identity of the root. After 1 step, at most 2 locations can contain the
identity of the root; after k steps, at most 2! locations can contain the
identity of the root. If the size of the tree is ©(n), we need ©(n) locations
to contain the root’s identity when the algorithm terminates; thus, Q(lg#s)
steps are reguired in all.

Whenever the depth d of the maximum-depth tree in the forest is 27084,
the CREW algorithm FIND-RooTs asymptotically outperforms any EREW
algorithm. Specifically, for any n-node forest whose maximum-depth tree
is a balanced binary tree with ©(n) nodes, d = O(lgn), in which case FIND-
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RooTs runs in O(lglg n) time. Any EREW algorithm for this problem mugg
run in Q(Ign) time, which is asymptotically slower. Thus, concurrent reads
help for this problem. Exercise 30.2-1 gives a simpler scenario in which
concurrent reads help.

A problem in which concurrent writes help

To demonstrate that concurrent writes offer a performance advantage over
exclusive writes, we examine the problem of finding the the maximum ele-
ment in an array of real numbers. We shall see that any EREW algorithm
for this problem takes Q(lg n) time and that no CREW algorithm does any
better. The problem can be solved in O(1) time using a common-CRCW
algorithm, in which when several processors write to the same location,
they all write the same value.
The CRCW algorithm that finds the maximum of » array elements as-
sumes that the input array is A[0.. n—1]. The algorithm uses n? processors,
with each processor comparing A[i] and A4[/] for some i and j in the range
0 < i,j < n-1. In effect, the algorithm performs a matrix of compar-
isons, and so we can view each of the n? processors as having not only
a one-dimensional index in the PRAM, but also a two-dimensional index
(i, J)-
FasT-Max(4)

1 n « length[A]

2 for i — 0ton—1,in parallel

3 do m[i] — TRUE

4 fori—Qton—1andj« 0ton—1,in parallel
5 de if A[i] < A[/]
6 then m{i] — FALSE
7 for i« 0ton—1,in parallel
8 do if m[i] = TRUE
9 then max — A[i]

10 return max

Line 1 simply determines the length of the array 4; it only needs to be
executed on one processor, say processor 0. We use an array m[0..n — 1],
where processor i is responsible for m[i]. We want m[i] = TRUE if and
only if A[i] is the maximum value in array 4. We start (lines 2-3) by -
believing that each array element is possibly the maximum, and we rely
on comparisons in line 5 to determine which array elements are not the
maximum.

Figure 30.6 illustrates the remainder of the algorithm. In the loop of
lines 4-6, we check each ordered pair of elements of array 4. For each
pair A[i] and A[j], line 5 checks whether A[i] < A[j]. If this compari-
son is TRUE, we know that A[i] cannot be the maximum, and line 6 sets

fam—y
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Alj]
56 9 2 9im
5\F TTFT|F
6/F FTF T|F
Alil 9/F F F F F|T
2/T T T F T|F
9/F F F F F|T
max 9

Figure 30.6 Finding the maximum of » values in O(1) time by the CRCW al-
gorithm FAsT-MaX. For each ordered pair of the elements in the input array
A=(5,6,9,2,9), the result of the comparison A4[i] < 4[] is shown in the matrix,
abbreviated T for TRUE and F for FALSE. For any row that contains a TRUE value,
the corresponding element of m, shown at the right, is set to FALSE. Elements of
m that contain TRUE correspond to the maximum-valued elements of 4. In this
case, the value 9 is written into the variable max.

m[i] «— FALSE to record this fact. Several (i, j) pairs may be writing to
m[i] simultaneously, but they all write the same value: FALSE.

After line 6 is executed, therefore, m[i] = TRUE for exactly the indices i
such that A[/] achieves the maximum. Lines 7-9 then put the maximum
value into the variable max, which is returned in line 10. Several proces-
sors may write into the variable max, but if they do, they all write the
same value, as is consistent with the common-CRCW PRAM model.

Since all three “loops” in the algorithm are executed in parallel, FAsT-
Max runs in O(1) time. Of course, it is not work-efficient, since it requires
n? processors, and the problem of finding the maximum number in an array
can be solved by a ©(n)-time serial algorithm. We can come closer to a
work-efficient algorithm, however, as Exercise 30.2-6 asks you to show.

In a sense, the key to FAsT-Max is that a CRCW PRAM is capable of
performing a boolean AND of # variables in O(1) time with n processors.
(Since this capability holds in the common-CRCW model, it holds in the
more powerful CRCW PRAM models as well.) The code actually performs
several AND’s at once, computing for i =0,1,...,n -1,

n-1
mlil = A\ (4l1] = A1) ,
. Jj=0

which can be derived from DeMorgan’s laws (5.2). This powerful AND
capability can be used in other ways. For example, the capability of a
CRCW PRAM to perform an AND in O(1) time obviates the need for a
separate control network to test whether all processors are finished iterating
a loop, such as we have assumed for EREW algorithms. The decision to
finish the loop is simply the AND of all processors’ desires to finish the
loop. .

The EREW model does not have this powerful AND facility. Any EREW
algorithm that computes the maximum of # elements takes Q(lg n) time.
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The proof is conceptually similar to the lower-bound argument for fin
the root of a binary tree. In that proof, we looked at how many nog
can “know” the identity of the root and showed that it at most doubj
for each step. For the problem of computing the maximum of 7 element
we consider how many elements “think” that they might possibly be th
maximum. Intuitively, with each step of an EREW PRAM, this number
can at most halve, which leads to the Q(Ign) lower bound.
Remarkably, the Q(lg n) lower bound for computing the maximum holds"”
even if we permit concurrent reading; that is, it holds for CREW algo
rithms. Cook, Dwork, and Reischuk [50] show, in fact, that an ,
algorithm for finding the maximum of n elements must run in ‘Q
time, even with an unlimited number of processors and un11m1ted me '
ory. Their lower bound also holds for the problem of computing the AND
of n boolean values.

Simulating a CRCW algorithm with an EREW algorithm

We now know that CRCW algorithms can solve some problems mor:
quickly than can EREW algorithms. Moreover, any EREW algorithm can
be executed on a CRCW PRAM. Thus, the CRCW model is strictly mor
powerful than the EREW model. But how much more powerful is it?
Section 30.3, we shall show that a p-processor EREW PRAM can sort
numbers in O(lgp) time. We now use this result to provide a theoretical
upper bound on the power of a CRCW PRAM over an EREW PRAM. '

Theorem 30.1
A p-processor CRCW algorithm can be no more than O(lg p) times fast
than the best p-processor EREW algorithm for the same problem.

Proof The proof is a simulation argument. We simulate each step o
the CRCW algorithm with an O(lgp)-time EREW computation. Becaus
the processing power of both machines is the same, we need only focu
on memory accessing. We only present the proof for simulating concu
rent writes here. Implementation of concurrent readmg is left as Exe
cise 30.2-8.

The p processors in the EREW PRAM simulate a concurrent wntc 0
the CRCW algorithm using an auxiliary array 4 of length p. Figure 30.
illustrates the idea. When CRCW processor P;, for i = 0,1,...,p — 1
desires to write a datum x; to a location /;, each corresponding ERE
processor P; instead writes the ordered pair (/;, x;) to location A[i]. Thes:
writes are exclusive, since each processor writes to a distinct memory ]
cation. Then, the array A is sorted by the first coordinate of the ordere
pairs in O(lg p) time, which causes all data written to the same location t
be brought together in the output. ' .
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Each EREW processor P;, for i = 1,2,...,p — 1, now inspects A[i] =
(lj,x;) and A[i — 1] = (Ie, %), where j and k are values in the range
0<jk<p-1.1Iflj# ori=0, then processor P;, fori=0,1,...,p ~ 1,
writes the datum x; to location /j in global memory. Otherwise, the pro-
cessor does nothing. Since the array 4 is sorted by first coordinate, only
one of the processors writing to any given location actually succeeds, and
thus the write is exclusive. This process thus implements each step of
concurrent writing in the common-CRCW model in O(lgp) time. B

Other models for concurrent writing can be simulated as well. (See
Exercise 30.2-9.) :

The issue arises, therefore, of which model is preferable—CRCW or
EREW—and if CRCW, which CRCW model. Advocates of the CRCW
models point out that they are easier to program than the EREW mode
and that their algorithms run faster. Critics contend that hardware to
implement concurrent memory operations is slower than hardware to im
plement exclusive memory operations, and thus the faster running time o
CRCW algorithms is fictitious. In reality, they say, one cannot find th
maximum of 7 values in O(1) time.

Others say that the PRAM—either EREW or CRCW—is the wron
model entirely. Processors must be interconnected by a communicatio
network, and the communication network should be part of the mode
Processors should only be able to communicate with their neighbors in th
network.

It is quite clear that the issue of the “right” parallel model is not goin
to be easily settled in favor of any one model. The important thing t
realize, however, is that these models are just that: models. For a give
real-world situation, the various models apply to differing extents. The d
gree to which the model matches the engineering situation is the degree t
which algorithmic analyses in the model will predict real-world phenom:
ena. It is important to study the various parallel models and algorithm
therefore, so that as the field of parallel computing grows, an enlightene
consensus on which paradigms of parallel computing are best suited fi

implementation can emerge.

Exercises

30.2-1
Suppose we know that a forest of binary trees consists of only a single tree
with n nodes. Show that with this assumption, a CREW implementatior
of FIND-RooTs can be made to run in O(1) time, independent of the dept!
of the tree. Argue that any EREW algorithm takes Q(lgn) time.
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= 30.2-2
'aige Give an EREW algorithm for FIND-RoOTS that runs in O(lgn) time on a
-1 forest of n nodes.
g;;’; 30.2-3
and ‘ ‘ Give an n-processor CRCW algorithm that can compute the OR of n
~ boolean values in O(1) time.
p of
30.2-4
(See Describe an efficient CRCW algorithm to multiply two n x n boolean ma-
trices using n’ processors.
Wor 30':2_5 L
W Describe an O(lg n)-time EREW algorithm to multiply two n xn matrices
1odel of real numbers using #n° processors. Is there a faster common-CRCW al-
Te to , , gorithm? Is there a faster algorithm in one of the stronger CRCW models?
0 im-
ne of : 30.2-6 *
d the Prove that for any constant € > 0, there is an O(1)-time CRCW algorithm
' : using O(n'*€) processors to find the maximum element of an n-clement
vrong array. '
:ation
10del. 30.2-7 *
inthe Show how to merge two sorted arrays, each with 7 numbers, in O(1) time
using a priority-CRCW algorithm. Describe how to use this algorithm to
going sort in O(lgn) time. Is your sorting algorithm work-efficient?
ing to Ut
given _30.2-8
he de- Complete the proof of Theorem 30.1 by describing how a concurrent read
reeto on a p-processor CRCW PRAM is implemented in O(lgp) time on a p-
2nom- processor EREW PRAM.
hme. 30.2-9
od for Show how a p-processor EREW PRAM can implement a p-processor com-
bining-CRCW PRAM with only O(lgp) performance loss. (Hint: Use a

parallel prefix computation.)

30.3 Brent’s theorem and work efficiency

le tree
itation
: depth

Brent’s theorem shows how we can efficiently simulate a combinational
circuit by a PRAM. Using this theorem, we can adapt many of the results
for sorting networks from Chapter 28 and many of the results for arith-
metic circuits from Chapter 29 to the PRAM model. Readers unfamiliar
with combinational circuits may wish to review Section 29.1.

M
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A combinational circuit is an acyclic network of combinational elemey
Each combinational element has one or more inputs, and in this sectig
we shall assume that each element has exactly one output. (Combinatiop
elements with k > 1 outputs can be considered to be k separate element
The number of inputs is the fan-in of the element, and the number
places to which its output feeds is its fam-out. We generally assume
this section that every combinational element in the circuit has bound
(O(1)) fan-in. It may, however, have unbounded fan-out.

The size of a combinational circuit is the number of combinational ¢
ments that it contains. The number of combinational elements on a longe,
path from an input of the circuit to an output of a combinational element
is the element’s depth. The depth of the entire circuit is the maximuy
depth of any of its elements.

Theorem 30.2 (Brent’s theorem)
Any depth-d, size-n combinational circuit with bounded fan-in can be
simulated by a p-processor CREW algorithm in O(n/p + d) time.

Proof We store the inputs to the combinational circuit in the PRAM’s
global memory, and we reserve a location for each combinational element
in the circuit to store its output value when it is computed. A given com-
binational element can then be simulated by a single PRAM processor in
O(1) time as follows. The processor simply reads the input values for {
element from the values in memory corresponding to circuit inputs or el-
ement outputs that feed it, thereby simulating the wires in the circuit. I
then computes the function of the combinational element and writes the
result in the appropriate position in memory. Since the fan-in of each
circuit element is bounded, each function can be computed in O(1) time
Our job, therefore, is to find a schedule of the p processors of the PRA
such that all combinational elements are simulated in O(n/p-+d) time. T
main constraint is that an element cannot be simulated until the outpufs
from any elements that feed it have been computed. Concurrent reads
are employed whenever several combinational elements being s1mulate'
in parallel require the same value. '
Since all elements at depth 1 depend only on circuit inputs, they are th"'
only ones that can be simulated initially. Once they have been simulated,
all elements at depth 2 can be simulated, and so forth, until we finish witl
all elements at depth d. The key idea is that if all elements from depths
to i have been simulated, we can simulate any subset of elements at dept
i+ 1 in parallel, since their computations are independent of one another
Our scheduling strategy, therefore, is quite naive. We simulate all th
elements at depth i before proceeding to simulate those at depth i + 1
Within a given depth 7, we simulate the elements p at a time. Figure 30.
illustrates such a strategy for p = 2.
Let us analyze this simulation strategy. For i =1,2,...,d, let n; be th
number of elements at depth i in the circuit. Thus, '
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n, depth i

3 1
5 2
2 3
2 4
3 5

Figure 30.8 Brent’s theorem. The combinational circuit of size 15 and depth 5 is
simulated by a 2-processor CREW PRAM in 9 < 15/2 + 5 steps. The simulation
proceeds from top to bottom through the circuit. The shaded groups of circuit
elements indicate which elements are simulated at the same time, and each group
is labeled with a number corresponding to the time step when its elements are
simulated.

d
an':n.

i=1

Consider the n; combinational elements at depth i. By grouping them into
[n;/p] groups, where the first |n;/p| groups have p elements each and the
leftover elements, if any, are in the last group, the PRAM can simulate the
computations performed by these combinational elements in O([n;/p])
time. The total simulation time is therefore on the order of

S < S (%)

"ia.
D

AN

Brent’s theorem can be extended to EREW simulations when a combi-
national circuit has O(1) fan-out for each combinational element.
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Corollary 30.3 s
Any depth-d, size-n combinational circuit with bounded fan-in and fan.o
can be simulated on a p-processor EREW PRAM in O(n/p +d) time,

Proof We perform a simulation similar to that in the proof of Bre
theorem. The only difference is in the simulation of wires, which is wher
Theorem 30.2 requires concurrent reading. For the EREW simulatio
after the output of a combinational element is computed, it is not direct
read by processors requiring its value. Instead, the output value is copi
by the processor simulating the element to the O(1) inputs that requi
it. The processors that need the value can then read it without mterfermg
with each other.

This EREW simulation strategy does not work for elements with
bounded fan-out, since the copying can take more than constant time
each step. Thus, for circuits having elements with unbounded fan-o
we need the power of concurrent reads. (The case of unbounded fan-
can sometimes be handled by a CRCW simulation if the combinational
elements are simple enough. See Exercise 30.3-1.)

Corollary 30.3 provides us with a fast EREW sorting algorithm.
explained in the chapter notes of Chapter 28, the AKS sorting networ
can sort n numbers in O(lgn) depth using O(nlgn) comparators. Sin
comparators have bounded fan-in, there is an EREW algorithm to sort
numbers in O(lgn) time using n processors. (We used this result in The-
orem 30.1 to show that an EREW PRAM can simulate a CRCW PRAM:
with at most logarithmic slowdown.) Unfortunately, the constants hid
den by the O-notation are so large that this sorting algorithm has solel
theoretical interest. More practical EREW sorting algorithms have beer
discovered, however, notably the parallel merge-sorting algorithm due t
Cole [46].

Now suppose that we have a PRAM algorithm that uses at most p pr
cessors, but we have a PRAM with only p’ < p processors. We woul
like to be able to run the p-processor algorithm on the smaller p’-processo
PRAM in a work-efficient fashion. By using the idea in the proof of Brent
theorem, we can give a condition for when this is possxble

Theorem 30.4
Ifa p-processor PRAM algorithm A runs in time ¢, then for any p'<p
there is an p’-processor PRAM algorithm A’ for the same problem that.

runs in time O(pt/p’).

Proof Let the time steps of algorithm A be numbered 1,2,...,7. Al
gorithm A’ simulates the execution of each time step i = 1, 2 L pm
time O([p/p’]). There are ¢ steps, and so the entire 51mu1at1on takes tim ,

O([p/p" t) = O(pt/p’), since p’ < p. : ™

i T
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The work performed by algorithm A is p¢, and the work performed by
algorithm A’ is (pt/p’)p’ = pt; the simulation is therefore work-efficient.
Consequently, if algorithm A is itself work-efficient, so is algorithm A'.

When developing work-efficient algorithms for a problem, therefore, one
needn’t necessarily create a different algorithm for each different number
of processors. For example, suppose that we can prove a tight lower bound
of ¢ on the running time of any parallel algorithm, no matter how many
processors, for solving a given problem, and suppose further that the best
serial algorithm for the problem does work w. Then, we need only develop
a work-efficient algorithm for the problem that uses p = &(w/!) processors
in order to obtain work-efficient algorithms for all numbers of processors
for which a work-efficient algorithm is possible. For p’ = o(p), Theo-
rem 30.4 guarantees that there is a work-efficient algorithm. For p’ = w(p),
no work-efficient algorithms exist, since if ¢ is a lower bound on the time
for any parallel algorithm, p't = w(pt) = w(w).

Exercises

30.3-1 ’

Prove a result analogous to Brent’s theorem for a CRCW simulation of
boolean combinational circuits having AND and OR gates with unbounded
fan-in. (Hint: Let the “size” be the total number of inputs to gates in the
circuit.)

30.3-2

Show that a parallel prefix computation on # values stored in an array of
memory can be implemented in O(Ign) time on an EREW PRAM using
O(n/lgn) processors. Why does this result not extend immediately to a
list of n values?

30.3-3

Show how to multiply an »n x n matrix 4 by an n-vector b in O(lg n) time
with a work-efficient EREW algorithm, (Hint: Construct a combinational
circuit for the problem.)

30.3-4

Give a CRCW algorithm using n? processors to multiply two n x n ma-
trices. The algorithm should be work-efficient with respect to the normal
©(n?)-time serial algorithm for multiplying matrices. Can you make the
algorithm EREW?

30.3-5

Some parallel models allow processors to become inactive, so that the
number of processors executing at any step varies. Define the work in
this model as the total number of steps executed during an algorithm
by active processors. Show that any CRCW algorithm that performs w
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work and runs in ¢ time can be run on a p- processdr EREW PRAM
O((w/p + t)1gp) time. (Hint: The hard part is scheduling the active pr‘
cessors while the computation is proceeding.) :

* 304 Work-efficient parallel prefix computation

In Section 30.1.2, we examined an O(lgn)-time EREW algorithm g
RANK that can perform a prefix computation on an n-object linked lig
The algorithm uses # processors and performs ©(nlgn) work. Since w
can easily perform a prefix computation in ©(n) time on a serial machin
LisT-RANK is not work-efficient. o

This section presents a randomized EREW parallel prefix algorithm th
is work-efficient. The algorithm uses ©(n/lgn) processors, and it runs i
O(lg n) time with high probability. Thus, it is work-efficient with high prof
ability. Moreover, by Theorem 30.4, this algorithm immediately yiel
work-efficient algorithms for any number p = O(n/lgn) of processors. -

Recursive parallel prefix computation

The randomized parallel prefix algorithm RANDOMIZED-LIST-PREFIX of

erates on a linked list of n objects using p = ©(n/lgn) processors. Durin

the algorithm, each processor is responsible for n/p = ©(lgn) of the objet

in the original list. The objects are assigned to processors arbitrarily (n

necessarily contiguously) before the recursion begins, and “ownership” ¢

objects never changes. For convenience, we assume that the list is doubl

linked, since doubly linking a single list takes O(1) time.

The idea of RANDOMIZED-LIST-PREFIX is to eliminate some of the 0

. jects in the list, perform a recursive prefix computation on the resultin
| list, and then expand it by splicing in the eliminated objects to yield a
fix computation on the original list. Figure 30.9 illustrates the recursi

process, and Figure 30.10 shows how the recursion unfolds. We shall sho

a little later that each stage of the recursion obeys two properties:

1. At most one object of those belonging to a given processor is selecte
for elimination.

2. No two adjacent objects are selected for elimination.

| Before we show how to select objects that satisfy these properties, let

o examine in more detail how the prefix computation is performed. Suppo
that at the first step of the recursion, the kth object in the list is selecte
for elimination. This object contains the value [k, k], which is fetched b
the (k + 1)st object in the list. (Boundary situations, such as the one he
when k is at the end of the list, can be handled straightforwardly and ar
not described.) The (k + 1)st object, which holds the value [k + 1,k + 1
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Figure 30.9 The work-efficient, randomized, recursive, parallel algorithm RAN-
poMiIzeD-LisT-PREFIX for performing prefix computations on a linked list of 7 = 9
objects. (a)-(b) A set of nonadjacent objects (blackened) are selected for elimi-
nation. The value in each biack object is used to update the value in the next
object in the list, and then the black object is spliced out. The algorithm is called
recursively to compute a parallel prefix on the contracted list. (c)—(d) The resulting
values are the correct final values for objects in the contracted list. The eliminated
objects are then spliced back in, and each uses the value of the previous object to
compute its final value.

then computes and stores [k, k + 1] = [k, k]® [k + 1, k + 1]. The kth object
is then eliminated from the list by splicing it out.

The procedure RaANDOMIZED-LIsT-PREFIX then calls itself recursively to
perform a prefix computation on the “contracted” list. (The recursion
bottoms out when the entire list is empty.) The key observation is that
after returning from the recursive call, each object in the contracted list
has the correct final value it needs for the parallel prefix computation on
the original list. It remains only to splice back in the previously eliminated
objects, such as the kth object, and update their values.

After the kth object is spliced in, its final prefix value can be computed
using the value in the (k — 1)st object. After the recursion, the (k — 1)st
object contains [1,k — 1], and thus the kth object—which still has the
value [k, k]—needs only to fetch the value [1,k — 1] and compute [1, kl=
[1,k - 1]®[k, k).

Because of property 1, each selected object has a distinct processor to
perform the work needed to splice it out or in. Property 2 ensures that no
confusion between processors arises when splicing objects out and in (see
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stage 1
(top)

stage 2

] splice out

i splice out

1151

i splice out

stage 3 stage 4 stage 5  emply
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splice in

i splicein
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i splicein
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Figure 3010 The recursive stages of RANDOMIZED-LIST-PREFIX, shown forn=
h stage, the blackened objects are eliminated. The procedu

original objects. In eac
recurses until the list is empty, and then the eliminated objects are spliced back
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Exercise 30.4-1). The two properties together ensure that each step of the
recursion can be implemented in O(1) time in an EREW fashion.

Selecting objects for elimination

How does RANDOMIZED-LIST-PREFIX select objects for elimination? It
must obey the two properties above, and in addition, we want the time to
select objects to be short (and preferably constant). Moreover, we would
like as many objects as possible to be selected.

The following method for randomized selection satisfies these condi-
tions. Objects are selected by having each processor execute the following
steps:

1. The processor picks an object i that has not previously been selected
from among those it owns.

2. It then “flips a coin,” choosing the values HEAD and TAIL with equal
probability.

3. If it chooses HEAD, it marks object i as selected, unless next[i] has been
picked by another processor whose coin is also HEAD.

This randomized method takes only O(1) time to select objects for elimi-
nation, and it does not require concurrent memory accesses.

We must show that this procedure obeys the two properties above. That
property 1 holds can be seen easily, since only one object is chosen by a
processor for possible selection. To see that property 2 holds, suppose to
the contrary that two consecutive objects / and next[i] are selected. This
occurs only if both were picked by their processors, and both processors
flipped HEAD. But object i is not selected if the processor responsible for
next[i] flipped HEAD, which is a contradiction.

Analysis

Since each recursive step of RANDOMIZED-LIST-PREFIX runs in O(1) time,
to analyze the algorithm we need only determine how many steps it takes
to eliminate all the objects in the original list. At each step, a processor has
at least probability 1/4 of eliminating the object i it picks. Why? It flips
HEAD with probability 1/2, and the probability that it either does not pick
next[i] or picks it and flips TAIL is at least 1/2. Since the two coin flips are
independent events, we can multiply their probabilities, yielding the prob-
ability of at least 1/4 of a processor eliminating the object it picks. Since
each processor owns 6(Ign) objects, the expected time for a processor to
eliminate all its objects is O(Ign).

Unfortunately, this simple analysis does not show that the expected run-
ning time of RANDOMIZED-L1sT-PREFIX is ©(lgn). For example, if most
of the processors eliminate all their objects quickly and a few processors
take much, much longer, the average time for a processor to eliminate all
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its objects might still be ©(lgn), but the running time of the algorithy
could be large.

The expected running time of the procedure RANDOMIZED-LIST-PREFI)&
is indeed ©(lgn), even though the simple analysis does not show it. We
shall use a high-probability argument to prove that with probability at least
1 — 1/n, all objects are eliminated within clgn stages of the recursion, for
some constant ¢. Exercises 30.4-4 and 30.4-5 ask you to generalize thig
argument to prove the ©(lg n) bound on the expected running time.

Our high-probability argument is based on observing that the experiment
of a given processor eliminating the objects it picks can be viewed as 3
sequence of Bernoulli trials (see Chapter 6). The experiment is a success
if the object is selected for elimination, and it is a failure otherwise. Since
we are interested in showing that the probability is small that very fev}
successes are obtained, we can assume that successes occur with probability
exactly 1/4, rather than with probability at least 1/4. (See Exercises 6.4-§
and 6.4-9 for a formal justification of similar assumptions.) -

To further simplify the analysis, we assume that there are exactly n/lgn
processors, each with Ign list objects. We are conducting clgn trials, for
some constant ¢ that we shall determine, and we are interested in the
event that fewer than lgn successes occur. Let X be the random variable
denoting the total number of successes. By Corollary 6.3, the probabilit§r
that a processor eliminates fewer than lgn objects in the clgn trials is af

most
clgn 3 clgn-lgn
<lgn) (Z>
- eclgn lgn §>(C——l)lgn
- Ign 4
Ign
3 c—1
(GC (Z) )
: 1 lgn
< —
< (3)

= 1/n*,

Pr{X <lgn}

IN

I

as long as ¢ > 20. (The second line follows from inequality (6.9).) Thus
the probability that all objects belonging to a given processor have not bee
eliminated after clgn steps is at most 1/n2.

We now wish to bound the probability that all objects belonging to all
processors have not been eliminated after clgn steps. By Boole’s inequal
ity (6.22), this probability is at most the sum of the probabilities that eac
of processors has not eliminated its objects. Since there are n/lgn pr
cessors, and each has probability at most 1/n* of not eliminating all i
objects, the probability that any processor has not finished all its object
is at most
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We have thus proven that with probability at least 1 — 1/n, every object is
spliced out after O(lg n) recursive calls. Since each recursive call takes O(1)
time, RANDOMIZED-LIST-PREFIX takes O(lgn) time with high probability.

The constant ¢ > 20 in the clgn running time may seem a bit large
for practicality. In fact, this constant is more an artifact of the analysis
than a reflection of the algorithm’s performance. In practice, the algorithm
tends to be fast. The constant factors in the analysis are large because the
event that one processor finishes eliminating all its list objects is dependent
on the event that another processor finishes all its work. Because of these
dependencies, we used Boole’s inequality, which does not require indepen-
dence but results in a weaker constant than would generally be experienced
in practice.

Exercises

30.4-1 ,
Draw figures to illustrate what can go wrong in RANDOMIZED-LIST-PREFIX
if two adjacent list objects are selected for elimination.

30.4-2 x

Suggest a simple change to make RANDOMIZED-LiST-PREFIX run in O(n)
worst-case time on a list of n objects. Use the definition of expectation to
prove that with this modification, the algorithm runs in O(lgn) expected
time.

30.4-3 *

Show how to implement RANDOMIZED-LIST-PREFIX so that it uses at most
O(n/p) space per processor in the worst case, independent of how deep
the recursion goes.

30.4-4 *

Show that for any constant k > 1, RANDOMIZED-LIST-PREFIX runs in
O(lgn) time with probability at least 1 — 1/n*. Show how the constant
in the running-time bound is influenced by k.

30.4-5 *
Using the result of Exercise 30.4-4, show that the expected running time
of RANDOMIZED-LIST-PREFIX is O(lg n).
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30.5 Deterministic symmetry breaking

Consider a situation in which two processors wish to acquire muty
exclusive access to an object. How can the processors determine wh
should acquire access first? We wish to avoid the scenario in which be
are granted access, as well as the scenario in which neither is gran
access. The problem of choosing one of the processors is an exa
of symmetry breaking. We have all seen the momentary confusio
diplomatic impasses that arise when two people attempt to go throy,
door simultaneously. Similar symmetry-breaking problems are perva
in the design of parallel algorithms, and efficient solutions are extrem
useful. i
One method for breaking symmetry is to flip coins. On a computer, co
~flipping can be implemented by means of a random-number generator, F
the two-processor example, both processors can flip coins. If one obta
HEAD and the other TAIL, the one obtaining HEAD proceeds. If both fl
the same value, they try again. With this strategy, symmetry is broken
constant expected time (see Exercise 30.5-1). ‘
We saw the effectiveness of a randomized strategy in Section 30.4
RaNDOMIZED-LIsT-PREFIX, adjacent list objects must not be selected
elimination, but as many picked objects as possible should be selected
the midst of a list of picked objects, however, all objects look pretty m
the same. As we saw, randomization provides a simple and effective
to break the symmetry between adjacent list objects while guarante
that, with high probability, many objects are selected.
In this section, we investigate a deterministic method for breaking
metry. The key to the algorithm is to employ processor indices or me
addresses rather than random coin flips. For instance, in the two-process
example, we can break the symmetry by allowing the processor with sma
processor index to go first—clearly a constant-time process.
We shall use the same idea, but in a much more clever fashion, i
algorithm to break symmetry in an n-object linked list. The goal
choose a constant fraction of the objects in the list but to avoid pic
two adjacent objects. This algorithm can be performed with n processt
in O(lg" n) time by a deterministic EREW algorithm. Since lghn <
all n < 2655% the value lg* n can be viewed as a small constant
practical purposes (see page 36).
Our deterministic algorithm has two parts. The first part compute
“g-coloring” of the linked list in O(lg" n) time. The second part conve
the 6-coloring to a “maximal independent set” of the list in O(1) time.
maximal independent set will contain a constant fraction of the n obje
of the list, and no two objects in the set will be adjacent. '
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Colorings and maximal independent sets

A coloring of an undirected graph G = (V, E) is a function C : VV — N such
that for all u,v € V, if C(u) = C(v), then (u,v) ¢ E; that is, no adjacent
vertices have the same color. In a 6-coloring of a linked list, all colors are
in the range {0, 1, 2, 3,4, 5} and no two consecutive vertices have the same
color. In fact, any linked list has a 2-coloring, since we can color objects
whose ranks are odd with color 0 and objects whose ranks are even with
color 1. We can compute such a coloring in O(lgn) time using a parallel
prefix computation, but for many applications, it suffices to compute only
an O(l)-coloring. We shall show that a 6-coloring can be computed in
O(lg" n) time without using randomization.

An independent set of a graph G = (V,E) is a subset V' C V of vertices
such that each edge in E is incident on at most one vertex in V'. A
maximal independent set, or MIS, is an independent set V' such that for
all vertices v € V' — V', the set V' U {v} is not independent—every vertex
not in V' is adjacent to some vertex in ¥’. Do not confuse the problem
of computing a maximal independent set—an easy problem—with the
problem of computing a maximum independent set—a hard problem. The
problem of finding an independent set of maximum size in a general graph
is NP-complete. (See Chapter 36 for a discussion of NP-completeness.
Problem 36-1 concerns maximum independent sets.)

For n-object lists, a maximum (and hence maximal) independent set
can be determined in O(lgn) time by using a parallel prefix computation,
as in the 2-coloring just mentioned, to identify the odd-ranked objects.
This method selects [n/2] objects. Observe, however, that any maximal
independent set of a linked list contains at least n/3 objects, since for
any 3 consecutive objects, at least one must be in the set. We shall show,
however, that a maximal independent set of a list can be determined in
O(1) time given an O(1)-coloring of the list.

Computing a 6-coloring

The algorithm Six-CoLoR computes a 6-coloring of a list. We won’t give
pseudocode for the algorithm, but we shall describe it in some detail. We
assume that initially each object x in the linked list is associated with a
distinct processor P(x) € {0,1,...,n—1}.

The idea of S1x-CoLoR is to compute a sequence Co[x], C[x],..., Cn[x]
of colors for each object x in the list. The initial coloring Cy is an n-
coloring. Each iteration of the algorithm defines a new coloring Cy...; based
on the previous coloring Cy, for k =0, 1,...,m~— 1. The final coloring C,,
is a 6-coloring, and we shall prove that m = O(Ig" n).

The initial coloring is the trivial n-coloring in which Co[x] = P(x). Since
no two list objects have the same color, no two adjacent list objects have
the same color, and so the coloring is legal. Note that each of the initial
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colors can be described with [lgn] bits, which means that it can be stdfe
in an ordinary computer word.

The subsequent colorings are obtained as follows. The kth iteration, fo
k=0,1,...,m—1,starts with a coloring Cy and ends with a coloring Cj
using fewer bits per object, as the first part of Figure 30.11 shows. Suppog
that at the start of an iteration, each object’s color C, takes r bits. \
determine the new color of an object X by looking forward in the list
the color of next[x].

To be more precise, suppose that for each object x, we have Ci[x]
and C[next[x]] = b, where @ = (@r—1,@r-2>-+ > ag) and b = (br-1, by, ...
by) are r-bit colors. Since Ci[x] # Ci[next[x]], there is some least inde;
at which the bits of the two colors differ: a; # bi. Because 0<i<r-1;
can write i with only [lg7] bits: i = (ifgr—1>iflgri=2>" ig). We recolor
with the value of I concatenated with the bit a;. That is, we assign

Cenlx] = (iai)
’(ingr]—x,ingr1~2,---,l'0,ai> .

il

The tail of the list gets the new color (0, do)- The number of bits in eac
new color is therefore at most Mgrl+1. '
We must show that if each iteration of Six-CoLoR starts with a colo
ing, the new «coloring” it produces is indeed a legal coloring. To do thi
we prove that Cx[x] # Ci[next{x]] implies Cratlx] # Crqr[next{x]]. Suj
pose that Cy[x] = a and Ci[nextix]] = b, and that Crai[x] = (i,ai) an
Crsi[nextlx]] = (j,b;). There are two cases to consider. If i # j, th
li,a;) # s b;), and so the new colors ar¢ different. If i = j, howev
then a; # bi = b; by our recoloring method, and thus the new colors
once again different. (The situation at the tail of the list can be handi
similarly.) :
The recoloring method used by S1x-CoLOR takes an r-bit color and
places it with a (Ngr] + 1)-bit color, which means that the number of
is strictly reduced as long as r > 4. When r = 3, two colors can diffe
bit position 0, 1, or 2. Each new color, therefore, is (00), (01), or {
concatenated with either 0 or 1, thus leaving a 3-bit number once a
Only 6 of the 8 possible values for 3-bit numbers are used, however,
that Six-COLOR indeed terminates with 2 6-coloring.
Assuming that each processor can determine the app
in O(1) time and perform a shift-left operation in o(1) ti
commonly supported on many actual machines—each iteration
time. The Six-COLOR procedure is an EREW algorithm: for each object

its processor accesses only x and next{x].

Finally, let us see why only o(lg* n) iterations are required t0 bri
the initial n-coloring down to 2 6-coloring. We have defined 1g" n as
number of times the logarithm function lg needs to be applied to 7
reduce it to at most 1 o, letting 1g”) n denote i successive applications

the lg function,

ropriate ind
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Figure 30.11 The algorithms Six-CoLor and LisT-MIS that break symmetry in a
list. Together, the algorithms find a large set of nonadjacent objects in O(lg* n) time
using n processors. The initial list of n = 20 objects is shown on the left, running
vertically. Each object has an initial, distinct 5-bit color. For these parameters, the
algorithm Six-CoLor needs only the two iterations shown to recolor each object
with a color in the range {0, 1,2, 3,4, 5}. White objects are placed into the MIS by
L1sT-MIS as the colors are processed, and black objects are killed.
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lg*nzmin{iZOzlg(”ng 1} .

Let r; be the number of bits in the coloring just before the ith iterati
We shall prove by induction that if Mg¥ n] > 2, then r; < [ig® nl +
Initially, we have r; < [lgn]. The ith iteration brings the number of{;
in the coloring down to r;y; = [lgr;] + 1. Assuming that the induct
hypothesis holds for r;_;, we obtain :

ri Mgrio]+1

1l

< Mig(Ng" "V nl+2)) +1
< ]'lg(lg(i"l)n +3)+1
< [ig2lg" V)] +1

Mgg"n)+1]+1
Ng“n]+2.
The fourth line follows from the assumption that [lg(i) n] > 2, which meang

that [lg““l) n] > 3. Therefore, after m = lg* n steps, the number of
in the coloring is 7, < [1g"™ n] +2 = 3, since 1g™ n < 1 by definition o

I

the lg* function. Thus, at most one more iteration suffices to produce :
6-coloring. The total time of S1x-COLOR is therefore o(lg" n).

Computing an MIS from a 6-coloring

Coloring is the hard part of symmetry breaking. The EREW algorit
LisT-MIS uses n processors to find a maximal independent set in O
time given a c-coloring of an n-object list. Thus, once we have compu
a 6-coloring of a list, we can find a maximal independent set of the lin
list in O(1) time.

The latter part of Figure 30.11 illustrates the idea behind LisT-MIS.
are given a c-coloring C. With each object x, we keep a bit alive[x], w
tells us whether x is still a candidate for inclusion in the MIS. Initiall
alive[x] = TRUE for all objects x. ’

The algorithm then iterates through each of the ¢ colors. In the itera
for color i, each processor responsible for an object x checks wheth
C[x] = i and alive[x] = TRUE. If both conditions hold, then the proce
marks x as belonging to the MIS being constructed. All objects adjace!
to those added into the MIS—those immediately preceding or following
have their alive bits set to FALSE; they cannot be in the MIS because th
are adjacent to an object in the MIS. After all ¢ iterations, each object b
either been “killed”—its alive bit has been set to FALSE—OT placed in
the MIS.

We must show that the resulting set is independent and maximal. To
see that it is independent, suppose that two adjacent objects x and next]
are placed into the set. Since they are adjacent, Clx]1# C [next[x]l; b
cause C is a coloring. Without loss of generality, we assume that C[x]
Clnext[x]], so that x is placed into the set before next[x] is. But then
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alive{next[x]] has been set to FALSE by the time objects of color C[next[x]]
are considered, and next[x] could not have been placed into the set.

To see that the set is maximal, suppose that none of three consecutive
objects x, y, and z has been placed into the set. The only way that y could
have avoided being placed into the set, though, is if it had been killed
when an adjacent object was placed into the set. Since, by our supposition,
neither x nor z was placed into the set, the object y must have been still
alive at the time when objects of color C[y] were processed. It must have
been placed into the MIS.

Each iteration of LisT-MIS takes O(1) time on a PRAM. The algorithm
is EREW since each object accesses only itself, its predecessor, and its
successor in the list. Combining LisT-MIS with Six-COLOR, we can break
symmetry in a linked list in O(lg* r) time deterministically.

Exercises

30.5-1
For the 2-processor symmetry-breaking example at the beginning of this
section, show that symmetry is broken in constant expected time.

30.5-2
Given a 6-coloring of an n-object list, show how to 3-color the list in O(1)
time using n processors in an EREW PRAM.

30.5-3
Suppose that every nonroot node in an n-node tree has a pointer to its
parent. Give a CREW algorithm to O(1)-color the tree in O(Ig* n) time.

30.5-4 x
Give an efficient PRAM algorithm to O(1)-color a degree-3 graph. Analyze
your algorithm,

30.5-5

A k-ruling set of a linked list is a set of objects (rulers) in the list such
that no rulers are adjacent and at most k nonrulers (subjects) separate
rulers. Thus, an MIS is a 2-ruling set. Show how an O(lg n)-ruling set of
an n-object list can be computed in O(1) time using n processors. Show
how an O(lglg n) ruling set can be computed in O(1) time under the same
assumptions.

30.5-6 x

Show how to find a 6-coloring of an n-object linked list in O(lg(lg" n))
time. Assume that each processor can store a precomputed table of size
O(lgn). (Hint: In S1x-CoLOR, upon how many values does the final color
of an object depend?)
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30-1 Segmented parallel prefix
Like an ordinary prefix computation, a segmented prefix computation

defined in terms of a binary, associative operator ®. It takes an inp
sequence X = (X1, X2,--- ,X,) whose elements are drawn from a domain
and a segment sequence b = (b1, by,....bn) whose elements are dra
from the domain {0, 1}, with by = 1. It produces an output sequence y
(Y1,V2,--->Vn) OVET the domain S. The bits of b determine a partitionin
of x and y into segments; a new segment begins wherever b = 1, and
the current one continues if b; = 0. The segmented prefix computation
performs an independent prefix computation within each segment of ‘
to produce the corresponding segment of y. Figure 30.12 illustrates a
segmented prefix computation using ordinary addition.

a. Define the operator % on ordered pairs (a, z), (a@',z") € {0,1} x § g

follows:
PN (a,z®z") ifad =0,
(a32)®(a72)—’{(1’2r) ifa=1.

Prove that ® is associative.

b. Show how to implement any segmented prefix computation on an
element list in O(lgn) time on an EREW PRAM.

Describe an O(k lg n)-time EREW algorithm to sort a list of 7 k
numbers.

30-2 Processor-efficient maximum algorithm :
We wish to find the maximum of » numbers on a CRCW PRAM
p = N Processors.

ng the maximum of m < p/2 numbe

4. Show that the problem of findi
f at most m*

can be reduced to the problem of finding the maximum 0O
numbers in O(1) time on a p-processor CRCW PRAM.

b. If we start with m = |p/2] numbers, how many numbers remain al
k iterations of the algorithm in part (a)?

b =1 0 o h oM o o o 0 AT o
-1 2 3 4 5 6 7 8 9 1011 12 13 14
;=1 3 6 4 9 6 7152 s 45 57 1327

Figure 30.12 A segmented prefix comput
sequence x, and output sequence y. There are 5 segments.

ation with segment sequence b, i
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¢. Show that the problem of finding the maximum of » numbers can be
solved in O(lgign) time on a CRCW PRAM with p = n processors.

30-3 Connected components

In this problem, we investigate an arbitrary-CRCW algorithm for com-
puting the connected components of an undirected graph G = (V, E) that
uses |V + E| processors. The data structure used is a disjoint-set forest (see
Section 22.3). Each vertex v € V' maintains a pointer p[v] to a parent.
Initially, p[v] = v: the vertex points to itself. At the end of the algorithm,
for any two vertices u,v € V, we have p[u] = p[v] if and only if u ~ v
in G. During the algorithm, the p pointers form a forest of rooted pointer
trees. A sfar is a pointer tree in which p[u] = p[v] for all vertices # and v
in the tree.

The connected-components algorithm assumes that each edge (u,v) € E
appears twice: once as (u,v) and once as (v,u). The algorithm uses
two basic operations, Hook and Jump, and a subroutine STAR that sets
star{v] = TRUE if v belongs to a star.

Hooxk(G)

STAR(G)
for each edge (u,v) € E[G], in parallel
do if star[u] and p{u] > p{v]
then p[p[u]] — pv]
STAR(G)
for each edge (u,v) € E[G], in parallel
do if star{u] and p[u] # plv]
then p[p[u]] — p[v]

GO ~J O\ U a W DN e

Jump(G)

1 for each v € V[(], in parallel
2 do p[v] < plp[v]]

The connected-components algorithm performs an initial Hook, and
then it repeatedly performs Hooxk, Jump, Hook, Jump, and so on, until
no pointer is changed by a JuMP operation. (Note that two HooK’s are
performed before the first Jump.)

a. Give pseudocode for STAR(G).
b. Show that the p pointers indeed form rooted trees, with the root of a

tree pointing to itself. Show that if ¥ and v are in the same pointer tree,
then ¥~ v in G.

¢. Show that the algorithm is correct: it terminates, and when it terminates,
plu] = p[v] if and only if u ~ v in G.

To analyze the connected-components algorithm, let us examine a single
connected component C, which we assume has at least two vertices, Sup-
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pose that at some point during the algorithm, C is made up of a set {1
of pointer trees. Define the potential of C as

®(C) =Y height(T}) .
T;

The goal of our analysis is to prove that each iteration of hooking and

jumping decreases @(C) by a constant factor.

d. Prove that after the initial Hook, there are no pointer trees of height 0
and ®(C) < |V|.

e. Argue that after the initial HOOK, subsequent HOOK operations never
increase ®(C).

f. Show that after every noninitial Hook operation, no pointer tree is a
star unless the pointer tree contains all vertices in C.

g. Argue that if C has not been collapsed into a single star, then aftera
Jump operation, ®(C) is at most 2/3 its previous value. [lustrate the

worst case.

h. Conclude that the algorithm determines all the connected components
of G in O(lg V') time.

30-4 Transposing a raster image
A raster-graphics frame buffer can be viewed as a p x p matrix M of bits
The raster-graphics display hardware makes the 72 x n upper left submatri
of M visible on the user’s screen. A BITBLT operation (BLock Transfer
of BITs) is used to move a rectangle of bits from one position to another.
Specifically, BITBLT (ry, ¢1, 72, C2, 1T, 1C, %) S€ts

Mlr + i, ¢+ ] = Mlr+i,ca+ jlx Mir +i,¢1 + J]

fori=0,1,...,nr— 1 and j = 0,1,...,nc — 1, where x is any of the 16
boolean functions on two inputs. I

We are interested in transposing the image (M[i, j] — M[j,i]) in the
visible portion of the frame buffer. We assume that the cost of copying.
the bits is less than that of calling the BiTBLT primitive, and hence we are
interested in using as few BITBLT operations as possible. A

Show that any image on the screen can be transposed with O(lgn) BIT-.
BLT operations. Assume that p is sufficiently larger than n so that the
nonvisible portion of the frame buffer provides enough working storage.
How much additional storage do you need? (Hint: Use a parallel divide-
and-conquer approach in which some of the BITBLT’s are performed with
boolean AND’s.) :
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" Chapter notes

Akl [9], Karp and Ramachandran [118], and Leighton [135] survey par-
allel algorithms for combinatorial problems. Various parallel machine
architectures are described by Hwang and Briggs [109] and Hwang and
DeGroot [110].

The theory of parallel computing began in the late 1940’s when J. Von
Neumann [38] introduced a restricted model of parallel computing called a
cellular automaton, which is essentially a two-dimensional array of finite-
state processors interconnected in meshlike fashion. The PRAM model
was formalized in 1978 by Fortune and Wyllie [73], although many other
authors had previously discussed essentially similar models.

Pointer jumping was introduced by Wyllie [204]. The study of parallel
prefix computations arose from the work of Ofman [152] in the context of
carry-lookahead addition. The Euler-tour technique is due to Tarjan and
Vishkin [191].

Processor-time trade-offs for computing the maximum of a set of n num-
bers were provided by Valiant [193], who also showed that an O(1)-time
work-efficient algorithm does not exist. Cook, Dwork, and Reischuk [50]
proved that the problem of computing the maximum requires {(1g ) time
on a CREW PRAM. The simulation of a CRCW algorithm with an EREW
algorithm is due to Vishkin [195].

Theorem 30.2 is due to Brent [34]. The randomized algorithm for work-
efficient list ranking was discovered by Anderson and Miller [11]. They also
have a deterministic, work-efficient algorithm for the same problem [10].
The algorithm for deterministic symmetry breaking is due to Goldberg and
Plotkin [84]. It is based on a similar algorithm with the same running time
due to Cole and Vishkin [47].




