Exact Solutions to NP-Complete Problems

Ref: - “Computer Algorithms”, Horowitz, Sahni, Rajasekaran (Chapters 7, 8)
- Various texts on Combinatorial Algorithms or on Integer Linear Programming

Backtracking

• An organized exhaustive search which often avoids searching many possibilities
• The desired solution is often expressed as n-tuple, where the \(x_i \)'s are chosen from some finite set \(S_i \) with \(m_i = |S_i| \).
• The problem often requires finding one vector which maximizes, minimizes or satisfies a criterion function \(P(x_1, x_2, \ldots, x_n) \).
• The brute force approach is to evaluate each of \(m = m_1 m_2 \ldots m_n \) n-tuples from \(S_1 \times S_2 \times \ldots \times S_n \) and identify the n-tuple yielding the optimal value.
• The basis idea of backtracking is to build the solution vector using modified criterion function \(P(x_1, x_2, \ldots, x_n) \) to test whether the vector being formed have any chance of success.
• If a partial vector \((a_1, a_2, \ldots, a_i) \) has no chance of success, we avoid considering all of the \(m_1 m_2 \ldots m_n \) possible test vectors \((a_1, a_2, \ldots, a_i, x_{i+1}, \ldots, x_n) \)
• Many problems solved by backtracking satisfy a set of constraints which may divided into two categories: explicit and implicit.

Explicit constraints are rules that restrict each \(x_i \) to take on values only from a given set

- examples: \(x_i \geq 0, \ x_i = 0 \ or \ 1, \ 1 \leq x_i \leq u_i \)
- depend on the particular instance \(I \) of the problem being solved
- the n-tuples that satisfy these conditions define a possible solution space for \(I \).

Implicit constraints are rules which the tuples in the solution space for \(I \) must satisfy in order to satisfy the criterion function.

Example (8 Queens Problem)

• A classic problem in combinatorics is to place 8 queens on an 8 by 8 chessboard so that no two can “attack” each other (along a row, column, or diagonal).
• Since each queen (1-8) must be on a different row, we can assume queen \(i \) is on row \(i \).
• All solutions to the 8-queens problem can be represented as an 8-tuple \((x_1, x_2, \ldots, x_8) \) where queen \(i \) is on column \(x_i \).
• The explicit constraints are \(S_i = \{1, 2, \ldots, 8\}, \ 1 \leq i \leq 8 \). The solution space consists of \(8^8 \) 8-tuples.
• The implicit constraints are that no two \(x_i \)'s can be the same (as queens must be on different columns) and no two queens can be on the same diagonal.
 • this implies that all solutions are permutations of the 8-tuple \((1, 2, \ldots, 8) \), and reduces the solution space from \(8! \) tuples to \(8! \) tuples.
• Backtracking algorithms determine problem solutions by systematically searching the solution space.
• Search is facilitated using a tree organization for the solution space.
• Many tree organizations may be possible for the same solution space.

• Example (n-Queens): n queens are placed on an n by n chessboard so that no two
 attack (no two queens are on the same row, column, or diagonal).
• Generalizing earlier discussion, solution space contains all n! permutations of (1,2,…,n).
• The tree below shows possible organization for n=4.
• Tree is called a permutation tree (nodes are numbered as in depth first search).
• Edges labeled by possible values of \(x_i \).
• The solution space is all paths from the root node to a leaf node.
• There are 4!=24 leaf nodes in tree.

• Example (Sum of Subsets): Given positive numbers \(w_i \), 1 ≤ i ≤ n, and m, find
 all subsets of \(\{w_1, w_2, \ldots, w_n\} \), whose sum is m.
• If n=4, \(\{w_1, w_2, w_3, w_4\} = \{11,13,24,7\} \) and m=31, the desired solution sets are
 \((11,13,7) \) and \((24,7) \).
• If the solution vectors are given using the indices of the \(w_i \) values used, then the
 solution vectors are (1,2,4) and (3,4).
• In general, all solutions are \(k \)-tuples \((x_i, x_j, \ldots, x_k)\) with 1 ≤ k ≤ n and different
 solutions may have different values of k.
• The explicit constraints on the solution space are that each \(x_i \in \{1,2,\ldots,n\} \).
• The implicit constraints are that \(x_i < x_{i+1}, 1 ≤ i < n \), (so each item will occur only once) and that the sum of the corresponding \(w_i \) ’s be m.

• The next figure gives the tree that corresponds to this variable tuple formation.
• An edge from a level i node to a level i+1 node represents a value for \(x_i \).
• The solution space is all paths from the root node to any node in the tree.
• Possible paths include empty path, (1), (1,2), (1,2,3), (1,2,3,4), (1,2,4), (1,3,4), …
• The leftmost subtree gives all subsets containing \(w_1 \), the next subtree gives all
 subsets containing \(w_2 \) but not \(w_1 \), etc.
Example (Sum of Subsets) again: Another formulation of this problem represents each solution by an n-tuple $(x_1, x_2, ..., x_n)$ with $x_i \in \{0,1\}, 1 \leq i \leq n$.

- Here $x_i = 0$ if w_i is not chosen and $x_i = 1$ if w_i is chosen.
- Given the earlier instance of $(11,13,24,7)$ and $m=31$, the solutions $(11,13,7)$ and $(24,7)$ are represented by $(1,1,0,1)$ and $(0,0,1,1)$.
- Here, all solutions have a fixed tuple size. The tree below corresponds to this formulation (nodes are numbered as in D-search).

- Edge from a level i node to a level $i+1$ node is labeled with the value of x_i (0 or 1)
- All paths from the root to a leaf give solution space.
- The left subtree gives all subsets containing w_i and the right subtree gives all subsets not containing w_i.

Generating Problem States

- The two tree organizations for the sum of subsets problem are static trees (tree organization is independent of the problem instance being solved).
- Tree organizations that are problem instance dependent are called dynamic trees and are also used for some problems.
- Once a state space tree organization has been selected for a problem, the problem can be solved by
 - systematically generating the problem states,
 - finding which of these are solution states
 - finding which solution state are answer states
- A live node is a node which has been generated but whose children have not all been generated.
- An E-node (i.e., expanding node) is a live node whose children are currently being generated.
- A dead node is a generated node which is not to be expanded further or all of whose children have been generated.
- Two ways to generate problem states:
 - Breadth First Generation (queue of live nodes)
 - Depth First Generation (stack of live nodes)
• **Depth First** Generation (stack of live nodes)
 • When a new child C of the current E-node R is generated, this child becomes the new E-node.
 • Then R will become the new E-node again when the subtree C has been fully explored.
 • Corresponds to a depth first search of the problem states.

• **Breadth First** Generation (queue of live nodes)
 • The E-node remains the E-node until it is dead.

Bounding functions are used in both to kill live nodes without generating all of their children.
• At the end of the process, an answer node (or all answer nodes) are generated.
• The depth search generation method with bounding function is called **backtracking**.
• The breadth first generation method is used in the branch-and-bound method.

Example (backtracking on 4-queens problem)

• As a bounding function, use criterion that if \((x_1, x_2, ..., x_7)\) is the path to the current E-node, then some continuation \((x_1, x_2, ..., x_7, x_8, ..., x_n)\) exists that represents a chessboard without 2 queens attacking.

• Start with the root as the E-node. Then the path is ()

• The children of the E-nodes are generated in a left to right order.

• Node 2 is generated first and the path becomes (1). This corresponds to placing queen 1 on column 1.

Example (backtracking on 4-queens problem)

• Node 2 becomes the E-node, as no two queens are attacking.
• Node 3 is generated and is immediately killed, as queens 1 and 2 would be on a diagonal.
• Node 8 is generated and the path (1,3) is ok, so node 8 becomes the next E-node.
• Node 8 gets killed since none of its children can lead to a feasible chessboard.
• Backtrack to node 2 and generate another child, node 13, giving path (1,4) which is ok.
• The first child of node 13 is node 14, which gives path (1,4,2) and the feasible chessboard.
• This process continues, as indicated in the figure. The figure shows the portion of the state space tree we had on slide #3.
• Note that only 16 out of 65 nodes (or 25%) in the solution space are actually generated.
General Backtracking Algorithm

- This algorithm will find all answer nodes.
- If only the first solution is desired, a “flag” parameter can be added to indicate first success.
- Let \((x_1, x_2, ..., x_i)\) be a path from the root to a node in the state space tree.
- Let \(T(x_1, x_2, ..., x_i)\) be the set of all possible values for \(x_{i+1}\) such that \((x_1, x_2, ..., x_i, x_{i+1})\) is also a path to a problem state (i.e., node).
- Let \(B_i\) be a boundary (Boolean) function such that if \(B_i(x_1, x_2, ..., x_i)\) is false, then the path \((x_1, x_2, ..., x_i)\) cannot be extended to reach an answer node.
- Note that if \(B_i(x_1, x_2, ..., x_i) = 1\), this does not guarantee that the path \((x_1, x_2, ..., x_i)\) can be extended to reach an answer node.
- Here is the recursive backtracking algorithm:

```
Algorithm Backtrack(k)
for (each x[k] from T(x[1], x[2], ..., x[k-1]) do
  if (B_i(x[1], x[2], ..., x[k]) != 0) then
    if (x[1], x[2], ..., x[k]) is a path to an answer node
      then write (x[1..k]);
    if (k<n) then Backtrack(k+1);
  
}
```

Comments
- the candidates for \(x[i+1]\) are values generated by \(T(x[1], x[2], ..., x[i])\) that satisfy \(B_{i+1}\)
- \(T()\) gives all candidates for \(x[1]\),
- elements are generated in a depth first manner, creating a preorder traversal (except for eliminated branches) of the state space tree.
- for many problems, the size of the state space tree is too large to permit generation of all nodes.

Efficiency of Backtracking

- The efficiency of a backtracking algorithm depends upon 4 factors
 - the time to generate the next \(x[k]\)
 - the number of \(x[k]\) choices that satisfy the explicit constraints
 - the time required to evaluate the bounding function \(B_i\)
 - the number of \(x[k]\) satisfying the \(B_i\)
- A good boundary function will drastically reduce the number of candidates that have to be considered.
- Often a tradeoff between bounding functions, as one that is good may take more time to evaluate.
- For many problems such as \(n\)-queens, no good bounding function are known.
- Rearrangement:
 - the principle of selecting the set \(S\) with fewest elements each time
 - since these sets can be taken in any order, smaller branching at the higher levels create larger subtrees
 - removal of early nodes cut off larger subtrees (see Fig. 7.7 in HSR)
- The first three factors that effect the time required for backtracking depend primarily on the state space tree organization selected
- Only the fourth factor may vary widely, depending on the problem instances.
• Worst case predictions for backtracking algorithms:
 • If the number of points in the solution space is \(2^n\) or \(n!\) the worst case timing is usually either \(O(p(n)2^n)\) or \(O(p(n)n!)\), where \(p(n)\) is a polynomial.
 • Backtracking can often solve some problem instances with large \(n\) in very small amounts of time. However, may be difficult to predict behavior of algorithm for particular problem instances.

• Estimating Nr. of nodes generated:
 • The number of nodes generated in a particular instance can be estimated using Monte Carlo methods
 • Starting at the top level, a random path is generated, as follows:
 • set \(x\) be a node on this path at level \(i\) of the state space tree; the boundary function \(B_i\) is used to determine the number \(m_i\) of its children which will be generated; one child is randomly selected, and the process continue until the path ends.
 • Then \(m = m_1 + m_1m_2 + m_1m_2m_3 + \ldots\) is an estimate of the nodes that will be generated.
 • Above estimate for \(m\) assumes the bounding functions are static and do not improve with time; It also assumes that the same boundary function is used for all nodes at the same level.
 • The above two assumptions are not true for most backtracking algorithms; e.g., the boundary functions usually get stronger as information is gathered about the search.
 • Consequently, the above value of \(m\) is likely to be high when these two assumptions are false.
 • A better estimate would also result if the value \(m\) is the average returned for several (about 20) random paths.

Backtracking Algorithm for n-Queens problem
• Let \((x_1, x_2, \ldots, x_n)\) represent where the \(i\)th queen is placed (in row \(i\) and column \(x_i\)) on an \(n\) by \(n\) chessboard.
• Observe that two queens on the same diagonal that runs from “upper left” to “lower right” have the same “row-column” value.
• Also two queens on the same diagonal from “upper-right” to “lower left” have the same “row+column” value.
• Then two queens at \((i,j)\) and \((k,l)\) are on the same diagonal if and only if
 \[
 i-j = k-l \text{ or } i+j = k+l
 \]
 iff
 \[
 i-k = j-l \text{ or } j-l = k-i
 \]
 iff
 \[
 |j-l| = |i-k|
 \]
• Algorithm PLACE\((k,i)\) returns true if the \(k\)th queen can be placed in column \(i\) and runs in \(O(k)\) time (see next slide)
• Using PLACE, the recursive version of the general backtracking method can be used to give a precise solution to the n-queens problem.
• Array \(x[i/j]\) is global. Algorithm invoked by NQUEENS\((1,n)\).
bool Place(int k, int i)
// Returns true if a queen can be placed in kth row and ith column. Otherwise it returns false.
// x[j] is a global array whose first (k-1) values have been set.
// abs(r) returns the absolute value of r.
{
 for (int j=1; j<k; j++)
 if ((x[j] == i) || (abs(x[j]-i) == abs(j-k))) // Two in the same column or in the same diagonal
 return(false);
 return(true);
}

void NQueens(int k, int n)
// Using backtracking, this procedure prints all possible placements of n queens on an n x n chessboard so that they are nonattacking.
{
 for (int i=1; i<=n; i++)
 if (Place(k, i)) {
 x[k] = i;
 if (k==n) { for (int j=1;j<=n;j++) cout << x[j] << ' '; cout << endl;}
 else NQueens(k+1, n);
 }
}

Efficiency of n-Queens over Brute Force

- For an 8x8 chessboard, there are $\left(\begin{array}{c}64\\8\end{array}\right)$ ways to place 8 queens on the chessboard (billions of 8-tuples to examine).

- Requiring placement of queens on distinct rows and columns reduces the number of 8-tuples that must be examined to $8! = 40,320$ 8-tuples.

- Next we estimate the number of nodes that will be generated by NQUEENS. The assumptions needed for this estimate hold for NQueens.
 - Boundary function is static
 - boundary functions does not change as search progress
 - additionally, nodes on the same level of the tree have the same degree

- Five trials using the ESTIMATE function described earlier are given on p.355 of HSR
 - each produces a random path and estimates the total number of nodes generated, based on this path
 - the average of these 5 estimates is 1625
 - the total number of nodes in the 8-queens state space tree is
 $$1 + \sum_{j=0}^{7} \left[\prod_{i=0}^{j} (8-i) \right] = 69,281$$
 - the estimated number of unbound nodes is only 2.34 % of the total number of nodes in the 8-queens state space tree.
Sum of Subsets Algorithm Overview

- **Problem Restated**: Given n distinct positive integers (called weights), find all combinations of these numbers whose sum is m.

- We use the state space tree based on the fixed tuple length (w_1, w_2, \ldots, w_k) where $x_i = 0$ if w_i is not included and $x_i = 1$ if w_i is included (see Fig. on slide #5).

- The weights (w_1, w_2, \ldots, w_k) are assumed to initially be sorted into increasing order.

- Note that the tree node corresponding to (x_1, x_2, \ldots, x_k) cannot lead to an answer node unless

\[
\sum_{i=1}^{k} w_i x_i + \sum_{i=k+1}^{n} w_i \geq m
\]

- Also, note that (x_1, x_2, \ldots, x_k) cannot lead to an answer node unless

\[
\sum_{i=1}^{k} w_i x_i + w_{k+1} \leq m
\]

- The boundary function used uses both of the preceding conditions:

\[
B_s (x_1, x_2, \ldots, x_k) = true \iff (1) \text{ and } (2) \text{ hold}
\]

- The algorithm for the sum of subsets problem given in HSR is obtained by using this boundary function in the general recursive backtracking algorithm.

- A couple of implementation simplifications used are explained in HSR (see pp. 358-9).

Hamiltonian Cycles Algorithm

- Example: Graph $G1$ contains a Hamiltonian cycle 1,2,8,7,6,5,4,3,1 while graph $G2$ contains no Hamiltonian cycle.

- The algorithm given works on both directed and undirected graphs

- All distinct cycles will be found.

- Each x_i in the backtracking solution vector (x_1, x_2, \ldots, x_n) represents the ith vertex visited in the proposed cycle

- The vertices of the graph are assumed to be named using the first n positive integers.

- To avoid printing the same cycle n times, we require $x_1 = 1$

- The algorithm *NextValue* determines a possible next vertex for the proposed cycle

 - if $1 < k < n$, then x_k can be any vertex v that is distinct from $x_1, x_2, \ldots, x_{k-1}$ and is connected by an edge to x_{k-1}

 - the vertex x_k must be one remaining vertex and must be connected by an edge to both x_i and x_{k-1}

- The backtracking algorithm *Hamiltonian(k)* is obtained by using *NextValue* to select a legal vertex to add. No boundary function is used.
The main algorithm starts by

- initializing the adjacency matrix \(G[1:n,1:n] \)
- setting \(x[2:n]=0 \)
- setting \(x[1]=1 \)
- executing \(Hamiltonian(2) \)

Recursive algorithm that finds all Hamiltonian cycles

```cpp
def Hamiltonian(int k):
    # This program uses the recursive formulation of
    # backtracking to find all the Hamiltonian cycles
    # of a graph. The graph is stored as an adjacency
    # matrix \( G[1:n][1:n] \). All cycles begin at node 1.
    #
    # Generate values for \( x[k] \).
    # Assign a legal next value to \( x[k] \).
    # Return if \( x[k] \) is legal.
    # Returns \( 0 \) if \( k == n \) and \( G[x[n]][x[1]] \) is true.
    #
    do { // Generate values for \( x[k] \).
        NextValue(k); // Assign a legal next value to \( x[k] \).
        if (!x[k]) return;
        if (k == n) {
            for (int i=1; i<=n; i++)
                cout << x[i] << ' ';
            cout << 1 << n << '
';
        }
    } while (1);
```

```cpp
def NextValue(int k):
    // \( x[1],...,x[k-1] \) is a path of \( k-1 \) distinct vertices.
    // If \( x[k] = 0 \), then no vertex has as yet
    // been assigned to \( x[k] \). After execution \( x[k] \) is assigned
    // to the lowest numbered vertex which
    // i) does not already appear in \( x[1],x[2],...,x[k-1] \); and
    // ii) is connected by an edge to \( x[k-1] \).
    // Otherwise \( x[k] = 0 \).
    // If \( k == n \), then in addition \( x[k] \) is connected to \( x[1] \).
    #
    do {
        x[k] = (x[k]+1) % (n+1); // Next vertex
        if (!x[k]) return;
        # Is there an edge?
        if (G[x[k-1]][x[k]]) { // Is there an edge?
            for (int j=1; j<k-1; j++)
                if (x[j]==x[k]) break;
                // Check for distinctness.
            if (j==k) // If true, then the vertex is distinct.
                if (((k<n) && ((k==n) & G[x[n]][x[1]]))
                    return;
            }
    } while(1);
```

Homework problem:
Generalize \(Hamiltonian \) so that it processes a graph whose edges have cost associated with them and finds a Hamiltonian cycle with minimum cost. You can assume that all edge costs are positive (Ex. 3, p. 368 of HS).
Branch and Bound Algorithms

- Refers to all state space search methods in which all children of the E-nodes are generated before any other live nodes become E-nodes.

- **Breadth Fist Search** (BFS) will be called FIFO (first in, first out)
 - each new node is placed in a queue
 - after all children of current E-node are generated, the node at front of queue become the E-node.

- **D-search** will be called a LIFO (last in, first out)
 - new nodes are placed in stack

As with backtracking, bounding functions will be used to avoid generating trees with no answer node.

- **Example**: 4 Queen FIFO Branch & Bound Algorithm.
 - The state space tree in Fig. on slide #3 is used, so node numbers do not indicate order of generation.
 - Initially, only the root node is alive (no queens placed)
 - Expanding the root E-node generates its children nodes in the order 2,18,34, and 50. These nodes represent a 4x4 chessboard with queen 1 in row 1 and columns 1, 2, 3, and 4 respectively.
 - The only live nodes are now 1, 18, 34, 50, and the next E-node is 2. It is expanded, generating nodes 3, 8, 13.

- Node 3 is killed immediately by the bounding function used in backtracking algorithm and nodes 8, 13 are added to queue of live nodes.
- This process is continued, generating below figure.
- Comparing the two trees of generated nodes, it is clear that backtracking is more efficient on this problem.

Least Cost (LC) search

- Both FIFO and LIFO are rigid and blind.
- The search for an answer node can often be speeded up using an “intelligent” ranking function $C(j)$ for the live nodes.
Least Cost (LC) search

- In 4-Queens example, if \(C(\) \) had assigned node 30 a better rank than other live nodes, it would have become the E-node following node 29.
- An ideal way to assign rank to each live node \(x \) is the number of levels the nearest answer node (in the subtree with root \(x \)) is from \(x \).
- Using this ranking function on the previous 4-queens example would have assigned rank 1 to both answer nodes 30 and 38.
- Let \(g(x) \) be an estimate of the additional effort needed to reach an answer node from \(x \).
- Node \(x \) is assigned a rank using a function \(C(\) \) defined by \(C(x) = f(h(x)) + g(x) \), where \(f \) is a non-decreasing weight function.
- The use of nonzero \(f \) helps prevent the search algorithm from making unnecessarily deep probes into the search tree.
- A nonzero \(f \) is needed, as otherwise a child \(y \) of the current E-node \(x \) will become the next E-node since \(g(y) \leq g(x) \) and \(x \) had the previous lowest rank.
- Use of non-zero \(f \) forces the search algorithm to favor nodes closer to the root, reducing the probability of a deep and fruitless search into the tree.
- A search that uses a cost function \(C(\) to choose the next E-node to be a live node with minimum \(C(\) value is called a LC-search.

Least Cost Search Algorithm

- This algorithm assumes two additional algorithms, \(\text{Least}(\) and \(\text{Add}(\) to manage the list of live nodes.
- \(\text{Least}(\) finds a live node with least \(C(\) value. This node is deleted from the list of live nodes and returned.
- \(\text{Add}(\) adds the new live node \(x \) to the list of live nodes.
- With each node \(x \) that becomes alive, we associate a field \(\text{parent} \) which stores the parent of \(x \).

If \(g = 0, f = 1 \), and \(h(x) \) is the level of node \(x \), this LC-search is a BFS algorithm which generates nodes by levels.

If \(f = 0 \) and \(g(y) < g(x) \) when \(y \) is a child of \(x \), this LC-search is a D-search.

The cost function \(C(\) is defined as follows

- if \(x \) is an answer node, then \(c(x) \) is the cost of reaching \(x \) from the root of the state space tree.
- if \(x \) is not an answer node, but the subtree of \(x \) contains an answer node, then \(c(x) \) is the minimal cost of an answer node in subtree \(x \).
- otherwise, \(c(x) = \infty \)

Then, \(C(\) with \(f = 1 \), that is, \(C(x) = h(x) + g(x) \), is an estimate of \(C(\) .

\(C(\) should be chosen so that it is easy to compute. It will normally have the additional property that if \(x \) is an answer node or leaf node, then \(c(x) = C(x) \).
Least Cost Search Algorithm

• This allows LC-search to output a path from the answer node it finds to the root node.
• LC-search terminates only when either an answer node is found or the entire state space tree has been generated and searched.
• Note that termination is only guaranteed for finite space trees.
• It is advisable to restrict the search in LC-search to find answer nodes with costs not exceeding a given bound \(C \).
• Note: Least and Add can be defined to implement a stack or queue as well, so the algorithms for LC, FIFO, and LIFO search are essentially the same.

```c
struct listnode {struct listnode *next, *parent; float cost;};
LCSearch(struct listnode *t) // Search t for an answer node.
{
    struct listnode *x, *E, *Least();
    if (*t is an answer node) output *t and return;
    E=t; // E-node
    initialize the list of live nodes to be empty;
    do { for (each child x of E) { if (x is an answer node) output the path from x to t and return;
        Add(x); // x is a new live node.
        x->parent = E; // pointer for path to root
    }
    if there are no more live nodes) {count << "No answer node\n"; return; }
    E=Least();
    } while(1);
}
```

Dynamic Programming

• This is another technique for finding exact solutions to NP-Complete problems.
• Examples:
 • 0/1 Knapsack Problem (your old homework problem; \(O(nW) \) time algorithm)
 • Traveling Salesman Problem (HSR p. 298)

Homework 7:
• Problems:
 • no more problems at this moment