

Computational
Geometry

An Introduction

Franco P. Preparata
Michael Ian Shamos

With 234 Illustrations

Springer-Verlag
New York Berlin Heidelberg London Paris

Tokyo Hong Kong Barcelona Budapest

Franco P. Preparata
Department of Computer Science
Brown University
Providence, RI 02912
U.S.A.

Michael Ian Shamos
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213
U.S.A.

Series Editors:

David Gries
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501
U.S.A.

Fred Schneider
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501
U.S.A.

Library of Congress Cataloging in Publication Data
Preparata, Franco P.

Computational geometry.
(Texts and monographs in computer science)
Bibliography: p.
Includes index.
1. Geometry—Data processing. I. Shamos, Michael.

II. Title. 	III. Series.
QA447.P735 	1985 	516'.028'54 	85-8049

Printed on acid -free paper.

© 1985 by Springer-Verlag New York Inc.
All rights reserved. No part of this book may be translated or reproduced in any form
without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New
York 10010, U.S.A.

Typeset by Asco Trade Typesetting Ltd., Hong Kong.
Printed and bound by R. R. Donnelley & Sons, Harrisonburg, Virginia.
Printed in the United States of America.

9 8 7 6 5 (corrected printing)

ISBN 0-387-96131-3 Springer-Verlag New York Berlin Heidelberg Tokyo
ISBN 3 - 540- 96131 - 3 Springer-Verlag Berlin Heidelberg New York Tokyo

To Paola and Claudia
and

To Julie

Preface to the Second Printing

The second printing of this book offers an excellent opportunity to correct
the (forgivable) typos and the (less forgivable) imprecisions or minor errors of
the first edition. Moreover, in the three years intervening between the two
printings, some problems that were then open have been successfully solved
and some techniques, which had just been disclosed at the time of the original
edition, have acquired a prominence deserving more than a cursory sketch.
Examples of these are found in the presentation of the solution of the linear-
time construction of the Voronoi diagram of a convex polygon, and in the
expanded discussion of the method of fractional cascading. In attending to
these tasks, I have greatly benefited from the constructive advice of my friends
and colleagues, among whom I wish to mention: Stephane Aubry, David Avis,
Guy DiFruscia, Der-Tsai Lee, Asish Mukhopadhyay, Brad Nickerson, Arnulfo
Perez, Ivan Stojmenovic, Hussein Yahia, and Si-Qing Zheng. To all of them
go my sincere thanks.

April 1988 F. P. PREPARATA

Preface

The objective of this book is a unified exposition of the wealth of results that
have appeared—mostly in the past decade—in Computational Geometry.
This young discipline—so christened in its current connotation by one of us,
M. I. Shamos—has attracted enormous research interest, and has grown from
a collection of scattered results to a mature body of knowledge. This achieved
maturity, however, does not prevent computational geometry from being a
continuing source of problems and scientific interest.

As the research endeavor reaches a level of substantial sophistication, with
the emergence of powerful techniques and the beneficial interaction with
combinatorial and algebraic geometry, there is increasing demand for a
pedagogically organized presentation of the existing results. The demand
issues both from the classroom, where experimental graduate courses are
being taught from papers and notes, and from the professional environment,
where several applied fields—such as computer-aided design, computer
graphics, robotics, etc.—are mature for the transfer.

This book is intended to respond to this need. Basically conceived as an
early graduate text, it is also directed to the professional in the applied fields
mentioned above. It must be pointed out, however, that this book is not
exactly a catalog of readily usable techniques, although some algorithms are
eminently practical. Rather, the philosophical outlook is inherited from the
discipline known as design and analysis of algorithms (or "algorithmics"),
which aims at the characterization of the difficulty of individual problems.
Our analyses are mainly concerned with the worst-case behavior of algo-
rithms; moreover, they achieve full validity for problems of sufficiently large
size (asymptotic analysis). These two features should be carefully considered
in selecting an algorithm, because the technique most suitable for small sizes

x 	 Preface

is not necessarily the asymptotically optimal one, and because an algorithm
inferior in the worst case may be superior in its average-case behavior.

We have attempted to offer a rather detailed panoramic view of the
"continuous brand" of computational geometry, as distinct from its "discre-
tized" counterpart. However, our principal objective has been a coherent
discourse rather than a meticulous survey. We have attempted to partially
remedy this deficiency with `Notes and Comments' sections at the end of each
chapter. Our apologies go to the numerous authors whose work has not been
described or barely mentioned.

The initial core of this book was M. I. Shamos' doctoral dissertation.
When in 1981 R. L. Graham suggested to one of us, (F. P. Preparata) to
develop the original manuscript into a textbook, none of us had really a clear
appraisal of the effort involved. Fortunately many of our colleagues and
friends generously assisted in this task by patiently reading successive drafts,
suggesting improvements, and catching errors. We are greatly indebted to
them; we would like to explicitly thank (in alphabetical order) D. Avis, J. L.
Bentley, B. Bhattacharya, B. M. Chazelle, D. P. Dobkin, M. Dyer, S. C.
Eisenstat, Dan Hoey, M. Kallay, D. T. Lee, J. van Leeuwen, W. Lipski, Jr.,
A. J. Perlis, J. O'Rourke, L. C. Rafsky, R. Seidel, M. H. Schultz, G. T. Tous-
saint, and D. Wood. We also acknowledge the partial assistance of NSF grant
MCS 81-05552 (for the work of F. P. Preparata), the Office of Naval Research,
IBM Corporation, Carnegie-Mellon University, and Bell Laboratories (for
the work of M. I. Shamos) and the enthusiastic cooperation of the staff at
Springer-Verlag.

Finally, our thanks go to our respective wives, Rosa Maria and Julie, for
their patience and support during the long hours that have led to this finished
product.

May 1985 F. P. PREPARATA

M. I. SHAMOS

Contents

CHAPTER 1
Introduction
	

1

1.1 	Historical Perspective 	 1
1.1.1 	Complexity notions in classical geometry 	 2
1.1.2 	The theory of convex sets, metric and combinatorial geometry 	4
1.1.3 	Prior related work 	 5
1.1.4 	Toward computational geometry 	 6
1.2 	Algorithmic Background 	 6
1.2.1 	Algorithms: Their expression and performance evaluation 	 7
1.2.2 	Some considerations on general algorithmic techniques 	 10
1.2.3 	Data structures 	 11
1.2.3.1 	The segment tree 	 13
1.2.3.2 The doubly-connected-edge-list (DCEL) 	 15
1.3 	Geometric Preliminaries 	 17
1.3.1 	General definitions and notations 	 17
1.3.2 	Invariants under groups of linear transformations 	 19
1.3.3 	Geometry duality. Polarity 	 24
1.4 	Models of Computation 	 26

CHAPTER 2
Geometric Searching 	 36

2.1 	Introduction to Geometric Searching 	 36
2.2 	Point-Location Problems 	 41
2.2.1 	General considerations. Simple cases 	 41
2.2.2 	Location of a point in a planar subdivision 	 45
2.2.2.1 The slab method 	 45

Xi i 	 Contents

2.2.2.2 The chain method 	 48
2.2.2.3 Optimal techniques: the planar-separator method, the

triangulation refinement method, and the bridged chain method 	56
2.2.2.4 The trapezoid method 	 63
2.3 	Range-Searching Problems 	 70
2.3.1 	General considerations 	 70
2.3.2 	The method of the multidimensional binary tree (k-D tree) 	 74
2.3.3 	A direct access method and its variants 	 79
2.3.4 	The range-tree method and its variants 	 83
2.4 	Iterated Search and Fractional Cascading 	 88
2.5 	Notes and Comments 	 92
2.6 	Exercises 	 94

CHAPTER 3
Convex Hulls: Basic Algorithms 	 95

3.1 	Preliminaries 	 96
3.2 	Problem Statement and Lower Bounds 	 99
3.3 	Convex Hull Algorithms in the Plane 	 104
3.3.1 	Early development of a convex hull algorithm 	 104
3.3.2 	Graham's scan 	 106
3.3.3 	Jarvis's march 	 110
3.3.4 	QUICKHULL techniques 	 112
3.3.5 	Divide-and-conquer algorithms 	 114
3.3.6 	Dynamic convex hull algorithms 	 117
3.3.7 	A generalization: dynamic convex hull maintenance 	 124
3.4 	Convex Hulls in More Than Two Dimensions 	 131
3.4.1 	The gift-wrapping method 	 131
3.4.2 	The beneath-beyond method 	 137
3.4.3 	Convex hulls in three dimensions 	 141
3.5 	Notes and Comments 	 146
3.6 	Exercises 	 148

CHAPTER 4
Convex Hulls: Extensions and Applications 	 150

4.1 	Extensions and Variants 	 150
4.1.1 	Average-case analysis 	 150
4.1.2 	Approximation algorithms for convex hull 	 154
4.1.3 	The problem of the maxima of a point set 	 157
4.1.4 	Convex hull of a simple polygon 	 166
4.2 	Applications to Statistics 	 171
4.2.1 	Robust estimation 	 171
4.2.2 	Isotonic regression 	 174
4.2.3 	Clustering (diameter of a point set) 	 176
4.3 	Notes and Comments 	 182
4.4 	Exercises 	 183

Contents 	 XÎÎÎ

CHAPTER 5
Proximity: Fundamental Algorithms 	 185

5.1 	A Collection of Problems 	 186
5.2 	A Computational Prototype: Element Uniqueness 	 191
5.3 	Lower Bounds 	 192
5.4 	The Closest Pair Problem: A Divide-and-Conquer Approach 	195
5.5 	The Locus Approach to Proximity Problems: The Voronoi

Diagram 	 204
5.5.1 	A catalog of Voronoi properties 	 205
5.5.2 	Constructing the Voronoi diagram 	 211
5.5.2.1 Constructing the dividing chain 	 216
5.6 	Proximity Problems Solved by the Voronoi Diagram 	 220
5.7 	Notes and Comments 	 222
5.8 	Exercises 	 223

CHAPTER 6
Proximity: Variants and Generalizations 	 226

6.1 	Euclidean Minimum Spanning Trees 	 226
6.1.1 	Euclidean traveling salesman 	 230
6.2 	Planar Triangulations 	 234
6.2.1 	The greedy triangulation 	 235
6.2.2 	Constrained triangulations 	 237
6.2.2.1 Triangulating a monotone polygon 	 239
6.3 	Generalizations of the Voronoi Diagram 	 241
6.3.1. 	Higher-order Voronoi diagrams (in the plane) 	 242
6.3.1.1 Elements of inversive geometry 	 243
6.3.1.2 The structure of higher-order Voronoi diagrams 	 244
6.3.1.3 Construction of the higher-order Voronoi diagrams 	 249
6.3.2 	Multidimensional closest-point and farthest-point Voronoi

diagrams 	 253
6.4 	Gaps and Covers 	 255
6.5 	Notes and Comments 	 262
6.6 	Exercises 	 264

CHAPTER 7
Intersections
	

266

7.1 	A Sample of Applications 	 267
7.1.1 	The hidden-line and hidden-surface problems 	 267
7.1.2 	Pattern recognition 	 268
7.1.3 	Wire and component layout 	 269
7.1.4 	Linear programming and common intersection of half-spaces 	270
7.2 	Planar Applications 	 271
7.2.1 	Intersection of convex polygons 	 271
7.2.2 	Intersection of star-shaped polygons 	 277
7.2.3 	Intersection of line segments 	 278

xiv 	 Contents

7.2.3.1 	Applications 	 278
7.2.3.2 Segment intersection algorithms 	 279
7.2.4 	Intersection of half-planes 	 287
7.2.5 	Two-variable linear programming 	 290
7.2.6 	Kernel of a plane polygon 	 299
7.3 	Three-Dimensional Applications 	 306
7.3.1 	Intersection of convex polyhedra 	 306
7.3.2 	Intersection of half-spaces 	 315
7.4 	Notes and Comments 	 320
7.5 	Exercises 	 322

CHAPTER 8
The Geometry of Rectangles 	 323

8.1 	Some Applications of the Geometry of Rectangles 	 323
8.1.1 	Aids for VLSI design 	 323
8.1.2 	Concurrency controls in databases 	 325
8.2 	Domain of Validity of the Results 	 328
8.3 	General Considerations on Static-Mode Algorithms 	 330
8.4 	Measure and Perimeter of a Union of Rectangles 	 332
8.5 	The Contour of a Union of Rectangles 	 340
8.6 	The Closure of a Union of Rectangles 	 348
8.7 	The External Contour of a Union of Rectangles 	 353
8.8 	Intersections of Rectangles and Related Problems 	 359
8.8.1 	Intersections of rectangles 	 359
8.8.2 	The rectangle intersection problem revisited 	 363
8.8.3 	Enclosure of rectangles 	 366
8.9 	Notes and Comments 	 372
8.10 	Exercises 	 373

References 	 374

Author Index 	 385

Subject Index 	 390

CHAPTER 1

Introduction

1.1 Historical Perspective

Egyptian and Greek geometry were masterpieces of applied mathematics. The
original motivation for geometric problems was the need to tax lands accu-
rately and fairly and to erect buildings. As often happens, the mathematics that
developed had permanence and significance that far transcend the Pharaoh's
original revenue problem, for Geometry is at the heart of mathematical
thinking. It is a field in which intuition abounds and new discoveries are within
the compass (so to speak) of nonspecialists.

It is popularly held that Euclid's chief contribution to geometry is his
exposition of the axiomatic method of proof, a notion that we will not dispute.
More relevant to this discussion, however, is the invention of Euclidean con-
struction, a schema which consists of an algorithm and its proof, intertwined
in a highly stylized format. The Euclidean construction satisfies all of the
requirements of an algorithm: it is unambiguous, correct, and terminating.
After Euclid, unfortunately, geometry continued to flourish, while analysis of
algorithms faced 2000 years of decline. This can be explained in part by the
success of reductio ad absurdum, a technique that made it easier for mathe-
maticians to prove the existence of an object by contradiction, rather than by
giving an explicit construction for it (an algorithm).

The Euclidean construction is remarkable for other reasons as well, for it
defines a collection of allowable instruments (ruler and compass) and a set of
legal operations (primitives) that can be performed with them. The Ancients
were most interested in the closure of the Euclidean primitives under finite
composition. In particular, they wondered whether this closure contained all

2 	 1 Introduction

conceivable geometric constructions (e.g., the trisection of an angle). In
modern terms, this is a computer science question—do the Euclidean primi-
tives suffice to perform all geometric "computations"? In an attempt to
answer this question, various alternative models of computation were con-
sidered by allowing the primitives and the instruments themselves to vary.
Archimedes proposed a (correct) construction for the trisector of a 60-degree
angle with the following addition to the set of primitives: Given two circles, A
and B, and a point P, we are allowed to mark a segment MN on a straightedge
and position it so that the straightedge passes through P, with M on the
boundary of A and N on the boundary of B. In some cases, restricted sets of
instruments were studied, allowing compasses only, for example. Such ideas
seem almost a premonition of the methods of automata theory, in which we
examine the power of computational models under various restrictions. Alas,
a proof of the insufficiency of the Euclidean tools would have to await the
development of Algebra.

The influence of Euclid's Elements was so profound that it was not until
Descartes that another formulation of geometry was proposed. His introduc-
tion of coordinates enabled geometric problems to be expressed algebraically,
paving the way for the study of higher plane curves and Newton's calculus.
Coordinates permitted a vast increase in computational power, bridged the
gulf between two great areas of Mathematics, and led to a renaissance in
constructivist thinking. It was now possible to produce new geometric objects
by solving the associated algebraic equations. It was not long before computa-
bility questions arose once again. Gauss, now armed with algebraic tools,
returned to the problem of which regular polygons with a prime number of
sides could be constructed using Euclidean instruments, and solved it com-
pletely. At this point a close connection between ruler and compass construc-
tions, field extensions, and algebraic equations became apparent. In his
doctoral thesis, Gauss showed that every algebraic equation has at least one
root (Fundamental Theorem of Algebra). Abel, in 1828, went on to consider
the same problem in a restricted model of computation. He asked whether a
root of every algebraic equation could be obtained using only arithmetic
operations and the extraction of nth roots, and proved that the answer was
negative. While all constructible numbers were known to be algebraic, this
demonstrated that not all algebraic numbers are constructible. Shortly there-
after, he characterized those algebraic equations which can be solved by
means of radicals, and this enabled him to discuss the feasibility of specific
geometric problems, such as the trisection of the angle.

1.1.1 Complexity notions in classical geometry

Euclidean constructions for any but the most trivial of problems are very
complicated because of the rudimentary primitives that are allowed. An
apparently frequent pastime of the post-Euclidean geometers was to refine his

1.1 Historical Perspective 	 3

constructions so that they could be accomplished in fewer "operations." It was
not until the twentieth century, however, that any quantitative measure of the
complexity of a construction problem was defined. In 1902, Emile Lemoine
established the science of Geometrography by codifying the Euclidean primi-
tives as follows [Lemoine (1902)]:

1. Place one leg of the compass at on a given point.
2. Place one leg of the compass on a given line.
3. Produce a circle.
4. Pass the edge of the ruler through a given point.
5. Produce a line.

The total number of such operations performed during a construction is
called its simplicity, although Lemoine recognized that the term "measure of
complication" might be more appropriate. This definition corresponds close-
ly to our current idea of the time complexity of an algorithm, although in
Lemoine's work there is no functional connection between the size of the
input (number of given points and lines) in a geometric construction and its
simplicity. Indeed, Lemoine's interest was in improving Euclid's original
constructions, not in developing a theory of complexity. At the former he was
remarkably successful Euclid's solution to the Circles of Apollonius problem
requires 508 steps, while Lemoine reduced this to fewer than two hundred
[Coolidge (1916)]. Unfortunately, Lemoine did not see the importance of
proving, or perhaps was unable to prove, that a certain number of operations
were necessary in a given construction, and thus the idea of a lower bound
eluded him.

Hilbert, however, appreciated the significance of lower bounds. Working
in a restricted model, he considered only those constructions performable with
straightedge and scale, an instrument which is used only to mark off a segment
of fixed length along a line. Not all Euclidean constructions can be accom-
plished with this set of instruments. For those that can, we may view the
coordinates of the constructed points as a function F of the given points.
Hilbert gave a necessary and sufficient condition for F to be computable using
exactly n square root operations, one of the earliest theorems in algebraic
computational complexity [Hilbert (1899)].

Further evidence suggests that many of our present-day techniques for
analyzing algorithms were anticipated by the geometers of previous centuries.
In 1672, Georg Mohr showed that any construction performable with ruler
and compass can be accomplished with compass alone, insofar as the given
and required objects are specified by points. (Thus, even though a straight line
cannot be drawn with compass alone, two points on the line can each be
specified by intersecting two circular arcs.) What is notable about Mohr's
proof is that it is a simulation, in which he demonstrates that any operation in
which the ruler participates can be replaced by a finite number of compass
operations. Could one ask for a closer connection with automata theory?
Along similar lines is the result that the ruler used in any construction May

4 	 1 Introduction

have any positive length, however small, and yet be able to simulate a ruler of
arbitrary length.

While Lemoine and others were occupied with the time complexity of
Euclidean constructions, the question of the amount of space needed for such
constructions was also raised. While the measure of space that was used does
not coincide with our current definition as the amount of memory used by an
algorithm, it comes remarkably close and is quite natural: the area of the plane
needed to perform the construction. The space used depends, in general, on
the area of the convex hull of the given loci and on the size of the required
result, as well as on the size of any intermediate loci that need to be formed
during the construction [Eves (1972)]. Our point here is that time and space
notions are not entirely foreign to Geometry.

When the impossibility of certain Euclidean constructions was demon-
strated by Galois, it was realized that this prevented the exact trisection of an
angle but said nothing about the feasibility of an approximate construction. In
fact, asymptotically convergent procedures for the quadrature of the circle
and duplication of the cube were known to the ancient Greeks [Heath (1921)].
The history of iterative algorithms is indeed long.

1.1.2 The theory of convex sets, metric and combinatorial
geometry

Geometry in the nineteenth century progressed along many lines. One of
these, promulgated by Klein, involved a comprehensive study of the behavior
of geometric objects under various transformations, and projective geometry
formed an important offshoot (see Section 1.3.2). While research on finite
projective planes leads to fascinating questions in both combinatorial theory
and discrete algorithms, this aspect of geometry will not be pursued in this
book.

The growth of real analysis had a profound effect on geometry, resulting in
formal abstraction of concepts that had previously been only intuitive. Two
such developments, metric geometry and convexity theory, provide the prin-
cipal mathematical tools that aid in the design of fast algorithms.

Distance is an essential notion of geometry. The metric, its generalization,
was able to draw geometric concepts and insights into analysis, where the idea
of the "distance" between functions gave rise to function spaces and other
powerful constructs. Unfortunately, much of what developed withdrew toward
the nonconstructive. Function spaces by their nature are not computational
objects.

The significance of convexity theory is that is deals analytically with global
properties of objects and enables us to deal with extremal problems. Unfor-
tunately, many questions in convexity are cumbersome to formulate alge-
braically, and the subject tends to encourage nonconstructive methods.

1.1 Historical Perspective 	 5

Combinatorial geometry is much closer in spirit to our goal of algorithmic
geometry. It is based on characterizations of geometric objects in terms of
properties of finite subsets. For example, a set is convex if and only if the line
segment determined by every pair of its points lies entirely in the set. The
inadequacy of combinatorial geometry for our purposes lies in the fact that for
most sets of interest the number of finite subsets is itself infinite, which
precludes algorithmic treatment. Recent work on geometric algorithms aimed
at remedying these deficiencies and at producing mathematics conducive to
good algorithms.

1.1.3 Prior related work

Algorithms of a geometric nature have been developed in several different
contexts, and the phrase "Computational Geometry" has been already used
in at least two other connotations. We will now try to place these related
endeavors in a proper perspective and contrast them to the nowadays preva-
lent connotation:

1. Geometric modeling by means of spline curves and surfaces, a topic that is
closer in spirit to numerical analysis than it is to geometry, has been dealt
with expertly by Bézier, Forrest and Riesenfeld. We should note that
Forrest refers to his discipline as "Computational Geometry" [Bézier
(1972); Forrest (1971); Riesenfeld (1973)].

2. In an elegant and fascinating book entitled Perceptrons (of which the
subtitle is also "Computational Geometry"), Minsky and Papert (1969)
deal with the complexity of predicates that recognize certain geometric
properties, such as convexity. The intent of their work was to make a
statement about the possibility of using large retinas composed of simple
circuits to perform pattern recognition tasks. Their theory is self-contained
and does not fall within the algorithmic scope of this book.

3. Graphics software and geometric editors are undoubtedly targets for many
of the algorithms presented in this book. However, they raise issues that are
oriented more toward implementation details and the user interface than
toward analysis of algorithms. Included in the same class are numerical
control software for machine tool support, programs for graphic plotters,
map-drawing systems, and software for architectural design and civil
engineering.

4. Finally, the phrase "Computational Geometry" may sound to some
people as the activity of proving geometry theorem by means of computers.
While this is a fascinating study, it reveals much more about our theorem-
proving heuristics and understanding of proof procedures than it does
about geometry per se, and will thus not be treated here.

6 	 1 Introduction

1.1.4 Toward computational geometry

A large number of applications areas have been the incubation bed of the dis-
cipline nowadays recognized as Computational Geometry, since they provide
inherently geometric problems for which efficient algorithms have to be
developed. These problems include the Euclidean traveling salesman, mini-
mum spanning tree, hidden line, and linear programming problems, among
hosts of others. In order to demonstrate the broad scope of computational
geometry in a convincing way, we will defer presenting background material
on such problems until they occur in the text.

Algorithmic studies of these and other problems have appeared in the past
century in the scientific literature, with an increasing intensity in the past two
decades. Only very recently, however, systematic studies of geometric algo-
rithms have been undertaken, and a growing number of researchers have been
attracted to this discipline, christened "Computational Geometry" in a paper
by M. I. Shamos (1975a).

The philosophical outlook and the methodology of computational geome-
try will hopefully emerge from the detailed case studies presented in this book.
One fundamental feature of this discipline is the realization that classical
characterizations of geometric objects are frequently not amenable to the
design of efficient algorithms. To obviate this inadequacy, it is necessary to
identify the useful concepts and to establish their properties, which are condu-
cive to efficient computations. In a nutshell, computational geometry must
reshape—whenever necessary—the classical discipline into its computational
incarnation.

1.2 Algorithmic Background

For the past fifteen years the analysis and design of computer algorithms has
been one of the most thriving endeavors in computer science. The fundamental
works of Knuth (1968; 1973) and Aho–Hoperoft–Ullman (1974) have brought
order and systematization to a rich collection of isolated results, concep-
tualized the basic paradigms, and established a methodology that has become
the standard of the field. Subsequent works [Reingold–Nievergelt–Deo
(1977); Wirth (1976)] have further strengthened the theoretical foundations.

It is therefore beyond the scope of this work to review in detail the material
of those excellent texts, with which the reader is assumed to be reasonably
familiar. It is appropriate however—a least from the point of view of
terminology to briefly review the basic components of the language in which
Computational Geometry will be described. These components are algo-
rithms and data structures. Algorithms are programs to be executed on a
suitable abstraction of actual "von Neumann" computers; data structures are
ways to organize information, which, in conjunction with algorithms, permit
the efficient and elegant solution of computational problems.

1.2 Algorithmic Background 	 7

1.2.1 Algorithms: Their expression and performance
evaluation

Algorithms are formulated with respect to a specific model of computation; as
we shall see in Section 1.4, the model of computation is a comfortable
abstraction of the physical machine used to execute programs. However, as
pointed out by Aho—Hoperoft—Ullman (1974), it is neither necessary nor
desirable to express algorithms in machine code. Rather, in the interest of
clarity, effectiveness of expression, and conciseness, we shall normally' use a
high-level language that has become the standard of the literature on the
subject: Pidgin Algol. Pidgin Algol is an informal and flexible version of Algol-
like languages; it is rather rigorous in its control structures but very loose in
the format of its other statements, where the use of conventional mathematical
notations alternates freely with the use of natural language descriptions. Of
course a Pidgin Algol program can be routinely transformed into a formal
higher level language program.

Following Aho—Hoperoft—Ullman, we briefly illustrate the constructs of
Pidgin Algol. Formal declarations of data types are avoided, and the type of
a variable is normally made evident by the context. Additionally, no special
format is chosen for expressions and conditions.

A program is normally called procedure, and has the format

procedure name (parameters) statement.

A statement can be rewritten (according to the terminology of phrase-structure
grammars) as a string of two or more statements, in which case the "paren-
theses" "begin ... end" are used to bracket the string as follows:

begin statement;

statement
end.

In turn, a statement can be specialized either as a natural language sentence or
as one of the following specific more formal instances.

1. Assignment:

variable := source

The "source" is a definition of the computation generating the value of the

'Occasionally, algorithms may be presented in an entirely narrative form.

8 	 1 Introduction

variable; the computation is in general an expression on a set of variables.
(Some of these variables may in turn be expressed as "functions"; a function
is itself a special form of program, as shown below.)

2. Conditional:

if condition then statement (else statement)

where the else portion is optional.
3. Loop. This appears in one of three formats:

3a. for variable := value until value do statement
3b. while condition do statement
3c. repeat statement until condition

The while and repeat constructs are distinguished by the fact that in the
while-loop the condition is tested before the execution of the statement,
whereas the opposite occurs in the repeat-loop.

4. Return:

return expression

A statement of this sort must appear in a function type program, which has
the format

function name (parameters) statement.

The expression that is the argument of return becomes the source of an
assignment statement, as indicated in 1 above.

Frequently, Pidgin Algol algorithms contain comments designed to aid the
understanding of the action. In this text the typical format of a comment will
be: (*natural-language sentence*).

The time used by a computation—the execution of an algorithm—is the
sum of the times of the individual operations being executed (see also Section
1.4). As we mentioned earlier, a Pidgin Algol program can be transformed in a
straightforward (although tedious) manner to a program in the machine code
of a specific computer. This, in principle, provides a method for evaluating
the program's running time. However, this approach is not only tedious but
also scarcely illuminating, since it makes reference to a specific machine, while
we are essentially interested in the more general functional dependence of
computation time upon problem size (i.e., how fast the computation time
grows with the problem size). Thus, it is customary in the field of algorithmic
analysis and design to express running time—as well as any other measure of

1.2 Algorithmic Background 	 9

performance—modulo a multiplicative constant. This is normally done by
counting only certain "key operations" executed by the algorithm (which is
readily done by analyzing the high-level language version of the algorithm).
Such approach is totally legitimate when establishing lower bounds to run-
ning time, since any unaccounted-for operation can only increase it; when
dealing with upper bounds, however, we must ensure that the selected key
operations account for a constant fraction of all operations executed by the
algorithm. Knuth has popularized a notational device that distinguishes
nicely between upper and lower bounds, which we will adopt [Knuth (1976)]:

O(f(N)) denotes the set of all functions g(N) such that there exist positive
constants C and No with Ig(N)I < Cf(N) for all N > No .

SZ(f(N)) denotes the set of all functions g(N) such that there exist positive
constants C and No with g(N) > Cf(N) for all N > No .

6(f(N)) denotes the set of all functions g(N) such that there exist positive
constants CI, C2, and No with Cl f(N) < g(N) < C2f(N) for all N > No .

o(f(N)) denotes the set of all functions g(N) such that for all positive
constants C there is an No with g(N) < Cf(N) for all N > No (or, equivalently
lim N _ , g(N)/.Î(N) = 0).

Thus O(f (N)) is used to indicate functions that are at most as large as some
constant times f (N), the concept one needs to describe upper bounds; con-
versely, SI(f(N)) is used to indicate functions at least as large as some con-
stant times f (N), the analogous concept for lower bounds. Finally 9(f(N)) is
used to indicate functions of the same order as f (N), the concept one needs for
"optimal" algorithms.

The preceding discussion focuses on the computation time of an algorithm.
Another important measure of performance is space, usually identified with
the amount of memory used by the algorithm. Indeed, space and time com-
plexity as functions of the problem size are the two fundamental performance
measures of algorithmic analysis.

The central objective of this book is essentially the presentation of algo-
rithms for geometric problems and the evaluation of their worst-case com-
plexity. Worst-case complexity is the maximum of a measure of performance
of a given algorithm over all problem instances of a given size, and is to be
contrasted with average-case (or expected) complexity, which instead should
give an estimate of the observed behavior of the algorithm. Unfortunately,
average-case analysis is considerably more complicated than worst-case analy-
sis, for a two-fold reason: first, substantial mathematical difficulties arise even
when the underlying distribution is conveniently selected; second, there is
frequently scarce consensus on a claim that the selected distribution is a
realistic model of the situation being studied. This explains why the over-
whelming majority of results concern worst-case analysis: correspondingly,
this book will only occasionally discuss average-case results.

Another important item to be underscored is that the "order of" notation
conceals multiplicative constants. Therefore a complexity result acquires its

10 	 1 Introduction

full validity only for sufficiently large problem sizes; for this reason this
methodology is -referred to as asymptotic analysis. It is therefore quite
possible—and indeed not infrequent—that for small problem sizes the most
suitable algorithm is not the asymptotically best algorithm. This caveat should
never be ignored in the selection of an algorithm for a given application.

1.2.2 Some considerations on general algorithmic techniques

Efficient algorithms for geometric problems are frequently designed by re-
sorting to general techniques of the discipline, such as divide-and-conquer,
balancing, recursion, and dynamic programming. Excellent discussions of
these techniques are available in the now classical texts of algorithm analysis
and design (see, for example, [Aho–Hoperoft–Ullman (1974)]) and it would
be superfluous to repeat them here.

There is however a technique that is suggested 	uniquely and naturally—
by the nature of some geometric problems. This technique is called sweep, and
its most frequent instantiations are plane sweep (in two dimensions) and space
sweep (in three dimensions). We shall now describe the main features of the
plane sweep, its generalization to three dimensions being straightforward.

For concreteness, we illustrate the method in connection with a specific
problem (discussed in full detail in Section 7.2.3): Given a set of segments in
the plane, report all of their intersections. Consider a straight line l (assumed
without loss of generality, to be vertical), which partitions the plane into a left
and a right half-planes. Assume that each of these half-planes contains
endpoints of the given segments. It is clear that the solution to our problem is
the union of the solutions in each of the two half-planes; so, assuming we have
already obtained the set of intersections to the left of 1, this set is not going to
be affected by segments lying to the right of 1. We now observe that an
intersection (to be reported) may occur only between two segments whose
intersections with some vertical line are adjacent; so, if we generate all vertical
cuts with the given set of segments, certainly will we discover all intersections.
However, the (impossible) task of generating the (continuously) infinite set of
all vertical cuts is avoided by realizing that the plane is partitioned into vertical
strips, delimited either by segment endpoints or by segment intersections, in
which the vertical order of the intercepts by a vertical cut is constant. Thus, all
we need to do is to jump from the left boundary of one such strip to its right
boundary, update the order of the intercepts and test for any new intersection
among "adjacent" segments.

The previous discussion outlines the essential features of the plane-sweep
technique. There is a vertical line that sweeps the plane from left to right,
halting at special points, called "event points." The intersection of the sweep-
line with the problem data contains all the relevant information for the
continuation of the sweep. Thus we have two basic structures:

1.2 Algorithmic Background 	 1 1

1. The event point schedule, which is a sequence of abscissae, ordered from left
to right, which define the halting positions of the sweep-line. Notice that
the event point schedule is not necessarily entirely extracted from the input
data, but may be dynamically updated during the execution of the plane-
sweep algorithm. Different data structures may be needed in different
applications.

2. The sweep-line status, which is an adequate description of the intersection
of the sweep-line with the geometric structure being swept. "Adequate"
means that this intersection contains the information that is relevant to the
specific application. The sweep-line status is updated at each event point,
and a suitable data structure must be chosen in each case.

Examples of plane-sweep algorithms will be found in Section 2.2.2.

1.2.3 Data structures

Geometric algorithms involve the manipulation of objects which are not
handled at the machine language level. The user must therefore organize these
complex objects by means of the simpler data types directly representable
by the computer. These organizations are universally referred to as data
structures.

The most common complex objects encountered in the design of geometric
algorithms are sets and sequences (ordered sets). Data structures particularly
suited to these complex combinatorial objects are well described in the stan-
dard literature on algorithms to which the reader is referred [Aho—Hoperoft-
Ullman (1974); Reingold—Nievergelt—Deo (1977)]. Suffice it here to review
the classification of these data structures, along with their functional capa-
bilities and computational performance.

Let S be a set represented in a data structure and let u be an arbitrary
element of a universal set of which S is a subset. The fundamental operations
occurring in set manipulation are:

1. MEMBER(u, S). Is u e S? (YES/NO answer.)
2. INSERT(u, S). Add u to S.
3. DELETE(u, S). Remove u from S.

Suppose now that {Si , S2 , ... , Sk } is a collection of sets (with pairwise
empty intersection). Useful operations on this collection are:

4. FIND(u). Report j, if u e Si .
5. UNION(SS , Si; Sk). Form the union of Si and Si and call it Sk.

When the universal set is totally ordered, the following operations are very
important:

6. MIN(S). Report the minimum element of S.

1 2 	 1 Introduction

7. SPLIT(u, S). Partition S into {Si , S2 1, so that Si = {v : v E S and y < u}
and S2 = S - S.

8. CONCATENATE(Si , S2). Assuming that, for arbitrary u' E S1 and u" E S2

we have u' < u", form the ordered set S = S1 u S2.

Data structures can be classified on the basis of the operations they support
(regardless of efficiency). Thus for ordered sets we have the following table.

Table I

Data Structure 	Supported Operations

Dictionary 	 MEMBER, INSERT, DELETE
Priority queue 	MIN, INSERT, DELETE
Concatenable queue 	INSERT, DELETE, SPLIT, CONCATENATE

For efficiency, each of these data structures is normally realized as a height-
balanced binary search tree (often an AVL or a 2-3-tree) [Aho—Hoperoft-
Ullman (1974)]. With this realization, each of the above operations is per-
formed in time proportional to the logarithm of the number of elements stored
in the data structure; the storage is proportional to the set size.

The above data structures can be viewed abstractly as a linear array of
elements (a list), so that insertions and deletions can be performed in an
arbitrary position of the array. In some cases, some more restrictive modes of
access are adequate for some applications, with the ensuing simplifications.
Such structures are: Queues, where insertions occur at one end and deletions
at the other; Stacks, where both insertions and deletions occur at one end (the
stack-top). Clearly, one and two pointers are all that is needed for managing
a stack or a queue, respectively. For brevity, we will use the notations "= U"
and "U =" to indicate addition to or deletion from U, respectively, where U
is either a queue or a stack.

Unordered sets can always be handled as ordered sets by artificially impos-
ing an order upon the elements (for example, by giving "names" to the elements
and using the alphabetical order). A typical data structure for this situation is
the following.

Table II

Data Structure 	Supported Operations

Mergeable heap 	INSERT, DELETE, FIND, UNION, (MIN)

Each of the above operations can be executed in time O(log N), where N is the
size of the set stored in the data structure, by deploying, as usual, height-
balanced trees. If the elements of the set under consideration are represented

1.2 Algorithmic Background 	 13

as the integers from 1 to N, then a more sophisticated realization of the data
structure enables the execution of N operations on a set of size N in time
O(N • A (N)), where A (N) is an extremely slowly growing function related to a
functional inverse of the Ackermann function (indeed for N < 2216 , or

1020,000, A(N) < 5).
The standard data structures reviewed above are used extensively in con-

junction with the algorithms of Computational Geometry. However, the
nature of geometric problems has led to the development of specific non-
conventional data structures, two of which have proved of such general value
that it is appropriate to present them in this introductory chapter. They are the
Segment Tree and the Doubly-Connected-Edge-List.

1.2.3.1 The segment tree

The Segment Tree, originally introduced by J. L. Bentley [Bentley (1977)], is
a data structure designed to handle intervals on the real line whose extremes
belong to a fixed set of N abscissae. Since the set of abscissae is fixed, the
segment tree is a static structure with respect to the abscissae, that is, one that
does not support insertions or deletions of abscissae; in addition, the abscissae
can be normalized by replacing each of them by its rank in their left-to-right
order. Without loss of generality, we may consider these abscissae as the
integers in the range [1, N].

The segment tree is a rooted binary tree. Given integers 1 and r, with 1 < r,
the segment tree T(1, r) is recursively built as follows: It consists of a root v,
with parameters B[v] = land E[v] = r (B and E are mnemonic for "beginning"
and "end," respectively), and if r — 1 > 1, of a left subtree T(1, L(B[v] +
E[v])/2J) and a right subtree T(L(B[v] + E[v])/2J, r). (The roots of these
subtrees are naturally identified as LSON[v] and RSON[v], respectively.) The
parameters B[v] and E[v] define the interval [B[v], E[v]] [1, r] associated with
node v. The segment tree T(4, 15) is illustrated in Figure 1.1. The set of
intervals { [B[v], E[v]]: y a node of T(1, r)} are the standard intervals of T(l, r).
The standard intervals pertaining to the leaves of T(l, r) are called the elemen-
tary intervals. 2 It is straightforward to establish that T(1, r) is balanced (all
leaves belong to two contiguous levels) and has depth [log e (r — 1)1.

The segment tree T(l, r) is designed to store intervals whose extremes
belong to the set {l, 1 + 1, ... , r}, in a dynamic fashion (that is, supporting
insertions and deletions). Specifically, for r — 1 > 3, an arbitrary interval
[b, e], with integers b <e, will be partitioned into a collection of at most
flog2 (r — 1)1 + Llog 2 (r — 1)] — 2 standard intervals of T(1, r). The segmen-
tation of interval [b, e] is completely specified by the operation that stores
(inserts) [b, e] into the segment tree T, that is, by a call INSERT(b, e; root(T))
of the following primitive:

2 Strictly speaking, the interval associated with y is the semiclosed interval [B[v], E[v]), except for
the nodes of the rightmost path of T(l, r), whose intervals are closed.

14
	

1 Introduction

®
0 	® • et 0 •

CD.. 0 4:4 10.12 ® ®
CD CD 	10 , 11 11.12 	13, 14 1

Figure 1.1 The segment tree T(4, 15).

Figure 1.2 Insertion of interval [74, 107] into T(1,257). The allocation nodes are
doubly-circled.

procedure INSERT(b, e; y)
begin if (b < B[v]] and (E[v] < e) then allocate [b, e] to y

else begin if (b < [. (B[v] + E[v])/2J) then INSERT(b, e; LSON[v]);
if (L(B[v] + E[v])/2] < e) then INSERT(b, e; RSON[v])

end
end.

The action of INSERT(b, e; root(T)) corresponds to a "tour" in T, having the
following general structure (see Figure 1.2): a (possibly empty) initial path,
called PIN, from the root to a node v*, called the fork, from which two (possibly

1.2 Algorithmic Background 	 1 5

empty) paths PL and PR issue. Either the interval being inserted is allocated

entirely to the fo: k (in which case PL and PR are both empty), or all right-sons
of nodes of PL , which are not on PL , as well as all left-sons of nodes of PR ,

 which are not on PR , identify the fragmentation of [b, e] (allocation nodes).
The allocation of an interval to a node v of T could take different forms,

depending upon the requirements of the application. Frequently all we need to
know is the cardinality of the set of intervals allocated to any given node y; this
can be managed by a single nonegative integer parameter C[v], denoting this
cardinality, so that the allocation of [b, e] to y becomes

C[v] := C[v] + 1.

In other applications, we need to preserve the identity of the intervals allocated

to a node v. Then we append to each node v of T a secondary structure, linked
list ^[v], whose records are the identifiers of the intervals.

Perfectly symmetrical to INSERT is the DELETE operation, expressed by
the following primitive (here we assume we are just interested in maintaining
the parameter CH):

procedure DELETE(b, e; v)
begin if (b < B [v]) and (E [v] < e) then C[v] := C[v] — 1

else begin if (b < L(B[v] + E[v])/2]) then DELETE(b, e; LSON[v]);
if (L(B[v] + E[v])/2] < e) then DELETE(b, e; RSON[v])

end
end.

(Note that only deletions of previously inserted intervals guarantee correct-
ness.)

The segment tree is an extremely versatile data structure, as we shall see in
connection with numerous applications (Chapters 2 and 8). We only note that
if we wish to know the number of intervals containing a given point x, a simple
binary search in T (i.e., the traversal of a path from the root to a leaf) readily
solves the problem.

1.2.3.2 The doubly-connected-edge-list (DCEL)

The doubly-connected-edge-list (DCEL) is suited to represent a connected
planar graph embedded in the plane [Muller-Preparata (1978)]. A planar
embedding of a planar graph G = (V, E) is the mapping of each vertex in V to
a point in the plane and each edge in E to a simple curve between the two
images of extreme vertices of the edge, so that no two images of edges intersect
except at their endpoints. It is well-known that any planar graph admits of a
planar embedding where all edges are mapped to straight line segments [Fary
(1948)].

Let V = {v 1 ,... , vN ,} and E = {e 1 ,... , eM }. The main component of the
DCEL of a planar graph (V, E) is the edge node. There is a one-to-one
correspondence between edges and edge nodes, i.e., each edge is represented

V3 1
2

a l

a2

•

a3

1 2 1 2 a2 a3

4 1 1

2 3 2
i

16 	 1 Introduction

V1 V2 F1 F2 P1 P2

Figure 1.3 Illustration of the DCEL.

exactly once. An edge node consists of four information fields VI, V2 Fl, and
F2, and two pointer fields PI and P2: therefore the corresponding data
structure is easily implemented with six arrays with the same names, each
consisting of M cells. The meanings of these fields are as follows. The field VI
contains the origin of the edge and the field V2 contains its terminus; in this
manner the edge receives a conventional orientation. The fields Fl and F2
contain the names of the faces which lie respectively on the left and on the right
of the edge oriented from VI to V2. The pointer P1 (resp. P2) points to the
edge node containing the first edge encountered after edge (Vl, V2) when one
proceeds counterclockwise around V1 (resp. V2). Names of faces and vertices
may be taken as integers. As an example, a fragment of a graph and the
corresponding fragment of the DCEL are shown in Figure 1.3.

It is now easy to see how the edges incident on a given vertex or the edges
enclosing a given face can be obtained from the DCEL. If the graph has N
vertices and F faces, we can assume we have two arrays HV[l : N] and
HF[1 : F] of headers of the vertex and face lists: these arrays can be filled by a
scan of arrays VI and F1 in time 0(N). The following straightforward
procedure, VERTEX(j), obtains the sequence of edges incident on v; as a
sequence of addresses stored in an array A.

procedure VERTEX(j)
begin a:= HV[j];

a0 := a;
A[1]:= a;
i:= 2;
if (Vi [a] = j) then a := PI [a] else a := P2[a];
while (a 0 a0) do

begin A[1]:= a;
if (VI [a] = j) then a := P l [a] else a := P2[a];
is=i+ 1

end
end.

1.3 Geometric Preliminaries 	 1 7

Clearly VERTEX(j) runs in time proportional to the number of edges inci-
dent on v; . Analogously, we can develop a procedure, FACE(j), which obtains
the sequence of edges enclosing f , by replacing HV and V1 with HF and Fl,
respectively, in the above procedure VERTEX(j). Notice that the
procedure VERTEX traces the edges counterclockwise about a vertex while

FACE traces them clockwise about a face.

Frequently, a planar graph G = (V, E) is represented in the edge-list form,

which for each vertex v ; E V contains the list of its incident edges, arranged in

the order in which they appear as one proceeds counterclockwise around v ; . It
is easily shown that the edge-list representation of G can be transformed to the

DCEL representation in time 0(1 V1).

1.3 Geometric Preliminaries

1.3.1 General definitions and notations

The objects considered in Computational Geometry are normally sets of

points in Euclidean space.' A coordinate system of reference is assumed, so

that each point is represented as a vector of cartesian coordinates of the

appropriate dimension. The geometric objects do not necessarily consist of

finite sets of points, but must comply with the convention to be finitely
specifiable (typically, as finite strings of parameters). So we shall consider,

besides individual points, the straight line containing two given points, the
straight line segment defined by its two extreme points, the plane containing

three given points, the polygon defined by an (ordered) sequence or points,

etc.
This section has no pretence of providing formal definitions of the geo-

metric concepts used in this book; it has just the objectives of refreshing

notions that are certainly known to the reader and of introducing the adopted

notation.
By Ed we denote the d-dimensional Euclidean space, i.e., the space of the d-

tuples (x 1 , ... , xd) of real numbers x i , i = 1, ... , d with metric (^d1 4) 1 /2
We shall now review the definition of the principal objects considered by

Computational Geometry.

Point. A d-tuple (x 1 , ... , xd) denotes a point p of Ed ; this point may be also

3 The restriction to Euclidean Geometry (a special, but extremely important case of metric

geometry) enables us to resort to our immediate experience, but it is also suggested by the fact that

the vast majority of applications are formulated in Euclidean space. However, such a restriction is

inessential for many of the applications to be considered in the next chapters. We shall later return

to this important item (Section 1.3.2).

1 8 	 1 Introduction

interpreted as a d-component vector applied to the origin of Ed, whose free
terminus is the point p.

Line, plane, linear variety. Given two distinct points q 1 and q 2 in Ed , the
linear combination

Œq 1 + (1 — Œ)q 2 	(a E O)

is a line in Ed . More generally, given k linearly independent points q 1 , ... , qk
in Ed (k < d), the linear combination

Œ1q1 + Œ2q2 + ... + ak—lqk-1 + (1 — a l — ... —Œk-1)qk

(al Elf, j = 1, ... , k— 1)

is a linear variety of dimension (k — 1) in E d .

Line segment. Given two distinct points q 1 and q 2 in Ed, if in the expression
Œq 1 + (1 — Œ)q 2 we add the condition 0 < a < 1, we obtain the convex combi-
nation of q 1 and q2 , i.e.,

aq 1 + (1 — 0)q 2 	(a E ER, 0 < a < 1).

This convex combination describes the straight line segment joining the two
points q 1 and q 2 . Normally this segment is denoted as q l 	q 2 (unordered pair).

Convex set. A domain D in Ed is convex if, for any two points q 1 and q2 in
D, the segment g 1 g 2 is entirely contained in D.

It can be shown that the intersection of convex domains is a convex
domain.

Convex hull. The convex hull of a set of points Sin Ed is the boundary of the
smallest convex domain in Ed containing S.

Polygon. In E2 a polygon is defined by a finite set of segments such that
every segment extreme is shared by exactly two edges and no subset of edges
has the same property. The segments are the edges and their extremes are the
vertices of the polygon. (Note that the number of vertices and edges are
identical.) An n-vertex polygon is called an n-gon.

A polygon is simple if there is no pair of nonconsecutive edges sharing a
point. A simple polygon partitions the plane into two disjoint regions, the
interior (bounded) and the exterior (unbounded) that are separated by the
polygon (Jordan curve theorem). (Note: in common parlance, the term poly-
gon is frequently used to denote the union of the boundary and of the interior.)

A simple polygon P is convex if its interior is a convex set.
A simple polygon P is star-shaped if there exists a point z not external to P

such that for all points p of P the line segment zp lies entirely within P. (Thus,
each convex polygon is also star-shaped.) The locus of the points z having the
above property is the kernel of P. (Thus, a convex polygon coincides with its
own kernel.)

1.3 Geometric Preliminaries 	 1 9

Planar graph. A graph G = (V, E) (vertex set V, edge set E) is planar if it can
be embedded in the plane without crossings (see Section 1.2.3.2). A straight
line planar embedding of a planar graph determines a partition of the plane
called planar subdivision or map. Let y, e, and f denote respectively the numbers
of vertices, edges, and regions (including the single unbounded region) of the
subdivision. These three parameters are related by the classical Euler's formula
[Bollobâs (1979)]

v— e+f= 2. 	 (1.1)

If we have the additional property that each vertex has degree > 3, then it is a
simple exercise to prove the following inequalities

✓< 3e, 	e<3v- 6

e < 3f-6, f<3e 	 (1.2)

✓<2f- 4, f < 2v- 4

which show that y, e and f are pairwise proportional. (Note that the three
rightmost inequalities are unconditionally valid.)

Triangulation. A planar subdivision is a triangulation if all its bounded
regions are triangles. A triangulation of a finite set S of points is a planar graph
on S with the maximum number of edges (this is equivalent to saying that the
triangulation of S is obtained by joining the points of S by nonintersecting
straight line segments so that every region internal to the convex hull if S is a
triangle.)

Polyhedron. In E3 a polyhedron is defined by a finite set of plane polygons
such that every edge of a polygon is shared by exactly one other polygon
(adjacent polygons) and no subset of polygons has the same property. The
vertices and the edges of the polygons are the vertices and the edges of the
polyhedron; the polygons are the facets of the polyhedron.

A polyhedron is simple if there is no pair of nonadjacent facets sharing a
point. A simple polyhedron partitions the space into two disjoint domains, the
interior (bounded) and the exterior (unbounded). (Again, in common parlance
the term polyhedron is frequently used to denote the union of the boundary
and of the interior.)

The surface of a polyhedron (of genus zero) is isomorphic to a planar sub-
division. Thus the numbers y, e, and f of its vertices, edges, and facets obey
Euler's formula (1.1).

A simple polyhedron is convex if its interior is a convex set.

1.3.2 Invariants under groups of linear transformations

Geometry could be approached in a purely axiomatic way, as a system
consisting of sets of objects—such as points, lines, planes, etc.—and a collec-
tion of relations between them. Such objects need not bear an intuitive

20 	 1 Introduction

connection to our experience; indeed the correct handling of the axioms would
lead to the discovery of the properties of the system. Such an approach, taken
primarily by Hilbert at the end of the nineteenth century [Hilbert (1899)] has
had an extraordinary in fluence on the development of the discipline. To
contrast appropriately the axiomatic approach with the more traditional
intuitive view, we just need to recall that the sets of points and lines could even
be assumed to be finite.

From a more utilitarian viewpoint, however, we prefer to mitigate this
position by seeing geometry as a rigorous abstraction from ordinary expe-
rience. In this view its basic constituents are models, founded upon intuition,
of their physical counterparts—for example, the straight line is the abstrac-
tion of the path of a ray of light—and its results (theorems) are directly
interpretable in experiential terms. This approach is not in contrast to the
preceding one: it only qualifies the nature of the axioms by tying them to
geometric intuition. It should be noted, however, that this restriction still
leaves a wide scope: indeed, in some sense, the adoption of non-Euclidean
geometry in the theory of relativity is still dictated by geometric intuition.

In our study of geometric algorithms, it is only natural to assume as our
environment the Euclidean space. After all, the Euclidean space is a perfectly
comfortable and adequate model for many domains of experience in which
geometric applications arise. In particular, it is not by chance that the (Eu-
clidean) plane and space are the realms of some of the most important uses of
geometric methods (computer graphics, computer-aided-designs, etc.). We
shall also assume that in the Euclidean space we have an orthonormal 4

 cartesian system of coordinates.
It is interesting, however, to explore the extent of validity of individual

algorithmic results beyond the confines of the Euclidean space. Specifically,
we are interested in characterizing the classes of transformations of the space
(and of a given instance of a problem in this space) that preserve the validity
of given algorithms.

Less informally, a point in Ed , can be interpreted as the d-component vector
(x 1 , x2 , ... , xd) of its coordinate (also compactly denoted here by x). We now
consider mappings T: Ed -4 Ed that transform Ed into itself. In our discussion,
such mappings are always to be interpreted as a movement of the points with
respect to a fixed reference (the alibi interpretation), rather than as a change of
coordinate system while the points remain fixed (the alias interpretation).
(See, for example [Birkhoff-MacLane (1965)].) In particular, we are presently
interested in linear mappings, i.e., mappings in which the coordinates of the
new position of a point are described by linear expressions of the coordinates
of the point's old position. Thus, if (x 1 , x 2 , ... , x d) are the coordinates of a
point p, the image p' of p in the mapping T has coordinates

'That is, the reference axes are pairwise orthogonal and their respective unitary segments have
identical length.

1.3 Geometric Preliminaries 	 21

d

xi = E a;ix; + ci 	(i = 1, 2, . . . , d)
;=1

(1.3)

or, more compactly,

x'=xA+c 	 (1.4)

where A = Mau l' is a d x d matrix, c is a fixed d-component vector, and all
vectors are row vectors.

Equation (1.4) is the general form of an affine mapping. We can develop
some preliminary intuition on affine mappings by separately considering the
two cases A = I (the identity matrix) and c = 0. When A = I, Equation (1.4)
becomes

(1.5)

which describes a transformation where each point is subject to a fixed
displacement c: such transformations are naturally called translations. On the
other hand, when c = 0 we have

x'=xA

i.e., a linear transformation of the space which maps the origin to itself (i.e.,
the origin is a fixed point). Note that, in general, a d-dimensional affine
mapping can be viewed as a (d + 1)-dimensional linear mapping in homo-
geneous coordinates by simply extending the vector of a point (x 1 , ... , x d) by
means of an additional component xd+ 1 = 1. Thus, Equation (1.4) can be
rewritten as

(x', l)=(x,l) A 0 (1.6)

A significant classification of affine mappings is based on the properties of
the matrix A. In particular, different branches of geometry can be viewed as
the study of the properties that are invariant under a set of transformations.
This very significant approach was proposed by Klein about a century ago
[Klein (1872)] and has now become a fundamental part of geometric teaching.

We begin by considering the case in which A is an arbitrary nonsingular
matrix. Clearly, the set of all such transformations form a group (under
composition), as can be easily verified.' This group is called the affine group,
and affine geometry is concerned with the properties which are preserved
(invariant) under transformations in this group. The basic invariant of affine
geometry is incidence, that is, the membership of a point p on a line 1.

Next we consider the specialization obtained by requiring

AA T = PI, 	 (1.7)

5 Closure, associativity, existence of the identity and of inverses are immediate consequences of
analogous properties for the group of nonsingular d x d matrices.

22 	 1 Introduction

where). is a real constant (a superscript "T" denotes "transpose"). This
property characterizes an important subgroup of the affine group, known as
the similarity group. If (1.7) holds, then it is easy to verify that the ratio of
distances between points are preserved (and so are angles and perpendicular-
ity). Indeed, without loss of generality, we consider the case where c = 0 in
(1.4). The norm (square of the length) of a vector x (a segment with an extreme
at the origin) is given by the inner product xx T; thus the norm of the image x'
of x under a similarity mapping is

X'X' T = XA(XA) T = XAA T X T = X), 2 IX T =),2 XX T,

which shows that the vector x has been subjected to a dilatation by a factor
+ A. Next, given two vectors x and y, we have for the inner product of their
images x' and y'

x 'y 'T = /Z.2 xy T .

Since x'y' T = Ix'1 ' I y'I cos(x', y') and xy T = Ix 1' I yI cos(x, y), we have

cos(x', y') = cos(x, y),

which substantiates the earlier claim.
Alternatively, consider the specialization of the af fi ne group corresponding

to the constraint

IAI = ± 1,

where I A 1 denotes the determinant of A. The subgroup of transformations,
characterized by this property, is called equiaffine. The invariant of the equi-
affine group is volume. Indeed, given a set of d vectors x 1 , x 2 , ..., xd , the
absolute value of the determinant of the matrix [x i ... x T] is the volume of
the hyperparallelepiped determined by these vectors; considering their images
x;=x i A, i= 1,...,d, we have I[x'iT ...xdT]I =IA1l[xi ...xâ]I= ±I[xi •••xfI,
which establishes the invariant.

If we now consider the intersection of the similarity group and the equi-
affine group, we obtain a new subgroup of transformations, called orthogonal.
The invariant of the orthogonal group is distance. Indeed, the determinant of
A•A T is

IA- A T I = IAI •IA T I = IAI 2 = 1;

but, by (1.7), I AA T I =;1 2 , whence A = +1. The distance d (x, y) between two
points x and y is given by the absolute value of the square root of the norm of
their difference, that is,

d(x, y) = \/(x — y) • (x — y) T .

Therefore we have

d(x', Y') = \/(x' — y') • (x' — y') T = .✓(x — y)AA T (x — y) T

 = .N. /(x — y) • (x — y)T = d(x,y)•

Corresponding points

X 3

1.3 Geometric Preliminaries 	 23

The affine transformations that preserve distance (and therefore, also pre-
serve area, angles, and perpendicularity) are the rigid motions, and form the
foundations of Euclidean geometry.

We now return to Equation (1.6) describing a particular transformation of
a (d + 1)-dimensional vector space and remove any restriction on the form of
the last column of the transformation matrix. Thus we obtain the relation

=4B 	 (1.8)

where 4' and 4 are Euclidean vectors of (d + 1)-dimensional space Vd +l and B
is a (d + 1) x (d + 1) matrix, assumed to be nonsingular.

We restrict our attention to the direction of a vector, rather than to its
length: this means that two collinear vectors 4 and cï:, (c 0) are considered
equivalent. Thus, as representative of this equivalence class we may choose the
point where the line 1 = {c4: c E E } pierces the unit sphere S' of Ed' (note
that Sd + 1 is a d-dimensional variety, i.e., its points are identified by d para-
meters). If we now choose the value of c for which the last component of c4 is
equal to 1, we obtain the point where the line 1 pierces the hyperplane xd+1 = 1

 (see Figure 1.4 for d = 2). So we have a one-to-one correspondence between
points of the plane xd+1 = 1 and points of the hemisphere of Sd+ 1 correspond-
ing to xd+ 1 > 0; this correspondence is called a central projection (from the
origin of E') . Notice that the hyperplane x d+ 1 = 1 is itself a space Ed of
coordinates x 1 , ... , xd .

We thus have accomplished the interpretation of a vector (1, 	d9 d+ 1)

(d+1 0 0) applied to the origin of Ed+ 1 as a point (x 1 , ... , xd) of Ed , so that xi
 = 1 • If we represent the point by means of the (d + 1) components of the

vector we obtain the classical representation of points in homogeneous coordi-
nates, which enables us to represent the points at infinity by letting bd+ 1 = O.

Figure 1.4 Illustration of the correspondence between homogeneous and inhomo-
genous (conventional) coordinates.

Similarity
Group
QAT => 2 I

Equiaffine Group

IAI 2 =1

Projective Group
(Full linear group
on d+1 homogeneous
coordinates)

IB I #0

Affine Group (on d coordinates)

B= c Ol ' IAI #0

24 	 1 Introduction

Figure 1.5 Illustration of the inclusion relation on groups of linear transformations
(Hasse diagram).

Returning to the consideration of the action performed by the group of
transformations, if in (1.8) we let B be of the form B = [c °], we obtain a
new interpretation of the group of affinities of Ed . For concreteness and ease
of reference, we consider the case d = 2. We note that the central projection of
S3 to the plane x 3 = 1 establishes an invertible transformation between great
circles of S 3 and lines of E 2 , except for the "equatorial" circle (on x 3 = 0),
whic;i maps to the line at infinity of E2. However, any transformation (1.8)
maps a plane by the origin to a plane by the origin, in particular the equatorial
plane can be mapped to any other plane by the origin. If we interpret this in the
central projection to x 3 = 1, the line at infinity can be mapped to any line at
finite. This freedom enables us to map any conic curve (ellipse, parabola,
hyperbola) to a circle, so that all conics are equivalent under the group
transformation (1.8). This group is referred to as the projective group.

The preceding discussion is conveniently summarized by means of a Hasse
diagram [Birkhoff—MacLane (1965)] of the relation "subgroup of," illus-
trated in Figure 1.5.

1.3.3 Geometric duality. Polarity

We now consider an alternative interpretation of the transformation (1.8),
again referring for concreteness to the case d = 2. So far, we have seen that
(1.8) maps points to points and lines to lines in E2 , i.e., it preserves the
dimension of the objects being mapped. Assuming I BI 0 0, we rewrite (1.8) as

II = i;B, 	 (1.9)

1.3 Geometric Preliminaries 	 25

and hereafter interpret vectors denoted by the letter "4" as representing a
direction (i.e., a line by the origin) and vectors denoted by the letter "ti" as
representing the normal to a plane passing by the origin. Thus relation (1.9) is
interpreted as the transformation in E3 of a line (represented by 4) to a plane
(represented by TO and is called a correlation. This is a special instance for
d = 2 of the general property that in E d + 1 relation (1.9) maps a linear variety
of dimension s < d + 1 to its dual linear variety of dimension d + 1 — s: in
this interpretation (1.9) is referred to as a duality transformation, and indeed,
the same matrix B can be used to describe a correlation that maps planes to
lines. Given a line-to-plane correlation described by a matrix B, we seek a
plane-to-line correlation described by a matrix D so that the pair (B, D)
preserves incidence, that is, if line i; belongs to plane ii, then line TID belongs
to plane 4B. Clearly line 4 belongs to plane if and only if

= 0.

Correspondingly we require

4B(T1D)T = ,BDT Il T = 0.

Since the latter holds for any choice of 4 and rl we obtain BD T = kl or

D = k(B -1) T ,

for some constant k.
Note that the product BD maps lines to lines and planes to planes. Given

the incidence-preserving pair (B, (B -1) T), we now further require that the
product B • (B - 1)T map each line to itself and each plane to itself, i.e., we
require B(B -1) T = klor, equivalently, B = kB T . In the latter identity we must
have k = ± 1; of particular interest is the case where

B=BT , 	 (1.10)

i.e., B is a nonsingular 3 x 3 symmetric matrix.
We now consider the effect of a correlation such as (1.9) in the central

projection to the plane x 3 = 1. We recognize that points are mapped to lines
and lines to points; in the remainder of this section we shall further analyze this
mapping in E2 , and refer to 4 as a point and to rl as a line. If the 3 x 3 matrix B
satisfies the condition B = BT , letting x = (x 1 , x2 , x3) it is well known
[Birkhoff-Maclane (1965)] that

xBx T = 0

is the equation in homogeneous coordinates of a conic in the plane (referred to
as the conic defined by B). Consider now a fixed 4 (interpreted as the homo-
geneous coordinate representation of a point in the plane) such that 4B4 T = 0.
By definition, point 4 lies on the conic defined by B; if we call point 4 the pole
and line l:,BxT = 0 the polar of , we see that a pole on the conic is incident to its
own polar. This mapping of points to lines, and vice versa, is called a polarity,
and is useful in the development of geometric algorithms. Indeed, our intui-
tion is more attuned to dealing with points than with lines (in E 2) or planes (in
E3), and we shall capitalize on this ability in later chapters.

26
	

1 Introduction

Figure 1.6 Illustration of the correspondence between pole and polar in the polarity

with respect to the unit circle.

In particular, let us choose B as the matrix defining the unit circle in the

plane E2 (refer to Figure 1.6). In this case

	

1 0 	0

	

B= 0 1 	0 ,

0 0 —1

that is, a point p = (p l ,p2 , 1) is mapped to a line 1 whose equation is
p l x i + p2 x2 — x3 = 0 (in homogeneous coordinates). The distance of p from

the origin of the plane is ^pi + pi, while the distance of 1 from the origin is
11\ pi + p2. This shows that in this special polarity

distance (p, 0) x distance(polar(p), 0) = 1.

Notice also that in this polarity the transformation involves no computation

but simply a different interpretation of a triplet (pl,p2,p3), either as the
coordinates (pi/p3,p2/p3) of a point or as the coefficients of the straight line

whose equation is p i x l + p2 x2 — p3 x3 = 0 in homogeneous coordinates.
In a later chapter we shall examine interesting applications of this geo-

metric duality.

1.4 Models of Computation

A basic methodological question, which must be confronted as a premise to

any study of algorithms, is the careful specification of the adopted compu-
tational model. Indeed, an algorithm proposed to solve a given problem must

1.4 Models of Computation 	 27

be evaluated in terms of its cost as a function of the size of the instance of the
problem. The fundamental importance of the model is established by the
following observation:

A model of computation specifies the primitive operations that may be executed
and their respective costs.

The primitive operations are those for each of which we charge a fixed cost,
although this cost may vary from operation to operation. For example, if the
primitive operations involve individual digits of numbers (such as the boolean
functions of two binary variables, as holds in the Turing machine model) the
cost of an addition of two integers grows with the operand length, whereas this
cost is constant in a model where the operands have a fixed length (as in any
model that aims at representing actual digital computers). In choosing a
model we normally must make compromises between realism and mathemat-
ical tractability, selecting a scheme that captures the essential features of the
computational devices to be used, and yet it is sufficiently simple to permit a
thorough analysis.

But what sort of model is appropriate for geometric applications? To
develop an answer to this central question, we must examine carefully the
nature of the problems to be considered.

As noted in Section 1.3, the points in Ed are fundamental objects considered
by Computational Geometry. Although a point is viewed as a vector of
cartesian coordinates, it is desirable that the choice of the coordinate system
do not significantly affect the running time of any geometric algorithm. This
implies that the model of computation must allow the necessary transform-
ation (of cartesian reference) at a cost per point that depends possibly upon
the number of dimensions but not upon the number of points involved.

Stated another way, a set of N points in d dimensions can be expressed with
respect to a chosen cartesian reference system in time proportional to N (recall
that of the same order is the time used to "read" the points as inputs), so that
we may assume at the onset that the points are already given in the chosen
cartesian reference.

The problems encountered in computational geometry are of several types,
which—for our current purposes—may be conveniently grouped into the
three following categories:

1. Subset selection. In this kind of problems we are given a collection of
objects and asked to choose a subset that satisfies a certain property.
Examples are finding the two closest of a set of N points or finding the
vertices of its convex hull. The essential feature of a subset selection
problem is that no new objects need be created; the solution consists
entirely of elements that are given as input.

2. Computation. Given a set of objects, we need to compute the value of some
geometric parameter of this set. The primitives allowed in the model must
be powerful enough to permit this calculation. Suppose, for example, that

28 	 1 Introduction

we are working with a set of points having integer coordinates. In order to
find the distance between a pair of points we not only need to be able to
represent irrational numbers, but to take square roots as well. In other
problems we may even require trigonometric functions.

3. Decision. Naturally associated with any "Subset Selection" or "Compu-
tation" problem there is a "Decision" problem. Specifically:
(i) If computation problem d requests the value of a parameter A, the
associated decision problem D(9), requests a YES/NO answer to a ques-
tion of the type: "Is A > A 0 ?," where A is a constant.
(ii) If subset selection problem d requests the subset of a given set S
satisfying a certain property P, D(z) requests a YES/NO answer to a
question of the type: "Does set S' satisfy P?," where S' is a subset of S.

We readily observe that we must be able to deal with real numbers (not just
integers), and—in a practical computer—with suitable approximations
thereof. In constructing the model, however, we are allowed the conceptual
abstraction to dispense with the round-off problem in the approximate repres-
entation of real numbers; specifically, we will adopt a random-access machine
(RAM) similar to that described in [Aho–Hoperoft–Ullman (74)], but in
which each storage location is capable of holding a single real number. The
following operations are primitive and are available at unit cost (unit time):

1. The arithmetic operations (+, — , x , /).
2. Comparisons between two real numbers (<, <, = , #, >, >).
3. Indirect addressing of memory (integer addresses only).

Optional (for applications requiring them):

4. k-th root, trigonometric functions, EXP, and LOG (in general, analytic
functions).

This model will be referred to as the real RAM. It closely reflects the kinds of
programs that are typically written in high-level algorithmic languages as
FORTRAN and ALGOL, in which it is common to treat variables of type
REAL as having unlimited precision. At this level of abstraction we may
ignore such questions as how a real number can be read or written in finite
time.

The establishment of lower bounds to performance measures for a given
problem is one of the fundamental objectives in algorithmic analysis, because
it provides a gauge for evaluating the efficiency of algorithms. This is, in
general, a very difficult task. It is sometimes possible to relate the difficulty of
a problem to that of another problem of known difficulty by use of the
technique of transformation of problems.' Specifically, suppose we have two
problems, problem s and problem A', which are related so that problem .mil

6 This technique is very frequently referred to as reduction. Since "reduction" seems to imply the
transformation to a simpler problem (which is not the case) we prefer to avoid the connotation.

Problem at

1.4 Models of Computation
	

29

Lower bound

Upper bound

Figure 1.7 Transfer of upper and lower bounds between transformable problems.

can be solved as follows:
1. The input to problem d is converted into a suitable input to problem .4.

2. Problem .4 is solved.
3. The output of problem .4 is transformed into a correct solution to problem

d.

We then say that problem s'l has been transformed to problem..' If the above

transformation Steps 1 and 3 together can be performed in O(z(N)) time—
where N is as usual the "size" of problem .—then we say that al is z((N)-
transformable to .4 and express it concisely as

sick s(N)^•

In general, transformability is not a symmetric relation; in the special case
when si and .4 are mutually transformable, we say that they are equivalent.

The following two propositions characterize the power of the transfor-
mation technique, under the assumption that the transformation preserves the

order of the problem size, and are self-evident.

Proposition 1 (Lower Bounds via Transformability). If problem d is known to
require T(N) time and at is z(N)-transformable to .4 (alcc, (N)41), then .4
requires at least T(N) — O(z(N)) time.

Proposition 2 (Upper Bounds via Transformability). If problem .4 can be
solved in T(N) time and problem d is z(N)-transformable to .4 (si oc t(N) Pi),
then si can be solved in at most T(N) + O(z(N)) time.

The situation is pictorially illustrated in Figure 1.7, which shows how lower
and upper bounds are transferred from one problem to the other. This transfer

holds whenever z(N) = O(T(N)), i.e., when the transformation time does not

dominate the computation time.

Referring to our previous classification of problems, let us consider some

Transformability (or reducibility) is usually defined to be a relation on languages, in which case

no output transformation is necessary because the output of a string acceptor is either zero or one.

For geometry problems we need the greater flexibility afforded by the more general definition.

30 	 1 Introduction

problem d (either a computation or a subset selection problem) and its
associated decision problem D(d). It is immediate to recognize that
D (al) oc o (N .sat , because:

1. If d is a computation problem, no input transformation is needed (so Step
1 of the transformation procedure is void) and the solution to .sal must be
just compared, in constant time 0(1), to the fixed value supplied by D(a).

2. If d is a subset selection problem, again the input S' of D(d) is supplied as
input to s (so Step 1 is void) and the solution to s is checked in time O(N)
to verify that its cardinality coincides with that of S'.

This is a crucial observation, because it indicates that when aiming at lower
bounds, we may restrict our attention to "decision problems".

When the "real RAM" executes an algorithm for a decision problem, its
behavior is described as a sequence of operations of two types: arithmetic and
comparisons. In this sequence, comparisons play a fundamental role, because,
depending upon the outcome, the algorithm has a branching option at each
comparison. The situation is pictorially illustrated in Figure 1.8, where each
round node represents an arithmetic operation, and each triangular node
represents a comparison. In other words the computation executed by the
RAM may be viewed as a path in a rooted tree. This rooted tree embodies
the description of an extremely important computation model, called the
"algebraic decision tree," which we now formalize.

An algebraic decision tree [Reingold (1972); Rabin (1972); Dobkin—Lipton
(1979)] on a set of variables {x 1 , ... , x„} is a program with statements
L 1 , L2, ..., Lp of the form:

1. L,: Compute f (x 1 , ... , x„); if f : 0 then go to L i else go to L; (: denotes any
comparison relation);

2. L.,: Halt and output YES (accepted input in decision problem);
3. L,: Halt and output NO (rejected input in decision problem).

In 1, f is an algebraic function (a polynomial of degree degree(f)). The
program is further assumed to be loop-free, i.e., it has the structure of a tree T,
such that each nonleaf node y is described by

.fv(x i , ... , xn): 0,

where f is a polynomial in x 1 , ... , x„ and : denotes a comparison relation.
(Note that, in this description, each "computation path” in Figure 1.8 has
been compressed into the next comparison node.) The root of T represents the
initial step of the computation and its leaves represent the possible termi-
nations and contain the possible answers. Without loss of generality, we
assume that the tree T is binary. 8

s Note that the degree of the nodes of T is the multiplicity of alternative outcomes of the
comparisons. The binary tree hypothesis is based on the fact that a k-way branching can be
resolved into (k — 1) 2-way branchings.

1.4 Models of Computation 	 31

Figure 1.8 A computation as a path in a decision tree.

Although an algebraic decision tree program may be extremely less com-
pact than the corresponding RAM program, both programs behave identi-
cally on the classes of problems we are considering. In particular, the worst-
case running time of the RAM program is at least proportional to the length
of the longest path from the root in the decision tree. This substantiates the
importance of the decision-tree model, because the tree structure is quite
amenable to the derivation of bounds on its depth.

An algebraic decision tree is said to be of the d-th order if d is the maximum
degree of the polynomials f„(x 1 , ... , x„) for each node y of T. The 1-st order, or
linear, decision tree model has been a very powerful tool in establishing lower
bounds to a variety of problems; we shall discuss the very clever arguments
that have been developed in the subsequent chapters, in the appropriate
context (see Sections 2.2, 4.1.3, 5.2, 8.4). However, there are two reasons for
dissatisfaction with linear decision trees. The first, and more fundamental, is
that it may happen that any known algorithm for the problem under consider-
ation uses functions of degree > 2, so that a lower-bound based on the linear
decision tree model is not significant; barring this situation—and this is the
second reason—a bound based on the linear decision tree model does not
apply to yet unknown algorithms using higher degree functions.

Extremely important contributions to settle this matter for d > 2 have been
recently made by Steele–Yao (1982) and Ben-Or (1983), using classical con-
cepts of real algebraic geometry. Their approach is based on the following
very terse idea: Let x 1 , x2 , ... , x„ be the parameters of the decision problem,
each instance of which may be viewed as a point of the n-dimensional Eu-
clidean space E. The decision problem identifies a set of points W E„, that
is, it provides a YES-answer if and only if (x 1 , ... , x„) e W (we say then that
the decision tree T solves the membership problem for W). Suppose that we
independently know, by the nature of the problem, the number # (W) of
disjoint connected components of W. Each computation corresponds to a

32
	

1 Introduction

Figure 1.9 Illustration for the proof that W = W,.

unique path v 1 , v2 , ... , v 1 _ 1 , v 1 in T, where v 1 is the root and v 1 is a leaf;
associated with each vertex v ; of this path there is a function f„ (x1, ... , x„),
(j = 1, ... ,1 - 1), so that (x 1 , ... , x„) satisfies a constraint of the type

f„ =0 or f,,> 0 or f,, >O. 	 (1.11)

To gain some intuition, we first consider the specialized argument for d = 1
(linear decision or computation tree model) due to Dobkin and Lipton (1979).
The argument goes as follows. Let W E" be the membership set for a given
decision problem, and let # (W) denote the number of its disjoint connected
components. Let T be the (binary) linear decision tree embodying the al-
gorithm d that tests membership in W. Associated with each leaf of T is a
domain of E", and each leaf is either "accepting" or "rejecting." Specifically,
let { W1 , ... , Wp } be the components of W, {I 1 , ... , 4} be the set of leaves, and
D. the domain associated with 1; . Leaf 1 is classified as

accepting, if Dl W

Irejecting, 	otherwise.

A lower bound to r is obtained by showing r > # (W). Indeed, we construct
a function Y: { W1 , W2 , ... , Wp } -. { 1, 2, ... , r} defined by Y(W1) = min

j E { 1, 2, ... , r} and Di n W1 0 25}. Suppose now, fora contradiction, that
there are two distinct subsets, W and W, such that Y(W) = Y(W) = h. Since
algorithm d solves the membership of a point q in W , leaf Ih is accepting.
On the other hand, by the definition of Y, Y(W) = h implies that Wn Dh
is nonempty. Therefore, let q' be a point in Wn D h . Similarly, q" is a point in
W n Dh. Since T is a linear decision tree, the region of E" corresponding to D,,
is the intersection of half-spaces, that is, it is a convex region. This implies that
any convex combination of points of Dh belongs to Dh (Section 1.3.1).
Consider now the segment q'q" (refer to Figure 1.9). This segment intersects at
least two components of W (it certainly intersects W and W), and, since these
components are disjoint, it contains at least one point qi" W. But, by con-
vexity, the entire q'q" belongs to Dh , and so does q"', which is therefore
declared internal to W, a contradiction. In conclusion, T must have at least

1.4 Models of Computation 	 33

p leaves. Since the shallowest binary tree with a given number of leaves is
balanced, the depth of T is at least log 2 p = log2 # (W). This is summarized in
the following theorem.

Theorem 1.1 (Dobkin-Lipton). Any linear decision tree algorithm that solves
the membership problem in W E" must have depth at least log2 # (W), where
#(W) is the number of disjoint connected components of W.

Unfortunately, the above technique is restricted to linear computation tree
algorithms, since it rests crucially on the property that the domain of E"
associated with a leaf of the tree is convex. When the maximum degree of the
polynomials fU is > 2 this useful property disappears. Therefore more sophis-
ticate concepts are needed.

Intuitively, when higher degree polynomials are used the domain associ-
ated with a specific leaf of the decision tree may consist of several disjoint
components of W. If we succeed in bounding the number of components
assigned to a leaf in terms of the leaf's depth, we shall shortly see that we
succeed in bounding the depth of T.

The key to solve this difficult problem is fortunately provided by a clever
adaptation [Steele-Yao (1982); Ben-Or (1983)] of a classical result in alge-
braic geometry independently proved by Milnor (1964) and Thom (1965).
Milnor and Thom's result goes as follows.

Let V be the set of points (technically called an algebraic variety) in the
m-dimensional cartesian space E" defined by polynomial equations

gt (x i ,..., x m) =O,...,gp(x l ,...., xm) =0. 	(1.12)

Then if the degree of each polynomial gi (i = 1, ... ,p) is < d, the number
(V) of disjoint connected components 9 of V is bounded as

(V) < d(2d — 1)m -1

Unfortunately, V is defined in terms of equations (see (1.12)) whereas the
constraints associated with a path in T consists of both equations and in-
equalities. This difficulty has been adeptly circumvented by Ben-Or by trans-
forming our situation to meet the hypothesis of the Milnor-Thom Theorem,
as we now illustrate.

Define U g E" as the set of points satisfying the following constraints (here
x = (x1,...,x")):

ql(x)= 0,..., 4.(x)= 0
Pt (x) > 0, . . . ,ps (x) > 0
Ps+ t (x) > 0, . . . , ph (x) > 0

(1.13)

9 I reality, Milnor and Thom prove the stronger result that d(2d — 1)" 1- ' is an upper bound to
the sum of the Betti numbers of V, whereas the number # (V) of connected components is only
one such number (the zero-th Betti number).

34 	 1 Introduction

Figure 1.10 Construction of UE from U; U is shown with solid lines, UU with dotted
lines.

where the q i's and pis are polynomials and d = max{2, degree(g i), degree(p,)}.
Note that we have three types of constraints: equations, open inequalities, and
closed inequalities. Let # (U) denote the number of connected components of
set U.

The first step of the transformation consists of replacing the open in-
equalities with closed inequalities. Since # (U) is finite (see [Milnor (1968))),
we let # (U) _° t and pick a point in each component of U. Denoting these
points v 1 , ..., vt , we let

E= min {p i (vi):i = 1,..., s;j = 1,...,t}.

Since each v. E U, then pi (v;) > 0 (for i = 1, ... , s) and E > O. Clearly the closed
point set U, defined by

ql (x) = 0, ... , q,.(x) = 0

Pi (x) > E, ... , ps (x) > E 	 (1.14)

Ps+1(x)> 0, ... , Ph(x)? 0

is contained in U, and # (UE) >— # (U), since each vi is in a distinct component
of UE (see, for an intuitive illustration, Figure 1.10).

The second step of the transformation consists of introducing a slack
variable y, for each j = 1, ... , h (i.e., for each one of the closed inequalities), so
that E" is viewed as a subspace of E"+h as

g1 (x) = 0, ... , q.(x) = 0

Pi(x) — E — Yi= 0, ... ,Ps(x) — E — Ys =0 	(1.15)

Ps+1(x) — Y s+1 = 0,..., Ph(x) — Yh = O.

Clearly, the set U* of all solutions to (1.15) is an algebraic variety in E"+" de-
fined by polynomials of degree at most d and satisfies the conditions of the
Milnor—Thom Theorem; therefore, the number # (U*) of connected compo-
nents of U* is bounded as

(U*) < d(2d — 1)n +h-1

Notice that Ue is the projection of U* into E"; since the projection is a
continuous function, # (tie) < # (U*). Recalling that # (U) < # (U,), we

1.4 Models of Computation 	 35

conclude that

(U) <_ # (UE) < # (U*) < d(2d — 1)"+h-1

which is the sought result. Indeed, if (1.13) is the set of constraints obtained in
traversing a root-to-leaf path in T, h the number of inequalities—is at most
as large as the path length. It follows that the leaf of this path has associated
with itself at most d(2d — 1)"+ h-1 connected components of the solution set
W of the problem. If h* is the depth of T (the length of the longest root-to-
leaf path), then T has at most

2h*
 leaves; each leaf accounts for at most

d(2d — 1)"
+h.-1

 components of W, whence

(W) < 2h•d(2d _ 1)"+h*-1

or, equivalently

log2 #(W) 	n log2 (2d — 1) 	log 2 d — log2 (2d + 1)
h* >

1 + log2 (2d — 1) 1 + log2 (2d — 1) 	1 + log2 (2d — 1)
(1.16)

We summarize this important result as a theorem.

Theorem 1.2. 10 Let W be a set in the Cartesian space E" and let T be an algebraic
decision tree of fixed order d (d > 2) that solves the membership problem in W.
If h* is the depth of T and # (W) is the number of disjoint connected components
of W, then h*= SZ(log#(W)— n).

Theorem 1.2 subsumes the case d = 1, since any fixed d >— 2 implies the
bound for polynomials of lower degree (by just setting the higher order
coefficients to zero). In essence, the use of superlinear polynomial decision
functions does not radically change the nature of the problem; it merely
shortens the minimum depth of the computation trees by a multiplicative
constant dependent upon the maximum degree d. The last theorem is the
cornerstone of lower-bound arguments to be presented in later chapters.

10 In reality, Ben-Or proves a somewhat stronger result, independent of d.

CHAPTER 2

Geometric Searching

To describe searching in its simplest abstract setting, suppose we have some
accumulated data (called the "file") and some new data item (called the
"sample"). Searching consists of relating the sample to the file. Accessory
operations—conceptually not a part of searching—may involve absorbing
the sample into the file, deleting the sample from the file if already present, and
so on. As Knuth (1973) points out, searching means to locate the appropriate
record (or records) in a given collection of records.

Although all searching problems share some basic common feature, the
specific geometric setting gives rise to questions of a somewhat unique flavor.
First of all, in geometric applications, files are primarily not just "collections,"
as in several other information processing activities. Rather, they are fre-
quently representations of more complex structures, such as polygons, poly-
hedra, and the like. Even the case, say, of a collection of segments in the plane
appears deceptively unstructured: indeed, each segment is associated with its
end-point coordinates, which are implicitly related by the metric structure of
the plane.

The fact that coordinates of points are thought of as real numbers entails
that a search may frequently not find a file item matching the sample, but
rather it will locate the latter in relation to the file. This provides an additional
point of contrast between geometric searching and conventional searching.

2.1 Introduction to Geometric Searching

This chapter develops the basic tools of geometric searching that will be used
in the succeeding chapters to solve rather formidable problems. The search
message, performing the interrogation of the file, is normally called query.

2.1 Introduction to Geometric Searching 	 37

The types of the file and of the admissible queries will greatly determine the
organization of the former and the algorithms for handling the latter. A
concrete example will provide the necessary motivation into this important
facet of the problem.

Suppose we have a collection of geometric data, and we want to know if it
possesses a certain property (say, convexity). In the simplest case the question
will only be asked once, in which event it would be wasteful to do any
preconditioning in the hope of speeding up future queries. A one-time query
of this type will be referred to as single-shot. Many times, however, queries will
be performed repeatedly on the same file. Such queries will be referred to as
repetitive-mode queries.

In this case it may be worthwhile to arrange the information into an
organized structure to facilitate searching. This can be accomplished only at
some expense, though, and our analysis must focus on four separate cost
measures:

1. Query time. How much time is required, in both the average and worst
cases, to respond to a single query?

2. Storage. How much memory is required for the data structure?
3. Preprocessing time. How much time is needed to arrange the data for

searching?
4. Update time. Given a specific item, how long will it take to add it to or to

delete it from the data structure?

The various trade-offs among query time, preprocessing time, and storage are
well-illustrated by the following instance of the problem of range searching
[Knuth (1973), p. 550], 1 which arises frequently in geographic applications
and database management:

PROBLEM S.l (RANGE SEARCHING—COUNT). Given N points in the
plane, how many lie in a given rectangle with sides parallel to the coordinate
axes? 2 That is, how many points (x, y) satisfy a < x < b, c < y < d for given
a, b, c, and d? (See Figure 2.1.)

It is clear that a single-shot range query can be performed in (optimal)
linear time, since we need examine only each of the N points to see whether it
satisfies the inequalities defining the rectangle. Likewise, linear space suffices
because only the 2N coordinates need to be saved. There is no preprocessing
time and the update time for a new point is constant. What kind of data
structure can be used to speed the processing of repetitive-mode queries? It
seems too difficult to organize the points so that an arbitrary new rectangle
can be accommodated easily. We also cannot solve the problem in advance for
all possible rectangles because of their infinite number. The following solution

1 This problem will be studied extensively in Section 2.3.

'Such rectangles, called isothetic, will be considered in great detail in Chapter 8.

•
• •
•

•
•

• • 	•• •

•
• •

• •
•

•

• •

•
•

	 P •

•
•

•
•

•

•
•

38 	 2 Geometric Searching

a 	 b

Figure 2.1 A Range Query. How many points lie in the rectangle?

is an example of the locus method of attacking geometry problems: the query
is mapped to a point in a suitable search space and the search space is
subdivided into regions (loci) within which the answer does not vary. In other
words, if we call equivalent two queries producing the same answer, each
region of the partition of the search space corresponds to an equivalence class
of queries.

A rectangle itself is an unwieldy object; we would prefer to deal with points.
This suggests, for example, that we might replace the rectangle query by four
subproblems, one for each vertex, and combine their solutions to obtain the
final answer. In this case the subproblem associated with a point p is to
determine the number of points Q(p) of the set that satisfy both x < x (p), and
y < y(p), that is, the number of points in the southwest quadrant determined
by p. (See Figure 2.2.)

The concept we are dealing with here is that of vector dominance. (See also
Section 4.1.3.) We say that a point (vector) y dominates w if and only if and for
all indices i, v i > wi . In the plane , w is dominated by v if and only if it lies in v's
southwest quadrant. Q(p) is thus the number of points dominated by p. The
connection between dominance and range queries is apparent in Figure 2.3.

Y
•

• • •

x(p)

Figure 2.2 How many points lie to the southwest of p?

d

c

	► x

39

X

• p2 	• 	 pi

•

•

•

•
• •

p3
	

• p4 • 	 • •

2.1 Introduction to Geometric Searching

Figure 2.3 A range search as four dominance queries.

The number N(p1P2P3P4) of points contained in rectangle P1P2P3P4 is given
by

N(P1P2P3P4) = Q(P1) — Q(P2) — Q(P4) + Q(P3)• 	(2.1)

This follows from the combinatorial principle of inclusion—exclusion, [Liu
(1968)]: all points in the rectangle are certainly dominated by p 1 . We must
remove those dominated by p 2 and also those dominated by p4 , but this will
cause some points to be eliminated twice—specifically, the ones dominated by
both p2 and p4 and these are just the points lying in p 3 's southwest quadrant.

We have thus reduced the problem of range searching to one of performing
four point dominance queries. The property that makes these queries easy is
that there are nicely shaped regions of the plane within which the dominance
number Q is constant.

Suppose we drop perpendiculars from the points to the x- and y-axes, and
extend the resulting lines indefinitely. This produces a mesh of (N + 1) 2

 rectangles, as shown in Figure 2.4.
For all points p in any given rectangle, Q(p) is a constant. This means that

dominance searching is just a matter of determining which region of a
rectilinear mesh a given point lies in. This question is particularly easy to
answer. Having sorted the points on both coordinates, we need only perform
two binary searches, one on each axis, to find which rectangle contains the
point. Thus the query time is only O(log N). Unfortunately, there are 0(N 2)
rectangles, so quadratic storage is required. We must compute, of course, the
dominance number for each rectangle. This can readily be done for any single
rectangle in 0(N) time, which would lead to an overall 0(N 3) time for
preprocessing; however, by a less naive approach, 3 the preprocessing time can
be reduced to 0(N 2).

If the storage and preprocessing requirements of the above approach are
found to be excessive, then one may wish to investigate alternative ap-
proaches. Typically, these investigations expose a general feature of algorithm

3 This work on range searching is reported in [Bentley—Shamos (1977)].

40 	 2 Geometric Searching

I 	1 	I 	I 	I 	I 	I
O ^ 1 ^ 2 ^ 3 ^ 4 i 5 i 	6 	̂ 7

-----f-- ♦--+---E--- +--+----+---
O ; 1: 1 i 2; 3; 4 1 	5 ! 6
	+--+--+--+-- •1 ---}-----+ ---

O H 1 : 1 i 2; 3 i 3: 4 1 5
---- -+--+--+-- ♦ --+--.1---- - I- ---

O ; 1 ; 1 ; 2 i 2 ; 2 1 	3 ; 4
-----+--+--+---+--+---4----+---

O I 0; 0 ; 1 1 1; 1; 	1 	1 	2
----- f---+--4---+--+-- 4----+---

O :010:010:01 0 ; 0
ipx

Figure 2.4 Mesh of rectangles for dominance searching.

Table I

Query 	Storage 	Preprocessing 	Comments

0(log N) 	0(N 2) 	0(N 2) 	 Above method
0(log2 N) 	0(N log N) 	0(N log N) 	4
0(N) 	0(N) 	0(N) 	 No preprocessing

design, that is, a trade-off among different measures of performance. Our

range searching problem is no exception; the trade-off materializes in the

combinations of resources illustrated in Table I.

From the preceding discussion, two major paradigms of geometric search-
ing problems emerge:

1. Location problems, where the file represents a partition of the geometric

space into regions, and the query is a point. Location consists of identifying

the region the query point lies in.
2. Range-search problems, where the file represents a collection of points in

space, and the query is some standard geometric shape arbitrarily transla-
table in space (typically, the query in 3-space is a ball or a box). Range-
search consists either of retrieving (report problems) or of counting (census
or count problems) all points contained within the query domain.

Although the techniques used for solving the two types of problems are not

independent—we have just seen that range searching can be transformed into

a point-location problem—it is convenient to illustrate them separately.

The rest of this chapter is devoted to this task.

'This result, also derived in [Bentley—Shamos (1977)], will be illustrated in Section 2.3.4.

2.2 Point-Location Problems 	 41

2.2 Point-Location Problems

2.2.1 General considerations. Simple cases

Point-location problems could be appropriately renamed point-inclusion prob-
lems. Indeed, "point p lies in region R" is synonymous with "point p is
contained in region R." Of course, the difficulty of the task will essentially
depend upon the nature of the space and of its partition.

As is typical of so much of computational geometry at this time, the planar
problem is well understood, while very little is known for E3 and even less for
higher number of dimensions.

Even in the more restricted context of the plane, the nature of the partition
to be searched determines the complexity of the task, when evaluated under
the three basic measures outlined in the preceding section. We shall begin by
considering plane partitions—or planar subdivisions, as they are normally
called—constructed with straight-line segments; subsequently, we shall relax
this seemingly restrictive assumption. Before proceeding, however, we must
examine a technical detail: The planar subdivisions to be considered are such
that, after removing from the plane the region boundaries, the resulting open
sets are connected. This is to ensure that two points of the same region be
connected by a curve which does not contain any point of the boundary.

The first problem that comes to mind is when the plane is subdivided into
just two regions, one of which is unbounded and the other is a polygon P.
Clearly, P is a simple polygon, as a consequence of the two-region partition
and of the Jordan Curve Theorem for polygons (see Section 1.3.1). Thus we
can formulate:

PROBLEM S.2 (POLYGON INCLUSION). Given a simple polygon P and a
point z, determine whether or not z is internal to P.

Here again, the difficulty of the problem depends on whether P, besides
simplicity, possesses some other useful attribute. Intuitively, a convex polygon
appears as a somewhat simpler object. Therefore we consider

PROBLEM S.3 (CONVEX POLYGON INCLUSION). Given a convex poly-
gon P and a point z, is z internal to P?

We can dispose of the single-shot approach immediately, and the result holds
for nonconvex polygons as well.

Theorem 2.1. Whether a point z is internal to a simple N-gon P can be
determined in 0(N) time, without preprocessing.

42 	 2 Geometric Searching

Figure 2.5 Single-shot inclusion in a simple polygon. There is one intersection of I
with P to the left of z, so z is inside the polygon.

PROOF. Consider the horizontal line /passing through z (see Figure 2.5). By the
Jordan Curve theorem, the interior and exterior of P are well defined. If 1 does
not intersect P, then z is external. So, assume that / intersects P and consider
first the case that 1 does not pass by any vertex of P. Let L be the number of
intersections of 1 with the boundary of P to the left of z. Since Pis bounded, the
left extremity of / lies in the exterior of P. Consider moving right on / from
— oo, toward z. At the leftmost crossing with the boundary of P, we move into
the interior; at the next crossing, we return outside again, and so on. Thus z is
internal if and only if L is odd. Next consider the degenerate situation where 1
passes through vertices of P. An infinitesimal counterclockwise rotation of 1
around z does not change the classification of z (internal/external) but re-
moves the degeneracy. Thus, if we imagine to perform this infinitesimal
rotation, we recognize: if both vertices of an edge belong to 1, this edge must be
ignored; if just one vertex of an edge belongs to 1, then it must be counted if it is
the vertex with larger ordinate, and ignored otherwise. In summary, we have
the following algorithm.

begin L:= 0;
for i : = 1 until N do if edge (i) is not horizontal then

if (edge (i) intersects 1 to the left of z at any of its points
but its lower extreme) then L := L + 1;

if (L is odd) then z is internal else z is external
end.

It is now straightforward to recognize that this simple algorithm runs in 0(N)
time. 	 ❑

For queries in the repetitive mode, we first consider the case in which P is
convex. The method relies on the convexity of P, specifically, on the property
that the vertices of a convex polygon occur in angular order about any internal
point. Any such point q can be easily found, for example, as the centroid of the
triangle determined by any three vertices of P. We then consider the N rays
from q which pass through the vertices of P (Figure 2.6).

2.2 Point-Location Problems
	 43

Figure 2.6 Division into wedges for the convex inclusion problem. 1. By binary
search we learn that z lies in wedge p l qp2 . 2. By comparing z against edge p1P2 we find
that it is external.

These rays partition the plane into N wedges. Each wedge is divided into
two pieces by a single edge of P. One of these pieces is wholly internal to P, the
other wholly external. Treating q as the origin of polar coordinates, we may
find the wedge in which z lies by a single binary search, since the rays occur in
angular order. Given the wedge, we need only compare z to the unique edge of
P that cuts it, and we will learn whether z is internal to P.

The preprocessing for the outlined approach consists of finding q as the
centroid of three vertices of P and of arranging the vertices pt, P29 . . . , PN in
a data structure suitable for binary search (a vector, for example). This is
obviously done in 0(N) time, since the sequence (p 1 , ... , pN) is given. Next we
turn our attention to the search procedure:

Procedure CONVEX INCLUSION
1. Given a query point z, determine by binary search the wedge in which it

lies. Point z lies between the rays defined by pi and pi+1 if and only if angle

(zgpi+ 1) is a right turn and angle (zgp i) is a left turn.'
2 Once pi and pi+1 are found, then z is internal if and only if (pipi+lz) is a left

turn.

Theorem 2.2. The inclusion question for a convex N-gon can be answered in
0(log N) time, given 0(N) space and 0(N) preprocessing time.

5 Note that to decide whether angle (p 1 p2p3) is right or left turn corresponds to evaluating a 3 x 3
determinant in the points' coordinates. Specifically, letting P. = (x; , y ;), the determinant

xi Yi 	1

x2 Y 2 1

X3 Y3 1

gives twice the signed area of the triangle (p,p 2p3), where the sign is + if and only if (PiP2P3)
form a counterclockwise cycle. So, p, p2p3 is a left turn if and only if the determinant is positive.

44 	 2 Geometric Searching

Figure 2.7 A star-shaped polygon.

What property do convex polygons possess that enables them to be searched
quickly? In order to be able to apply binary search the vertices must occur in
sequence about some point. One immediately realizes that convexity is only a
sufficient condition for this property to hold. Indeed there is a larger class
of simple polygons, containing the convex polygons, which exhibits this
property: this is the class of star-shaped polygons (see Section 1.3.1). Indeed,
a star-shaped polygon P (Figure 2.7) contains at least one point q such that qpi
lies entirely within P for any vertex P. of P, i = 1, ..., N.

To determine whether or not a point is internal to a star-shaped polygon,
we may use the preceding algorithm directly, if an appropriate origin q from
which to base the search can be found. The set of feasible origins within P
has been defined in Section 1.3.1 as the kernel of P. The construction of the
kernel of a simple N-gon is beyong the scope of this chapter: we shall return
to this problem in Section 7.2.6, where we will show that—surprisingly—the
kernel can be found in 0(N) time. At present, we assume that the kernel of
P is known (if nonempty), so that we can select a reference point about which
to create wedges for inclusion searching. We have

Theorem 2.3. The inclusion question for an N-vertex star-shaped polygon can be
answered in 0(log N) time and 0(N) storage, after 0(N) preprocessing time.

We can now turn our attention to unrestricted simple polygons, which we
shall call "general polygons." There is a hierarchy that is strictly ordered by
the subset relation

CONVEX c STAR-SHAPED c GENERAL. 	(2.2)

We have just seen that star-shaped inclusion is asymptotically no more
difficult than convex inclusion. What can we say for the general case? One
approach to the problem is motivated by the fact that every simple polygon is
the union of some number of special polygons—such as star-shaped or convex
polygons, or, for that matter, triangles. Unfortunately, when decomposing a
simple N-vertex polygon into polygons of some special type, the minimum

2.2 Point-Location Problems 	 45

cardinality k of the decomposition may itself be 0(N). 6 Therefore, this
approach ends up transforming an N- vertex simple polygon into an N- vertex
planar graph embedded in the plane. It appears therefore that inclusion in a
simple polygon is no easier problem than the apparently more general location
of a point in a planar subdivision, although no proof of equivalence is known.
Thus we shall now concentrate on the latter problem.

2.2.2 Location of a point in a planar subdivision

We recalled in Chapter 1 that a planar graph can always be embedded in the
plane so that its edges are mapped to straight-line segments. Such embedded
graphs will be referred to as planar straight-line graphs, or PSLG. A PSLG
determines in general a subdivision of the plane; if the PSLG contains no
vertex of degree < 2, then it is straightforward to realize that all the bounded
regions of the subdivision are simple polygons. Without loss of generality,
here and hereafter, the PSLG is assumed to be connected.

To be able to search such a structure, one may attempt to decompose each
region into polygons for which the search operation is relatively simple. Ne-
glecting for a moment the complexity of achieving the desired decomposition—
which may indeed be nontrivial—the success of point location depends on the
ability to narrow down quickly the set of components to be searched. On the
other hand, the fastest known search methods are based on bisection, or
binary search. One easily realizes, after a little reflection, that from the
viewpoint of query time the ability to use binary search is more important than
the minimization of the size of the set to be searched, due to the logarithmic
dependence of the search time upon the latter. From this qualitative discus-
sion one learns that a potentially successful point-location method should
exhibit the following features: the planar subdivision is efficiently transformed
into a new one, each of whose constituent polygons intersects a small and fixed
number (possibly just one) of original regions, and can be organized so that
binary search is applicable. In other words, the fundamental idea is to create
new geometric objects to permit binary searching and is to be credited in
this context to Dobkin and Lipton (1976). All of the known methods to be
described next are essentially inspired by this principle.

2.2.2.1 The slab method

Given a PSLG G, consider drawing a horizontal line through each of its
vertices, as in Figure 2.8. This divides the plane into N + 1 horizontal strips,
referred to as "slabs." If we sort these slabs by y-coordinate as part of the
preprocessing, we will be able to find in O(log N) time the slab in which a
query point z lies.

6 This is trivially so if the special polygons are triangles, since k = N — 3. But even for star-shaped
components, k may be as large as [N/3] [see Chvâtal (1975)].

46
	

2 Geometric Searching

Figure 2.8 The vertices of the PSLG define the horizontal slabs.

Now consider the intersection of a slab with G, which consists of segments
of the edges of G. These segments define trapezoids.' Since G is a planar
embedding of a planar graph its edges intersect only at vertices, and since each
vertex defines a slab boundary, no segments intersect within a slab. (See
Figure 2.9.)

The segments can thus be totally ordered from left to right and we may use
binary search to determine in O(log N) time the trapezoid in which z falls. This
will give a worst-case query time of O (log N).

It only remains to analyze how much work is done in preconditioning the
PSLG and storing it. Naively, it seems that we must sort all of the line
segments in every slab. Furthermore, each slab may have 0(N) segments, so
it appears that 0(N 2 log N) time and 0(N 2) storage will be required. We will
next show how to reduce the preprocessing time to 0(N 2). Nothing can be
done (in this algorithm) to reduce the storage used since there exist PSLGs
that need quadratic space (Figure 2.10).

Figure 2.9 Within a slab, segments do not intersect.

The trapezoids can obviously degenerate into triangles, as shown in Figure 2.9.

6 _-4-- Number of
8 	edges in slab

10

2.2 Point-Location Problems
	 47

2

Figure 2.10 The slabs may contain a total of 0(N 2) segments.

Notice that if an edge of the PSLG passes through several slabs, these slabs
are consecutive. This observation is the key that allows us to reduce the
preprocessing time, since we may use the plane-sweep technique (see Section
1.2.2). We recall that a plane-sweep algorithm is characterized by two basic
structures: (i) the event-point schedule, i.e., the sequence of positions to be
assumed by the sweep-line, and (ii) the sweep-line status, i.e., the description of
the intersection of the sweep-line with the geometric structure being swept. In
our case, if the plane sweep proceeds, say, from bottom to top, the instanta-
neous sweep-line status is the left-to-right sequence of edges that traverse the
slab containing the sweep line. This sequence, i.e., the left-to-right order of
these edges, remains unaltered within the slab, but changes at the next slab
boundary, when a new vertex y of the PSLG is reached; indeed, at this point,
the edges terminating at y are deleted and are replaced by those issuing from
v. The sweep-line status can be maintained as a height-balanced tree (e.g., a
2-3-tree), which, as is well-known, supports INSERT and DELETE oper-
ations in time logarithmic in its size. In addition, the plane sweep scans the
slabs in ascending order, i.e., the event-point schedule is just the bottom-to-
top sequence of the vertices of the PSLG. At each event point, the sweep-line
status is updated and read out: indeed this read-out is precisely the segment
sequence inside the next slab. From the complexity viewpoint, the work
consists of the insertion and deletion of each edge at a cost 0(log N) per
operation—and of the generation of the output; the former is O(N log N),
since by Euler's theorem there are 0(N) edges in an N-vertex planar graph,
while the latter has size 0(N 2), as noted earlier. In the preprocessing algo-
rithm, intuition is helped if edges are thought of as directed from bottom to
top. Vertices are stored in an array VERTEX, ordered by increasing y; B[i] is
the set of edges incident on VERTEX[i] from below (incoming edges), ordered
counterclockwise; A[i] is the set of edges issuing from VERTEX[i], ordered
clockwise. Edges are maintained in a height-balanced tree L. Here is the

48 	 2 Geometric Searching

algorithm:

procedure PREPROCESSING-FOR-PLANAR-POINT-
LOCATION

begin VERTEX[1 : 2N] := Sort the vertices of G by increasing y;
L:= 0;
for i:= 1 until N do

begin DELETE(B[i]);
INSERT(A [i]);
Output L

end
end.

Thus we have

Theorem 2.4. Point-location in an N-vertex planar subdivision can be effected in
0(log N) time using 0(N 2) storage, given 0(N 2) preprocessing time.

Although this method shows optimal query time behavior, its preprocessing
time and—even more—its storage requirement are rather objectionable and,
for many applications, unacceptable. It was conjectured [Shamos (1975a)]
that the storage requirement could be reduced to 0(N) while possibly in-
creasing the query time to only 0(log 2 N). This indeed was verified shortly
thereafter, and will be illustrated next. This suboptimal method has been the
basis of significant later developments [Edelsbrunner—Guibas—Stolfi (1986)].

2.2.2.2 The chain method

As the slab method achieves efficient searching by decomposing the original
subdivision into trapezoids, the chain method of Lee and Preparata (1978)
attains the same goal by using as its basic component a new type of polygon,
called monotone, to be defined below.

The key to this method is the notion of "chain" as given by the following.

Definition 2.1. A chain C = (u1 , ... , up) is a PSLG with vertex set {u 1 , ... , up }
and edge set {(u ; , u i+1): i = 1, , p — 11.

In other words, a chain, as given by the above definition, is the planar
embedding of a graph-theoretic chain and is also appropriately called a
polygonal line [see Figure 2.11 (a)].

Consider the planar subdivision induced by a PSLG G. Suppose that in G
we find a chain C (a subgraph of G), of one of the following types: either (i) C
is a cycle, or (ii) both extremes u 1 and up of C belong to the boundary of the
unbounded region. In the latter case, we extend C on both extremes with semi-
infinite parallel edges. In both instances C effectively partitions the subdivi-
sion into two portions. Moreover, we shall see soon that the operation of
deciding on which side of C a query point z lies—called discrimination of z

2.2 Point-Location Problems
	

49

U3

u = u1

ul

U5
1(u 2)

(a)
	

(b)

Figure 2.11 Examples of chains: (a) general, (b) monotone with respect to line 1.

against C-- -is relatively simple. Then, if C can be chosen so that the two parts
are of comparable complexity, by recursive splits we obtain a point location
method which performs a logarithmic number of discriminations. This im-
mediately poses two questions: (i) How easy is the discrimination of a point
against an arbitrary chain, and are there chains for which the discrimination
is easy? (ii) What is the difficulty of finding a suitable splitting chain?

With respect to the first question, one readily realizes that to discriminate
against an arbitrary chain is basically the same problem as to test for inclusion
in a general polygon. Thus, one should look for a restricted class of chains.
One such class is provided by the following definition.

Definition 2.2. A chain C = (u 1 ,... ,up) is said to be monotone with respect to
a straight line / if a line orthogonal to 1 intersects C in exactly one point.

In other words, a monotone chain C is of type (ii) as defined above, and the
orthogonal projections {1(u 1), ... , l(u p)} of the vertices of C on l are ordered
as 1(u 1), ... , 1(u p).

One such chain is illustrated in Figure 2.1 1(b). It is clear that, given a query
point z, the projection /(z) of z on / can be located with a binary search in a
unique interval (/(u ;), /(u;+1)). Next, a single linear test determines on which
side of the line containing u; ui+t the query point z lies. Thus, the discrimin-
ation of a point against a p-vertex chain is effected in time O(logp). 8

This efficiency is an enticement toward the use of monotone chains in point
location. Suppose that there is a set (6 = { C 1 , ... , C,. } of chains monotone with
respect to the same line 1 and with the following additional properties:

Property 1. The union of the members of (6 contains the given PSLG 9 ;

e Observe that monotone chains can be viewed as limiting cases of star-shaped polygons.

9 Notice that a given edge of G could belong to more than one chain in %.

50 	 2 Geometric Searching

Figure 2.12 An example of a regular PSLG.

Property 2. For any two chains C. and C; of (e, the vertices of C. which are not
vertices of C lie on the same side of C1 .

Such set ' is referred to as a monotone complete set of chains of G. Note that
Property 2 means that the chains of a complete set are ordered. Therefore, one
can apply the bisection principle (i.e., binary search) to ce, where the primitive,
rather than a simple comparison, is now a point-chain discrimination. Thus, if
there are r chains in ' and the longest chain has p vertices, then the search uses
worst-case time O(logp • log r).

But a crucial question is: given PSLG G, does it admit a monotone com-
plete set of chains? The answer is readily found to be negative. However, we
shall constructively show that a PSLG admits a monotone complete set of
chains, provided it satisfies a rather weak requirement. In addition, we shall
show that an arbitrary PSLG can be easily transformed into one to which the
chain construction procedure is applicable. This transformation creates some
new "artificial" regions, with no harm, however, to the effective solution of
the point location problem.

The weak requirement is expressed by the following definition.

Definition 2.3. Let G be a PSLG with vertex set {v 1 , ... , vN I, where the vertices
are indexed so that i < j if and only if either y(v 1) < y(v;) or, if y(v 1) = y(v;),
then x(v i) > x(v;). A vertex v; is said to be regular if there are integers i < j < k
such that (v i , v;) and (v; , vk) are edges of G. Graph G is said to be regular if each
v; is regular for 1 < j < N (i.e., with the exception of the two extreme vertices
y 1 and v N).

Figure 2.12 shows an example of a regular graph. We now show that a
regular graph admits a complete set of chains monotone with respect to the y-
axis. (Hereafter line 1 is assumed to be the y-axis of the plane.)

2.2 Point-Location Problems 	 51

To aid the intuition, imagine edge (v i , v;) to be directed from v i to v; if i < j.
Thus, we can speak of the sets IN(v ;) and OUT(v;) of incoming and outgoing
edges, respectively, of vertex v ; . The edges in IN(v;) are assumed to be ordered
counterclockwise, while those in OUT(v ;) are ordered clockwise. Due to the
hypothesis of regularity, both these sets are nonempty for each nonextreme
vertex. This fact enables us to show that, for any v; (j 0 1), we can construct
a y-monotone chain from v 1 to v; : this is trivial for j = 2. Assume the statement
is true for k < j. Since v; is regular, by Definition 2.3, there is some i < j such
that (v i , v;) is an edge of G. But, by the inductive hypothesis, there is a chain C
from v 1 to v i monotone with respect to the y-axis; clearly, the concatenation of
C and (v i , v;) is a y-monotone chain. To complete the proof we must show that
Properties 1 and 2 above hold. Let W(e), the weight of edge e, be the number
of chains to which e belongs. In addition, we let

WIN (v) = E W(e)
ee IN(U)

WouT(v) = E W(e)•
e e OUT(y)

Then all that is needed is to show that the edge weights can be chosen so that

(1) each edge has positive weight;
(2) for each v; (j 0 1, N), W IN (vi) =

Condition (1) ensures that each edge belongs to at least one chain (Property 1),
while Condition (2) guarantees that WIN (vi, chains pass through v; and can be
chosen so that they do not cross (Property 2). The realization of WIN = WOUT
is a rather classical flow problem [Even (1979)], and can be achieved by two
passes over G. After setting W(e) = 1 for each edge e, in the first pass—
from v to vN —we achieve WI N (vi) < WOUT(vi) for each nonextreme v i . In
the second pass--from vN to v1 —we achieve WIN(vi) ? W0UT(vi) , i.e ., the
desired balancing. Letting v IN (v) = IN(v) 1 and v ouT (v) = I OUT(v) !, here is
the algorithm:

procedure WEIGHT - BALANCING IN REGULAR PSLG
begin for each edge e do W(e) := 1; (*initialization*)

for i:= 2 until N — 1 do
begin WIN (v i) := sum of weights of incoming edges of v i ;

d1 := leftmost outgoing edge of v i ;

if (WIN(vi) > vouT(vi)) then W(d 1) := WIN(vi) — vOUT(Ui) + 1
end (*of first pass*);

for i:= N — 1 until 2 do
begin WouT(vi) := sum of weights of outgoing edges of v i ;

d2 := leftmost incoming edge of v i ;
if (WouT(vi) > WIN (vi)) then W(d 2) := WouT(vi) —

WIN(vi) + W(d2)
end (*of second pass*)

WOUT(v;)•

end.

52 	 2 Geometric Searching

(a)
	

(b)

(c)
	

(d)

Figure 2.13 Construction of W for the PSLG of Figure 2.12. Edge labels are the edge
weights after initialization (a), first pass (b), and second pass (c). The set of chains is
displayed in (d).

This algorithm clearly runs in time linear in the number of edges and
vertices of G. The procedure can be appropriately modified so that the
construction of W, i.e., the assignment of edges to chains, is done during the
second pass. For brevity we omit these details and show in Figure 2.13(a)—(d)
the edge weight configurations after the initialization, the first pass, and the
second pass, together with the display of ' for the PSLG of Figure 2.12. This
completes the proof that a regular PSLG admits of a monotone complete set
of chains.

Before analyzing the performance of the method, it is important to illus-
trate how to transform an arbitrary PSLG into a regular one. Consider a
nonregular vertex y of G that, say, has no outgoing edge (see Figure 2.14). A
horizontal line through v intercepts, in general, two edges e l and e 2 of G
adjacent to v on either side. (Note that since v is nonextreme, at least one of
these intercepts must exist.) Let v i be the upper endpoint of edge e• (i = 1, 2),
and let v* be the one with smaller ordinate (v 2 in our example). Then the
segment vv* does not cross any edge of G and therefore can be added to the
PSLG, thereby "regularizing" vertex v. This observation is crucial to the tech-
nique, which is a vertical plane sweep (see Section 1.2.2). Specifically, we

2.2 Point-Location Problems
	

53

Figure 2.14 Illustrations of a typical nonregular vertex v.

sweep from top to bottom to regularize vertices with no outgoing edge and
from bottom to top to regularize the other type. Considering just the first case,
the event-point schedule is just the sequence (v N , vN _ 1 , ... , v l) of vertices. The
sweep-line status structure (to be realized as a height-balanced tree) gives the
left-to-right order of the intersections of the sweep-line with the PSLG and, in
addition, it keeps for each interval in this partition a vertex (with lowest
ordinate in that interval). In the sweep, for each vertex y reached we perform
the following operations: (1) locate vin an interval in the status structure (by
abscissa); (2) update the status structure; (3) if y is not regular, add an edge
from v to the vertex associated with the interval determined in (1). We leave it
as an exercise to construct a more formal algorithm. Notice that regularization
of an N-vertex PSLG is accomplished in time O(N log N), due to the possible
initial sorting of the vertex ordinates and to the location of N vertices in the
status structure, each at O(log N) cost. We state this fact as a theorem for
future reference.

Theorem 2.5. An N-vertex PSLG can be regularized in time O(N log N) and
space 0(N).

Figure 2.15 A regularized PSLG. Broken-line edges are added in the top-to-bottom
sweep; dotted edges in the bottom-to-top sweep.

54
	

2 Geometric Searching

N/2 vert ices

(a)
	

(b)

Figure 2.16 Examples of worst-case PSLGs.

In Figure 2.15 we show the result of regularization on the PSLG of Figure
2.8.

After establishing that the chain method is applicable—possibly after
regularization—to any PSLG, we now analyze its performance. We have
already established an 0(logp • log r) = 0(log2 N) worst-case upper bound to
the search time. This bound is attainable, since there are N-vertex PSLGs with

O(✓N) chains, each with O(✓N) edges (see Figure 2.16(a) for N = 16).
Next consider the PSLG of Figure 2.16(b). This graph contains, in its

complete chain set, N/2 chains each of which has N/2 edges. At first sight, this
example is worrisome as regards the storage requirements of the method,
since it seems to indicate a discouraging 0(N 2) behavior! Things are not
nearly as bad, however, due to the particular use the algorithm makes of
chains. Indeed, chains are used in a binary search scheme. A binary search
algorithm on a totally ordered set S induces a natural hierarchy on S, repre-
sented by a rooted binary tree; an actual search corresponds to tracing a root-
to-leaf path in this tree. If we naturally number the chains, say, from left to
right, then if an edge e belongs to more than one chain it belongs to all
members of a set (an interval) of consecutive chains. Now suppose we assign
the chains to the nodes a binary search tree. If an edge e is shared by the chains
of an interval, then there is a unique member C* in this interval which, in the
search tree, is a common ascendant 10 of all other members of the interval. Let
C be any such other member; then the discrimination of a point z against C is
preceded—in the binary search scheme—by the discrimination of z against
C. It follows that edge e may be assigned to C* alone, and precisely it will be
assigned to the hierarchically highest chain to which it belongs. As an example,
this assignment is illustrated in Figure 2.17. Notice the presence of bypass
pointers in Figure 2.17(c); however there are no more bypass pointers than there

'According According to standard terminology, a vertex v ; of a rooted tree T is an ascendant or ancestor of
a vertex v; if there is a path from the root of T containing both v ; and v; and v ; is closer to the root.

2.2 Point-Location Problems
	

55

(a)
	

(b)

Figure 2.17 A complete set of monotone chains (a) is searched according to the
hierarchy expressed by a binary tree (b). Bypass pointers are shown as broken lines (c).

are edges, whence we conclude that the entire search structure can be stored in
0(N) space.

We summarize this discussion by saying that the search data structure for
the chain method consists of a primary component (a binary tree), each node
of which corresponds to a member of the complete set of chains and has a
pointer to a secondary structure. Each secondary data structure is itself a
binary search tree, organizing the edges of the chain explicitly assigned to that
node (referred to sometimes as the "proper" edges of the chain).

As to preprocessing, we conservatively assume that the PSLG G is given as
a DCEL data structure, as described in Section 1.2.3.2. Since in time linear in its
size we can obtain the edge cycle around any vertex y of G, the construction of
IN(v) and OUT(v), for each y, is completed in time 0(N).

The weight-balancing procedure also runs, as we observed, in time 0(N).
Considering that a possible preliminary regularization pass also uses time
0(N log N), we conclude that the preprocessing task is completed in time
0(N log N). In summary

56 	 2 Geometric Searching

Theorem 2.6. Point-location in an N-vertex planar subdivision can be effected in
0(log2 N) time using 0(N) storage, given O(N log N) preprocessing time.

At the beginning of this section, we indicated that the chain method makes
use of a new simple type of simple polygon. Such polygons are characterized
by the following definition.

Definition 2.4. A simple polygon is said to be monotone if its boundary can be
decomposed into two chains monotone with respect to the same straight line.

Monotone polygons are very interesting geometric objects. It follows
trivially from the present discussion that inclusion in an N-vertex monotone
polygon can be decided in time 0(log N); we shall see later that both to
triangulate a monotone polygon and to decide if a simple polygon is mono-
tone are tasks that can be carried out in optimal time 0(N).

2.2.2.3 Optimal techniques: the planar-separator method, the
triangulation refinement method, and the bridged chain method

The existence of a method exhibiting 0(log N) search time and using less than
quadratic storage has been for quite some time an outstanding problem. This
question was settled affirmatively by the remarkable construction of Lipton
and Tarjan (1977a, 1977b, 1980). Emphasis must be placed on the phrase
"existence of a method." Indeed, the technique is so formidable and its
performance estimates are so generously favored by the "big oh" notation
that Lipton and Tarjan themselves expressed the following caveat (1977b):
"We do not advocate this algorithm as a practical one, but its existence
suggests that there may be a practical algorithm with 0(log N) time bound
and 0(N) space bound." The description of this considerably elaborate
technique is beyond the scope of this book. Instead we shall consider two
recently proposed optimal techniques, which represent answers to the
expectations of Lipton and Tarjan. The first one—the triangulation
refinement method [Kirkpatrick (1983)] promises to develop into a practical
algorithm. The second one [Edelsbrunner—Guibas—Stolfi (1986)] is an elegant
refinement of the chain method and appears to be quite practical. Both
methods are described in some detail in this section.

The "triangulation refinement technique" is due to Kirkpatrick. The
N-vertex PSLG is assumed to be a triangulation (see Section 1.3.1); in case it
is not a triangulation to begin with, it can be transformed into one in time
O(N log N) by a simple algorithm to be described in Section 6.2.2. Recall that
a triangulation on a vertex set V, embedded in the plane, is a PSLG with the
maximum number of edges, which is at most 31 VI — 6, by Euler formula. In
addition—for reasons to be soon apparent—it is convenient to inscribe the
triangulation within a triangular boundary, by creating an inscribing triangle
and triangulating the region inbetween (see Figure 2.18). With this provision,
all triangulations to be considered have a 3-vertex boundary and exactly
31 VI — 6 edges.

2.2 Point-Location Problems
	 57

(b)

Figure 2.18 A given triangulation (a) and the same triangulation within an inscribing
triangle (b).

Let an N-vertex triangulation G be given and suppose we construct a
sequence of triangulations S1 , S2, ... , Sh(N), where S1 = G and Si is obtained
from S; _ 1 as follows:

Step (i). Remove a set of independent (i.e., nonadjacent) nonboundary
vertices of S; _ 1 and their incident edges (The choice of this set, to be
specified later, is crucial to the performance of the algorithm.);

Step (ii). Retriangulate the polygons arising from the removal of vertices and
edges.

Thus, Sh(N) has no internal vertices (i.e., it consists of just one triangle).
Notice that all triangulations Si, S2, ... , Sh(N) have the same boundary,

since in Step (i) we are removing only internal vertices. Triangles, which are
the basic constituents of the technique, are referred to with subscripted R's. A
triangle R. may appear in many triangulations; however, R. is conventionally
said to belong to triangulation Si (denoted R. e *Si) if R. is created in Step (ii)
while constructing Si .

We now build a search data structure T, whose nodes represent triangles.
(For brevity we shall frequently refer to a node as "a triangle R." rather than
to "the node representing triangle Ri".) Structure T, whose topology is that of
a directed acyclic graph, is defined as follows: There is an arc from triangle Rk
to triangle R. if, when constructing Si from Si _ 1 , we have:

1. Ri is eliminated from St _ 1 in Step (i);
2. Rk is created in Si in Step (ii);
3. R; n Rk 0 0.

Obviously the triangles in Si have no outgoing arcs and are the only ones with
this property.

It is convenient, for explanatory purposes, to display T in a stratified
manner, i.e., by displaying the nodes in horizontal rows, each row corre-
sponding to a triangulation. A sequence of triangulations is shown in Figure
2.19(a); the encircled vertices are those which are removed at each step. The
corresponding structure T is illustrated in Figure 2.19(b).

Once T is available, it should be clear how point location proceeds. The

58 	 2 Geometric Searching

13 14
	

17

(a)

(b)

Figure 2.19 A sequence of triangulations (a) and the corresponding search-directed
acyclic graph (b).

primitive operation is "inclusion in a triangle," which is obviously carried out
in 0(1) time. The initial step consists in locating the query point z in Sh(N).

Next, we trace a downward path in T and eventually stop at a triangle
belonging to S1 . The construction of this path proceeds as follows: once we
have reached a node in the path (i.e., we have located z in the corresponding
triangle) we test z for inclusion in all of its descendants; since z is included in
exactly one descendant, this advances the path one more arc. We may also view
the search as the successive location of z in triangulations Sh(N) , Sh (N) -1 ,
since Si _ 1 is a refinement of Si , this justifies the name of the technique.

Less informally, we assume that all descendants of a node y of T be
arranged in a list F(v), and let TRIANGLE(v) denote the triangle corre-
sponding to node v. We then have the following search algorithm:

procedure POINT-LOCATION
begin if (z TRIANGLE(root)) then print "z belongs to unbounded region"

else begin y := root;
while (fly) 0 0) do

for each u E F(v) do if (z E TRIANGLE(u)) then v := u;
print y

end
end.

2.2 Point-Location Problems 	 59

As mentioned earlier, the choice of the set of triangulation vertices to be
removed in constructing Si from Si _ 1 is crucial to the performance of the
technique. Suppose we are able to choose this set so that, denoting by Ni the
number of vertices of Si , the following properties hold:

Property 1. N; = a;Ni _ 1 , with a; < a < l for i = 2, ..., h(N).

Property 2. Each triangle Ri e Si intersects at most H triangles in S; _ 1 , and vice
versa.

Property 1 would have the immediate consequence that h(N) < f log 1/ Ni =
0(log N), since in going from S; _ 1 to Si at least a fixed fraction of the vertices
is removed. Properties 1 and 2 would jointly imply 0(N) storage for T. Indeed,
observe that this storage is used for nodes and for pointers to their descen-
dants. As a corollary of Euler's Theorem on planar graphs, Si contains
F < 2N; triangles. The number of nodes in T representing triangles of Si is at
most F (only the triangles actually "belonging" to Si appear on the corre-
sponding tier.), whence fewer than

2(N1 + N2 + • • • + NhoN)) < 2N1 (l + a + a 2 + 	+ crew") < 	 2N
1—a

nodes appear in T (note that N1 = N, by definition). As regards the storage
used by pointers, by Property 2 each node has at most H pointers, whence less
than 2HN/(1 — a) pointers appear in T. This justifies the claim.

We must now show that there is a criterion for selecting the set of vertices
to be removed which achieves Properties 1 and 2. The criterion is (here K is an
integer, to be carefully chosen): "Remove a set of nonadjacent vertices of
degree less than K." The order in which the vertices are inspected and possibly
removed is irrelevant: one starts arbitrarily with one, and marks its neighbors
(they cannot be removed); then one continues until no more vertices are
unmarked.

This criterion does the trick. Indeed, Property 2 is trivially enforced. Since
removal of a vertex of degree less than K gives rise to a polygon with less than
K edges, each of the replaced triangles intersects at most K — 2 " H new
triangles. To verify Property 1 it is necessary to use some properties of planar
graphs. Although it is possible to develop a more detailed analysis leading to
better results, the following arguments are adequate to prove the point.

i. From Euler's formula on planar graphs, specialized for a triangulation
with a 3-edge boundary, the numbers N of vertices and e of edges are
related by

e = 3N — 6.

ii. Unless there are no internal vertices (in which case the problem is trivial),
each of the three vertices on the boundary has degree at least three. Since

60 	 2 Geometric Searching

there are 3N — 6 edges, and each edge contributes 2 to the total vertex
degree, the total vertex degree is < 6N. This immediately yields that there
are at least N/2 vertices of degree less than 12. Therefore let K = .12. Let y

 be the number of selected vertices: since each selected vertex may eliminate
at most K — 1 = 11 adjacent vertices and the three boundary vertices are
nonselectable, we have

1 N
v>

12 2 -3

If follows that a 	1 — 1/24 < 0.959 < 1, thus proving the previous claim.
Of course, this coarse analysis yields an estimate of a unrealistically close
to 1, and the performance of the technique, as indicated by the analysis,
appears worse than experiments seem to indicate.

Theorem 2.7. Point location in an N-vertex planar subdivision can be effected
in 0(log N) time using 0(N) storage, given 0(N log N) preprocessing time.

An alternative proof of this theorem is afforded by the refinement of the
chain method proposed by Edelsbrunner, Guibas, and Stolfi (1986). This
improved technique will be referred to here as bridged chain method, for
reasons that will become apparent below.

To gain some motivation, it is apparent that in the original chain method
illustrated in Section 2.2.2.2 the search operation is inefficient because, when
performing the appropriate sequence of point-chain discriminations, no use
is made of the accumulated information. In other words, if chain C is not the
first one to be encountered in a point location process, our a priori uncertainty
on the position of z is theoretically confined to the intersection of the vertical
spans of the segments against which a discrimination has already been per-
formed, which is typically smaller than the entire vertical span of the sub-
division. However, the procedure outlined in Section 2.2.2.2 does not capitalize
on the available information, and performs each discrimination with the same
original maximum a priori uncertainty.

To obviate this shortcoming, Edelsbrunner, Guibas, and Stolfi elegantly
applied to the chain method of Lee—Preparata (1977) a data structuring device
first proposed by Willard (1978) and Lueker (1978) in connection with some
range search problems, to be described in Section 2.3.4. This device was
originally called layering, although "bridging" appears to be a more appro-
priate denotation.

When applicable, bridging is a mechanism that permits the execution of a
sequence of searches at a constant cost per search, except for the first one. To
be applicable, it is necessary that the searches be performed on subsets of the
same universal totally ordered set U. This condition is certainly met in our
case, since each chain is described by the dictionary of the ordinates of its
vertices; thus, the ordinates of the N vertices of the subdivision form our
universal set U. Another necessary condition for the realizability of bridging

2.2 Point-Location Problems 	 61

is that the possible schedules of searches (in our case, the admissible sequences
of point-chain discriminations) be adequately constrained, that is, that the
number of searches that may follow a given search be sufficiently small. This
second condition is also met by the chain method, since the possible search
schedules are in a one-to-one correspondence with the root-to-leaf paths in
the primary search tree, that is, each non-leaf node of this tree has its two
children as its only possible successors. The idea is therefore to establish
"bridges" (whence the term "bridging") from the secondary data structure of
a node to the secondary data structures of its two offsprings, in order to guide
the search in the latter.

Less informally let v be a node of the primary search tree and let C(v) be
the sequence of the ordinates of the extremes of the PSLG edges assigned to
node v (i.e., to the chain associated with node v). The interval between two
consecutive elements of C(v) is either the vertical span of a PSLG edge or
corresponds to a bypass pointer (refer to Figure 2.17(c)), also called a gap.
Bridges introduce new elements—as we shall see—so that each original list
C(v) is expanded to an augmented list T(v) C(v). Let u and v be two nodes
of the primary tree so that u = FATHER [v]. Between u and y we establish a
set Br(u, v) of bridges, relative to arc (u, v) where a bridge in Br(u, v) is a link
between two elements respectively in T(u) and T(v), both corresponding to
the same value ye U (refer to Figure 2.20). We also stipulate that each element
of T(v) has four pointers: PRED, to its predecessor in T(v); LBRIDGE, to the
bridge of Br(v, LSON[v]) closest but not to its left; RBRIDGE, to the bridge
of Br(v, RSON[v]) closest but not to its left; PROPER, to the element of
C(v) closest but not to its left. In addition, each element of T(v) — C(v) has a
pointer BRIDGE to its corresponding element either in T(LSON[v]) or
T(RSON [v]). For each node v of the primary search tree to be visited by the
search process, the bridging scheme simply provides a mechanism to locate
the query ordinate y(z) between two consecutive elements (i.e., within an
interval) of C(v); this interval is either an edge or a gap, and the selection of
the next node w to be visited is performed exactly as in the original algorithm.

Figure 2.20 Illustration of the bridging from the secondary data structure of a
primary node u to the secondary data structures of its offsprings y and w. Elements of
the original lists are shown as hollow circles.

62 	 2 Geometric Searching

Let u and y be two nodes of the primary tree, with y = LSON [u]. Assume
that y(z) has been located in T(u) and that y is the next node to be visited by
the search process (without loss of generality). Assume also that the number
of elements occurring in T(v) between two consecutive bridges of Br(u, v)
(including the bridge element to the right) is bounded by a constant d. To
locate y(z) in T(v), we follow the path illustrated in Figure 2.20: through the
pointer LBRIDGE we reach the closest bridge towards node y, we traverse
this bridge, and then, by following the pointer PRED, we uniquely locate y(z)
within an interval of T(v); finally, from the right element of this interval,
pointer PROPER will send us to the correct element of C(v), as prescribed.
Notice that we have made use of at most d + 2 = O(1) pointers, so that the
search in T(v) (and in C(v)) has been completed in O(1) incremental time.
Therefore, assuming that the above condition on the bound on the number
of elements between consecutive bridges holds for each node distinct from the
root, point location consists of an 0(log N)-time search in T(root), followed
by (log e Ni — 1 searches corresponding to a root-to-leaf path of the tree, each
costing O(1) time. Thus the point location time is optimally ©(log N).

We now show that the bridging scheme can be realized with d = O(1) while
still maintaining linear storage. (Note, however, that the condition d = 1
corresponds to T(u) = U for each node u of the primary tree, for a total storage
O(N 2). Thus we must have d > 1.)

The construction of the bridging structure proceeds from the leaves to the
root of the primary tree. For each leaf u, we let T(u) = C(u). When u is not a
leaf, let y = LSON[u] and w = RSON[u], and assume inductively that T(v)
and T(w) have been constructed. For some integer d >— 2, we let T'(v) denote
the subsequence of period d of T(v), starting with the d-th element from the
left of T(v) and completed with the rightmost element of T(v), if not itself part
of T'(v): clearly I T'(v)I = Fl T(v)I/d]. Each element of T'(v) is identified with a
bridge from u to y, i.e. T'(v) is added to the original list C(u) of u. Analogously,
we construct T'(w) for w = RSON[u]. It follows that T(u) = C(u) v T'(v) v
T'(w) and

I T(u)I = I C(u)1 + I T'(v)I + I T(w)1 < IC(u)I + (I (T(v)I + I T(w)I)/d + 2.

Summing over all nodes u, and denoting by n = 0(N) the number of nodes of
the tree, we readily obtain:

EIT(u)I <EIC(u)I + d EI T(u)I — IT(root)I + 2n
u 	u 	 u

1—
d

1 E I T(u)I < E IC(u)1 + 2n

E I T (u)I < d d 1 	
C(u)I + 2n = 0(N).

This shows that the bridging mechanism can be set in place, for d > 2, while
maintaining storage proportional to E 1001 = 0(N), and provides an alter-
native proof of Theorem 2.7.

2.2 Point-Location Problems 	 63

2.2.2.4. The trapezoid method

Although the question of an optimal point-location method had been settled
on the theoretical level, and practical optimal algorithms have been presented
in the literature, as described in the preceding section, still a more attractive
technique may not be one whose worst-case behavior is asymptotically
optimal, as noted in Section 1.2.1. In other words, a compromise approach
having a straightforward search procedure possibly at the expense of a slightly
suboptimal storage use, may be a desirable objective. The "trapezoid method,"
to be illustrated now, is likely to fit these specifications [Preparata (1981);
Bilardi–Preparata (1981)1. 11

There is more than one way to capture the informal idea of the method.
Perhaps the most natural one is to view it as an evolution of the slab-method of
Dobkin–Lipton, described in Section 2.2.2.1. As noted earlier, this technique
has an extremely simple O(log N) search procedure, but is plagued with an
0(N 2) worst-case storage use. The latter is due to the possible presence of
"long" PSLG edges, where by long edge we mean one that crosses several
slabs and is therefore segmented into as many fragments. An interesting fact is
that long edges—a bane for the slab method—may turn into a boon for the
trapezoid method. Indeed a long edge e may conveniently partition the PSLG
so that the horizontal slabs on either side of e form two totally independent
structures (whereas in the Dobkin–Lipton method a slab extends on either
side of e). As a result, the plane will be partitioned into trapezoids defined as
follows.

Definition 2.5. A trapezoid has two horizontal sides and may be bounded or
unilaterally unbounded or bilaterally unbounded; the other two sides—if they
exist—are (portions of) PSLG edges, and there is no PSLG edge crossing the
interiors of both horizontal sides.

The search proceeds by locating the query point through a sequence of
nested trapezoids, until it terminates in a trapezoid void of PSLG edges or
portions thereof. We shall show that with this approach an edge is segmented
in the worst case into fewer than 2 log e N fragments, thereby substantially
improving the storage behavior while maintaining the 0(log N) search time
of the Dobkin–Lipton method (with an insignificant deterioration of the
constant).

The trapezoid technique does not require that the graph be triangulated;
indeed, as we shall see later, it does not even require that the edges be
rectilinear. However, for the time being, we assume we have a PSLG G. The
vertex set V of G is ordered according to increasing ordinate, while the edge set
E is ordered consistently with the following (partial ordering) relation "-<":

Definition 2.6. Given two edges e t and e 2 in E, e t -< e2 (read "e l to the left of
e 2 ") denotes that there is a horizontal line intersecting both and the intersec-

'' Experimental observations reported in [Edahiro et al. (1984)], confirm this expectation.

Upper slice
R2

Median line
Y = Ymed

Lower slice
R1

(a)

(b)

64 	 2 Geometric Searching

Figure 2.21 The trapezoid R of (a) is partitioned into trapezoids R 3 , R 4 , R 5 , R 6 and
R 7 , as shown in (b).

tion with e, is to the left of the one with e 2 . (We shall discuss later how this
ordering can be algorithmically obtained (Remark 1).)

The basic mechanism, which constructs the search data structure, processes
one trapezoid R at a time, and aims at partitioning R into as many trapezoids
as possible. This is done by initially cutting R into "lower" and "upper" slices
R, and R2 by means of a horizontal line through the PSLG vertex whose
ordinate is the median in the set of vertices internal to R. Each of these slices,
R, and R2, although geometrically a trapezoid, is not one in the technical
sense of Definition 2.5, since it may have PSLG edges crossing both horizontal
sides, called spanning edges. Next, each edge that spans either slice 12 deter-
mines a further cut of it.

The action develops as follows. After determining the median line y= Ymed
of the trapezoid R (see Figure 2.21), the string of PSLG edges that intersect R
is scanned from left to right and split into two strings, pertaining to slices R 1
and R2, respectively. In this process, as soon as a spanning edge of either slice

12 No edge can span both R I and R2, otherwise it would span the trapezoid R, contrary to the
definition.

2.2 Point-Location Problems
	 65

below 'I above

T (R 1 : _

left 	right

T(R 4) 	T(R 5)

Figure 2.22 The search data structure corresponding to the trapezoid of Figure 2.21.

is encountered, this edge is the right boundary of a new trapezoid, which can
in turn be processed. Processing a trapezoid is trivial when its interior is empty
(no PSLG edge crossing it).

The search data structure corresponding to the trapezoid of Figure 2.21 is
illustrated in Figure 2.22. To each trapezoid R there corresponds a binary
search tree T(R), each node of which is associated with a linear test. It is
convenient to distinguish the nodes into two types: V-nodes, if the associated
test corresponds to a horizontal line, and 0-nodes, if the associated test
corresponds to the straight line containing a PSLG edge. Clearly the root of
T(R) is always a V-node. Notice also that a V-node corresponds uniquely to a
vertex of the PSLG, specifically the vertex whose ordinate is the median of
vertex ordinates in the trapezoid. Since the two extreme vertices of the PSLG
are not involved in trapezoid partitioning, there will be exactly (N — 2) V-
nodes in the search tree.

Less informally, the function TRAPEZOID that constructs the search tree
accepts as its input a string E of PSLG edges, the sequence of vertices internal
to R ordered by increasing ordinate, and the y-interval I of the trapezoid R.
The procedure makes use of some auxiliary actions—such as "find median"
and "balance"—which will be described later. E 1 , E2, U1, and U2 are lists
internal to the algorithm.

1 function TRAPEZOID (E, V, I)
2 begin if (V = 0) then return A (*a leaf of the search tree*)

	

3 	else begin E1 := E2 := V1 := V2 := U:= 0;

	

4 	 Ymed median ordinate of V;

	

5 	 Il := [min(/), Ymed]; I2 	[Ymed, max(I)];

	

6 	 repeat e G E;

	

7 	 for i = 1, 2, do

	

8 	 begin if (e has endpoint p in interior of R.)
then

	

9 	 begin Ei G e;

	

10 	 V := V v {p}
end;

66 	 2 Geometric Searching

11 	 if (e spans R.) or (e = A) then
12 	 begin Ui G TRAPEZOID(E i , V, Ii);
13 	 if (e A) then Ui e;
14 	 Ei := l: — 0

end
end

15 	 until e = A;
16 	 new (w); (*create a new V-node w, the root of T(R)*)
17 	 Y[w] 	Ymed; (*discriminant for node w*)
18 	 LTREE[w]:= BALANCE(U 1);
19 	 RTREE[w] := BALANCE(U2) (*function BALANCE

takes an alternating sequence of trees and edges and
arranges these items into a balanced tree*)

return Tree[w]
end

end.

In this algorithm we distinguish three major activities:

i. the determination of the median ordinate of the vertices internal to R;
ii. the partitioning of the upper and lower slices into trapezoids and the

production for each slice R i (i = 1, 2) of a string Ui , whose terms are edges
and trees (in our example, U2 = T(R 3)e 1 T(R 4)e3 T(R 5) and U1 =
T(R 6)e 2 T(R 7)). This is the bulk of the work and is done by the repeat-loop
in lines 6-15.

iii. the balancing of the two strings U1 and U2 (lines 18 and 19).

The first activity could be carried out, in principle, in time 0(1 VI) by the
classical median-finding algorithm. However, there is a simpler and more
straightforward way. The vertices in the trapezoid are arranged in an array by
increasing ordinate. (The median of this array can be found by a single access.)
The modification to TRAPEZOID goes as follows. The edge sequence is
scanned twice. In the first pass each vertex is simply marked with the name of
the trapezoid it is assigned to; using these markings in a straightforward way
we construct the vertex array for each generated trapezoid. In the second pass,
repeat-loop 6-15 is executed (with line 10 suppressed).

The auxiliary function BALANCE arranges an alternating string of trees
and edges U = T1 e 1 T2 e 2 ... eh _ 1 Th in a balanced tree. Each tree T has a
weight W(T) > 0, equal to the number of PSLG vertices contained in the
corresponding trapezoid. The weight W(U) of U is equal to Eri=1 W(7;).
BALANCE operates as follows:

1. If W(U) = 0 (i.e., U = e1 e 2 ... eh _ 1), arrange the ei 's in a balanced tree.
else 2.1. Determine an integer r so that Et=1 W(T) < W(U)/2 and

E;=1 W(Ti) >_ W(U)/2
2.2. Construct a tree as in Figure 2.23(a), where U' = T1 e 1 ... Tr _ 1

and 	U" = Tr+1 er+1 • • • Th 	and 	z ' = BALANCE(U'), 	-r" =

T ir T " r

2.2 Point-Location Problems
	 67

Tr

(a)
T

I t

(b)

Figure 2.23 Illustration of the balancing operation.

Spanning edges f ir I f - 	 ,

ylT ,1 	
/ / Original

trapezoid

I 	 i

Figure 2.24 Illustration for the proof that h < N (h = number of new trapezoids).

BALANCE(U"). (Note that W(U') < W(U)/2 and W(U") <
W(U)/2.)

BALANCE clearly runs in time 0(h log h). Indeed, the split (U', T„ U") is
obtained in time 0(h) and is followed by two recursive calls of the procedure

on a dichotomy of the original string.

But even more interesting is the analysis of the depth of the balanced trees.

Observe at first that h, the number of tree-terms in string U, is less than N,
where N is, as usual, the number of vertices of the PSLG. Indeed, referring to

Figure 2.24, the number h of new trapezoids is one more than the number of

edges spanning the original trapezoid. The latter is bounded above by the

number of edges that can be cut by a single straight line. We now observe that

these edges could be viewed as "diagonals" of a simple polygon (shown in

dotted outline in Figure 2.24). If this polygon has s vertices, there are at most

s — 3 diagonals (this happens when the diagonals determine a triangulation

of the polygon). Since s < N (the number of vertices of the PSLG), we obtain

h < s — 2 < N — 2. Next we can prove the following theorem.

1
i

^
i
i
►
i
I

I
i

Theorem. Given the string U = Ti e 1 ... en _ 1 Th, the depth 6(U) of the tree
obtained by BALANCE(U) is at most 3 log 2 W(U) + flog 2 Ni + 3.

/

/
/

/

Trapezoid R" 	
Trapezoid R

j

Median line of R'

Trapezoid R'

r 	Median lineof R
First
cut

68 	 2 Geometric Searching

PROOF. By induction on W(U). We start the induction with W(U) = 1. In this
case, BALANCE yields a tree as in Figure 2.23(a), where z' and z" are possibly
empty and 7; is as in Figure 2.23(b). Here Tr and 7;" consist each of at most N
0-nodes. Thus the depth of the tree is at most Flog 2 Ni + 3, and the theorem
holds. Letting W(U) = K (a positive integer), we assume the theorem holds
for all weights less than K. We distinguish two cases:

Case 1. W(7;) < K/2. Since also W(U'), W(U") < K/2 by the inductive
hypothesis 8(U'), 8(U"), (5(7;) _< 3 log 2 K/2 + flog 2 hi + 3 <
3 log 2 K — 3 + flog2 Ni + 3, so that the arrangement of Figure
2.23(a) extends the inductive hypothesis.

Case 2. W(T;) > K/2. Since W(U'), W(U") < K/2, we argue for z' and z" as in
Case 1. As to Tr , we observe that it corresponds to a trapezoid. Thus,
by the action of procedure TRAPEZOID, 7; has the structure il-
lustrated in Figure 2.23(b), where T,.' and 7;" are themselves balanced
trees, and, because of the median partitioning, W(7;'), W(7;") <
W(7;)/2 < K/2. Therefore for some h" < N, 8(7;'), 8(7;") <
3 log W(7;)/2 + Flog 2 h"1 + 3 <_ 3 log K — 3 + Flog2 Ni + 3, which
completes the proof. El

Since W(U) < N for the PSLG, we conclude that the depth of the search tree
for the PSLG is at most 4(log 2 Ni + 3.

Finally, we consider the repeat- loop of procedure TRAPEZOID. For each
edge scanned (i.e., extracted from list E), the procedure performs a bounded
amount of work expressed by lines 6 and, alternatively, 8-10 or 12-14.
Therefore the global work done by the loop is proportional to the total
number of edge fragments produced by the algorithm. We shall now estimate
an upper bound for this number. Referring to Figure 2.25, an edge is cut for
the first time when its endpoints lie in distinct slices determined by a median
line of a trapezoid R. After this cut, the upper fragment falls in a trapezoid R'.
If the median line of R' cuts e (worst-case) then e spans the lower slice of R' and

Figure 2.25 Illustration of the edge-segmenting mechanism.

2.2 Point-Location Problems
	

69

(a)
	

(b)

Figure 2.26 Illustration of the computation of relation "-<," as a result of process-
ing vertex v. In case (a), pair (e 1 , e 2) is generated; in case (b), pairs (e 1i e2), (e2 , e3), and
(e 3 , e4) are produced.

further cuts can occur only in the upper slice of R'. Analogously we argue for
the fragment of e in the lower slice of R. Thus, expressing the number of cuts of
the upper fragment of edge e as a function c(s') of the number s' of vertices of
R', we have the crude bound

c(s') < 1 + c(s"),

where s" is the number of vertices of trapezoid R" as shown in Figure 2.25.
Since s" < s'/2, we obtain that c(s') < loge s', and, because s' < N/2, the total
number of cuts of e is at most 2 log 2 N — 2. This estimate proves two results:
first, the total work done by the repeat-loop is O(Nlog N), since there are
0(N) edges and each edge is segmented into 0(log N) fragments. Since both
the median-finding and the balancing tasks run globally in time 0(Nlog N),
the entire construction of the search data structure is completed in time
O(N log N). Second, the search data structure has an 0-node for each edge
fragment and a V-node for each vertex; thus the storage used is also
O(N log N). 13 In summary

Theorem 2.8. A point can be located in an N-vertex planar subdivision with fewer
than 4log2 N tests, using O(N log N) storage and preprocessing time.

Remark 1. Earlier we deferred discussion of how the edge set E can be ordered
consistently with the partial ordering "-<" given in Definition 2.6. The
technique that can be used to achieve this objective is a simple modification of
the plane-sweep described in Section 2.2.2.2 to "regularize" a planar graph.

In a top-to-bottom sweep, the vertices of G are scanned and the sweep-line
status is updated as described earlier. The byproduct of the sweep is the
recording of all edge adjacencies obtained either as a result of deletions or of
insertion of edges. An edge adjacency is expressed by an ordered edge pair,
(left, right) (see Figure 2.26), which turns out to be a pair of the transitive
reduction "- <" of the partial ordering in question. Obviously, if G has N

13 In the worst case, the storage utilization is unequivocally O(Nlog N). However, in a spec-
ialized instance of PSLG [Bilardi—Preparata (1981)] the average-case storage is 0(N) and it is
conjectured that the same average-case behavior applies to general PSLGs.

70 	 2 Geometric Searching

vertices, relation "-<-<" can be computed in time O(N log N). Once "^-<" is
available, the consistent orderings can be obtained in time 0(N) by a standard
topological sorting technique [Knuth (1968), p. 262].

Remark 2. The described method is not restricted to PSLGs. Indeed the

straight-line segments may be replaced by other curves if the following two

properties hold: (i) the curves are single valued in one selected coordinate

(say, y) and (ii) the discrimination of a point with respect to any such curve

can be done in constant time. For example, these conditions are clearly met by

arcs of circles or other conics, if they have no horizontal tangent except at

their extremes. To adapt Kirkpatrick's method (Section 2.2.2.3) to this situa-
tion apparently presents substantial difficulties, because of the need to retrian-
gulate a polygon with curvilinear edges.

2.3 Range-Searching Problems

2.3.1 General considerations

As we indicated in Section 2.1, range-searching problems may be viewed as

dual, in some sense, of the point-location problems we have discussed so far.

Here the file is a collection of records, each of which is identified by an

ordered d-tuple of "keys" (x 1 , x 2 , ... , xd). We naturally view a d-tuple of keys
as a point in a d-dimensional Cartesian space. Several user actions—or

queries—are conceivable on such a file. However, in the present context we

shall deal exclusively with range queries. The query specifies a domain in the d-
dimensional space and the outcome of the search is to report the subset of the
file points contained in the query domain. An alternative, more restrictive,

search objective is simply to count the number of points in the query domain.
(A unifying framework for these two types of problems is one where each of

the records is associated with an element of a commutative semigroup with an

operation "*", and the query executes "*" over all records in the query range.

Thus, in the report mode each record is associated with its name and "*" is set

union; in the count mode each record is associated with the integer 1 and "*" is

ordinary addition [Fredman (1981)].)
The Cartesian space formulation is the abstraction of a variety of very

important applications, often referred to as "multikey searching" [Knuth

(1973), Vol. 3]. For example, the personnel office of a company may wish to
know how many employees whose age is between 30 and 40 years earn a salary

between $27,000 and $34,500. Aside from this somewhat contrived example,

applications of this nature arise in geography, statistics [Loftsgaarden and

Queensberry (1965)], and design automation [Lauther (1978)].

Returning to our abstract problem, the single-shot mode of operation is

scarcely of interest, since it invariably reduces to some exhaustive search of the

2.3 Range-Searching Problems 	 71

space. Thus our interest is confined to repetitive-mode applications, and here
again there is an initial investment in preprocessing and storage to obtain a
long term gain in searching time. In this context, the ultimate objective is to
solve the problem in its widest generality; that is, to be able to handle a space of
arbitrarily many dimensions and a variety of query domains, as concerns both
shape and size. Whereas the question of dimensionality can be adequately
tackled (at some computational cost, of course), unfortunately with regard to
the nature of the query most that is known to date concerns hyperrectangular
domains. (A hyperrectangular domain is the Cartesian product of intervals
on distinct coordinate axes. 14) Although the case of the hyperrectangular
domain is very important, it by no means exhausts the set of desirable choices.
Indeed, the search for all points at bounded distance d from a query point z,
referred to as bounded distance search, involves a spherical query domain (i.e.,
a hypersphere of radius d centered in z). As will be apparent below, the
techniques that have been successfully developed for the hyperrectangular case
are not applicable to the spherical one. If comparable performance is ever
going to be achieved for the latter case, it is likely to be based on entirely
different approaches: Indeed, some recent progress [Chazelle–Cole-
Preparata–Yap (1986)] in bounded distance search for d = 2 (called circular
range search) is based on notions of "proximity" to be presented in Chapters
5 and 6. These considerations strictly apply, however, to a mode of operation
where the searching technique does not access any other file item but those
contained in the query domain. If this condition is relaxed, then ? spherical
domain can be adequately approximated by means of a family of hyperrectan-
gular domains; while such an approach could have a disastrous worst-case
behavior, in "real," practical situations it may perform very well (for example,
the k-D tree method of Section 2.3.2).

A common feature of all methods to be considered in this chapter is that the
search data structures employed are static, i.e., they are not modified once
they are built. This obviously requires that their constituent items—in our
case a set of points of a d-dimensional space—be all given beforehand. The
corresponding dynamic data structures, i.e., structures that also support inser-
tions and deletions of items, appears to be considerably more complex; their
investigation is still in a very active stage, and will not be discussed in detail in
this text, except for some brief remarks and bibliographic references in Section
2.5.

It is now appropriate to seek a yardstick for a comparative evaluation of
different methods. Normally, this is in the form of a lower bound to some
performance measures. Before proceeding further, however, it is appropriate

14 This choice of search domain is frequently referred to as orthogonal query, possibly because the
hyperplanes bounding the hyperrectangle are each orthogonal to a coordinate axis. Sometimes
the hyperrectangle is referred to as rectilinear—a qualifier possibly suggested by the shape of
paths in the L,-metric in the plane (see Chapter 8). However, this use of "rectilinear" appears as a
misnomer (for further discussion of this point, see Section 8.2).

72 	 2 Geometric Searching

to analyze at an informal level the interplay of the various performance
measures.

As usual, we assume that the file consists of a fixed collection S of N
records. Each query will produce as a response a subset S' of S. A possible
approach consists in precomputing the responses to all possible range-search
queries. Since the possible responses are a finite set (the power set of the finite
set S), the infinite set of queries is partitioned into a finite set of equivalence
classes (two queries are equivalent if they produce the same response). Thus,
processing a query would reduce to mapping the query to a standard represen-
tative of its equivalence class, which in turn would provide immediate access
to the response. Such direct access method (to be discussed in Section 2.3.3)
would exhibit a rather simple query processing, at the expenses of enormous
requirements in storage and in the corresponding preprocessing time. Of the
latter two measures, however, storage is a more important concern than
preprocessing time; indeed, preprocessing time represents a one-time expendi-
ture, which may be tolerated, whereas storage represents a long-term invest-
ment, not reusable for the lifetime of the query-answering system. Therefore,
it has become customary, if not to neglect, at least to de-emphasize preprocess-
ing time and to concentrate on query time and file storage. (In many appli-
cations, however, preprocessing time and storage are of the same order, so
that the latter covers both measures.) The method sketched above exhibits low
query time and high storage; conceivably, reductions in storage are obtained
at the expense of an increase in query time, so we are facing a trade-off
between the two measures. According to current practice, we shall character-
ize a range-search method by the pair (file storage, query time).

In turn, the notion of "query time" deserves some further discussion. The
work expended in processing a query naturally depends upon the file size N
and the subset S' of S contained within the query range, but also upon the type
of query (i.e., upon the nature of the semigroup operation "*" alluded to
earlier). Indeed, a count-mode query will in all cases report a single integer (the
cardinality k of S'), whereas a report-mode query will report the names of each
of the k members of S'. In principle, we may distinguish two types of activities
in processing a query:

1. Search, i.e., the overhead activity leading to the items of the accessed set
(usually, a sequence of comparisons);

2. Retrieval, i.e., the activity of assembling the query response (for report-
mode queries, the actual retrieval of the accessed subset).

In count-mode queries, the whole computational work is conveniently ab-
sorbed into the "search"; in this case, the worst-case query time is expected to
be a function f (N, d) of the file size and the number of dimensions. More sub-
tle is the case of report-mode queries, since the computational work is now a
mixture of search and retrieval activites, and the fraction pertaining to the
latter is bounded below by the size k of S'. If we insist that exactly the members
of S' be accessed by the query, then conceivably the searches for the two types

2.3 Range-Searching Problems 	 73

a
- ^ 	 Typical

^ query range
r --

-1 1
	 a

L —

- a

Figure 2.27 Illustration of set S for d = 2.

of queries have identical costs. If we allow instead that the accessed set be a
slightly larger superset of the target S', then there is the possibility of reducing
the storage requirement and of "charging" to the retrieval task part of the cost
of the search activity; this is the basic idea of filtering search [Chazelle (1983c)]
to be further discussed at the end of this chapter. 15 Thus, in general,an upper
bound to query time for a report-mode query will be expressed in the form
O(f (N, d) + k • g(N, d)); the two terms are to be interpreted respectively
either as "search time" and "retrieval time" if just the retrieval set is to be
accessed, or as query times for "small" (k = O(f (N, d))) and "large" (f (N, d)
= o(k)) retrieval sets in the more general case.

With respect to lower bounds, we note immediately that 1(k) is a trivial
lower bound to retrieval time, since the length of the output is proportional
to k. As regards search time, we resort to the binary decision-tree model,
which—as, is well-known—counts the number of comparisons performed to
access the elements S' of S within the query range (note that we assume that
just the elements to be retrieved be accessed). This number of comparisons is
bounded below by the logarithm in base 2 of the number Q(S) of the distinct
subsets of S obtainable as query responses. Referring to Figure 2.27, consider
the following set S [Bentley-Maurer (1980)]: Assuming for simplicity that
N = 2ad, S is a set of all points with a single nonzero integer coordinate in the
interval [— a, a]. Then the selection of two arbitrary integers in [— a, — 1] and
[1, a], respectively, for each coordinate axis, determines a query range whose
associated subset of points is nonempty and distinct from all other subsets.
Since the above selection can be effected in a 2d = (N/2d) 2d ways, the lower
bound to the number of binary decisions is S2(log(N/2d) 2d) = 0(dlog N).

 Although a more subtle combinatorial analysis [Saxe (1979)] could yield a
more accurate estimate of the number of orthogonal ranges with distinct
retrieved sets, the above simple argument gives a lower bound S2(dlog N) to
the search time. Unfortunately—as noted by Lueker (1978)—the decision-
tree model is apparently inadequate, since for large d all known methods

15 There is a basic difference between filtering search and a search technique that approximates

the range with ranges of a different type (e.g., a spherical range with hyperrectangular ranges).

While both methods are not of the "exact access" type, in filtering search the size of the accessed

set is at most a fixed multiple of that of the retrieved set.

74 	 2 Geometric Searching

exhibit a search time exponential in d rather than linear (i.e., an upper bound
of the form O((log N) d). This question was addressed by Fredman (1981), who
proved a lower bound Q((log N) d) to the search time for dynamic query
systems, by bounding the complexity of the semigroup operations "*," intro-
duced earlier in this section; it is not entirely clear, however, how Fredman's
result applies to the situation being considered. Finally, we note that fl(Nd) is
a trivial lower bound to the storage space used by the search data structure.

In the rest of this chapter, we shall be mainly interested in report-mode
algorithms rather than in count-mode algorithms (for the latter, see Exercise
4). Note that an algorithm of the first type can be trivially used to solve a
problem of the second type; however, the inverse transformation is in general
not possible, and specific efficient techniques for the count-mode can be
developed. For all the described algorithms the search time is of the form
O(f(N,d) + k).

The next sections illustrate some quite interesting and clever methods that
have been proposed for the range-search problem. They should shed some
light on the difficulties which have so far prevented the design of an optimal
algorithm and have just resulted in configuring a trade-off between the two
important resources of query time and storage space.

To set the appropriate stage for the techniques to be described later we shall
start from the simplest instance of range searching, which, although appa-
rently trivial, contains the essential traits of the problem: one-dimensional
range-searching.

A set of N points on the x-axis represents the file, and the query range is an
interval [x', x"] (referred to as the x-range). The device which enables an
efficient (optimal) range searching is binary search, that is, the bisection of the
ordered set to be searched. Indeed, by binary search the left extreme x' of the x-
range is located on the x axis; this completes the search, for retrieval is
obtained by traversing the x-axis in the direction of increasing x, until the right
extreme x" is reached. The data structure which supports the outlined action is
a threaded binary tree, i.e., a balanced binary tree whose leaves are addition-
ally connected as a list reflecting the ordering of abscissae; the tree and the list
are visited in the search and retrieval phases, respectively. Note that the
outlined method is optimal both in query time—O(log N + k)—and in
storage—©(N).

In the following discussion of the different approaches to d-dimensional
range searching, we shall first consider the simplest case (i.e., d = 2) to bring
out the essential features of each method, uncluttered by the burden of
dimensionality. Once this objective is achieved, we shall pursue, whenever
convenient, the generalization to an arbitrary number of dimensions.

2.3.2 The method of the multidimensional binary tree (k -D tree)

We have just recognized that the notion of bisection is crucial to the develop-
ment of an optimal technique for one-dimensional range searching. It is

2.3 Range-Searching Problems 	 75

therefore natural to try to generalize bisection to the two-dimensional case
when the file is a collection of N points in the (x, y) plane. What bisection does
is to successively split an interval—bounded or unbounded—into two parts.
In two dimensions, one could view the entire plane as an unbounded rectangle
to be initially split into two half-planes by means of a line parallel to one of the
axes, say y. Next, each of these half-planes could be further split by a line
parallel to the x-axis, and so on, letting at each step the direction of the cutting
line alternate, for example, between x and y. How do we choose the cutting
lines? By exactly the same principle used in standard bisection, i.e., the prin-
ciple of obtaining approximately equal numbers of elements (points) on either
side of the cut. We realize that a legitimate generalization of bisection has been
obtained, and, indeed the idea of the multidimensional binary tree is born
[Bentley (1975)].

Less informally, we call a (generalized) rectangle the region of the plane
defined by the cartesian product [x 1 ,x2] x [y 1 ,y 2] of an x-interval [x l ,x2]
and a y-interval [y l , y 2], including the limiting cases where any combination
of the choices x 1 = — oo, x2 = oo, y1 = — oo, y 2 = oo is allowed. So we shall
treat as rectangles also an unbounded strip (either on one or two sides), a
quadrant, or even the entire plane.

The process of partitioning S by partitioning the plane is best illustrated in
conjunction with the building of the two-dimensional binary tree T. With each
node y of T we implicitly associate a rectangle M(v) (as defined earlier) and the
set S(v) S of the points contained in M(y); explicitly—i.e., as actual para-
meters of the data structure—we associate with y a selected point P(v) of S(v)
and a "cutting line" 1(v) passing by P(v) and parallel to one of the coordinate
axes.

The process begins by defining the root of T and by setting .W(root) to be the
entire plane and S(root) = S; next we identify the point p E S so that x(p) is the
median of the abscissae of the points of S(root), and set P(root) = p and
1(root) the line whose equation is x = x(p). Point p subdivides S into two sets
of approximately identical size, which are assigned to the offsprings of the
root. This splitting process stops when we reach a rectangle not containing any
point: the corresponding node is a leaf of the tree T.

The technique is illustrated with an example in Figure 2.28, for a set of
N = 11 points. We have also indicated with different graphical symbols nodes
of three different types: circular, for nonleaf nodes with a vertical cutting line;
square, for nonleaf nodes with a horizontal cutting line; solid, for leaves. The
structure just obtained is frequently referred to as a 2-D tree, abbreviation for
"two-dimensional binary search tree."

We now investigate the use of the 2-D tree in range searching. The algorith-
mic paradigm is a pure instance of divide-and-conquer. Indeed, consider the
interaction of a rectangular region .W (v), associated with node y of T, with a
rectangular range D, such that .W (v) and D have a nonempty intersection.
Region M(v) is cut into two rectangles R 1 and R2 by line 1(v) through P(v). If
D n .W(v) is entirely contained in R ; (i = 1, 2), then the search continues with
the single (region, range) pair (R i , D). If, on the other hand, D n M(v) is split

P6

P1
•

P

P2

P5
	•

pm •	
PS

P7

76 	 2 Geometric Searching

(a) (b)

Figure 2.28 Illustration of the two-dimensional binary-tree search method. The
partition of the plane in (a) is modeled by the tree in (b). Search begins with the vertical
line through P6. In (b) we have the following graphic convention: circular nodes denote
vertical cuts; square nodes denote horizontal cuts; solid nodes are leaves.

by 1(v), this means that 1(v) has a nonempty intersection with D and therefore
D may contain P(v). Thus we first test if P(v) is in the interior of D, and, if so,
place it in the retrieved set; next, we continue the search with the two (region,
range) pairs (R 1 , D) and (R 2 , D). At any leaf reached in this search, the process
terminates.

More formally, a generic node v of T is characterized by three items
(P(v), t(v), M(v)). Point P(v) had already been defined. The other two para-
meters jointly specify the line 1(v), that is, t(v) indicates whether 1(v) is hori-
zontal or vertical, and in the first case, 1(v) is the line y = M(v), in the second
case it is x = M(v). The algorithm accumulates the retrieved points in a list U
external to the procedure, initialized as empty. Denoting by D = [x1 , x 2] x

[Y1 ,Y2] the query range, the search of the tree T is effected by a call
SEARCH(root(T), D) of the following procedure:

procedure SEA RCH (v, D)
begin if (t(v) = vertical) then [l, r] := [x1 , x 2] else [l, r] := [Y1, y 2];

if (1 < M(v) < r) then if (P(v) e D) then U G P(v);
if (v 0 leaf) then

begin if (1 < M(v)) then SEARCH(LSON[v], D);
if (M(v) < r) then SEARCH(RSON[v], D)

end
end.

In Figure 2.29(a) we illustrate an example of range search for the file
previously given in Figure 2.28(a). Figure 2.29(b) illustrates in particular the
visit of nodes of T performed by the search algorithm outlined above. Note

L

• P6

P9 P11 • •

Pio •

P2
P5 • •

P8

•P 7

(a) (b)

2.3 Range-Searching Problems
	 77

Figure 2.29 Illustration of a range search for the file previously given. Part (b) shows
the nodes, actually visited by the search.

that only at nodes where the search visit bifurcates (such as p6, P3, P2, P4 , P1o,
p7 , p8) does the test for inclusion of a point in the range take place. Nodes
marked with an asterisk (*) are those where such a test is successful and a point
is picked up. Indeed the retrieved set is { p3, P4, P8 }

From the performance viewpoint, the 2-D tree uses 0(N) optimal storage
(one node per point of S). It can also be constructed in optimal time
0(Nlog N) in the following manner. A vertical cut of a set S of points is done
by computing the median of the x-coordinates of the points of Sin time O(I SI)
(by using the algorithm of [Blum et al. (1973)]), and by forming the partition of
S within the same time bound; analogously, for a horizontal cut. Thus in time
0(N) the initial set is split and the two resulting half-planes are each equipped
with its set of N/2 points; the recurrence for the running time T(N) is trivially

T(N) < 2T(N/2) + 0(N)

which yields the claimed processing time. A more direct implementation
avoids recourse to the complicated median-finding algorithm. Since the
method just outlined effectively sorts the sets of x- and y-coordinates by
recursive median finding, we may resort to a preliminary 0(N log N)-time
sorting to form the ordered arrays of abscissae and ordinates of the points of
S, called respectively the x- and y-array. The initial cut is done by accessing, in
constant time, the median of the x-array and by marking, say, the points with
smaller abscissae (in time 0(N)). Using these markings, the two sorted
subarrays are readily formed and the process is recursively repeated on them.

The worst-case analysis of the query time is considerably more complex.
Not surprisingly this analysis was developed [Lee—Wong (1977)] well after the
original proposal of multidimensional binary trees. The query time is clearly
proportional to the total number of nodes of T visited by the search algorithm,

M (v) 	M(v)

D

Type 1 Type 2

D

(b)

Type -3
at height m

Type-3
at height
m-2

Type-2
at height m

Type-2
at height
m-1

(a)

78 	 2 Geometric Searching

since at each node the search algorithm spends a constant amount of time.
This time is obviously well spent at node y if P(v) is retrieved (productive
node); otherwise, the node is unproductive. Lee and Wong's analysis aims at
constructing a worst-case situation, that is, one corresponding to a thickest
subtree of visited nodes, all unproductive. As noted earlier, each node y of T
corresponds to a generalized rectangle M(y). The intersection of a query-range
D and one such generalized rectangle M(v) may be of different "types"
depending upon the number of sides of .W(v) which have nonempty intersec-
tion with D. Specifically, if this number is i, the intersections is said to be of
type i, for i = 0, 1, 2, 3, 4. (See Figure 2.30.) The only kind of intersection
which is always productive is type 4; all others may be unproductive. In par-
ticular, we restrict ourselves to intersections of type 2 and 3. (Note that types
2 and 3 may start appearing at two and three levels from the root, respec-
tively.) Referring to Figure 2.31(a) we can easily construct the situation where
a type-2 intersection at height m is unproductive and gives rise to one type-2

M (v)

OD

Type 0

D

M(v)

Type 3

D

M(v)

Type 4

Figure 2.30 Illustration of the different types of intersections of D with M(v), when
D n .(v) 0.

Figure 2.31 Self-replicating situations corresponding to unproductive nodes in T

2.3 Range-Searching Problems 	 79

and one type-3 intersection at height (m — 1) (both of which can be con-
structed as unproductive). Similarly, as shown in Figure 2.31(b) with the
same restriction to unproductive nodes alone, we may construct the situation
where a type-3 intersection at height m in T gives rise to two type-3 intersec-
tions at height (m — 2). Thus denoting by U1 (m) the attainable number of un-
productive nodes in a subtree of T of height m, whose root is of type i
(i = 2, 3), we obtain the recurrences

U2 (m) = U2 (m — 1) + U3 (m — 1) + 1

U3(m) =2 U3(m - 2) + 3. 	
(2.3)

The solution is that both U2 (m) and U3 (m) are O(JN).
We conclude that the worst case behavior of the query time is O(.JN) for

an N-term file, even when the retrieved set is empty. This negative worst-case
result should be contrasted with good performance obtained in simulations
[Bentley (1975)] and justified by a heuristic argument [Bentley—Stanat (1975)].

The generalization of the described method to d dimensions is straightfor-
ward. Here we shall deal with cutting hyperplanes orthogonal to the coordi-
nate axes, and all that needs to be specified is the criterion by which the
orientations of the cutting hyperplanes are to be chosen. If the coordinates are
x l , x 2 , ... , xd , a possible criterion is to rotate on the cyclic sequence (1, 2, ... ,
d) of coordinate indices. The ensuing partition of the d-space is modelled
by an N-node binary tree, known as multidimensional binary tree, or k-D
tree. 16 The performance analysis can also be judiciously extended to the d-
dimensional case, but we do not discuss it here. The results are summarized in
the following theorem.

Theorem 2.9. With the k-D tree method, for d > 2, range searching of an N-
point d-dimensional set can be effected in time O(dN 1-lid + k), using 0(dN)
storage, given 0(dN log N) preprocessing time. Thus, the k-D tree method is a
(dN, dN 1-11d)-algorithm.

The optimal space and preprocessing time behavior unfortunately does not
offset the discouraging worst-case search-time performance. It is therefore not
surprising that other methods have been proposed as alternatives. These
methods will now be described.

2.3.3 A direct access method and its variants

The worst-case inefficiency of the k-D tree method is a sufficient motivation to
look for methods that perform satisfactorily with respect to search time,

16 The expression "k-D tree" is D. E. Knuth's abbreviation for "k-dimensional binary-search
tree." It is not very descriptive, but it has entered the current jargon by now.

80 	 2 Geometric Searching

possibly at the expense of the other two relevant performance measures. With
this objective, we shall start from the least sophisticated approach and develop
successive refinements of it.

As alluded to in Section 2.3.1, the most brutal approach to minimizing
search time consists in precomputing the answers to all possible range search
queries. One is then tempted to say that search time could be reduced to 0(1),
since a single memory access would complete the search. This, of course, raises
a puzzling question for its apparent violation of the lower bound discussed in
Section 2.3.1. We shall soon see that there is a catch, and every item will fit in
place.

Following a line of thought introduced in Section 2.1, suppose that, given a
set S of N points in the plane, we trace a horizontal and a vertical line through
each of these points. These lines, of course, partition the plane into (N + 1)2
rectangular cells. Given a range D = [x1 , x 2] x [y 1 , y 2], point (x 1 , y 1) belongs
to a cell C 1 and point (x 2 , y 2) belongs to a cell C2. If we now move at will either
point, within its respective cell, we recognize that the accessed set (i.e., the
subset of S contained in D) is invariant. In other words, pairs of cells form
equivalence classes with respect to range searching. Therefore, the number of
distinct ranges we may have to consider is bounded above by

(

N+ 1 	(N+ 1
2 	x 	2 	0(N 4).

If we precompute the retrieved set for each of these pairs of cells (thereby
attaining O(N 5) storage), we have a scheme whereby a single access completes
the search. We realize, however, that to achieve this objective an arbitrary
range D must be mapped to a pair of cells, or, equivalently, an arbitrary point
must be mapped to a cell. It is clear that this can be done by binary searches on
the sets of abscissae and ordinates of the points of S. This "normalization,"
however, costs O(log N) time, which, added to the O(1) time of the single
access, resolves the apparent conflict we stumbled on earlier. In conclusion, in
the plane this approach yields a (N 5 , log N)-algorithm, too onerous in the use
of storage.

To find ways to reduce the storage, we note that—in spite of our unsuccess-
ful efforts to generalize it—one-dimensional searching is optimal in both
measures (search time and storage). This remark suggests an improvement of
the above "cell method." Indeed, we may combine one-dimensional searching
with direct access range location [Bentley–Maurer (1980)]. Specifically, given
range D = [x1 , x 2] x [y 1 , y 2], we may perform a direct access on coordinate x
followed by one-dimensional searching on coordinate y. This requires that all
the distinct ordered pairs of abscissae of points of S (x-ranges) be directly
accessible; each such pair (x', x") in turn points to the binary search tree of the
ordinates of the points contained in the strip x' <_ x < x". It is convenient at
this point to transform the original problem by replacing each real-valued
coordinate with its rank in its set of coordinates. This transformation, called
normalization, is accomplished by a sorting operation on each set of coordi-

2.3 Range-Searching Problems 	 81

nates. After normalization of the data, an arbitrary x-range is transformed in
time 0(log N) into a pair of integers (i,j) in [1, N + 1] (i < j). Such a pair
corresponds to an address in a direct-search array, 17 which contains a pointer
to a binary tree with (j — i) leaves. Thus, the total amount of storage is
proportional to

N N+1 	 [(N + 1) 3 — (N + 1)]
 E E (J - i) = 	 = 0(N 3).

i
	

i_
 1 	 6

Note that while we have succeeded in reducing the storage from 0(N 5) to
0(N 3), the search time has remained 0(log N), since both range normaliza-
tion and one-dimensional range searching use 0(log N) time. The situation
for our current example is illustrated in Figure 2.32 (note that the points are
indexed in order of increasing abscissa). The range to be accessed in the x-
array is [2, 8], in normalized abscissae (see Figure 2.32(b)); from here a pointer
directs the search toward a binary tree. Here the search per se is completed by
locating P8, after which retrieval of the sequence (P8, P3, P4) is effected.

We still have little reason to be satisfied with the above proposal, not only
because 0(N 3) storage is still a very demanding requirement, but also because
in the multidimensional case the trick to introduce one-dimensional searching
can be done just once, thereby knocking just a factor of N 2 from the storage
use. Indeed, a straightforward analysis shows that 0(N 2(1-1) is the storage
used when this approach is extended to d dimensions.

It is evident that the direct-access part of this two-phase search scheme is the
one responsible for the high storage use. Thus, improvement should be sought
in this area. Bentley and Maurer proposed a multistage approach [Bentley-
Maurer (1980)], 18 which we illustrate now in the 2-stage case. The idea is to
use successively a coarse gauge and a fine gauge (see Figure 2.33). All coordi-
nates are normalized, and the coarse gauge is subdivided into intervals k units
long, while there is a fine gauge for each such interval, whose divisions have
unit spacing. It is therefore clear that an arbitrary range is subdivided into at
most three intervals, one in the coarse gauge and two in the fine gauge (Figure
2.33). Each gauge corresponds to a direct-search array as described above.
Specifically, if the coarse gauge contains N" divisions (0 < a < 1), there are
0(N 2a) coarse-gauge intervals, and the storage of the corresponding data
structure is 0(N 2 a) x N = 0(N 1+2") Similarly, each fine gauge contains
N 1-" divisions, and there are N" such structures, for a total storage of order
N2 x N(1-2)2 x N(1-2) = N3-22. The minimum value for the storage is attained
for a = i and is 0(N 2) without sacrificing the logarithmic behavior of the

1 ' For example, if this array starts at address A, the pair (i, j) could be uniquely mapped to address

2N(i— l)+i—i 2
A- 2+ 	2 	+ j.

18 The structures to be described were originally called "multilevel k-ranges."

1

J

82 	 2 Geometric Searching

• pi

y-range

• pm

(a)

x-array

...
. ^/ .\.

\
\

/ 	 \\

	

i / 	 • \\\
// 	 \\

/ 	 \

	

/ / ^ 	• \\\\
/// 	\\\

^

L 	

(b)

Figure 2.32 Direct-access range searching. The address of x-range is located by
random access after normalization. This address contains a pointer to a binary search
tree.

I 	̂ 	f 	f iiiiiiiii.Yi/ii^iiiii^ First stage
(coarse)

	

1 rill 	 vi,„, ^ ^ (fine)
d stage

I 	̂ 	i 	̂
located

Figure 2.33 Illustration of the 2-stage direct-access scheme.

}

I 	̂ 	̂ 	i Range to be

2.3 Range-Searching Problems 	 83

range search time. Indeed, the search time has been increased approximately
by a factor of 3, and we have an O(N 2 , log N)-algorithm.

At this point, one may extend the approach by using a sequence of 1 gauges
of increasing fineness, with the objective to further reduce the storage at the
cost, of course, of an 0(1 log N) search time. This relatively simple analysis
leads to the following theorem.

Theorem 2.10. For any 1 > E > 0, range searching of an N-point two-dimen-
sional file can be effected with an (N 1 ', log N)-algorithm based on the multi-
stage direct access technique.

The most interesting conclusion one can draw from the preceding dis-
cussion of direct-access techniques is the following. One-dimensional range
searching can be done optimally. Therefore the objective to pursue is to
transform the multidimensional problem into a collection of one-dimensional
problems. The direct-access scheme is a way to effect this transformation.
Basically, in the two-dimensional case we partition an arbitrary interval into
at most three standard intervals (and in the d-dimensional case we still
ultimately obtain a fixed number of standard intervals). This approach con-
tains the conceptual seed of the range-tree method, to be described next. 19

2.3.4 The range - tree method and its variants

The search time efficiency of the direct-access method is due to the construc-
tion of a collection of "standard" intervals. The gain in storage efficiency in
going from a single-stage to a double-stage scheme is due to the drastic
reduction of the number of such standard intervals. One may want to further
pursue this line, that is, to develop a scheme that minimizes the number of
standard intervals. This is the idea underlying the range-tree method.

Let us consider a set of N abscissae on the x-axis, normalized to the integers
in [1, N] by their rank. These N abscissae determine N — 1 elementary inter-
vals [i, i + 1], for i = 1, 2, ... , N — 1. The device we shall use to effect the
partition of an arbitrary interval [i, j] is the segment tree we introduced in
Section 1.2.3.1 of Chapter 1. We simply recall, for the reader's convenience,
that an arbitrary interval whose extremes belong to the set of Ngiven abscissae
can be partitioned by the segment tree T(1, N) into at most 2[log 2 N1 — 2
standard intervals. Each standard interval is associated with a node of T(1, N)
and the nodes identifying the partition of [i, j] are called the allocation nodes of
[0].

With this background, the use of the segment tree in range searching

19 Chronologically, however, the range-tree method was developed sometime before the direct-
access methods [Bentley (1979)]. However, on a purely conceptual basis, it may be viewed as an
evolution of the latter. Embryonic ideas related to the notion of range-tree can be found in
[Bentley—Shamos (1977)].

84 	 2 Geometric Searching

• P1

• P9

• P2

• Pio

Partition
into standard
intervals

•	

(a)

(b)

Figure 2.34 Illustration of the range-tree method applied to our running example.
The given range is partitioned into three standard intervals (a). The search activity is
illustrated in (b).

2.3 Range-Searching Problems 	 85

is straightforward. We begin, as usual, with the two-dimensional case. The
segment tree T(1, N) is employed for searching the x-coordinate. This search
identifies a unique set of nodes (the allocation nodes). Each such node u
corresponds to a set of (E[v] — B[v]) abscissae (see Section 1.2.3.1 for defi-
nitions), i.e., to a set of (E[v] — B[v]) points in the plane. The y-coordinates of
these points are arranged in a standard threaded binary tree for range search
in the y-direction. In summary, we construct a new data structure, called range
tree, whose primary structure is the segment tree pertaining to the abscissae of
the given point set S. Each node of this tree has a pointer to a threaded binary
tree (secondary structures). For our running example, this is illustrated in
Figure 2.34.

The generalization to d dimensions can be done very naturally. A set S of N
points is given in d-dimensional space, with coordinate axes x 1 , x2 , ... , xd .
These coordinates are processed in a specified order: first x l , then x 2 , and so
on. We also assume that all coordinate values are normalized. The range tree is
recursively constructed as follows:

i. A primary segment tree T* corresponding to the set {x 1 (p): p E S}. For
each node u of T*, let Sd(v) denote the set of points projecting to the interval
[B[v], E[v]) in the x 1 -coordinate. Define

Sd - i(v)
o
 { (x2(P),...,xd(P)):PESd(v)},

a (d — 1)-dimensional set.
ii. Node y of T* has a pointer to the range tree for Sd_l (v).

Before proceeding to the performance analysis of the method, we pause a
moment to observe that the segment tree can be viewed not only as a device for
segmenting an interval into a logarithmic number of fragments, but also as a
"recipe" for a divide-and-conquer approach to range searching.

Turning now to the analysis of performance, we observe at first that, for
d> 2, each of the allocation nodes of the x 1 -interval of the query range
(O(log N) in number) initiates a separate (d — 1)-dimensional range searching
problem. Specifically, node y initiates a search on n(v) _° E[v] — B[v] points.
Denoting by Q(N, d) the search time for a fi le of N d-dimensional points, we
have the simple recurrence

Q(N, d) = O(log N) +
	

E
	

Q(n(v), d — 1). 	(2.4)
v E allocation set

of x 1 - interval of range

Here the first term in the right-side is due to searching the primary segment
tree, and the second term accounts for the ensuing (d — 1)-dimensional sub-
problems. Since there are at most 2 f log e Ni — 2 allocation nodes and n(v) < N
(trivially), we obtain

Q(N, d) = O(log N)Q(N, d — 1).

Since Q(N, 1) = O(log N) — a binary search—we readily obtain for the search

86 	 2 Geometric Searching

time

Q(N, d) = O((log N)(1). 	 (2.5)

Denoting by S(N, d) the storage used by the range tree, we have the
recurrence relation

S(N, d) = 0(N) + 	E 	S(n(v), d — 1), 	(2.6)
all nodes y

 of primary tree

where the first term in the right side is due to the storage used by the primary
tree and the second term is due to all the (d — 1)-dimensional range trees. An
estimate of this term is very simple if N is a power of 2; otherwise a simple
approximation will be equally effective. There are at most two nodes y with
n(v) = 2f 1 og2 N1-1 , at most four with n(v) = 2f log2

N1-2 , and so on. Thus we can
upper-bound the sum as

flogz Ni
S(n(v), d — 1) < V 20og2 N1 -; . S(2 1 , d — 1).

all nodes o
of primary tree

With this approximation and the observation that S(N, 1) = 0(N) — the
storage of the threaded binary tree—we obtain the solution

S(N, d) = O(N(log N) 1 _ 1) 	 (2.7)

It is a rather straightforward exercise to see that the same line of arguments
holds when evaluating the preprocessing time. Indeed a recurrence relation
identical to (2.6), with all its consequences, applies to this measure of per-
formance. We can summarize the preceding discussion in the following
theorem.

Theorem 2.11. Range searching of an N-point d-dimensional file can be effected
by an (N(log N) d-1 , (log N) d)-algorithm, given O(N(log N) d-1) preprocessing
time. Such algorithm is based on the range-tree technique.

In particular, for d = 2 the three measures—query time, storage, prepro-
cessing time—become O((log N) 2 + k), O(Nlog N) and O(Nlog N), 20 re-
spectively. A very attractive storage behavior has been achieved, albeit with
some increase in the search time.

Before we resign ourselves to this trade-off as perhaps inherent to the
problem, it is worth re-examining if any loss of efficiency occurs in the search
process. Willard (1978) and Lueker (1978) independently did exactly this and
proposed a variant of the scheme that achieves optimal search time in two
dimensions. This modification of Willard and Lueker contained the seminal

20 Note that the range-tree method can be trivially adapted to the point-counting mode, thereby
achieving O(log 2 N), O(N log N), and 0(N log N) for the three measures of complexity. This
confirms a result anticipated in Section 2.1 (Table 1).

i =0

2.3 Range-Searching Problems 	 87

idea for a number of applications involving iterated searches (one of which is
the bridged chain method for planar point location described in Section
2.2.2.3), and culminating in the general technique known as "fractional
cascading," to be illustrated in the next section.

Each node v of the primary segment tree is linked to a secondary structure,
the list Y(v) of the points projecting to the interval of the node, ordered so
that the ordinates of the points are nondecreasing. To effect retrieval, we need
to locate in each list Y(v) the initial element of the subtree to be retrieved. In
the original range-tree method, this location is done by performing a binary
search on Y(v), which is organized as a binary search tree. This approach
suffers from the same shortcoming already noted for the method of Lee-
Preparata (1977), namely, that no effective use of the accumulated information
is made to improve the efficiency of the searching process. Note however, that
for any non-leaf node y of the primary structure, Y(LSON[v]) and Y(RSON[v])
form a partition of Y(v). Suppose now we know that p is the initial (smallest)
element of Y(v) to be retrieved; element p will appear either in Y(LSON[v]) or
in Y(RSON[v]). Assuming, without loss of generality, that p e Y(LSON[v]),
then the initial elements to be retrieved in Y(LSON[v]) and Y(RSON[v]) are,
respectively, p and p', where y(p') = min {y(q): q e Y(v), y(q) >_ y(p)}. There-
fore, in order to identify these two initial elements in the Y-lists of the offsprings
of v, all we need to do is to establish two pointers LBRIDGE and RBRIDGE
from p E Y(v) to p e Y(LSON[v]) and p' e Y(RSON[v]), respectively.

The conclusions are now relatively straightforward. In the range tree we
can replace each threaded binary tree with its leaf-list, for all original nodes
but the root. Indeed, the secondary structure at the root is still a threaded
binary tree, because it must support search in logarithmic time. For each
non-leaf node of the segment tree, there are two pointers, called LBRIDGE
and RBRIDGE, from each item of its Y-list to items of the Y-lists of its
offsprings. This technique, originally called "layering," is the prototype of the
"bridging" mechanism already encountered in Section 2.2.2.3. Indeed, suitable
pointers—called bridges—guide the search from one list to the next list to be
visited. Note again that the lists are still subsets of the same universal set
(trivially so, since each list is a subset Y(root)), and that each search may be
followed by searches in just two other lists (since the primary structure is a
binary tree). The modified data structure will be referred to as "bridged range
tree." The use of the bridged range tree for our running example is shown in
Figure 2.35.

The storage use does not change, since a threaded binary tree with s leaves
or an s-record list with two extra pointers per record use both 0(s) storage.
However, the search time is cut down to 0(log N), because a binary search at
the root performs an initial location of the left bound of the y-range. The
pointer structure provides constant time updating of the left bound per each
node visited in the "tour" of the segment tree. The net effect of the generaliza-
tion of this scheme to higher dimensions is the removal of a log N factor from
the search time performance. So we have

88 	 2 Geometric Searching

Figure 2.35 Illustration of the tour of the modified range tree for our running
example. Only a fraction of the Y-list pointers is shown.

Theorem 2.12. Range searching of an N-point d-dimensional file ford > 2 can be
effected by an (N(log N) d- ', (log N) d-t)-algorithm, given (N(log N) d-1) pre-
processing time. Such algorithm is based on Willard-Lueker modification of the
range tree, also known as layered range tree or bridged range tree.

2.4 Iterated Search and Fractional Cascading

In this chapter we have come across two noteworthy examples of geometric
searching—one of point location (Section 2.2.2.3), the other of range searching
(Section 2.3.4)—involving the application of a fixed query to a number of
"related" files. These files are sorted lists whose elements are all drawn from
the same totally ordered universal set. If there are s files all of total size N, the
O(s log N)-time performance of the naive approach of separately locating the
query key in each file is clearly outperformed by the use of "bridging," which
permits the attainment of a search time O(log N + s). Indeed, the failure of the
naive approach to fully exploit the invariance of the query in the course of the
search process attracted the attention of several researchers (beside the already
cited Willard (1978), Lueker (1978), and Edelsbrunner-Guibas-Stolfi (1986),
we also mention Vaishnavi-Wood (1982), Imai-Asano (1984), and Cole
(1986)), who proposed more efficient solutions for several problems that are
appropriately categorized as instances of "iterated search." The essential
features of these more efficient methods have been captured and distilled into
a more general abstract setting by Chazelle and Guibas (1986), who formalized

2.4 Iterated Search and Fractional Cascading 	 89

a data structuring technique for iterated search and dubbed it fractional
cascading. The expression "fractional cascading" aptly alludes to the mecha-
nism that permits the efficient progress of iterated searches.

To develop the abstract formulation of the technique, let U denote a totally
ordered set and let V denote a set of search tasks, so that task v i e V consists
of locating a query key z in a sorted list C(v i) whose terms are a subset of the
universal set U. List C(v i) (frequently treated as just a set) is called the (original)
catalog of v i . An iterated search process consists of a subset V' of V; however,
assume that the search tasks in V' are not executable in an arbitrary order,
but, rather, the searches that may follow a given search v; e V are constrained.
We shall represent this situation by constructing a graph on node set V, so
that an arc from v i to v; means that v; is a possible successor of v i . Let G = (V, E)
be such graph, called the catalog graph; we also add the property that G be
undirected (i.e., if v; may succeed v i , then also v i may succeed v;). We now
recognize that iterated search can be abstractly viewed as the visit of a sub-
tree G' = (V', E') of G. The objective of fractional cascading is therefore the
development of a mechanism that greatly facilitates search v ; if one of its
neighbor searches in G, say v i , has already been performed. It is therefore clear
that the iterated search process is carried out by initially performing a conven-
tional search on some v* E V', and subsequently by using the fractional cascad-
ing apparatus to visit the remaining nodes of G'. The reader will have noticed
the similarities between the present plan and the bridging schemes described
earlier, as well as the greater generality arising from replacing a rooted tree
with an arbitrary undirected graph as the description of the admissible search
schedules.

As in the more specialized bridging schemes, the idea is to connect the
catalogs of two adjacent nodes v and w of G by means of links, again called
bridges. (However, these links are now bidirectional.) Each bridge is associated
with an element of U, and introduces a term with the same value in both
catalogs of v and w (such terms are conveniently called "gateways" of the
bridge). The introduction of gateways extends the original catalog C(v) to an
augmented catalog A(v); since, for the convenience of data structuring, a
gateway belongs to only one bridge and is distinct from an element of C(v)
with the same value, A(v) is in general a multiset drawn from U. The elements
of C(v) are called the proper or data elements of A(v). The set of bridges between
y and w is denoted Br(v, w) = Br(w, v).

The bridging structure established between the augmented catalogs A(v)
and A (w) of two adjacent nodes v and w is illustrated in Figure 2.36, where
data and bridge elements are respectively shown as hollow and solid circles.
Two consecutive elements x 1 and x 2 of Br(v, w), with x 1 < x 2 , delimit semi-
closed intervals in A(v) and A(w) (open on the left), whose union is called a
gap. The elements of an augmented catalog are bidirectionally linked through
pointers NEXT and PRED (ascending and descending in the order of U,
respectively); similarly, corresponding bridge elements are bidirectionally
linked through a pointer BRIDGE. (Note that a gap may contain gateway

Gap size =13elements

A(w)

z

A(v1

90 	 2 Geometric Searching

Figure 2.36 Illustration of the bridging structure between the augmented catalogs of
two adjacent nodes. Data and gateway elements are respectively shown as hollow and
solid circles. All links are bidirectional.

elements of bridges directed towards other nodes of the catalog graph; thus,
each gateway element will carry the name of the node reached by its bridge.)

The bridging structure supports iterated search. Given an interval
[PRED(x),x] in A (v) such that the key z satisfies PRED[x] < z < x, our
objective is to find an interval [PRED(y), y] in A(w) such that PRED[y] <
z < y. To this end, starting from x in A(v), we follow pointer NEXT until we
reach the gateway of a bridge toward node w; here, pointer BRIDGE takes us
to A(w), whereby following pointer PRED we locate the desired y. Since y
may not be a data element, an additional pointer PROPER to the closest data
element to the right permits us to locate the smallest data element not smaller
than z. Note that the outlined search scheme requires a bridge just at the upper
(right) end of the gap. It is also obvious that the work needed to advance from
A (v) to A (w) is proportional to the size of the gap within which the search
occurs. The objective is, therefore, to make the gaps uniformly small; on the
other hand, the smaller the gap size, the larger are the number of gateway
elements, the sizes of the augmented catalog, and the total storage requirement
of the data structure.

We now show that under sufficiently general hypotheses, the gap sizes can
be bounded from above by a constant, while the storage for the augmented
catalogs remains proportional to the total size of the original catalogs (i.e.,
the total storage is 0(N), where N °_ Eve V I C(v)I). Indeed, let a and b be two
positive integer constants such that, for any gap in the data structure, a < gap
size < b; these inequalities are referred to as the gap invariant. The storage
requirement is proportional to S = Ev e v I A(v)I = # (data records) + 2 x
(bridges), i.e.

S = N + 2 E IBr(v, w)I.
(v.w)eE

Assume that the degree of each node of G is bounded above by a constant

2.4 Iterated Search and Fractional Cascading 	 91

6.21 Since each gap has size at least a, between nodes v and w there are at most
R(IA(v)1 + I A(w)I)/a] bridges, so that

S <N+? 	E (IA(v)I+IA(w)U +21E1
a (v,w)eE

N+ 2a E IA(v)I+21E1= N + ?̂S+21EI,
a vcv 	 a

and, finally,

S<
a—

a
2b

(N +21E1).

This shows that, as long as a > 28 + 1, we have S = 0(N) as desired, provided
that 1E1 = 0(N). Therefore the parameter a affects the storage requirement,
while the parameter b determines the worst case search time. Incidentally, the
upper bound on the gap size forces the transmittal of elements to the aug-
mented catalogs of adjacent nodes. For the admissible values of b, however,
only a fraction of the elements is transmitted, whence the phrase "fractional
cascading."

How complex is the construction of the fractional cascading apparatus for
given G = (V, E) and {C(v): y e V}? Notice that the task is more complex than
in the bridging schemes described earlier. Indeed, in the latter G is a directed
binary tree, which permits the construction of the augmented catalogs one by
one by a visit of G patterned after a pebbling scheme (a node can be pebbled
only after both of its offsprings have been pebbled). This feature requires us
to maintain a size invariant only on one "shore" of the gap, rather than on
the union of both shores. In the more general scheme corresponding to
fractional cascading, the possibility of traversing an edge of G in both direc-
tions requires the maintenance of the more complex invariant. Due to this
requirement, the augmented catalogs are all constructed concurrently; what
is done sequentially is the visit of the nodes of V, and, for each node v, the
introduction of the elements of C(v) into the augmented catalogs. Specifically,
let v be the currently visited node. The elements of C(v) are entered into A(v)

 one by one, in natural order. Initially, A (v) consists exclusively of gateway
elements introduced by the preceding activity of the construction process.
Inserting an element of C(v) into A(v) may cause a gap overflow. The over-
flowed gap must be split to satisfy the gap invariant, thereby inserting a bridge
gateway into adjacent catalogs. This phenomenon of inserting elements into
catalogs may propagate and will stop only when all gaps satisfy the gap

'In reality, G must satisfy the weaker condition of locally bounded degree, defined as follows.
For any edge (y, w) E E, let range(v, w) be an interval of U, with the property that (y, w) may be
used only by a query z E range(v, w); G has locally bounded degree 8 if for every z E U and for
every u E V there are at most b edges (y, w) with z E range(u, w).

92 	 2 Geometric Searching

invariant. At this point the process can be iterated for the next element of C(v),
and so on. A detailed description and a fine analysis of the procedure can be
found in the original paper [Chazelle—Guibas (1986)], where it is shown that
the construction process terminates and yields the correct result in time
proportional to S.

2.5 Notes and Comments

Since the appearance of the paper of Dobkin—Lipton, considerable progress has been
made in solving the point-location problem. As mentioned in Section 2.2, all methods
presented create new geometric objects as aids in the search. So, the slab method
partitions the plane into elementary empty trapezoids with two horizontal sides: two
cascaded binary searches identify a unique trapezoid. The triangulation refinement
method, by retriangulating portions of the PSLG, creates a suitable small set of new
triangles that are easily searched. The trapezoid method achieves an efficient explora-
tion of the given graph by identifying trapezoids with two horizontal sides which
rapidly narrow the search domain. Finally, the chain method extracts from the planar
straight-line graph a set of polygonal chains that partition the plane into monotone
polygons, which can be easily searched.

All of the techniques presented in this chapter for planar point location are tuned
to worst-case performance. In the realm of average-case techniques, a recently reported
"bucket" method [Edahiro—Kokubo—Asano (1984)] appears to experimentally out-
perform several previously reported methods; among the techniques surveyed, the
trapezoid method showed the best experimental performance.

In connection with range searching, we have seen in Section 2.3 that the only
method using linear storage (the k-D tree technique) has a high search time. Thus
redundancy of representation seems to be the key to fast search time. Both the direct-
access technique and the range-tree technique are examples of this approach. Indeed,
they are instances of applications called by Bentley and Saxe "decomposable searching
problems" [Saxe—Bentley (1979)], where the answer to the query over the entire
space is obtained by combining (in this case, by joining) the answers to the query
specialized to a suitable collection of subsets of the space. It remains an important open
question whether an (N, log N) 2-dimensional range searching algorithm exists. Re-
cently, Chazelle (1983c) has been able to improve the space requirement from N log N
to N log N/log log N, thus at least showing that N log N is not a lower bound. Chazelle's
technique is an application of an important algorithmic device, known as "filtering
search," which we now briefly review.

Filtering search [Chazelle (1983)] 22 is a general approach to report-mode searching
problems, based on the computationally valid tenet that one should tolerate accessing
a superset of the target set if there are benefits in other measures of performance (such
as storage or search time), provided the superset cardinality is guaranteed not to exceed
a given (small) multiple of the cardinality of the target set. In other words, the superset
is the "scoop" to be retrieved and to be subsequently "filtered" in order to extract the
target set; in other words, `filtering search' could be appropriately categorized as
"scoop-and-filter" search. This methodology has been successfully applied to several
problems, such as orthogonal range queries, proximity searching (see Chapter 6),
intersection problems, etc.

22 Seminal, very preliminary ideas of this philosophy can be traced to [Bentley-Maurer (1979)].

2.5 Notes and Comments
	 93

Other versions of the range searching problem can be classified on the basis of the
type of search domain. One such class is obtained by choosing the search domain as
a k-gon (polygon-range search); assuming, as usual, an N-point file, Willard has devel-
oped an (N, KN °.7)-algorithm [Willard (1982)] later improved to an (N, KN°.69s)

algorithm [Edelsbrunner–Welzl (1986)]. An interesting special case of this problem
occurs when the polygon range is selected as a half-plane; for the resulting half-planar
search an optimal (N, log N) result has been recently proposed [Chazelle–Guibas–Lee
(1983)] (this technique, however, is not applicable to the corresponding counting
problem). Of great interest is also the case where the search domain is a circle (circular
range search, or disk search). If the disk radius is fixed, the problem can be solved by
means of the locus approach, where the plane is partitioned into regions so that all
points of a given region generate identical responses. This approach could be im-
plemented by resorting, for example, to the trapezoid method, thereby obtaining an
(N 3 log N, log N) algorithm. This algorithm, however, is well outperformed by an
(N, log N) technique recently proposed [Chazelle–Edelsbrunner (1985)]. More inter-
esting is the variable disk search, where the circular domain has arbitrary radius and
center; the best known technique for this problem has an (N(log N loglog N) 2 , log N)
behavior and will be outlined in Chapter 6 [Chazelle–Cole–Preparata–Yap (1986)].

Other searching problems refer to different geometric settings, where the (query, file
item) pair is no longer of the types (point, region)–as in point location–or (region,
point)–as in range searching. For example, we may have the pairs (polygon, polygon),
(segment, segment), etc: in these cases the relation being searched is "intersection," so
that these tasks are more appropriately studied in the context of intersection problems
(Chapter 7). In particular, when the (query, file item) pair is (orthogonal range,
orthogonal range), we have a host of interesting problems—either of the intersection
or of the inclusion type—that are more appropriately discussed in Chapter 8 (The
Geometry of Rectangles).

Finally, significant progress has been made in the study of dynamic searching
structures, i.e., structures that, in addition to queries, support insertions and dele-
tions. While one-dimensional dynamic structures (AVL trees, etc.) have been known
for over twenty years, only more recently the multi-dimensional problem has been
attacked. Following the pioneering work of Bentley (1979), general techniques to
convert static structures, satisfying some weak constraints, into dynamic ones have
been developed.

We shall mention the technique of van Leeuwen and Wood (1980) whose general
principle is to organize the file as a collection of separate data structures, so that each
update can be confined to one (or, possibly, a fixed small number) of them; however, to
avoid shifting the burden from the updates to the query activity, one must refrain from
excessive fragmentation, since queries normally involve the entire collection.
Overmars' thesis (1983) is the most current and comprehensive update on the state-of-
the-art of "dynamizing" and the reader is strongly encouraged to refer to it.

2.6 Exercises

1. Develop a more subtle analysis of the triangulation refinement method of Kirk-
patrick and select K to attain a = 59/63. (Hint: Bound separately the vertices of
degree larger than K and the vertices of degree not larger than K.)

2. Seidel. Let S be a set of N points in the plane and A a planar subdivision with 0(N)
regions.
(a) Show that it takes fl(N log N) time to locate all points of S in A.

94 	 2 Geometric Searching

(b) Now assume a triangulation of S is available. A triangulation contains informa-
tion on how points of S are located with respect to each other. This information
might help in locating all points of S in A. Show that in spite of knowing a
triangulation of S it still takes S2(N log N) time to locate all points of S in A.

3. Prove Theorem 2.10. Assume that the search structure consists of 1 stages of
increasingly finer gauges, and obtain a (N`2, c l log N)- algorithm with minimal c 2 .

Express both c l and c 2 as functions of 1.

4. For d > 2 can the Willard-Lueker implementation of the range tree be modified to
obtain an (N(log N)d-1 , (log N)d-1)-algorithm for the count-mode range searching
problem? Fully justify your answer.

5. Apply the locus approach to solve the following problem (fixed-radius circular
range search): Given N points in the plane and a constant d > 0, report (possibly,
with a logarithmic-time overhead) the points that are at most at distance d from a
given query point q.

CHAPTER 3

Convex Hulls: Basic Algorithms

The problem of computing a convex hull is not only central to practical
applications, but is also a vehicle for the solution of a number of apparently
unrelated questions arising in computational geometry. The computation of
the convex hull of a finite set of points, particularly in the plane, has been
studied extensively and has applications, for example, in pattern recognition
[Akl–Toussaint (1978); Duda–Hart (1973)], image processing [Rosenfeld
(1969)] and stock cutting and allocation [Freeman (1974); Sklansky (1972);
Freeman–Shapira (1975)].

The concept of convex hull of a set of points S is natural and easy to
understand. By definition, it is the smallest convex set containing S. Intui-
tively, if S consists of a finite set of points in the plane, imagine surrounding
the set by a large, stretched rubber band; when the band is released it will
assume the shape of the convex hull.

In spite of the intuitive appeal of the convex hull concept, the history of
algorithms to compute convex hulls is illustrative of a general pattern in
algorithmic research. Unfortunately, the simple definition of convex hull
recalled above is not of a constructive nature. Thus, appropriate notions must
be identified that are conducive to algorithm development.

The construction of the convex hull, in two or more dimensions, is the
subject of this chapter; in the next chapter we shall consider applications,
variants, and some related—but inherently different—problems. To avoid
some repetition, it is convenient to develop a suitable framework for the
notions pertaining to convex hulls in arbitrary dimension [Grünbaum (1967);
Rockafellar (1970); McMullen–Shephard (1971); Klee (1966)]; these notions
have very simple specializations in the ordinary plane and space. The next
section is devoted to this task; frequent reference will be made to concepts
introduced in Section 1.3.1.

96 	 3 Convex Hulls: Basic Algorithms

3.1 Preliminaries

The points lie in the d-dimensional space Ed, and we shall use the familiar
identification of points and d-dimensional vectors applied to the origin of Ed .

We begin by considering the notion of an affine set.

Definition 3.1. Given k distinct points pi, P2, ... , Pk in Ed, the set of points

P= aiP1 +Œ2P2 +... +akPk, 	(ai e ER, al +a2 + ••• +ak = 1)
(3.1)

is the affine set generated by p 1 , p2, ... , pk, and p is an affine combination ofp l ,

P25 • • • , Pk•

Note that the affine combination specializes the notion of linear combi-
nation by the added condition a 1 + • • • + ak = 1. If k = 2, the resulting affine
set is the straight line through two points. Clearly, affine sets are points, lines,
planes, hyperplanes, etc., that is, all structures with the intuitive nature of
"flatness"; indeed, flat is a synonym of affine set (along with the term "affine
variety"). The correspondence between vector subspaces and affine sets is
expressed by the fact that each affine set is the translation (by a fixed vector) of
a vector subspace (a linear set). For example, in E3 linear sets are lines and
planes through the origin (and the origin itself), while affine sets are points
and lines and planes in general position.

Given k points p1, p2, ... , pk in Ed , they are said to be affinely independent if
the (k — 1) vectors p 2 — p1, ... , Pk — P1 are linearly independent. Intuitively,
we translate the finite point set so that one point (in our case, p i) is brought to
the origin, and test the linear independence of the resulting vector set; obvi-
ously, the choice of which point is brought to the origin is immaterial. Given k
affinely independent points pi, p2, ..., pk, they form the affine base of a
(k — 1)-dimensional affine set (i.e., the dimension of an affine set is the
dimension of the linear set of which it is a translate).

Definition 3.2. Given a subset L of Ed , the affine hull aff(L) of L is the smallest
affine set containing L.

In other words, for any two points in L, the entire line determined by these
two points belongs to aff(L). As examples, the affine hull of a segment is a line,
of a plane polygon is a plane, and so on.

Next, we turn our attention to the notion of a finitely generated convex set.

Definition 3.3. Given k distinct points Pi , p2, ... , pk in Ed , the set of points

P = Œ1P1 + Œ2P2 + ... + akPk (a; E ER, a; > 0, a1 + a2 + ... + œk = l)
(3.2)

3.1 Preliminaries 	 97

is the convex set generated by p i , p2, ... , pk, and p is a convex combination of

PI , P2 , •••, Pk•

Again, note that the convex combination specializes the notion of affine
combination by the added condition ai > 0, j = 1, 2, ... , k. If k = 2, the
resulting convex set is the segment joining the two points. The dimension of a
convex set is the dimension of its affine hull: for example, the dimension of a
convex plane polygon is two, since its affine hull is a plane. We now have the
following important concept.

Definition 3.4. Given an arbitrary subset L of points of Ed, the convex hull
conv(L) of L, is the smallest convex set containing L.

In our study, we shall be exclusively concerned with the case where L is
finite (or a finitely generated convex set). To characterize the structure of
conv(L) for a finite point set L we need to generalize the notion of convex
polygon and convex polyhedron.

Definition 3.5. A polyhedral set in Ed is the intersection of a finite set of closed
half-spaces (a half-space is the portion of Ed lying on one side of a hyperplane).

We note that a polyhedral set is convex, since a half-space is convex and the
intersection of convex sets is also convex. In particular, convex plane polygons
and space polyhedra—as defined in Section 1.3.1—are 2- and 3-dimensional
instances of (bounded) polyhedral sets. Generally, we shall refer to a bounded
d-dimensional polyhedral set as a convex d-polytope (or, briefly, a d-polytope
or a polytope).

The desired characterization of convex hulls is provided by the following
theorem:

Theorem 3.1 [McMullen—Shephard (1971), pp. 43-47]. The convex hull of a
finite set of points in E d is a convex polytope; conversely, a convex polytope is the
convex hull of a finite set of points.

A convex polytope is described by means of its boundary, which consists of
faces. Each face of a convex polytope is a convex set (that is, a lower-
dimensional convex polytope); a k-face denotes a k-dimensional face (that is, a
face whose affine hull has dimension k). If a polytope P is d-dimensional, its
(d — 1)-faces are called facets, its (d — 2)-faces are called subfacets, its 1-faces
are edges, and its 0-faces are vertices. Clearly, edges and vertices retain their
usual connotations in all dimensions. For a 3-polytope, facets are plane
polygons, while subfacets and edges coincide. As we shall see later, these four
classes of faces play an important role in convex hull algorithms. For uniform-
ity, it may be useful to refer to the given d-polytope as a d-face, while the empty
set becomes a (— 1)-face. If P is the convex hull of a finite set Sin Ed, a face of P
is the convex hull of a subset T of S (i.e., it is determined by a subset of S);
however, not all subsets of S determine a face.

98 	 3 Convex Hulls: Basic Algorithms

Some types of polytopes deserve special attention. A d-polytope P is a d-
simplex (or briefly, a simplex) if it is the convex hull of (d + 1) affinely
independent points. In this case any subset of these d vertices is itself a simplex
and is a face of P. Thus every k-face contains 2k+ 1 faces' (of dimensions k,
k — 1, ... , 0, — 1). For example, for d = 0, 1, 2, and 3, the corresponding
simplex is a vertex, an edge, a triangle, and a tetrahedron, respectively; note,
for example, that a tetrahedron (a 3-face, according to the previous conven-
tion) contains one 3-face (itself), four 2-faces (triangles), six 1-faces (edges),
four 0-faces (vertices) and one (-1)-face (the empty set), for a total of 16 = 2 4

 faces.
A d-polytope is called simplicial if each of its facets is a simplex; equiva-

lently, each of the facets of a simplicial d-polytope contains exactly d sub-
facets. On the other hand (we could say "dually") a d-polytope is called simple
if each of its vertices is incident with exactly dedges. Indeed, it is easy to realize
that a simplicial polytope is the dual of a simple polytope, in the framework of
the general topological duality that maps a set of dimension s < d to a set of
dimension d — s (consider, also the correspondence under the more special
duality embodied by polar transformations, Section 1.3.3). Simplicial and
simple polytopes are quite important not only because of their structural
attractiveness and—forgive the pun simplicity, but also because they natur-
ally arise in two typical (and dual!) situations. Indeed, referring for concrete-
ness to the familiar 3-space, the convex hull of a finite set of points in general
position is a simplicial 3-polytope (that more than 3 vertices lie on the same
facet is an event of zero probability), while the intersection of a finite set of
half-spaces in general position is a simple 3-polytope.

Considerable attention has been devoted to the combinatorial nature of
polytopes, specifically the relationship between the numbers of faces of differ-
ent dimensions. It suffices here to recall that the number F(d, N) of facets of a
d-polytope with N vertices could be as large as [Klee (1966)]

for d even

F(d, N

2

Concisely, we can say that F(d, N) = O(NL d121). The fact that the number of

' Indeed, in this case the power set of the set of vertices is the set of faces. Its Hasse diagram is, as is

well known, a (k + 1)-dimensional cube. Such diagram is technically called, in general, the facial
graph of the polytope.

2N /
N- 2 — 1

 d 	d

/ N—

\ 2 — 1

(3.3)
^ — 1
2

d
, 	for d odd.

3.2 Problem Statement and Lower Bounds 	 99

facets is, at worst, exponential in the number of vertices and vice versa (by
duality), poses serious difficulties in the representation of d-polytopes for
large values of d. The situation is fortunately much simpler in the important
cases of d = 2, 3.

Specifically, for d = 2 the 2-polytope is a convex polygon. It is important to
realize that a polygon—convex or otherwise—is an ordered sequence of
vertices. Such sequence is adequately represented either as an array or as a
bidirectional list.

Representation problems are also not too severe in three dimensions. A
polyhedron may be specified completely by giving its vertices, edges, and
faces. Because of Euler's formula (Section 1.3.1), the numbers of vertices,
edges, and faces of a three-dimensional polyhedron are linearly related, which
means that an N-vertex polyhedron can be completely represented in only
0(N) space. Furthermore, the skeleton of such a polyhedron (its set of edges)
is a planar graph, 2 so we may represent the polyhedron by means of any data
structure suitable to represent a planar graph (such as the adjacency list or the
doubly-connected-edge-list described in Section 1.2.3.2).

Before proceeding to the description of algorithms, it is appropriate to
formally state the problem and to address the important question of lower
bounds to the complexity. Since convex hull algorithms are concerned with
the boundary of the convex hull, for a given hull conv(L) we shall denote its
boundary by CH(L). Note, however, that, according to common use, both
conv(L) and CH(L) will be referred to as "convex hull."

3.2 Problem Statement and Lower Bounds

We begin by stating two fundamental versions of the convex hull problem:

PROBLEM CH1 (CONVEX HULL). Given a set S of N points in Ed, construct
its convex hull (that is, the complete description of the boundary CH(S)).

PROBLEM CH2 (EXTREME POINTS). Given a set S of N points in Ed ,
identify those that are vertices of conv(S).

It should be clear that problem CH 1 is asymptotically at least as hard as
CH2 because the output of CH 1 becomes a valid solution to CH2 if we merely
recopy the vertex set produced by the former as an unordered list of points.
That is, one problem is transformable to the other or

EXTREME POINTS cc N CONVEX HULL.

2 This follows from Steinitz' Theorem. See [Grünbaum (1967), p. 235].

100 	 3 Convex Hulls: Basic Algorithms

Figure 3.1 Illustration for the proof of Theorem 3.2.

It is natural to ask whether the former is asymptotically easier than the
latter or if they are in fact of the same complexity. Since any collection of
points in two dimensions is trivially embedded in Ed , with d > 2, any lower
bound result obtained for d = 2 remains a fortiori valid for d > 2. Therefore,
in the following discussion we shall consider the planar instances of Problems
CH1 and CH2.

We begin by considering problem CH1, Planar convex hull. The fact that
the vertices of the convex hull polygon appear in order indeed, we may refer
to the ordered convex hull—points to a natural connection with the problem
of sorting. Indeed the following theorem formalizes the fact that any algo-
rithm for problem CH 1 must be able to sort.

Theorem 3.2. Sorting is linear-time transformable to the convex hull problem;
therefore, finding the ordered convex hull of N points in the plane requires
SZ(N log N) time.

PROOF. We exhibit the transformability; the conclusion follows from Propo-
sition 1 of Section 1.4. Given N real numbers x 1 , ... , xN , all positive, we
must show how a convex hull algorithm can be used to sort them with only
linear overhead. Corresponding to the number x i we construct the point
(x0 .4), and associate the number i with it (see Figure 3.1). All of these points
lie on the parabola y = x2 . The convex hull of this set, in standard form, will
consist of a list of the points sorted by abscissa. One pass through the list will
enable us to read off the x ; in order. 3 ❑

3 M. I. Shamos originally proved this theorem by mapping the x i onto the unit circle. The
parabola mapping, suggested by S. Eisenstat, is superior because it requires only rational
arithmetic operations.

3.2 Problem Statement and Lower Bounds 	 101

Because the transformation involves only arithmetic operations, Theorem
3.2 holds in many computational models; namely, those in which multiplic-
ation is permitted and sorting is known to require Q(Nlog N) time. As noted
earlier, Theorem 3.2 applies in all dimensions greater than one.'

Turning our attention to the EXTREME POINTS problem, CH2, we
realize immediately that no elementary argument as the one given above is
forthcoming. Indeed, this problem remained unsolved for some time; the first
breakthrough was the work of A. C. Yao (1981), and a definitive answer was
obtained by combining the powerful algebraic decision-tree technique of Ben-
Or (see Section 1.4) with a recent result by Steele and Yao (1982).

Following a familiar pattern of thought, we consider the decision problem
associated with CH2, which is formulated as follows.

PROBLEM CH3 (PLANAR EXTREME POINTS TEST). Given N points in
the plane, are they vertices of their convex hull?

Before discussing the extremely important result of Steele—Yao and Ben-
Or, let us consider why the linear decision tree model is inadequate for our
problem. Briefly, no existing convex hull algorithm uses exclusively linear
tests, so that a linear-decision-tree bound would not apply. The typical
primitive operation is of type: Given three points p, p', and p", does p lie to the
left, or to the right, or on the directed segment from p' to p"? The polynomial
embodying the corresponding test is the determinant

x y 1

,
(3.4)

0 = x' y' 1

x" y " 1

where p = (x, y), p' = (x', y'), and p" = (x", y"), which, as observed in Section
2.2.1, gives twice the signed area of Triangle(pp'p"). Clearly, polynomial (3.4)
is quadratic.

This is an unfortunate circumstance, because a simple and elegant argu-
ment based on the linear-decision-tree model had been presented earlier by
Avis (1979). That argument made crucial use of the fact that a linear test
f(x 1 , ... , x m): 0 defines a hyperplane in the m-dimensional Euclidean space
Em, and each root-to-leaf path defines the common intersection of convex sets
(half-spaces correspond to " > " or " <" test outcomes, hyperplanes corre-
spond to "=" test outcomes), which is itself a convex set. That is, all input
vectors leading to a given leaf of the decision-tree form a convex set in Em (the
decision region associated with that leaf). This property, however, disappears
when the tests are of higher degree.

The clever but extremely complex argument presented by A. C. Yao was

4 The convex hull of a set of points in one dimension is the smallest interval that contains them,
which can be found in linear time.

^ 	p2 = q2

c17 -1(1)

po = qo

P2N-2 = q 2N-2

102
	

3 Convex Hulls: Basic Algorithms

Figure 3.2 Illustration for the proof of Theorem 3.3.

restricted to the quadratic decision tree model. While the restriction to quadra-
tic computation trees is adequate to cover the existing algorithms, the follow-
ing question spontaneously arises: If we allow polynomials of degree higher
than quadratic, can one still prove analogous results? Or, if not, can one
develop faster algorithms by using such possibly more powerful tests? Yao
conjectured against an affirmative answer. However, only recently has this
question been definitively settled by the following argument.

Suppose we are given an algebraic-decision-tree algorithm of fixed order
d > 2, which is claimed to solve CH3 for sets of 2N points in the plane, i.e., it
accepts an input vector with 4N components (two coordinates per given point)
and determines if their convex hull has 2N extreme points. Note that the 4N-
component input vector is correctly thought of as a point in E4N . The decision
problem we are considering is characterized by a "decision set" W c E4N (see
Section 1.4). We then repeat here, for convenience, Ben-Or's result.

Theorem 1.2. Let W be a set in Em and let T be an algebraic decision tree of fixed
order d that solves the membership problem in W. If h* is the depth of T and
#(W) is the number of disjoint connected components of W, then

h* = Q(log # (W) — m).

In order to use this result we must obtain a lower bound to # (W), which
can be done in the following manner.

Let (po ' P1 , • • • , PmN-1) be the clockwise sequence of vertices of a convex
polygon (see Figure 3.2). The input to the algorithm is in the form of a string
z = (zo, z1 , • • • , Z4N-1) of real numbers, obtained as follows: given 2N points
go , q1, • • • , q2N-1 in the plane with qi - (x i , yi), we set z21 = x i and z21+1 =

for i = 0, 1, ... , 2N — 1. For fixed (Po,PI' • • • ,P2N-1), we can construct N!
distinct instances of input strings for the given instance of the problem, by

selecting an arbitrary permutation 7c of the integers {0, 1, ... , N — 1 } and by
setting

q 2 = P2s5 	g2s+1 = Pn(2s+1) 	(s = 0, . . . , N — 1). (3.5)

3.2 Problem Statement and Lower Bounds 	 103

Notice that all possible input sequences for the given problem have identical
subsequences of even-indexed points (shown as solid circles in Figure 3.2). For
given n, we denote by z(n) the sequence of the coordinates of (qo, • • , q2N-1).

For each n we now construct an array, A(n), of N2 entries as follows.
Denoting by A(u, v , w) the signed area of the triangle (u, v, w), and by A(n)[j]
the j-th entry of A(n), we have

A(n) [Ns + r] = A(g2s, q2, -1- 1, (1(2s+ 2) mod 2N), 	0 < s < N and 0 < r < N.
(3.6)

It is easy to realize from (3.5) and (3.6) and from Figure 3.2 that, for any given
s, there is just one value of r for which A (n) [Ns + r] < 0 (this happens when
2s + 1 = n -1 (2r + I)). Now let n l and n 2 be two distinct permutations of
{0, 1, ... , N — 11, and let us consider A(n 1) and A (n 2). We claim that there is
at least one integer j, such that A (n 1) [j] and A (n 2) [j] have opposite signs.
Indeed, let us consider the N entries of A (n 1) that are negative, that is,
A(n 1)[Ni + ri], 0 < i < N. If A(n 1)[Ni + ri] • A(n 2)[Ni + r.] > 0, then both
points grz , '(Ni+r,) and grz 2 '(Ni+r,) lie to the left of the directed segment p2ip2i+2:

but we know there is just one point in the set {po, • • • , P2N-1 } with this
property, and this point is p2i+1. Thus g rz, ' (Ni+r,) = g rz 2 ` (Ni+r,) = P2 i+1 If this
holds for all values of i, then the two permutations coincide, contrary to the
hypothesis.

So there is a j such that A (n 1) [j] and A (n 2) [j] have opposite signs. Observe
now that z(n 1) and z(n 2) are two distinct points of E4 N , and consider a curve
pin E4N joining them. A point z travelling on p from z(n 1) to z(n 2) describes
a continuous deformation in the plane of the configuration corresponding to
n 1 to the configuration corresponding to n 2 , while also A(n 1) is transformed
continuously to A (n 2). Since A (n 1) [j] - A (n 2) [j] < 0, by the intermediate
value theorem there is a point z* on p for which, in the deformed configuration,
three points become collinear (i.e., their triangle has area 0), and so at most
(2N — 1) points are extreme. This proves that in passing from z(n 1) to z(n 2)
we must go out of W, so that z(n 1) and z(n 2) belong to different components
of W. Since this holds for any choice of n 1 and n 2 it follows that # (W) > N!.

Combining this result with Ben-Or's theorem we have

Theorem 3.3. In the fixed-order algebraic-computation-tree model, the deter-
mination of the extreme points of a set of N points in the plane requires
S2(Nlog N) operations.

PROOF. In our case m = 4N and # (W) > N!. Ben-Or's theorem says that
(log #(W) — m) > (log N! — 4N) = S2(N log N) operations are necessary.

This completes our discussion of the complexity of the problem. Before
leaving the topic, we observe that the planar instances of both the ordered hull
problem CH 1 and the extreme point problem CH2 bear an intimate relation

104 	 3 Convex Hulls: Basic Algorithms

with sorting. Indeed, CH 1 is explicitly related to it through a direct reduction,
while the linkage of CH2 is mediated through the cardinality of the symmetric
group. This connection is profound and we shall refer to it frequently in the
rest of this chapter.

We shall now begin the description of convex hull algorithms.

3.3 Convex Hull Algorithms in the Plane

3.3.1 Early development of a convex hull algorithm

Referring to the nonconstructive nature of Definition 3.4, we must now find
mathematical results that will lead to efficient algorithms. It is conventional in
works of this type to present a succession of well-motivated and polished
results, but to do so here would reveal very little of the algorithm design
process that is central to computational geometry. Accordingly, we begin by
discussing some unfruitful leads.

Definition 3.6. A point p of a convex set S is an extreme point if no two points
a, b E S exist such that p lies on the open line segment ab.

The set E of extreme points of S is the smallest subset of S having the property
that conv(E) = conv(S), and E is precisely the set of vertices of conv(S).

It follows that two steps are required to find the convex hull of a finite set:

1. Identify the extreme points. (This is problem CH2 in the plane.)
2. Order these points so that they form a convex polygon.

We need a theorem that will enable us to test whether a point is an extreme
point.

Theorem 3.4. A point p fails to be an extreme point of a plane convex set S only if
it lies in some triangle whose vertices are in S but is not itself a vertex of the
triangle.' (See Figure 3.3.)

This theorem provides an algorithm for eliminating points that are not
extreme: There are 0(N 3) triangles determined by the N points of S. Whether
a point lies in a given triangle can be determined in a constant number of
operations so we may learn whether a specific point is extreme in O(N 3) time.
Repeating this procedure for all N points of S requires 0(N4) time. While our
algorithm is extremely inefficient, it is conceptually simple and it demon-

'This follows immediately from the proofs of Theorems 10 and 11 of [Hadwiger-Debrunner
(1964)]. The generalization to d dimensions is obtained by replacing "t riangle" by "simplex on
d + 1 vertices." Note that triangles may degenerate to three collinear points.

x-axis

3.3 Convex Hull Algorithms in the Plane 	 1 05

•
•

•

•

•

• •

•

•

Figure 3.3 Point p is not extreme because it lies inside triangle (p l P2P3)•

strates that identifying extreme points can be accomplished in a finite number
of steps.

We have spent 0(N 4) time just to obtain the extreme points, which must be
ordered somehow to form the convex hull. The nature of this order is revealed
by the following theorems.

Theorem 3.5. A ray emanating from an interior point of a bounded convex figure
F intersects the boundary of F in exactly one point. 6

Theorem 3.6. Consecutive vertices of a convex polygon occur in sorted angular
order about any interior point.

Imagine a ray, centered at an interior point q of polygon P that makes a
counterclockwise sweep over the vertices of P, starting from the positive x-
axis. As it moves from vertex to vertex, the polar angle' subtended by the ray
increases monotonically. This is what we mean by the vertices of P being
"sorted" (see Figure 3.4).

., 	Counterlockwise
order

Figure 3.4 The vertices of P occur in sorted order about q.

6 This is a consequence of [Valentine (1964)], Theorem 1.10, and the Jordan Curve Theorem.

'Polar angles are measured in the usual way, counterclockwise from the x-axis.

106 	 3 Convex Hulls: Basic Algorithms

Given the extreme points of a set, we may find its convex hull by construct-
ing a point q that is known to be internal to the hull and then sorting the
extreme points by polar angle about q. As point q we may select the centroid 8

 of the extreme points: indeed it is well known that the centroid of a set of
points is internal to its convex hull.' The centroid of a set of N points in k
dimensions can be computed trivially in 0(Nk) arithmetic operations.

A different method of finding an internal point is due to Graham, who
observes that the centroid of any three noncollinear points will suffice [Graham
(1972)]. He begins with two arbitrary points and examines the remaining
N — 2 points in turn, looking for one that is not on the line determined by the
first two. This process uses 0(N) time at worst, but almost always takes only
constant time—if the points are drawn from an absolutely continuous dis-
tribution, then with probability one the first three points are noncollinear
[Efron (1965)].

After finding the extreme points of a set S, in 0(N) time we may find a point
q that is internal to the hull. It only remains to sort the extreme points by polar
angle, using q as origin. We may do this by transforming the points to polar
coordinates in 0(N) time, then using 0(N log N) time to sort, but the explicit
conversion to polar coordinates is not necessary. Since sorting can be per-
formed by pairwise comparisons, we need only determine which of two given
angles is greater; we do not require their numerical values. Let us consider this
question in more detail because it illustrates a simple but important geometric
"trick" that is useful in many applications: Given two points p i and p2 in the
plane, which one has greater polar angle? This question is readily answered by
considering the signed area of a triangle. Indeed given two points p i and p 2 , p2

 forms a strictly smaller polar angle with the real axis than pl if and only if
Triangle (O, p 2 , p l) has strictly positive signed area (see Figure 3.5).

The details of our first planar convex hull algorithm are now complete. We
have shown that the problem can be solved in 0(N4) time using only arithme-
tic operations and comparisons.

3.3.2 Graham's scan

An algorithm that runs in 0(N 4) time will not allow us to process very much
data. If improvements are to be made they must come either by eliminating
redundant computation or by taking a different theoretical approach. In this
section we explore the possibility that our algorithm may be doing unnecessary
work.

To determine whether a point lies in some triangle defined by a set of N

8 The centroid of a finite set of points p l , ... , pN is their arithmetic mean (p l + • • • + pN)/N.

9 That is, if the interior is nonempty. [Benson (1966), exercise 25.15] "Interior" refers to the
relative (subspace) topology. The convex hull of two distinct points in E 3 is a line segment, whose
interior is empty in the metric topology of E 3 , but nonempty in the relative topology.

• 	 ► x

Y

3.3 Convex Hull Algorithms in the Plane 	 107

Figure 3.5 Comparing polar angles by means of the signed area of Triangle
(O,P2,Pi)•

points, is it necessary to try all such triangles? If not, there is some hope that

the extreme points can be found in less than 0(N4) time. R. L. Graham, in one
of the first papers specifically concerned with finding an efficient geometric

algorithm [Graham (1972)] showed that performing the sorting step first

enables the extreme points to be found in linear time. The method he uses

turns out to be a very powerful tool in computational geometry.

Suppose that we have already found an internal point and trivially trans-
formed the coordinates of the others so that this point is at the origin. We now

sort the N points lexicographically by polar angle and distance from the

origin. In performing this sort we do not, of course, compute the actual

distance between two points, since only a magnitude comparison is required.

We can work with distance squared, avoiding the square root, but this case is
even simpler. The distance comparison only need be done if two points have

the same polar angle, but then they and the origin are collinear and the

comparison is trivial.
After arranging the sorted points into a doubly-linked circular list we have

the situation depicted in Figure 3.6. Note that if a point is not a vertex of the

convex hull, then it is internal to some triangle (Opq) where p and q are

P3

Vertex p2 is eliminated 	̂ 	
P when angle p , p 2 p3 is 	i 	2 	̂.

found to be reflex. 	i 	̂ 	̂̂
it 	1 	r % 	i 	i 	/

	

‘ \\ ` ^ 	,
/^

.._^ \ I /,'___-
- -------70:1_, _____--- 	 ,

r 	..
r
r

Start —*•

Figure 3.6 Beginning the Graham Scan.

Scan
.--

108 	 3 Convex Hulls: Basic Algorithms

consecutive hull vertices. The essence of Graham's algorithm is a single scan
around the ordered points, during which the internal points are eliminated.
What remains are the hull vertices in the required order.

The scan begins at the point labelled START, which may be taken as the
rightmost smallest-ordinate point of the given set and hence is certainly a
hull vertex. We repeatedly examine triples of consecutive points in counter-
clockwise order to determine whether or not they define a reflex angle (one
that is >_ it). If internal anglepIP2P3 is reflex, then pip2P3 is said to be a "right
turn," otherwise it is a "left turn." This can be determined easily by applying
equation (3.4). It is an immediate consequence of convexity that in traversing
a convex polygon we will make only left turns. If p 1 p2 p 3 is a right turn, then p 2

 cannot be an extreme point because it is internal to triangle (Op ip3). This is
how the scan progresses, based on the outcome of each angle test:

1. pip2p3 is a right turn. Eliminate vertex p 2 and check poPiP3•

2. PiP2P3 is a left turn. Advance the scan and check p2P3p4.

The scan terminates when it advances all the way around to reach START
again. Note that START is never eliminated because it is an extreme point
and backtracking cannot proceed beyond its predecessor. A simple argument
shows that this scan only requires linear time. An angle test can be performed
in a constant number of operations. After each test we either advance the scan
(case 2), or delete a point (case 1). Since there are only N points in the set, the
scan cannot advance more than N times, nor can more than N points be
deleted. This method of traversing the boundary of a polygon is so useful that
we shall refer to it as the Graham scan. A more precise description of the
algorithm is given below, where S is a set of N points in the plane.

procedure GRAHAMHULL(S)

1. Find an internal point q.
2. Using q as the origin of coordinates, sort the points of S lexicographically

by polar angle and distance from q and arrange them into a circular
doubly-linked list with pointers NEXT and PRED, with START pointing
to the initial vertex. The boolean parameter f, when true, indicates that
vertex START has been reached through forward scan, not backtracking.

3. (Scan)
begin y := START; w := PRED Ed; f:= false;

while (NEXT[v] 0 START or f = false) do
begin if NEXT [v] = w then f:= true;

if (the three points V, NEXT [v], NEXT [NEXT[v]] form a left
turn) then y := NEXT [y]

else begin DELETE NEXT [y];
v := PRED [v]

end
end

end.

3.3 Convex Hull Algorithms in the Plane 	 109

Scan

• •

Figure 3.7 The left and right extremes partition the set into two subsets.

At the completion of execution, the list contains the hull vertices in sorted
order.

Theorem 3.7. The convex hull of N points points in the plane can be found
in O(NlogN) time and 0(N) space using only arithmetic operations and
comparisons.

PROOF. From the above discussion, only arithmetics and comparisons are used
in Graham's algorithm. Steps 1 and 3 take linear time, while the sorting step 2,
which dominates the computation, uses 0(N log N) time. 0(N) storage suf-
fices for the linked list of points. ❑

By recalling the lower bound discussed in Section 3.2, we see that this
simple and elegant algorithm has optimal running time. There is, however,
one detail that may be a reason of concern to the readers: the use of polar
coordinates. This, indeed, involves coordinate transformations that may be
cumbersome in systems having a restricted set of primitives. As it happens,
some researchers were equally concerned about this feature and proposed
refinements that avoid it. We shall briefly describe the modification due to
Andrew (1979); another noteworthy modification is due to Akl and Toussaint
(1978).

Given a set of N points in the plane, we first determine its left and right
extremes l and r (see Figure 3.7), and construct the line passing by 1 and r. We
then partition the remaining points into two subsets (lower and upper) de-
pending upon whether they lie below or above this line. The lower subset will
give rise to a polygonal chain (lower-hull or L-hull) monotone with respect to
the x-axis; similarly the upper subset gives rise to an analogous chain (upper-
hull or U-hull) and the concatenation of these two chains is the convex hull.

Let us consider the construction of the upper-hull. The points are ordered
by increasing abscissa and the Graham scan is applied to this sequence. In this
manner, trigonometric operations are avoided. Notice, however, that this is
nothing but a specialization of the original Graham method, where the
reference point q—the pole—is chosen at — co on the y-axis of the plane,
whereby the ordering of abscissae is consistent with the ordering of polar
angles.

1 10 	 3 Convex Hulls: Basic Algorithms

Convex
Hull —0-

pq is a hull edge because all points of the set lie to one side of it.

qqi is not a hull edge because there are points on both sides of it.

Figure 3.8 A hull edge cannot separate the set.

Even though we have shown that Graham's algorithm is optimal, there are
still many reasons for continuing to study the convex hull problem.

1. The algorithm is optimal in the worst-case sense, but we have not yet
analyzed its expected performance.

2. Because it is based on Theorem 3.6, which applies only in the plane, the
algorithm does not generalize to higher dimensions.

3. It is not on-line since all points must be available before processing begins.
4. For a parallel environment we would prefer a recursive algorithm that

allows the data to be split into smaller subproblems.

Before closing, we note that Graham's method makes explicit use of
sorting; one could hardly find a more direct connection to the sorting prob-
lem. Just as the study of sorting reveals that no single algorithm is best for all
applications, we will find the same to be true of hull-finding. Let us continue to
explore combinatorial geometry, looking for ideas that may lead to other hull
algorithms.

3.3.3 Jarvis's march

A polygon can equally well be specified by giving its edges in order as by giving
its vertices. In the convex hull problem we have concentrated so far on
isolating the extreme points. If we try instead to identify the hull edges, will a
practical algorithm result? Given a set of points, it is fairly difficult to
determine quickly whether a specific point is extreme or not. Given two points,
though, it is straightforward to test whether the line segment joining them is a
hull edge.

Theorem 3.8. The line segment l defined by two points is an edge of the convex
hull if and only if all other points of the set lie on l or to one side of it
[Stoer—Witzgall (1970), Theorem 2.4.7]. (See Figure 3.8.)

3.3 Convex Hull Algorithms in the Plane 	 1 1 1

Figure 3.9 The Jarvis' march for constructing the convex hull. The algorithm of
Jarvis finds successive hull vertices by repeatedly turning angles. Each new vertex is
discovered in 0(N) time.

There are (2) = O(N 2) lines determined by all pairs of N points. For each of
these lines we may examine the remaining N — 2 points and apply relation
(3.4) to determine in linear time whether the line meets the criteria of the
theorem. Thus in O(N 3) time we are able to find all pairs of points that define
hull edges. It is then a simple matter to arrange these into a list of consecutive
vertices.

Jarvis has observed that this algorithm can be improved if we note that
once we established that segment NI is a hull edge, then another edge must
exist with q as an endpoint [Jarvis (1973)]. His paper shows how to use this fact
to reduce the time required to O(N 2) and contains a number of other ideas
that are worth treating in detail. We shall report here a version which includes
a modification, due to Akl (1979), obviating a minor incorrectness.

Assume that we have found the lexicographically lowest point p i of the set
as in Section 3.3.2. This point is certainly a hull vertex, and we wish to find the
next consecutive vertex p 2 on the convex hull. This point p 2 is the one that has
the least polar angle > 0 with respect to p i . Likewise, the next point p 3

 has least polar angle with respect to p2 as origin, and each successive point can
be found in linear time. Jarvis's algorithm marches around the convex hull,
(hence, the appropriate name of Jarvis's march), finding extreme points in
order, one at a time. (Refer to Figure 3.9.) In this manner one correctly
constructs the portion of the convex hull (a polygonal chain) from the lex-
icographically lowest point (p, in Figure 3.9) to the lexicographically highest
point (p4 in the same figure). At this point, one completes the convex hull
polygon by constructing the other chain from the lexicographically highest
point to the lexicographically lowest. Due to the symmetry of the two steps,
one must reverse the direction of the two axes, and refer now to least polar
angles with respect to the negative x-axis.

As we have already seen in Section 3.3.1 the smallest angle can be found

112 	 3 Convex Hulls: Basic Algorithms

with arithmetics and comparisons alone, without actually computing any
polar angles.

Since all N points of a set may lie on its convex hull, and Jarvis's algorithm
expends linear time to find each hull points, its worst-case running time is
0(N 2), which is inferior to Graham's. If h is the actual number of vertices of
the convex hull, Jarvis's algorithm runs in 0(hN) time, which is very efficient
if h is known in advance to be small. For example, if the hull of the set is a
polygon of any constant number of sides, we can find it in linear time. This
observation is quite important in connection with the average-case analysis of
convex hull algorithms to be presented in the next chapter.

Another appropriate remark is that the idea of finding successive hull
vertices by repeatedly turning angles is intuitively suggestive of wrapping a
two-dimensional package. Indeed, Jarvis's method can be viewed as a two-
dimensional specialization of the "gift-wrapping" approach, proposed by
Chand and Kapur (1970) even before the appearance of Jarvis's paper. The
gift-wrapping approach applies also to more than two dimensions and will be
outlined in Section 3.4.1.

3.3.4 QUICKHULL techniques

The sorting problem is a source of inspiration of ideas for the convex hull
problem. For example, the central idea of QUICKSORT can be easily rec-
ognized in some techniques which—with minor variants—have been pro-
posed independently and almost at the same time [Eddy (1977); Bykat (1978);
Green and Silverman (1979); Floyd (private communication, 1976)]. Due to
this close analogy with the QUICKSORT algorithm, we choose to refer to
them as QUICKHULL techniques.

To better elucidate the analogy, let us briefly recall the mechanism of
QUICKSORT [Hoare (1962)]. We have an array of N numbers and we aim at
partitioning it into a left and a right subarray, such that each term of the first is
no larger than each term of the second. This is done by establishing two
pointers to array cells, which are initially placed respectively at the two
extremes of the array and move, one cell at a time, toward each other. Any time
the two terms being addressed by the pointers violate the desired order, an
exchange occurs. The two pointers move alternately—one moving and one
halting—the roles being exchanged at each effected exchange. Where the two
pointers collide the array is split into two subarrays, and the same technique is
separately applied to each of them. As is well known, this approach is very
efficient (resulting in O(N log N) time) if each array partition is approximately
balanced.

The corresponding QUICKHULL technique partitions the set S of N
points into two subsets, each of which will contain one of two polygonal
chains whose concatenation gives the convex hull polygon. The initial par-
tition is determined by the line passing through the two points 1 and r with

3.3 Convex Hull Algorithms in the Plane
	 113

•

Figure 3.10 Points 1, r, and h subdivide the set S (1) and eliminate all points in the
shaded triangle from further consideration.

smallest and largest abscissae (refer to Figure 3.10), as in Andrew's variant of
Graham's algorithm (see Section 3.3.2). Let S (1) be the subset of the points on
or above the line through 1 and r; 5(2) is symmetrically defined as the subset of
points on or below the same line. (Technically, {SU) , S(2) } is not a partition of
S, since Su l) n 5(2) > {1,1.1; this minor detail, which supplies a convenient
symmetry, should in no way trouble the reader.)

Each successive step operates on sets like Su) and S(2) in the following
manner (we refer for concreteness to SU) in Figure 3.10). We determine a point
he S (1) such that the triangle (hlr) has maximum area among all triangles
{ (plr): p e S") }, and among all triangles having this maximum area—if there
are more than one—the angle L (hlr) is maximum. Note then, that point h is
guaranteed to belong to the convex hull. Indeed, if we trace a line parallel to
segment ir and passing through h, there are no points of S above this line; there
may be other points of S on this line besides h, but by our choice, h is the
leftmost of them. Thus h cannot be expressed as the convex combination of
two other points of S.

Next we construct two lines, one L 1 directed from 1 to h, the other L2 from h
to r. Each point of 5 (1) is then tested with respect to each of these lines: there is
clearly no point lying simultaneously to the left of both L 1 and L2, while all
those to the right of both of them are in the interior of the triangle (lrh) and can
therefore be eliminated from further consideration. The points not to the left
of L2 but lying on or to the left of L 1 form a set S"'"; similarly a set Su 1 . 2) is
formed. The newly formed sets SI 1 " 1) and 5(1 . 2) are then passed to the
subsequent level of recursion.

The primitives used by the technique are evaluations of areas of triangles
and discrimination of points with respect to lines. Both types of primitives
require a few additions and multiplications.

Now that the approach has been explained at an intuitive level, we mention

114 	 3 Convex Hulls: Basic Algorithms

a way to unify with the general step the apparent anomaly of the initial
partition: the corresponding choice {l o , r0 } of 1 and r has to = (x0 , y0) as a
point of S with smallest abscissa, while r o is chosen as (x o , yo — e), with
arbitrarily small positive E. This effectively selects the initial partition line as
the vertical line by lo . At the completion of execution, r o is eliminated (setting
e = 0 identifies to and ro).

We can now give a less informal description of the technique. Here S is
assumed to contain at least two points and FURTHEST (S; 1, r) is a function
computing point h E S as explained above; also, QUICKHULL returns an
ordered list of points, and "*" denotes "list concatenation."

function 	QUICKHULL(S; 1, r)
1. begin if (S = {1, r}) then return (1, r) (*a single convex hull directed edge*)
2. else begin h := FURTHEST(S; 1, r);
3. 5(1) := points of S on or to the left of Îh;
4. 5(2) := points of S on or to the left of hr;
5. return QUICKHULL(S") ; 1, h)*(QUICKHULL(S (2) ;

h, r) — h)
end

end.

Thus, once the function QUICKHULL is available, the following simple
program carries out the desired task.

begin to = (xo , yo) := point of S with smallest abscissa;
ro := (xo,yo — e);
QUICKHULL(S; 10 , r0);
delete point r o (*this is equivalent to setting e = 0*)

end.

The extraction from S of 5") and S(2)—with the implicit elimination of the
points internal to the triangle (lrh)—as effected by lines 2, 3, and 4 above, is
carried out with 0(N) operation. This is followed by recursive calls on Su l)

 and 5(2) . Now, if each of the latter has cardinality at most equal to a con-
stant fraction of the cardinality of S and this holds at each level of recursion,
then the algorithm runs in time O(Nlog N). However, in the worst case
QUICKHULL—in spite of its simplicity—suffers from the same disability as
QUICKSORT, resulting in an 0(N 2) running time.

3.3.5 Divide -and -conquer algorithms

The QUICKHULL technique described in the preceding section is not only of
very simple implementation but attempts to achieve one of the goals set forth
at the end of Section 3.3.2 (goal 4, parallelizability). Indeed, it subdivides the
original problem into two subproblems, each of which can be solved inde-
pendently, and thus simultaneously, in a parallel environment. In addition the

3.3 Convex Hull Algorithms in the Plane
	

115

Figure 3.11 Forming the hull by divide-and- conquer. By dividing S into two subsets
and finding their hulls recursively we can reduce the problem to finding the hull of the
union of two convex polygons.

combination of the results of the two subproblems—the so-called "merge"
step—is the very simple concatenation of the two results. Unfortunately, this
simplicity has as a price the inability to accurately control the sizes of the
two subproblems and therefore to guarantee an acceptable worst-case
performance.

Therefore, although an example of the divide-and-conquer paradigm,
which is so fundamental in algorithm design, QUICKHULL has obvious
shortcomings. Indeed, the central feature of divide-and-conquer is to invoke
the principle of balancing [Aho–Hoperoft–Ullman (1974), p. 65], which sug-
gests that a computational problem should be divided into subproblems of
nearly equal size. Suppose that in the convex hull problem we have split the
input S into two parts, S I and S2, each containing half of the points. If we now
find CH(S1) and CH(S2) separately but recursively, how much additional
work is needed to form CH(S 1 u S2), that is, the hull of the original set? To
answer this we may use the relation

CH(S1 u S2) = CH(CH(S1) u CH(S2)). (3.7)

While at first glance equation (3.7) seems to involve more work than just
finding the hull of the set directly, it is crucial to note that CH(S 1) and CH(S2)
are convex polygons, not just unordered sets of points. (See Figure 3.11.)

PROBLEM CH4 (HULL OF UNION OF CONVEX POLYGONS). Given
two convex polygons P 1 and P2 find the convex hull of their union.

Apart from its inherent interest, this problem is important because it is the
merge step of a divide-and-conquer procedure and is thus a fundamental
geometric tool. We cannot hope that the final hull algorithm will be efficient
unless the subproblem solutions can be combined quickly.

procedure MERGEHULL(S)
1. If 1 S I < k 0 (k0 is a small integer), construct the convex hull directly by some

method and stop; else go to Step 2.
2. Partition the original set S arbitrarily into two subsets Si and S2 of

approximately equal cardinalities.

116
	

3 Convex Hulls: Basic Algorithms

Figure 3.12 Point p lies inside P2. Since p lies inside both polygons, the vertices of P 1
 and P2 occur in sorted order about p and can be merged in linear time.

3. Recursively find the convex hulls of S 1 and S2.

4. Merge the two hulls together to form CH(S).

Let U(N) denote the time needed to find the hull of the union of two convex
polygons, each having N/2 vertices. If T(N) is the time required to find the
convex hull of a set of N points, then applying equation (3.7) gives

T(N) < 2T(N/2) + U(N). 	 (3.8)

The following "merge" algorithm is due to M. I. Shamos [Shamos (1978)].

procedure HULL OF UNION OF CONVEX POLYGONS(P 1 , P2)

1. Find a point p that is internal to P1 . (For example, the centroid of any three
vertices of P 1 . This point p will be internal to CH(P1 u P2).)

2. Determine whether or not p is internal to P2. This can be done in 0(N) time
by the method of Section 2.2.1. If p is not internal, go to step 4.

3. p is internal to P2 (see Figure 3.12). By Theorem 3.6, the vertices of both P 1
 and P2 occur in sorted angular order about p. We may then merge the lists

in 0(N) time to obtain a sorted list of the vertices of both P1 and P2. Go to
step 5.

4. p is not internal to P2 (see Figure 3.13). As seen from p, polygon P2 lies in a
wedge whose apex angle is < n. This wedge is defined by two vertices u and
y of P2 which can be found in linear time by a single pass around P2. These
vertices partition P2 into two chains of vertices that are monotonic in polar
angle about p, one increasing in angle, the other decreasing. Of these two
chains, the one convex toward p can be immediately discarded, since its
vertices will be internal to CH(S 1 u S2). The other chain of P2 and the
boundary of P1 constitute two sorted lists that contain a total of at most N
vertices. They can be merged in 0(N) time to form a list of vertices of
P1 u P2, sorted about p.

5. The Graham scan (step 3 of GRAHAMHULL) can now be performed on
the obtained list, which uses only linear time. We now have the hull of
P1 u P2.

3.3 Convex Hull Algorithms in the Plane
	

117

P2

Figure 3.13 Point p is external to P2. As seen from p, polygon P2 lies in a wedge
defined by vertices u and v, which partition P2 into two chains of vertices. One may be
discarded, the other merged with the vertices of P 1 in linear time.

If polygon P1 has m vertices and P2 has n vertices, this algorithm runs in
0(m + n) time, which is certainly optimal, so we know that U(N) = 0(N),
giving T(N) = 0(Nlog N) as the solution of recurrence (3.8). Thus we have

Theorem 3.9. The convex hull of the union of two convex polygons can be found
in time proportional to their total number of vertices.

A byproduct of the described merge technique is the calculation of the
"supporting lines," when they exist, of two convex plygons. A supporting line
of a convex polygon P is a straight line /passing through a vertex of P and such
that the interior of P lies entirely on one side of 1 (in a sense, the notion of
supporting line is analogous to the notion of tangent). Clearly, two convex
polygons P1 and P2, with n and m vertices respectively, such that one is not
entirely contained in the other, have common supporting lines (at least two
and as many as 2 min(n, m)). Once the convex hull of the union of P 1 and P2

has been obtained, the supporting lines are computed by scanning the vertex
list of CH(P1 u P2). Any pair of consecutive vertices of CH(P 1 u P2), originat-
ing one from P1 and one from P2, identifies a supporting line.

An alternative technique to find the union of two disjoint convex polygons
was independently developed by Preparata—Hong (1977) and is based on
finding in linear time the two supporting lines of these polygons. This method,
however, will not be illustrated here.

3.3.6 Dynamic convex hull algorithms

Each of the convex hull algorithms we have examined thus far requires all of
the data points to be present before any processing begins. In many geometric
applications, particularly those that run in real-time, this condition cannot be

118 	 3 Convex Hulls: Basic Algorithms

met and some computation must be done as the points are being received. In
general, an algorithm that cannot look ahead at its input is referred to as on-
line, while one that operates on all the data collectively is termed off-line.

A general feature of on-line algorithms is that no bound is placed on the
update time, or equivalently, a new item (point) is input on request as soon as
the update relative to the previously input item has been completed. We shall
refer to the time interval between two consecutive inputs as the interarrival
delay. A more demanding case of on-line applications occurs when the inter-
arrival delay is outside the control of the algo ri thm. In other words, inputs are
not acquired on request by the algorithm, but occur with their own indepen-
dent timing; we shall assume, however, that they be evenly spaced in time. For
this situation, the update must be completed in time no greater than the
constant interarrival delay. Algorithms for this mode of operation are appro-
priately called in real-time. It should be pointed out that frequently known on-
line algorithms are globally less efficient than the corresponding off-line
algorithms (some price must be paid to acquire the on-line property).

The purpose of this section is to develop on-line convex hull algorithms
tailored to specific requirements.

PROBLEM CH5 (ON-LINE CONVEX HULL). Given a sequence of N points
in the plane, Pi , ... , pN , find their convex hull in such a way that after pi is
processed we have CH({ p i , . . . , Pi}).

PROBLEM CH6 (REAL-TIME CONVEX HULL). Given a sequence of N
points in the plane p 1 , ... , pN , find their convex hull on-line assuming constant
interarrival delay.

The algorithm must maintain some representation of the hull and update it
as points arrive; the question is whether this can be done without sacrificing
O(N log N) worst-case running time for processing the entire set.

It is not a challenge to exhibit an on-line hull algorithm if execution time is
not a consideration. For example, as each point is received we could run
Graham's algorithm and obtain O(N 2 log N) behavior. We can be slightly
more clever by recalling that Graham's algorithm consists of separate sort and
scan steps.

1. Input points until three noncollinear ones are found. Their centroid will be
internal to the final hull and is thus a suitable origin for sorting by polar
angle as in algorithm GRAHAMHULL.

2. Maintain a linked list of the ordered extreme points. As point pi is received,
insert it temporarily into the list, according to its polar angle, in 0(i) time.

3. Perform a Graham scan of the linked list. Since the Graham scan is linear,
this requires only 0(i) time. There are three possible outcomes of this step:

a. pi is an extreme point so far, and its inclusion causes some other points
to be eliminated.

3.3 Convex Hull Algorithms in the Plane 	 119

b. pi is an extreme point, but no others are eliminated.

c. pi is internal to the developing hull and is removed.

In any case, the size of the list increases by at most one. The total time used
by this algorithm is 0(N 2) in the worst case, which occurs if each new point
survives as an extreme point.

It may appear that the above procedure could be improved if we were able
to perform binary insertion at Step 2 instead of linear insertion, and an equally
efficient search (i.e., logarithmic) at Step 3 instead of a linear Graham scan.

Following this lead, Shamos (1978) designed an algorithm for an N-point
set which globally runs in time 0(N log N), and is therefore optimal, but
exhibits an update time 0(log 2 N). To analyze it with reference to the real-
time property, we note that lower bounds for off-line algorithms apply equally
well to on-line algorithms. This fact can be used to give lower bounds on the
processing time that an on-line algorithm must use between successive inputs.
Let T(N) be the worst-case time used by an on-line algorithm in solving a
problem with N inputs. Let U(i) be the time used between inputs i and i + 1. If
L(N) is a lower bound on the time sufficient to solve the problem, then

N-1

T(N) = E U(i) >_ L(N). 	 (3.9)
i=1

which gives a lower bound on U(i). In the present case, Theorem 3.2 and
Equation (3.9) together lead to the following theorem, which, for given N,
establishes a lower bound to the constant interarrival delay mentioned in the
formulation of Problem CH6.

Theorem 3.10. Any on-line convex hull algorithm must spend SZ(log N) process-
ing time between successive inputs, in the worst case.

We therefore conclude that the algorithm mentioned above fails to achieve
the real-time property. Subsequently, however, Preparata (1979) developed
an on-line algorithm with the same global running time but whose update time
is 0(log N), thereby matching the bound on the interarrival delay established
by Theorem 3.10. The two algorithms are closely related, and we shall limit
our discussion to the latter.

The key to an efficient on-line algorithm is the observation that all we need
is to be able to construct rapidly the two supporting lines (see Section 3.3.5)
from a point to a convex polygon. Specifically, if points are processed in the
sequence p 1 , p2 , ... , let pi be the current point and C i _ 1 be the convex hull of

{p1,p2, ... ,pi_1 }. We must obtain the supporting lines from pi to Ci _ 1 if they
exist (i.e., ifp i is external to C1 _ 1); they do not exist if and only ifp i is internal to
Ci _ 1 . In the latter case, pi is eliminated; in the former case, the appropriate
chain of vertices contained between the two vertices of support is to be
eliminated, while pi is to replace them. The situation is illustrated in Figure
3.14. For ease of reference we shall call the two supporting lines as left and
right, as they appear to an observer placed in pi and facing Ci_1.

p--.... 	 i
, \

-' 1\ Right support line

\ Left support line

Points of support

1 20 	 3 Convex Hulls: Basic Algorithms

Figure 3.14 Supporting lines from a point p; to a convex polygon Ci _ 1 .

We shall therefore tackle the construction of the supporting lines from a
point p to a convex polygon C. (The data structure in which the vertices of C
are to be held has not yet been specified. We shall choose one after deciding
which operations it must support.) The significant notion for our purpose is
the following classification of each vertex y of C with respect to the segment pv
(see Figure 3.15). We say that vertex y is concave (we should add with respect
to segment pv, but we shall normally imply this qualification) if the segment pv

	•
p

	•
p

(a) Concave
	

(b) Supporting

v'

v"

p

•

(c) Reflex

Figure 3.15 Classifications of a vertex y of a polygon C with respect to a segment pv.
(The arrows denote the directions of march when seeking a left supporting line.)

3.3 Convex Hull Algorithms in the Plane 	 1 21

intersects the interior of C; otherwise, if the two vertices adjacent to u lie on the
same side of the line containing pv, y is supporting; in the remaining case, y is
reflex. We leave it as an exercise to show that a vertex y can be classified in
constant time.

If vertex y is supporting, our task has been completed. Otherwise, to make a
concrete instance, suppose we are seeking a left supporting line. Then we must
march (or, hopefully, jump!) on the polygon C counterclockwise or clockwise
from u depending upon whether y is concave or re flex (see Figure 3.15). In this
manner we can determine the two points of support (if they exist). Once this is
completed, we must be able to delete from the cycle of the vertices of C a
(possibly empty) string of vertices and insert p into the occurring gap.

It is now clear what must be expected of the on-line data structure. We must
be able to efficiently perform the following:

i. SEARCH an ordered string of item (the hull vertex cycle) to locate the
supporting lines from pi ;

ii. SPLIT a string into two substrings and CONCATENATE two strings
(SPLICE);

iii. INSERT one item (the current pi).

The data structure which nicely fits these specifications is well-known and
is called a concatenable queue. t ° It is realized by means of a height-balanced
search tree and each of the above operations can be performed in O(log i)
worst-case time, where i is the number of nodes of the tree. Of course, in the
tree data structure, called T, the cycle of vertices appears as a chain, where the
first and last items are to be thought of as adjacent. In T, two vertices will be
used as references: m, the leftmost member, and M, the root member. In
addition, we shall make use of the angle a defined as L (mp 1 M), which is
classified as convex (< it) or reflex (>70.

Depending upon the classifications of vertices m and M (concave, support-
ing, or reflex) and angle a, we can have a total of eighteen cases. However these
cases can be conveniently reduced to eight (which cover all possibilities) as is
summarized in Table I and illustrated in Figure 3.16. The diagrams of Figure
3.16 are to be read as follows: The "circle" on which points M and m lie stands
for the polygon P; the ordered sequence of vertices starts at m and runs
counterclockwise on the circle; L(M) and R(M) are the vertex sequences
stored in the left and right subtree of the root of T.

Each of the cases illustrated in Figure 3.16 requires a distinct action to
locate the left and right points of support, referred to as / and r respectively.

Let us consider first cases 2, 4, 6, and 8. Here, 1 and r are known to exist
(because p cannot be internal) and are to be found in separate subtrees of the
root of T (one of these subtrees is extended to include the root itself). Thus, 1

10 See Section 1.2.3, [Aho-Hoperoft-Ullman (1974)], and [Reingold-Nievergelt-Deo (1977)]
for further details.

122

Table I

3 Convex Hulls: Basic Algorithms

Case a m M

1 convex concave concave
2 convex concave nonconcave
3 convex nonconcave reflex
4 convex nonconcave nonreflex
5 reflex reflex reflex
6 reflex reflex nonreflex
7 reflex nonreflex concave
8 reflex nonreflex nonconcave

M

(gv

T-R(M) ^,--
,. m

Y^

, /
	

■
I f 	1
1 	 /
■ 	 /

M ^ R (M)

(2) (1)

(6)

m M

(7) p 	 (8) p

Figure 3.16 The eight possible cases resulting from the classification of m, M, and a.

3.3 Convex Hull Algorithms in the Plane 	 123

and r are to be found by analogous functions. For example, l is found by the
following:

function LEFTSEARCH(T)
Input: a tree T, describing a sequence of vertices
Output: a vertex /
1. begin c:= ROOT(T);
2. if (pc is supporting) then / := c
3. else begin if (c is reflex) then T:= LTREE(c) else T:= RTREE(c);
4. 1:= LEFTSEARCH(T)

end;
5. return /

end.

Clearly, LEFTSEARCH involves tracing a path of T, spending a bounded
amount at each node to classify the point associated with it, and so does the
analogous RIGHTSEARCH.

Considering now cases 1, 3, 5, and 7, here both l and r are to be found in the
same subtree of the root, if they exist (note however, that in cases 1 and 7 p
could be internal to P). Thus in each case, the search must call itself recursively
in a subtree of the current tree" i (the one corresponding to the boundary
sequence encircled in Figure 3.16) until one of the cases 2, 4, 6, or 8 occurs; at
this point separate LEFT and RIGHTSEARCHes are initiated. If we reach a
leaf of T without verifying any of those cases, then p is internal to the polygon.
In conclusion, in the most general case, the determination of the supporting
lines from p can be visualized as tracing an initial path from the root of T down
to a node c, at which two separate paths originate. Since the tree T is balanced
and contains at most i < N vertices, and a bounded amount of work is
expended at each node, this activity uses O(log i) time.

To complete our description, we consider the restructuring of C i _ 1 which is
in order when pi is external to it. The vertices between l and r must be deleted
and pi inserted in their place. Slightly different actions (refer to Figure 3.17)
are required depending upon whether l precedes r in T or not. In the first case
we must split twice and splice once; in the second, only two splittings occur.

As mentioned earlier both SPLIT and SPLICE are performable in O(log i)
time. In summary, since the convex hull update can be done in time O(log i)
we have

Theorem 3.11. The convex hull of a set of N points in the plane can be found on-
line in 9(Nlog N) time with 9(log N) update time, that is, in real-time.

" To ensure that each recursive call be done in 0(1) time, it is important that the elements m and
M of the subtree be readily available. This is trivial for M, the root of the subtree. However, m of a
right subtree is obtainable from the current root by "threading" the tree, i.e., by introducing a
pointer NEXT, linking vertex v ; with its successor v ;+ , on the boundary of the polygon.

1 24 	 3 Convex Hulls: Basic Algorithms

Split 	Split
Splice

/ \`

R\\\2\\\\\\222. 	•
/ Delete 	r

Split 	Split

/ 	/
• 42222221 	1\\\\222220

Delete r 	 1 Delete

Figure 3.17 Different actions are required to delete the points becoming internal to
the convex hull depending upon the relative positions of / and r.

3.3.7 A generalization: dynamic convex hull maintenance

The technique described in the preceding section could be viewed as the
maintenance of a data structure, describing the convex hull of a set of points,
when the only operations permitted are insertions. The most natural question
arising at this point is: Can we design a data structure, organizing a set of
points in the plane and describing their current convex hull, under the
hypothesis that not only insertions but also deletions are permitted?

This question, as may be expected, has no simple answer. Indeed, whereas
in the on-line convex hull algorithm of Section 3.3.6 points found to be
internal to the current convex hull are definitively eliminated from
consideration, in this new situation we must carefully organize all points
currently in the set because the deletion of a current hull point may cause
several internal points to resurface on the hull boundary (refer to Figure 3.18).

Figure 3.18 Points p i and p2 resurface on the hull when p 3 is deleted.

•

3.3 Convex Hull Algorithms in the Plane 	 1 25

•
•

•
• •

Figure 3.19 The U-hull of a point set.

This was the problem considered by Overmars and van Leeuwen, which can
be formalized as follows.

PROBLEM CH7 (HULL MAINTENANCE). Given an initially empty set Sand
a sequence of N points (p i ,p2 , ... , pN) each of which corresponds either to an
insertion or to a deletion from S (of course, a point can be deleted only if
present in S), maintain the convex hull of S.

We shall now illustrate the very interesting solution of this problem
proposed by Overmars and van Leeuwen (1981).

First, we exploit the fact that the convex hull boundary is the union of two
(convex) monotone chains. Typically, one may consider the two chains
comprised between two points of smallest and largest x-coordinate, respec-
tively. These chains are upward and downward convex, and have been ap-
propriately called the U-hull and L-hull of the point set, respectively (U for
upper, L for lower). For example, the U-hull of a point set S is obtained (see
Figure 3.19) as the ordinary convex hull of Su {co L }, where oo L is the point
(0, — co) in the plane. 12 After observing that the convex hull of S is obtained
by trivially intersecting (concatenating) its U-hull and L-hull, we may restrict
our analysis to one of the latter, say the U-hull.

Not surprisingly, both the on-line convex hull technique of Section 3.3.6
and the present fully dynamic technique use trees as data structures. However,
there is a basic difference in the representation of the hull in the two ap-
proaches. In the former, each tree node represents a point. In the latter, only
leaves are used to represent points, while each internal node represents the U-
hull of its leaves.

The data structure T is organized as follows. Its skeletal component is a
height-balanced binary search tree T (with some care, a 2-3 tree [Aho-
Hoperoft—Ullman (1974), p. 146] could be used instead) whose leaves are

12 This notion was also used in Andrew's variant of Graham's algorithm (see Section 3.3.2).

•
• • •

1 26 	 3 Convex Hulls: Basic Algorithms

P2
.,„..

' 	N.

. `
. \

P1 ^^' ^^^ '

U 	
.\\^\\ 	U22

` ' ` 	 \\
\

, 	 U
^

. 	u12 	2^► .'
Î \ \

^ 	 \ \

! r 	 \ \
\ 	■

/ / 	 N 	 ,^ 	 \ 1

`..% U1=U (LSON [v]) \ '^;, U2 = U (RSON [v])\ ;

Figure 3.20 To obtain the U-hull of the union of U 1 and U2 we must construct the
common supporting segment (bridge) p1p2•

designed to store the points in the current set. The search is intended to

operate on the abscissa x, so that the left-to-right leaf traversal gives the point

set in sorted horizontal order. Note now that the sequence of points on the U-
hull (the vertices of it) is also ordered by increasing abscissa, so that it is a

subsequence of the global point sequence stored in the leaves.

Let v denote a node of T, with LSON[v] and RSON[v] denoting its left and
right offsprings, respectively. We wish to be able to construct the U-hull of the

(points stored in the) leaves of the subtree rooted at v. Since we shall have to

perform splitting and splicing of chains of vertices, we assume that each such

chain is represented as a concatenable queue (see Section 3.3.6). Notationally,
let U(v) denote the U-hull of the set of points stored in the leaves of the subtree

rooted at v. Now, assume inductively that U(LSON[v]) and U(RSON[v]) are

available, i.e., the U-hulls pertaining to the offsprings of node v. How can we

construct U(v)? Referring to Figure 3.20, all we need is to identify the two

support points pi and p 2 of the single common supporting segment of the two

hulls. To this end we need a function BRIDGE(U 1 , U2) to produce the
support segment of two U-hulls U 1 and U2. BRIDGE effectively allows us to
split U1 into the ordered pair of chains (U11, U12) (refer to Figure 3.20) and

similarly U2 into (U21, U22). We stipulate that support point pi E U1 be
assigned to U11 , and point p 2 E U2 be assigned to U22 (i.e., in both cases to the
"external" subchain). At this stage, by splicing U 11 to U22 we obtain the
desired U-hull of U 1 v U2. It is natural to have each node v of T point to a
concatenable queue representing that portion of U(v) which does not belong
to U(FATHER[v]).

Suppose we wish to perform the converse operation, i.e., reassemble
U(LSON[v]) and U(RSON[v]) assuming that U(v) is available. All that is
needed in this case is, with the above notation, knowledge of the bridging edge
plp2, i.e., a single integer J[v] denoting the position of p l in the vertex chain
U(v). With this information U(v) can be split into chains U 11 and U22, which
in turn can be spliced with the chains stored at LSON[v] and RSON[v],
respectively. In conclusion, the data structure T is completed by adding to
each node v of T the following items.

(b) (a)

3.3 Convex Hull Algorithms in the Plane

Concave 	Supporting 	Reflex

rfrerr]
,<r•

Supporting

"done"

127

Concave

no 1-r Reflex

(see (b))

Figure 3.21 (a) All possible cases arising when choosing a vertex in U 1 and a vertex
in U2. (b) Illustration of the (concave, concave) case.

i. A pointer to a concatenable queue Q[v], storing the portion of U(v) not
belonging to U(FATHER[v]) (if y is the root, then Q[v] = U(v)).

ii. An integer J[v] denoting the position of the left support point on U(v).

This interesting data structure uses only 0(N) space, where Nis the size of the
current point set. Indeed, the skeletal tree T has N leaves and N — 1 internal
nodes, while the points stored in the concatenable queues represent a partition
of the point set.

Since the operations of splitting and splicing concatenable queues are
standard, we shall concentrate on the operation BRIDGE for which
Overmars and van Leeuwen (1981) propose the following solution.

Lemma 3.1. The bridging of two separated convex chains of N points (in total)
 can be done in O(log N) steps.

PROOF. Given two U-hulls U1 and U2 and two vertices q 1 e U1 and q 2 e U2,

each of these two vertices can be readily classified with respect to the segment

g 1g2 as either reflex, or supporting, or concave. (See Section 3.3.6 for an
explanation of these terms.) Depending upon this classification there are nine
possible cases, which are schematically illustrated in Figure 3.21(a). The
wiggly subchains are those which can be eliminated from further contention
for containing a support point. All cases are self-explanatory, except the case

1 28 	 3 Convex Hulls: Basic Algorithms

Data structureT

(11,4, 1,5,12),3 •

• (7),2

• (2),1

• (3 9),2

• (0),1 • (10), 1

•

• *

•

• (8), 1 • (6), 1

Hi 0 © 9 El 0 © 10 	© 	6 ®

Hull tree

Figure 3.22 A planar point set and the corresponding data structure T.

(q1, q2) = (concave, concave), which is further illustrated in Figure 3.21(b). Let
line 1 1 contain q 1 and its right neighbor on U1 ; similarly let 12 contain q2 and its
left neighbor on U2, and let p be the intersection of 1 1 and 12 . Recall that U1 and
U2 are separated, by hypothesis, by a vertical line 1. Assume, at first that p is to
the right of 1. We observe that support point P i can only belong to the shaded
region, and that u has a lower ordinate than v. This implies that each vertex q"
on the subchain to the right of q2 appears concave with respect to the segment
q'q", where q' is any vertex of U1 . This shows that the chain to the right of q 2
can be eliminated from contention, but no similar statement can be made for
the chain to the left of q 1 . If intersection p is to the left of 1, then we can show
that the chain to the left of q 1 can be eliminated.

In all cases a portion of one or both hulls is eliminated. If this process starts
from the roots of both trees representing U 1 and U2, respectively, since these
trees are balanced, BRIDGE(U 1 , U2) will run in time O(log N), where N is as
usual the total number of vertices in the two hulls. p

With the function BRIDGE at our disposal, we may analyze the dynamic
maintenance of the planar convex hull. A typical situation is illustrated in
Figure 3.22. Here points are indexed by their order of insertion into the set. In
the data structure T, each leaf corresponds to a point, whereas each nonleaf
node corresponds to a b ridge and is shown with the pair Q[v], J[v]. It is
immediate to realize that data structure T describes a free tree on the set of

3.3 Convex Hull Algorithms in the Plane 	 1 29

Insert p13

(11,4,1,13,12),3

• (7),2

(2), 2

• (3,9), 2

• (0), 1 (0), 1

(5),1

(0),1
^

(0),1 (10), 1 • (8),i • (6),1

m 4 © 9 Ei 0 © 10 Et; © 	®
p13 1 __--- :^. ------- 	̂ r ^.^ .

/

< " 7.....

`

 1

'; 1 '. l
i

Figure 3.23 Insertion of point p 13 . Shaded nodes are those perturbed by the insertion.

points currently being maintained and is appropriately referred to as the hull
tree. It is suggested that the reader spend a little time to fully absorb the details
of Figure 3.22.

Suppose now we wish to insert a new point p. The insertion must not only
produce a height-balanced T by employing the usual rebalancing techniques
[Reingold–Nievergelt–Deo (1977)], but must also perform whatever is neces-
sary to ensure that the concatenable queue associated with each vertex still
conforms with the definition of the data structure T. For simplicity, let us
assume that no rebalancing is necessary (all rebalancing activities simply
increase in no significant way the number of nodes to be processed, with no
basic conceptual difference). Therefore let p 13 , the point to be inserted in the
point set of Figure 3.22, be as shown in Figure 3.23. In this figure, we have also
shown the state of the data structure T after the insertion of p 1 3. Note that p 13

 uniquely identifies a path from the root of T to a leaf (where p 13 is to be
inserted). While we trace this path from the root, at each node v we visit we
assemble the U-hull U(v) pertaining to that node and subsequently we disas-
semble it—using the parameter J[0— in order to pass the appropriate por-
tions to its two offsprings. In this manner we have at the sibling u of each node
on the path the complete representation—as a concatenable queue U[u]—of

 U(u). Less informally this descent in the tree T for the insertion of a point p is
carried out by a call DESCEND(root(T), p), where DESCEND(v,p) is the

1 30 	 3 Convex Hulls: Basic Algorithms

following recursive procedure using the functions SPLIT and SPLICE discus-
sed earlier.

procedure DESCEND(v, p)
begin if (v 0 leaf) then

begin (Q L , Q R) := SPLIT(U[v]; J[v])
U [LSON[v]] := SPLICE(Q L , Q [LSON[v]]);
U [RSON[v]] := SPLICE(Q[RSON[v]], Q R);
if (x(p) < x[v]) then y := LSON[v] else y := RSON[v];
DESCEND(v, p)

end
end.

At this point, we insert the new leaf and begin tracing the same path of T
toward the root. At each node v on this path we arrive with the complete
U-hull pertaining to that node. We have just shown that at v also the U-hull of
the sibling of v is available. So we now bridge these two hulls, effectively split-
ting the U-hull U[v] into two portions Q 1 and Q2, and, correspondingly,
U[SIBLING[v]] into Q3 and Q4. The portions Q2 and Q3 are to be kept at y
and SIBLING[v], respectively, while the portiom Q 1 is to be passed to the
father of v, where it will be spliced with the analogous portion Q4 forwarded
by the sibling of v. In this manner we have obtained the U-hull of the father of
v and the ascent toward the root can proceed. Less informally again, we use
the following procedure.

procedure ASCEND(v)
begin if (v 0 root) then

begin (Q1, Q2 , Q3, Q4; J) := BRIDGE(U[v], U[SIBLING[v]]);
Q[LSON[FATHER[v]]] := Q2;

Q[RSON[FATHER[v]]] := Q3;

U[FATHER[v]] := SPLICE(Q 1, Q4);
JFATHER[v]] := J;
ASCEND(FATHER[v])

end;
else Q[v] : = U[v]

end.

From the performance standpoint, we recall that SPLIT and SPLICE each
run in time O(log k), where k is the size of the queue, before splitting or after
splicing. Since k < N, we see that each node visit in DESCEND costs
O(log N) time. Since the depth of T is also O(log N), DESCEND has a worst-
case running time O(log 2 N). As to ASCEND, we have shown earlier that
BRIDGE also runs in time O(log N), whereby the same bound applies to this
case.

A similar analysis applies to the deletion of a point from the current set, and
we leave it as a challenging exercise for the reader. We may therefore summar-
ize this section with the following theorem.

3.4 Convex Hulls in More Than Two Dimensions 	 1 31

Theorem 3.12. The U-hull and the L-hull of a set of N points in the plane can be
dynamically maintained at the worst-case cost of O(log2 N) per insertion or
deletion.

Notice that if we use this technique to construct the convex hull of an
N-point set on-line—that is, requiring only insertions—we achieve an
O(N log2 N) running time against the O(N log N) of the less powerful tech-
nique. Clearly, we are paying a price for using a technique which is more
powerful than demanded by the application.

3.4 Convex Hulls in More Than Two Dimensions

We are now ready to consider the problem of constructing the convex hull of a
finite set of points in more than two dimensions. We have already seen that
such a hull is a convex polytope; we have also seen that polytopes in many
dimensions are not as simple geometric objects as their two-dimensional
counterparts, convex polygons. We recall, however, that in three dimensions
the numbers y, e, and f of vertices, edges and faces of the hull boundary (a
polyhedral surface) are related by Euler's formula y — e + f = 2.

In the higher-dimensional cases, the following terminology is particularly
useful; we say that a point p is beneath a facet F of a polytope P if the P lies in
the open half-space determined by hyperplane aff(F) and containing P. (In
other words aff(F) is a supporting hyperplane of P, and p and P belong to the
same half-space bounded by it.) Point p is beyond F if p lies in the open half-
space determined by aff(F) and not containing P. See Figure 3.24 for an
illustration of the notions in two dimensions.

3.4.1 The gift -wrapping method

As we mentioned earlier (Section 3.3), no reasonably efficient convex hull
algorithms of a finite set of points is known that does not produce a complete
description of the boundary (facial graph) of the convex hull polytope. In the
d-dimensional case, one must therefore seek a careful organization of the
computation of the facets of the convex hull in order to cut the likely
overhead. A significant attempt in this direction is the "gift-wrapping"
method proposed by Chand and Kapur (1970). The analysis of the technique
was produced by Bhattacharya (1982) about a decade later.

The basic idea is to proceed from a facet to an adjacent facet, in the guise in
which one wraps a sheet around a plane-bounded object. The simplest in-
stance of this principle is Jarvis's march, which we discussed earlier (Section
3.3.3): in that case the material used to wrap is better likened to a rope than to
a sheet of paper. The latter idea is more attuned to three dimensions, and we

3 Convex Hulls: Basic Algorithms

• p l is beyond F

aff (F)

Figure 3.24 Two-dimensional illustration of the "beneath/beyond" notions.

shall frequently refer to this case to appeal to the reader's intuition. It must be
stressed, however, that the three-dimensional instantiation is motivated by
purely presentational needs and does not impair the generality of the ap-
proach. All the ensuing discussion, however, is based on the assumption that
the resulting polytope be simplicial (see Section 3.1); we shall later comment
on the general case.

For a simplicial d-polytope, we recall that each facet, which is a (d — 1)-
simplex, is determined by exactly d vertices. In addition we have the following
straightforward theorem.

Theorem 3.13. In a simplicial polytope, a subfacet is shared by exactly two facets
and two facets Fl and F2 share a subfacet e if and only if e is determined by a
common subset, with (d — 1) vertices, of the sets determining Ft find F2 (F1 and
F2 are said adjacent on e).

This theorem is the basis of the method, which uses a subfacet e of an
already constructed facet Ft to construct the adjacent facet F 2 , which shares
e with Fl . In this sense, subfacets are the fundamental geometric objects of
the technique. l3

Let S = { p 1 , p2, . . . , pN} be a finite set of points in Ed , and assume that a
facet F of CH(S) is known, with all its subfacets. The mechanism to advance
from F to an adjacent facet F'—sharing with F the subfacet e—consists in
determining, among all points in S which are not vertices of F, the pointp' such
that all other points are beneath the hyperplane aff(e u p'). In other words, we
seek among all hyperplanes determined by e and a point of S not in F, the one
which forms the "largest angle" (in some appropriate sense) with aff(F). The
situation is illustrated for d = 3 in Figure 3.25(a). Here we consider the

13 Indeed, the gift-wrapping method is referred to as "edge-based," to mean "subfacet-based" in
our terminology.

132

3.4 Convex Hulls in More Than Two Dimensions
	 133

(a)
	

(b)

Figure 3.25 (a) Illustration of the half-plane determined by e and p6 forming the
largest convex angle with the half-plane containing F. (b) Illustration of the calculation

of the cotangent.

collection of half-planes sharing the line through e and seek the half-plane
which forms the largest angle < it (convex angle) with the half-plane contain-
ing F: in the illustration the half-plane containing point p 6 is the result of our
search. The angle comparison is carried out by comparing cotangents. Let n be
the unit normal to F(in the "beneath" half-space of aff(F)), and let a be a unit
vector normal to both edge e and vector n (so that a is oriented like n x P2P1)•
Also let vk denote the vector pep . The cotangent of the angle formed by the

half-plane containing Fwith the half-plane containing e and pk is given by the
ratio — I Up2 f /I UVI, where I Up2 f = Vk • al' and f UVI = vk • n T • Thus for each Pk
not in F, we compute the quantity

and select pi so that

Pk ° — vk• a T/vk . n T

Pi = ma x Pk •

(3.10)

(3.11)

The latter equation has a unique solution in the simplicial case.

Once we have visualized the situation in our familiar three-dimensional

space, it is relatively easy to show the validity of (3.10) and (3.11) for arbitrary

dimension d as a solution to our problem. The computational cost of this
primitive operation is readily assessed. Assuming that vector n is known
(the unit normal to aff(F)), let subfacet e be determined by vertices

}. Therefore vector a is orthogonal to both n and each of the P1^P2^ • • • ^Pa-^ 	 g
(d — 2) vectors pTpd _ 1 , and it can be determined by solving a system of (d — 2)

134 	 3 Convex Hulls: Basic Algorithms

equations in (d — 1) unknowns, and by normalizing the result to achieve unit
length. This computation involves 0(d3) arithmetic operations. The compu-
tation of each pk uses 0(d) arithmetic operations (see (3.10)), where the
selection of pi uses 0(Nd) operations. At this point, we can construct the unit
normal to the new facet F', which is proportional to — pi a + n. Thus, the
overall cost of advancing from F to an adjacent F' (gift-wrapping step) is
0(d3) + 0(Nd).

Once we have understood the mechanism of the "gift-wrapping" primitive,
we can describe the overall organization of the algorithm. The algorithm
starts from a given initial facet (we shall see later how to obtain it), and, for
each subfacet of it, it constructs the adjacent facet. Next, it moves to a new
facet and proceeds until all facets have been generated. For each newly
obtained facet we construct all of its subfacets, and keep a pool of all subfacets
which are candidates for being used in the gift-wrapping step. (Note that a
subfacet e, shared by facets Fand F', can be such a candidate only if either For
F', but not both, have been generated in the gift-wrapping exploration.) The
orderly visit of all facets is best organized by means of an ordinary queue Q of
facets and of a file .9-, the "pool" of subfacets.

procedure GIFTWRAPPING(p 1 , ... ,pN)
1. begin Q = 0; 9 :=Q;
2. F:= find an initial convex hull facet;
3. .% G subfacets of F;
4. Q F;
5. while (Q 0 0) do
6. begin FG Q (*extract front element from queue*);
7. T:= subfacets of F;
8. for each e e T n J do (*e is a gift-wrapping candidate*)
9. begin F' := facet sharing e with F; (*giftwrapping*)

10. insert into .% all subfacets of F' not yet
present and delete all those already
present;

11. Q. F'
end;

12. output F
end

end.

This algorithm encompasses several major activities whose implemen-
tation must now be analyzed in detail. They are

Step 2: Find an initial convex hull facet;
Step 7: Generate the subfacets of facet F;
Step 8: Check if subfacet e is a candidate;

Step 9 is the gift-wrapping step, which has been discussed earlier. We now
consider each of the above three operations, and evaluate their performance.

3.4 Convex Hulls in More Than Two Dimensions
	

135

Figure 3.26 The sequence (n 1 , n 2 , n3) of hyperplanes, so that n 3 contains the initial
facet of the process.

Step 2. "Find an initial convex hull facet." The idea is to obtain a hyper-
plane containing a facet of the convex hull by successive approximations, that
is, by constructing a sequence of d supporting hyperplanes, n1, n2, ..., 7rd,
each of which shares with the convex hull one more vertex than the preceding
one. In essence, the technique is an adaptation of the gift-wrapping mechan-
ism, where at the j-th of the d iterations the hyperplane nt contains a (j — 1)-
face of the convex hull. Thus we begin by determining a point of least x 1

-coordinate (call it p',); this point is certainly a vertex (a 0-face) of the convex
hull. Therefore, hyperplane n 1 is chosen orthogonal to vector (1, 0, ... , 0) and
passing by p'1 . After this initialization, at the generic j-th iteration (j =
2, ... , d) hyperplane 75_ 1 has normal ni _ 1 and contains vertices p' i , p'2 , ... ,
p;_ 1 . The vector a; is chosen to be normal to n;_ 1 , to each of the (j — 2)
vectors p'1p'2,p'1p3, • • • , Pip;-1, and to each of the coordinate axes
x;+ , , x1+2 , ... , xd . These (d — 1) conditions determine a; and therefore the gift-
wrapping primitive can be applied with vectors a i and ni _ 1 . The sequence of
hyperplanes is illustrated for d = 3 in Figure 3.26. The computational work of
each iteration is essentially due to the construction of a ; and to the gift-
wrapping selection of the next vertex p'. The latter is of complexity 0(Nd),
while only 0(d2) work is needed to determine a; , since a; is obtained by adding
just one linear constraint to those determining a ;_ 1 . Thus, since we have d
iterations, the construction of the initial face is completed in time O(Nd 2) +
0(d3) = 0(Nd2), since N > d.

Step 7. "Generate the subfacets of facet F." Due to the simplicial polytope
assumption, each facet is determined by exactly d vertices and each subset of
(d — 1) vertices of F determines a subfacet. Thus the subfacets of F can be
generated in a straightforward manner in time 0(d2). Each facet will be
described by a d-component vector of the indices of its vertices, while a
subfacet will be described by an analogous (d — 1)-component vector.

136 	 3 Convex Hulls: Basic Algorithms

Step 8. "Check if a subfacet e is a candidate." A subfacet is a candidate if it
is contained in just one facet generated by the algorithm, therefore if we keep a
file J of such subfacets, a search of this file is the required test. As noted
above, a subfacet is described by a (d - 1)-component vector of integers (the
indices of the vertices determining it). We can now arrange the file .T lexi-
cographically and store it as a height-balanced binary search tree. Given a
subfacet e, we may access J in two different circumstances: either to test e for
being a candidate (line 8 of algorithm) or to update the file (line 10). In the first
case, we search the file .T for membership of e; in the second case, we also
search J for membership of e, but, in addition, if e is already present we delete
it, otherwise we insert it. Both searches are carried out in time 0(d log M),
where M, the size of the file g- , is bounded above by SF(d, N), the maximum
number of subfacets. 14

We can now estimate the overall performance of the algorithm. Initializa-
tion (lines 1-4) has a cost 0(Nd 2). Steps 6, 11, and 12 (addition and removal
from the queue, or output of a facet) can be treated together; denoting by cpd-1
and (pd-2 the actual numbers of facets and subfacets of the polytope, respec-
tively, their overall complexity is 0(d) x (pd _ 1 . The overall complexity of Step
7—generation of all subfacets is 0(d) x (pd- 2 , for each subfacet is con-
structed in time 0(d) and is generated twice. The test embodied by line 8
as well as the file update in line 10, are carried out in time O(d • log gpd _ 2)
per subfacet, whence their overall complexity is O(d log (pd _ 2) x (pd _ 2 . Finally,
the overall complexity of Step 9—gift-wrapping—is
0(Nd)). Recalling that the maximum values of both cpd _ 1 and cpd_ 2 are
0(NL d/2 J), we have the following conclusion.

Theorem 3.14. The convex hull of a set of N points in d-dimensional space can be
constructed by means of the gift-wrapping technique in time T(d, N) =
O(N (p d _ 1) + O((pd _ 2 • log (p d _ 2). Thus in the worst-case T(d, N) =
0(NL(1'2J+1) + O(Noi2 J log N).

Finally, we cannot ignore the caveat that the above technique is applicable
under the simplicial polytope assumption. What happens in the general, albeit
improbable case, of more than d vertices per facet? If a facet Fis not a simplex,
equation (3.10) has more than one solution, i.e., there are several points of the
set S realizing the condition. All of these points belong to the hyperplane
aff(F); however, to determine the face structure of F (i.e., the (d - 2)-
faces, ... , 0-faces) we must recursively solve a (d - 1)-dimensional convex
hull problem in aff(F). Thus the generation of the subfacets—which was
straightforward in the simplicial case—becomes considerably more involved.
The recursive definition of the algorithm for the general case, of course, makes
its analysis substantially more difficult.

14 SF(d, N) = O(Ni-di2 J) [Grünbaum (1967), 9.6.11.

(pd -1 x (0 (d3) +

CH (f3 U p)
case (i i) (a)

,--^ —__- --_--__ ^ -.` ^
P II /f---- ;̂

/ 	3 	 `:;r;::;ï::' —^/

i
/

/
/

	

/ 	CH(f2U p)

	

,/ 	case (ii) (b)
/ case (i)

3.4 Convex Hulls in More Than Two Dimensions
	 137

Figure 3.27 Illustration of the cases contemplated by Theorem 3.15.

3.4.2 The beneath-beyond method

For a long time the gift-wrapping method was the only known general

technique to compute convex hull of a finite point set in d-dimensional space.

A new technique, called the "beneath-beyond" method has been proposed

[Kallay (1981)]. This technique exhibits, in addition, the on-line property.

The basic idea is very different from that of gift-wrapping and is akin to the

dynamic two-dimensional convex hull algorithm described in Section 3.3.6.

Informally, the technique considers one point p at a time and, ifp is external to
the current hull P, it constructs the supporting "cone" of P from p and
removes the portion of P which falls in the "shadow" of this cone. (The

intuitive ideas of cone and shadow are supplied by the three-dimensional

case.) The method is based on the following theorem [McMullen—Shephard
(1971), p. 113].

Theorem 3.15. If P is a polytope and p a point in Ed, let P' = CH(P u p). Then
each face of P' is of one of the following types:
(i) a face f of P is also a face of P' if and only if there exists a facet F of P such

that f c F and p is beneath F.
(ii) iff is a face of P, then f' = CH(f u p) is a face of P' if and only if either

(a) among the facets of P containing f there is at least one such that p is

beneath it and at least one such that p is beyond it, or
(b) p e aff(f).

Intuitively, case (i) concerns the faces of P which are not in the cone shadow

and become faces of P', the updated hull. (See Figure 3.27, where all cases are

illustrated in the simple, but nonetheless general, two-dimensional case.) Case

(ii) concerns the faces of the cone; specifically, subcase (ii)(a) identifies the

faces of support of the cone, while (ii)(b) identifies the degenerate instance of

case (a). Note that in subcase (ii)(a), the dimension of the face f' = CH (f u p)

1 38 	 3 Convex Hulls: Basic Algorithms

of P' is one higher than the dimension off of P. Although the objective may be,
in general, the construction of just the facets of the convex hull, the dimen-
sional step-up encompassed by case (ii)(a) forces us to maintain an adequate
description of all faces of the current polytope.

Since the algorithm is on-line 	i.e., it constructs the convex hull by intro-
ducing one point at a time—it will take at least (d + 1) iterations before the
polytope reaches full dimensionality d; that is, we obtain first a 0-face, then a
1-face, and so on. The update mechanism, however, is uniform, and we shall
describe it in the general case. For simplicity, we assume that the points are in
general positions, so that no degeneracy occurs.

An adequate description of the current polytope P is its facial graph H(P)
(Hasse diagram of the set of faces of P under the relation of inclusion, Section
3.1), from which the node corresponding to P itself is removed as redundant
when P has reached full dimensionality. As a data structure, we could use (d
+ 1) lists L_ 1 , L o , L 1 , ... , Ld_1, where L; is the list ofj-faces. Each record in L.
pertains to a j-face f and contains:

(1) The affine base BASE(f) off;
(2) Pointers SUPER(f) to each (j + 1)-face containing f and pointers

SUB(f) to each (j — 1)-face contained in f:
(3) Pointers FACETS(f) to each facet containing f.

Pointers (3) are crucial to carry out the beneath-beyond test (case (ii) (a) in
Theorem 3.15): the other data are needed to obtain the necessary information
should a face step-up its dimension to ultimately evolve into a facet.

The update of P due to the introduction of a new point p can be effected in
more than one way. The following approach is particularly simple to describe,
although it is susceptible of several algorithmic improvements.

Let P be described by its facial graph H(P). We now create another graph
Hp (P), isomorphic to H(P), whose vertices are defined as

If': f' = CH (f u p), for each f of P}

and, for each f of P we also establish an edge to represent the inclusion f c f'
(see Figure 3.28(b)). All that is involved in the construction off' is the addition
to BASE(f) of the point p, since the points are assumed in general position
(which guarantees p 0 aff(f)). We call H(P, p) the graph thus obtained.

Clearly Hp (P) contains the supporting "cone" of P from p; indeed, when
the dimension of P is less than d, Hp (P) is exactly the supporting cone, and the
update is completed at this point with H(P,p) = H(CH(P u p)).

We now consider the update mechanism when the dimension of P is d.
Assuming that p is external to P the desired H(CH(P u p)) is a refinement of
H(P,p). Specifically we have:

(i) H(P) properly contains a portion falling in the cone shadow. Indeed,
each facet of P such that, for each facet F containing f, p is beyond F, belongs
to the shadow and is to be deleted (in our example of Figure 3.28 this holds for
p3, e34, and e23). We make use of the following straightforward property.

3.4 Convex Hulls in More Than Two Dimensions
	 139

Pl

(a)

(b)

(c)

Figure 3.28 Illustration of the update of P. (a) Geometry of the update. (b) Creation
of Hp(P) as a "translation" of H(P). (c) Refinement of the diagram of (b) to obtain
H(CH(P u p)).

Property 1. If f 0 CH(P up), and f c f', then f' 0 CH(P up).

Application of Property 1 enables us to delete all ascendants of f in the
graph Hp (P). (The faces to be so deleted are shown as solid circles in Figure
3.28(c).) For each deleted face f, we remove also its incident edges (i.e., both
SUPER(f) and SUB(f)).

(ii) Hp (P) contains the supporting cone. Indeed, each face f of P such that,
for each facet Fcontaining f, p is beneath F, is also a face of CH(P u p) (Case i

140 	 3 Convex Hulls: Basic Algorithms

of Theorem 3.15), so that CH (f u p) e Hp(P) is to be deleted (in our example,
this holds for f = pi , e14, e12). We make use of the following straightforward
property.

Property 2. If CH (f u p) 0 CH (P up), and f c f', then CHU' f' u p) 0
CH(P u p).

Application of Property 2 enables us to delete all ascendants of CH(f u p)
in Hp(P). (The faces to be so deleted are shown as shaded circles in Figure
3.28(c).) Next for each term of Hp (P) so deleted, we remove also its incident
edges. The resulting graph, obtained as a refinement of H(P, p) is the facial
graph of CH (P u p). We also note that when p is not external to P, Property 2
holds for each f of P, so that the entire subgraph Hp(P) is deleted and
CH(Pu p) = CH(P), correctly.

From an implementation viewpoint, the fundamental part of the technique
is the classification of each of the N vertices of P with respect to p, as concave,
reflex, or supporting (according to a generalization of the terminology of
Section 3.3.6). Specifically, we say

concave if for each facet F containing y, p is beneath F.

vertex v is 	reflex if for each facet F containing y, p is beyond F.

supporting, otherwise.

We leave as an interesting exercise for the reader (Exercise 3.9 at the end
of this chapter) to devise a method to perform this classification in time
O(cpd _ l) + O(Nd), where (p d _ 1 is, as usual, the actual number of facets of P.
Once this classification is obtained, Property 1 is applied to all ascendants of
each re flex vertex, and Property 2 to all ascendants of concave vertices in
Hp (P): this operation can be done in time proportional to the total numbers of
vertices and edges of H(P); it is not hard to show that the latter is O(cp a_ 1).
Thus the total update time is O((p d _ 1) and, since there are N updates, we have
the following theorem.

Theorem 3.16. The convex hull of a set of N points in d-dimensional space can be
constructed on-line by the beneath-beyond technique in time

T(d, N) = O(NI- d12 -1+1)

Two remarks are now in order. First, special care must be taken to handle
the degenerate cases, when p belongs to the affine hull of some face of P.
Second, when P is not simplicial, it can be shown that P can be perturbed
without significantly increasing the face complexity or the complexity of the
inclusion relation. As a consequence, the time bound developed for the
simplicial case applies to the general case.

In summary, the beneath-beyond technique is attractive because it has a
performance comparable to that of the gift-wrapping method and, in ad-
dition, it has the desirable property of being on-line.

3.4 Convex Hulls in More Than Two Dimensions 	 141

3.4.3 Convex hulls in three dimensions

Among all the higher dimensional convex hull problems, the three-
dimensional instance has enormous importance for its unquestionable rel-
evance to a host of applications, ranging from computer graphics to design
automation, to pattern recognition, to operations research. It is a fortunate
circumstance—and a most refreshing finding—that this significant appli-
cational need is matched by what appears to be a "lull" in the computational
difficulty. We shall now try to elaborate on this rather vague notion.

We have already noted that the objective of a convex hull algorithm is the
description of the convex hull polytope. Thus, we know from Section 3.1 that
1 (NEd/21) is a trivial worst-case lower bound—the size of the output—to the
running time of any convex hull algorithm on N points in Ed . We have also
seen (see the preceding section) that the beneath-beyond technique exceeds
this lower-bound by a factor 0(N), and that for d = 3 (d is odd) this is the best
we can expect from an on-line technique. If we renounce the on-line property,
we may expect to reduce this factor, possibly by exchanging 0(N) with
something like O(log N): in three dimensions this would lead to a cost
0(NL 3 / 2 J log N) = 0(N log N). On the other hand, the general lower bound
(Section 3.2) is exactly S2(N log N), so the best we can hope for is an off-line
algorithm with running time 0(Nlog N). This objective can be achieved
[Preparata–Hong (1977)].

As usual, we have a set S = { p1,p2, ... , pN} of N points in E3 . We assume
for simplicity, that for any two points pi and p. in S we have xk (pi) 0 x k (p;),
for k = 1, 2, 3. This simplification helps bring out the basic algorithmic ideas,
while the modifications required for the unrestricted case are straightforward.
With the target of an 0(N log N) performance, we now try to develop a
technique of the divide-and-conquer type.

As a preliminary step we sort the elements of S according to the coordinate
x 1 and relabel them if necessary so that we may assume x i (pi) < x1 (p;) a

i < j. We then have the following simple recursive algorithm (given as a
function).

function CH (S)
1. begin if (I SI < k o) then

begin construct CH(S) by brute force;
return CH(S)

end
2. else begin Si := { P 1 , . . . , PLN/2i}; S2 := {PLN /2J+19 . . . ' NI;
3. P1 := CH(S1); P2 := CH(S2);
4. P:= MERGE(P1 ,P2);
5. return P

end
end.

The initial sorting of the x 1 coordinates of the elements of S uses
0(N log N) operations. Notice that, because of this sorting and of Step 2, the

142 	 3 Convex Hulls: Basic Algorithms

sets CH(S,) and CH(S2) are two nonintersecting 3-dimensional polytopes.
Now, if the "merging" of two convex hulls with at most N vertices in total, i.e.,
the construction of the convex hull of their union, can be done in at most
M(N) operations, an upper bound to the number T(N) of operations used by
algorithm CH is given by the equation

T(N) = 2T(N/2) + M(N).

(Note that we have assumed that N be even for simplicity, but practically
without loss of generality.) Thus, if we can show that M(N) is 0(N), we
shall obtain that T(N) is 0(N log N), and, taking into account the initial sort-
ing pass, an overall complexity 0(N log N) results for the convex hull
determination.

Clearly the MERGE function is the crucial component of the method. We
begin by considering the data structure suited to represent a convex 3-
polytope P. All we need to describe is the boundary of P, which in three
dimensions has the topology of a planar graph. As we noted in Section 1.2.3.2,
the natural structure to represent a planar graph embedded in the plane is the
doubly-connected-edge-list (DCEL). The interesting property of the DCEL is
that it contains explicitly only the edges of the graph, but it allows for the
extraction of the vertex and face sets in optimal time. t s

Assume now that the polytopes Pt = CH(S,) and P2 = CH(S2) have been
recursively obtained. It is important to stress that—due to the initial sorting
and to the chosen partition of the resulting point set (line 2 of Algorithm
CH(S))—P t and P2 are nonintersecting. The "merge" of P, and P2 may be
obtained by the following operations (see Figure 3.29 for an intuitive
illustration):

1. Construction of a "cylindrical" triangulation 9", 16 which is supporting P,
and P2 along two circuits E, and E2, respectively.

2. Removal both from Pt and P2 of the respective portions which have been
"obscured" by .%.

Here, the terms "cylindrical" and "obscured" have not been formally defined;
rather, they have been used in their intuitive connotations, as suggested by
Figure 3.29. Still on an intuitive level, the construction of 99 may be viewed as
a gift-wrapping operation: indeed we will "wrap" both Pl and P2 in the same
"package" by means of 9". Although , — may have 0(N) facets and each gift-
wrapping step takes in general 0(N) work, the nature of the three-
dimensional polytope allows for a crucial simplification, as we shall see.

15 Here the term "face" is used in the conventional terminology of planar graphs. However, for
the rest of this section, we shall use the term "facet" to emphasize their nature as (d — 1)-
dimensional sets.

1 ' We are implicity assuming that at each stage in the execution of the algorithm we are dealing
with simplicial (triangulated) polytopes. As we shall see later this is done with no essential sacrifice
of generality.

3.4 Convex Hulls in More Than Two Dimensions
	 143

Figure 3.29 Illustration of the principle of the method. A triangulation .% is
"wrapped-around" the convex hulls of P 1 and P2 .

The initial step in the construction of g" is the determination of a facet or
edge of it. Although there is more than one way to carry out this task, an
expedient way is to maintain projections of each convex polytope as a polygon
in a coordinate plane (say, the plane (x 1 , x2) as shown in Figure 3.30). Thus,
let P; be the projection of P, on the (x 1 , x2)-plane (i = 1, 2). We can now use
our favorite algorithm (see, e.g., Section 3.3.5) to construct a common support
line of P; and P'2 and obtain a planar edge e' which is the projection of an edge
e of 5". Once e is available, a supporting plane through e and parallel to the x 3

-axis can be used to start the construction of 9--.
The advancing mechanism uses as reference the last constructed facet of g".

We shall denote by the letter "a" vertices of P 1 , while "b" is used for P2. As
shown in Figure 3.30, let (a 2 , b 2 , a 1) be the reference facet (shaded area) for
the current step. We must now select a vertex â, connected to a2 , such that the
facet (a2 , b 2 , â) forms the largest convex angle with (a2 , b 2 , a l) among the
facets (a2 , b 2 , v), for u o a l connected to a 2 ; similarly we select fi among the

Figure 3.30 The initial step and the generic step in the construction of ..% .

144 	 3 Convex Hulls: Basic Algorithms

Figure 3.31 The advancing step in the construction of .9.— .

vertices connected to b 2 . For reasons to become apparent later, we call these
comparisons of Type 1.

Next, once the "winners" (a 2 , b2 , â) and (a 2 , b2 , 6) have been selected, we
have a run-off comparison, called of Type 2. If (a 2 , b2 , â) forms with
(a2 , b 2 , a l) a larger convex angle than (a 2 , b 2 , 6), then â is added to J (6 is
added in the opposite case) and the step is complete. The described schedule of
comparisons is an efficient way, as we shall see, to implement the gift-
wrapping step around edge (a 2 , b 2).

The efficient implementation of the just described advancing mechanism
rests crucially on the following considerations. In the DCEL, the edges
incident on a vertex can be efficiently scanned in either clockwise or counter-
clockwise order. Referring to Figure 3.31 for concreteness of illustration,
suppose now that b and (b, a) are the most recently added vertex and edge of
.T, respectively, and let (b 1 , b) be the edge of E2 reaching b. Without loss of
generality, we may assume that the numbering of the edges incident on b and
of their termini b 1 , b2 , ... , bk be as shown in Figure 3.31 (where k = 7) and
analogously for the edges incident on vertex a. Let (bs , b, a) be the facet which
forms the largest convex angle with (b 1 , b, a) among the facets (b i , b, a), for
i = 2, ... , k (in our example s = 4). A first important observation is that any
(b, b i) for 1 < i < s becomes internal to the final hull CH (Pi u P2) and need not
be further considered. As regards vertex a, we note that the set of its incident
edges had been partially scanned at some earlier stage in the process (since
vertex a was reached earlier than vertex b by the algorithm). As a consequence
of the preceding obse rvation the scan around a should resume from the last
visited edge since all others have been eliminated (this edge is shown as (a, a4)
in Figure 3.31).

The second observation concerns the numbers of angle comparisons, each
to be performed in constant time, by specializing the general technique out-
lined in Section 3.4.1 for the d-dimensional case. Each Type 1 comparison

3.4 Convex Hulls in More Than Two Dimensions 	 145

definitively eliminates one edge of either P 1 or P2 from further consideration.
Let y 1 and m i denote, respectively, the numbers of vertices and edges of
Pi (i = 1, 2). Thus, the number of Type 1 comparisons is upper-bounded by
(m 1 + m2). Next, each Type 2 comparison adds a new vertex to either E 1 or
E2. Since the numbers of vertices of E 1 and E2 are at most v 1 and y 2 , respec-
tively, the number of Type 2 comparisons is bounded by (y 1 + y2 — 1). Due
to the planar graph structure of the polytopal surface, mi < 3v ; — 6, whence
the number of angle comparisons grows no faster than linearly in the total
number of vertices of P 1 and P2.

The update of the DCEL can be performed dynamically during the con-
struction of J". Specifically, refer to Figure 3.31 for an illustration. Assume
that we have advanced from edge (a, b 1) to edge (a, b), "pivoting" on vertex a.
Edge scans will take place around both b and a, although the edges incident on
the latter (the pivot) have been already partially scanned. First a new DCEL
node for edge (a, b) is created, and (a, b) becomes the successor of (a, b 1)
around a, while (b 1 , b) becomes its successor around b 1 . At this point the
clockwise scan of the edges around b begins starting from e 1 and stops at e4 :
the nodes of edges e 2 and e3 have been deleted 17 (as e 2 and e 3 have become
internal), while (a, b) is made the successor of e l . A similar scanning takes
place around a from some edge e'4 to some other edge e' = (a, a5). Then, if
(a, b, b4) is the winner of the run-off comparison we set (a, b4) and (b, b4) as the
successors of (a, b) around a and b, respectively; otherwise (a, a5) and (b, a5)
play these roles. This effects the update of the DCEL, as a linked data
structure. We therefore conclude that the overall running time of the M ERGE
algorithm is 0(N), yielding the following theorem.

Theorem 3.17. The convex hull of a set of N points in three-dimensional space
can be computed in optimal time O(N log N).

Finally, we must discuss how to handle degeneracies, that is, the case of
nonsimplicial polytopes. The most expedient way is to let the method intro-
duce an "artificial" triangulation of nontriangular facets, so that at each stage
the polytope appears simplicial. Specifically, consider the scan of the set of
edges incident on vertex b, as illustrated in Figure 3.32. Under the simplicial
hypothesis, the scan stops at an edge e which is shared by two facets Fand F'
so that vertex a is beyond F and beneath F' (see the beginning of Section 3.4
for the beneath-beyond terminology): this is the only possible situation, since
no four vertices are coplanar by hypothesis. Removing this assumption, we
modify the criterion as follows: the scan stops at an edge e shared by Fand F'

' 7 Note that these deletions may not entirely remove from the DCEL all edges which have become
internal to the convex hull. However, the not yet deleted edges form a planar graph on a set V' of
vertices, which are themselves internal to the hull. Thus, the number of nondeleted edges is
proportional to i V'', and the total memory occupancy of the DCEL is still proportional to S.
Note that the graph on vertex set V' is disconnected from the convex hull graph.

146
	

3 Convex Hulls: Basic Algorithms

Figure 3.32 Illustration of a triangulation of a nontriangular facet.

so that vertex a is nonbeneath F and beneath F'. In this manner (see Figure
3.32) if vertex a and facet F are coplanar, the resulting facet CH(FL a)
appears triangulated by a fan of edges issuing from a. We conclude that J will
appear triangulated, although adjacent facets may be coplanar. The removal
of the unnecessary edges can be easily accomplished at the end by a single pass
over the DCEL, by marking any edge that is coplanar with its two neighbors
incident on the same vertex, and then deleting all edges so marked.

3.5 Notes and Comments
In this chapter we have repeatedly alluded to the intimate connection between sorting
and hull finding in the plane. In particular, any ordered hull algorithm—i.e., a solution
of problem CH 1 in the plane—no matter what technique it employs, should be a
sorting algorithm in disguise. We have already illustrated this analogy with incidental
remarks whenever appropriate. This section affords us the opportunity to more
systematically review the algorithms of this chapter by discovering their corresponding
sorting methods.

As a general comment, the analogy is quite strong if all the given points are thought
of as being hull points. (Of course, the sorting problem has no analog for points
internal to the convex hull.)

Graham's algorithm uses sorting explicitly at the start. The first algorithm of
Section 3.3.1, which checks each pair of points to determine whether they define a hull
edge (and is so inefficient that we did not even dignify it with a name), is analogous to
the following curious sorting algorithm.

1. To sort x 1 , ..., xN , find the smallest value x,„ and exchange it with x 1 . (*Time:
O(N)*).

2. Now find the successor of x 1 in the fi nal sorted list by examining x 2 , ... , xN as
possible candidates. x; is the successor of x 1 if and only if no other element lies
between them. (*Time: O(N 2)*).

3. Find the successors of x 2 , ... , xN _ 1 similarly. (*Time to find each successor: 0(N 2).
Total time = 0(N 3)*).

This procedure can obviously be improved by speeding up the successor search. To
determine which element follows x ; , we need only find the smallest element among

Dual (p)

Unit 	Dual (P)
Circle

 r ---1
1
i
1

J

/

3.5 Notes and Comments 	 147

x;+1, ... , x N . With this change, the above algorithm becomes SELECTION SORT
[Knuth (1973)1, and corresponds to Jarvis's algorithm (Section 3.3.3).

The divide-and-conquer hull algorithms (Section 3.3.5), which split the set in two,
find the hulls of the subproblems, and combine them in linear time, are the geometric
analog of MERGESORT. The real time algorithm is an insertion sort. The analogs of
QUICKSORT have been discussed in Section 3.3.4.

Although 0(N log N) is a lower bound to the worst-case running time of any convex
hull algorithm on an N-point set S, it is plausible that smaller running times may be
achievable when the number h of extreme points is substantially smaller than N. This
lead was successfully, explored by Kirkpatrick and Seidel who developed an
O(N log h) algorithm they proposed as "the ultimate," and also proved it to be
asymptotically optimal [Kirkpatrick—Seidel (1986)]. Their algorithm constructs sepa-
rately the upper and lower hulls. Referring to the upper hull, they partition S into two
equal-size vertically separated subsets; but instead of recursively constructing the
upper hull of the two halves and computing their common supporting line (referred to
as their upper bridge), they first construct this bridge and then separately construct the
upper hulls of the subsets respectively to the left and to the right of the leftmost and
rightmost endpoints of the bridge. The key of the technique is an efficient way to
construct the bridge. Recognizing that the bridge can be defined as the solution of a
linear programming problem, they resort to the linear time technique recently pro-
posed for linear programming by Megiddo and Dyer to be presented in detail in
Section 7.2.5. Denoting by h, and h 2 (h, + h 2 = h) the numbers of hull vertices to the
left and right of the bridge respectively, and by T(N, h) the running time of the
algorithm, it is easy to verify that the recurrence relation (c is a constant)

T(N,h) = cN + max (T(N/2, h l) + T(N/2, h 2))
h,+h2 =h

is solved by T(N,h) = O(N log h).
Only recently considerable attention has been given to the problem of the convex

hull in Ed . Bhattacharya's analysis of the Chand—Kapur algorithm and the beneath-
beyond method of Kallay are two examples of this renewed interest. An algorithm
analogous to Kallay's was discovered, independently and almost simultaneously, by
Seidel (1981). Seidel employs an analogous approach, only in the dual space (see
Section 1.3.3). The main idea is illustrated in Figure 3.33 for d = 2, which shows that

Figure 3.33 The construction of the supporting lines is equivalent to intersection in
the dual space.

148 	 3 Convex Hulls: Basic Algorithms

the construction of the supporting lines from p to P is equivalent, in the dual space, to
the intersection of dual(P) with dual(p). An efficient algorithm to compute this
intersection in Ed achieves O(N tld+'>12J) running time which improves over Kallay's
O(N [d '2+ ')), and is indeed optimal (O(NL dj2 J) is the size of the output) for even d.

3.6 Exercises

1. Simple Polygon. Given N points in the plane, construct a simple polygon having
them as its vertices.
(a) Show that 0(N log N) is a lower bound to running time.
(b) Design an algorithm to solve the problem.

(Hint: Modify Graham's scan.)

2. Two disjoint convex polygons P 1 and P2 in the plane are given.
(a) How many common supporting lines do P 1 and P2 have?
(b) Construct the supporting lines by an algorithm based exclusively on the angles

between polygon edges and straight lines through vertices.

3. Given a point p and a vertex v of a convex polygon Pin the plane, give an algorithm
to classify in constant time vertex v with respect to pv (as concave or supporting or
reflex).

4. Referring to the real-time planar convex hull algorithm of Section 3.3.6:
(a) Prove that in Cases 2, 4, 6, and 8 of Figure 3.16 point p is necessarily external to

polygon P.
(b) Assuming that p is internal to P, discuss how the search procedure will detect

this situation.

5. Referring to the dynamic convex hull maintenance technique (Section 3.3.7), solve
the following problems:
(a) Give a Pigdin Algol program for the function BRIDGE(U 1 , U2) that produces

the support segment of two U-hulls U 1 and U2.

(b) Develop a twin pair of procedures ASCEND—DESCEND to process the del-
etion of a point from the planar set.

6. Keil—Kirkpatrick. Let S be a set of N points in the plane with integer coordinates
between 1 and N d , where d is a constant. Show that the convex hull of S can be
found in linear time.

7. Seidel. Let S = { p l , ... , pN } c E 3 with x(p l) < x(p 2) < • • • < x(p„). Show that in
spite of knowing the order of S in the x-direction, it still takes 0(N log N) to find the
convex hull of S.
(Hint: Use transformation from the 2-dimensional convex hull problem.)

8. Seidel. In Chand—Kapur's gift-wrapping algorithm one needs to maintain a data
structure for the set Q of (d — 2)-faces that can be "gift-wrapped over" next. In this
algorithm facets can be printed out immediately after they are found and need not
be stored. Thus the size of the data structure for Q determines the space complexity

3.6 Exercises 	 149

of the gift-wrapping algo ri thm. Let S be â set of n points in Ed in general position.
The gift-wrapping algorithm is to be applied to construct the convex hull of S.
(a) Show that there is an order for the gift-wrapping steps such that Q is never larger

than the maximum number of facets of a polytope with N vertices in Ed .
(Hint: Use the idea of "shelling" a polytope developed in H. Bruggesser and P.
Mani "Shellable decompositions of cells and spheres," Math. Scand. 29 (1971)
pp. 197-205.)

(b) Develop a va riant of the gift -wrapping algorithm with space complexity

O(9d-1) = O(N«d-1)/2J),

where cpd _ 1 is the number of facets of the polytope.

9. In the beneath-beyond algorithms for the d-dimensional convex hull (Section
3.4.2), show that the classification of each of the N vertices of the polytope P as
concave, reflex, or supporting can be done in time O((pd _ 1) + O(Nd), where (pd-1 is
the number of facets of P.

CHAPTER 4

Convex Hulls: Extensions and
Applications

This chapter has two objectives. The first is the discussion of variants and
special cases of the convex hull problem, as well as the average-case perfor-
mance analysis of convex hull algorithms. The second objective is the dis-
cussion of applications that use the convex hull. New problems will be
formulated and treated as they arise in these applications. Their variety should
convince the reader that the hull problem is important both in practice and as
a fundamental tool in computational geometry.

4.1 Extensions and Variants

4.1.1 Average-case analysis

Referring to the two-dimensional convex hull algorithms discussed in Section
3.3 of the preceding chapter, we note that Graham's convex hull algorithm
always uses O(N log N) time, regardless of the data, because its first step is to
sort the input. Jarvis's algorithm, on the other hand, uses time that varies
between linear and quadratic, so it makes sense to ask how much time it can be
expected to take. The answer to this question will take us into the difficult but
fascinating field of stochastic geometry, where we will see some of the dif-
ficulties associated with analyzing the average-case performance of geometric
algorithms.

Since Jarvis's algorithm runs in O(hN) time, where h is the number of hull
vertices, to analyze its average-case performance we need only compute E(h),
the expected value of h. In order to do this, we must make some assumption

4.1 Extensions and Variants 	 1 51

about the probability distribution of the input points. This problem brings us
into the province of stochastic geometry, which deals with the properties of
random geometric objects and is an essential tool for dealing with expected-
time analysis.' We would like to be able to say, "Given N points chosen
uniformly in the plane ... ," but technical difficulties make this impossible—
elements can be chosen uniformly only from a set of bounded Lebesgue
measure [Kendall-Moran (1963)] so we are forced to specify a particular
figure from which the points are to be selected. Fortunately, the problem of
calculating E(h) has received a good deal of attention in the statistical litera-
ture, and we quote below a number of theorems that will be relevant to the
analysis of several geometric algorithms.

Theorem 4.1 [Rényi-Sulanke (1963)]. If N points are chosen uniformly and
independently at random from a plane convex r-gon, then as N — oo,

E(h) = 3(y 	+ loge N) + 0(1), 	 (4.1)

where y denotes Euler's constant.

Theorem 4.2 [Raynaud (1970)]. If N points are chosen uniformly and inde-
pendently at random from the interior of a k-dimensional hypersphere, then as
N -+ co, E(f), the expected number of facets of the convex hull, is given
asymptotically by

E(f) = O(N(k - 1)1(k +1)).

This implies that

E(h) = 0(N1 J 3) for N points chosen uniformly in a circle, and

E(h) = O(N 112) for N points chosen uniformly in a sphere.

(4.2)

Theorem 4.3 [Raynaud (1970)]. If N points are chosen independently from a k-
dimensional normal distribution, then as N -4 co the asymptotic behavior of E(h)
is given by

E(h) = O((log N)(k-1)/2). 	 (4.3)

Theorem 4.4 [Bentley-Kung-Schkolnick-Thompson (1978)]. If N points in k
dimensions have their components chosen independently from any set of con-
tinuous distributions (possibly different for each component), then

E(h) = O((log N) k-1). 	 (4.4)

Many distributions satisfy the conditions of this theorem, including the
uniform dist ribution over a hypercube.

' Consult [Santalà (1976)] for a monumental compilation of results in this field.

1 52 	 4 Convex Hulls: Extensions and Applications

The surprising qualitative behavior of the hulls of random sets can be
understood intuitively as follows: for uniform sampling within any bounded
domain F, the hull of a random set tends to assume the shape of the boundary
of F. For a polygon, points accumulating in the "corners" cause the resulting
hull to have very few vertices. Because the circle has no corners, the expected
number of hull vertices is comparatively high, although we know of no
elementary explanation of the N 1 t 3 phenomenon in the planar case. 2

It follows directly from these results that the expected time used by Jarvis's
algorithm can be described by the following table.

Table I Average-Case Behavior of Jarvis's
Algorithm

Distribution 	 Average-Case Time

Uniform in a convex polygon 	O(N log N)
Uniform in a circle 	 0(N 4t 3)
Normal in the plane 	 O(N(log N) 1 J 2)

Note that for the normal distribution Jarvis's algorithm can be expected to
take slightly less time than Graham's.'

All of the distributions considered in this section have the property that the
expected number of extreme points in a sample of size N is 0(N") for some
constant p < 1. We shall refer to these as N" -distributions.

We now turn our attention to the planar divide- and-conquer algorithm de-
scribed in Section 3.3.5, which we already showed to have optimal worst-case
performance. This algorithm, with a few crucial implementation caveats,
achieves linear expected time, as shown by Bentley and Shamos (1978), and
perhaps holds the potential of being generalized to higher dimensional cases.
We briefly recall it for the reader's benefit. If N, the number of given points, is
less than some constant No , then the procedure calculates the hull by some di-
rect method and returns. If Nis large, though, the procedure first divides, in an
arbitrary way, the N points into two subsets of approximately N/2 points each.
It then finds the convex hulls of the two subproblems recursively. The result of
each of the recursive calls is a convex polygon. The hull of the given set is now
just the hull of the union of the hulls found in the subproblems. The latter can
be found in time proportional to the total number of vertices of both.

To adapt this method for linear expected time, the crux is the "division"
step of the divide-and-conquer scheme. Indeed, in our previous formulation in

2 The expected number of hull vertices of a set of N points can be expressed as the integral of the
Nth power of the integral of a probability density [Efron (1965)]. What is of interest is not the
value of this quantity but its asymptotic dependence on N.

3 The bivariate normal is often used to model the distribution of projectiles aimed at a target.

4.1 Extensions and Variants 	 1 53

Section 3.3.5, this division could have taken linear time, such as required by
the mere copying of the subproblems. This approach, however, would by itself
lead to 0(N log N) overall time. Thus a different approach is in order, to
achieve a two-fold objective:

(i) the division step should use time 0(N"), for p < 1;
(ii) the points in each of the two subproblems must obey the same probability

distribution as the original points.

Objective (ii) is rather easily accomplished by initially subjecting the original
points to an arbitrary permutation and arranging them in an array (this is
achieved by storing the points in this array in the order of their input). This en-
sures that any subsequence of the resulting sequence is random, i.e., it obeys
the given distribution. A subproblem concerns the set of points in a subarray
of contiguous cells, and is completely specified by two delimiting pointers.
Thus division is accomplished by splitting a subarray at its mid-cell (in con-
stant time), and by passing only two pointers in each subroutine call. This
strategy achieves Objective (i). This objective is implicitly achieved if we pro-
vide an iterative (rather than recursive) formulation of the algorithm. Such
implementation would work bottom-up on sets of four points, then eight, etc.

Thus, the running time of the merge step is proportional to the sum of the
sizes of the convex hulls of each of the two subsets. Let C(N) denote the latter
quantity; also, T(N) is as usual the running time of the algorithm on a set of
size N. We readily have the recurrence relation

T(N) < 2T(N/2) + C(N).

If we now let T.,(N) _° E[T(N)] (E is the standard expectation operator),
since E is linear, we obtain the new recurrence

TaVe (N) < 2 Tave(N/2) + E[C(N)]. 	 (4.5)

The solution depends upon the form of E[C(N)]. Specifically if

= 0(N), then TaVe (N) = O(Nlog N).
E[C(N)] = 0(N/log N), then Tave(N) = 0(Nlog log N). 	(4.6)

= 0(N"), p < 1, then TaVe (N) = 0(N).

The quantity E[C(N)], due to the linearity of E[], is at most twice the ex-
pected value of the size h(N/2) of the convex hull of a set of N/2 points. Since
for all the distributions discussed above have the property that E[h(N/2)] =
0((N/2) P) for some p < 1, then E[C(N)] = 0(N"). This is summarized in the
following theorem.

Theorem 4.5. For an N"-distribution, the convex hull of a sample of N points in
two dimensions can be found in 0(N) expected time.

It is tempting to say that the above analysis applies to the three-
dimensional algorithm of Preparata—Hong, described in Section 3.4.3, which

154 	 4 Convex Hulls: Extensions and Applications

is also of the divide-and-conquer type. However, the merge step (at least in the
presented formulation), makes crucial use of the fact that the two convex hulls
to be merged are disjoint. Unfortunately, this hypothesis invalidates the con-
dition that throughout the execution of the algorithm each subset be random
and drawn from the same distribution.

4.1.2 Approximation algorithms for convex hull

An alternative to choosing a convex hull algorithm on the basis of its average-
case performance (discussed in the preceding section), is the design of algo-
rithms that compute approximations to the actual convex hull, in exchange for
simplicity and performance. Such an algorithm would be particularly useful
for applications that must have rapid solutions, even at the expense of ac-
curacy. Thus, it would be appropriate, for example, in statistical applications
where observations are not exact but are known within a well-defined
precision.

We shall now discuss one such algorithm for the plane [Bentley—Faust-
Preparata (1982)]. Its basic, simple idea is to sample some subset of the points
and then use the convex hull of the sample as an approximation to the convex
hull of the points. The particular sampling scheme we shall choose is based,
however, on a computation model different from the one considered so far.
Indeed, in this section we shall assume that the floor function "L j" has been
added to our set of primitive operations.' Referring to Figure 4.1(a), the first
step is to find the minimum and the maximum values in the x dimension, and
then divide the vertical strip between them into k equally spaced strips. These k
strips form a sequence of "bins" in which we shall distribute (here is where the
floor function is needed!) the N points of the given set S. Next, in each strip, we
find the two points in that strip with minimum and maximum y-value [see Fi-
gure 4.1(b)]. We also select the points with extreme x-values; if there are
several points with extreme x-values, we select both their maximum and mini-
mum y-value. The resulting set, which we call S*, therefore has a maximum of
2k + 4 points. Finally, we construct the convex hull of S* and use that as the
approximate hull of the set; see Figure 4.1(c). Note that the resulting hull is in-
deed only an approximation: in Figure 4.1(c) one of the points of the set lies
outside it.

The outlined method is extremely easy to implement. The k strips are set up
as a (k + 2)-element array (the zero-th and (k + 1)-st lines contain the two
points with extreme x-values x n, in and xmax, respectively). To assign a point p
to a bin, we subtract the minimum x-value from x(p), divide that difference by
(1/k)-th of the difference of the extreme x-values and take the floor of the ratio

'Notice that the decision-tree computation model, used in all convex hull algorithms presented so
far, rules out the use of the floor function.

155 4.1 Extensions and Variants

•
	•

•
	• • • 	•

•
	 •

0• • •
• ••

®

(a) 	 (b)

(c)

Figure 4.1 Illustration of the approximate hull algorithm: (a) A given planar point
set and its rightmost and leftmost members; (b) Partition into k strips and determina-
tion of vertical extremes in each strip; (c) Approximate convex hull.

as the strip number. Concurrently we can find the minimum and maximum in
each strip, since for each point we check to see if it exceeds either the current
maximum or minimum in the strip, and, if so, update a value in the array. Fi-
nally we can use a suitable convex-hull algorithm: clearly the most appropriate
one is the modified version of the Graham scan proposed by Andrew (see Sec-
tion 3.3.2). Note that the points in S* are nearly sorted by x-value; indeed,
sorting is completed by comparing, in each strip, the x-values of the two points
of S* in that strip.

The performance of this technique is also easy to analyze. The space that it
takes is proportional to k (if we assume the input points are already present).
Finding the minimum and maximum x-values requires 0(N) time. Finding the
extremes in each strip requires 0(N) time, and the convex hull of S* can be
found in 0(k) time (because the (at most) 2k + 4 points in S* are already sorted
by x-value). The running time of the entire program is therefore 0(N + k).

The simplicity and the efficiency of the described algorithm would be of
little value if the result were grossly inaccurate. We now wish to estimate the
accuracy of the approach. First of all, because it uses only points in the input
set as hull points, it is a conservative approximation in the sense that every
point within the approximate hull is also within the true hull. The next
question is: how far outside of the approximate hull can a point of S be? The
answer is provided by the following straightforward proposition.

1 56 	 4 Convex Hulls: Extensions and Applications

p

u
• Ymox

Ymin •	

4 	

t xmax-Xmin)/k

Figure 4.2 Analysis of the accuracy of the approximation algorithm.

Theorem 4.6. Any point p e S that is not inside the approximate convex hull is
within distance (xm ax — Xmin)lk of the hull.

PROOF. Consider the strip where p falls (see Figure 4.2). Because p is outside
the approximate hull, it cannot have either the largest or smallest y-value of
points in the strip; so ymin < y(p) < ymax• If u is the intercept on the approxi-
mate hull of a horizontal line through p, the length of pu bounds above
the distance of p from the hull, and is in turn bounded above by the width
(-xmax — Xmin)l k of the strip. ❑

The approximation just described yields an approximate hull that is a
subset of the true hull, but it is not hard to modify it to yield a superset of the
true hull. To do this, we just replace every maximal point p in a strip with two
outermost points in the strip having the same ordinate. Obviously, the result-
ing hull contains the true convex hull. An error analysis similar to the one
above shows that any point in the approximate hull but not in the true hull
must be within distance (xmax — xmin)/k of the true hull.

Can we apply this approach to higher dimensions? We limit ourselves to the
discussion of the three-dimensional algorithm, which is an extension of the
planar algorithm just described. An initial sampling pass finds the minimum
and maximum values in both the x and the y dimensions; the resulting
rectangle [xmi n, Xmax, x [ymin, ymaxl is then partitioned into a grid of (at most
(k + 2) x (k + 2) squares by means lines parallel to the x-and y-axes. (We use
k of the squares in each dimension for "actual" points in squares, and the two
squares on the end for the extreme values.) Note that one of the dimensions
can have fewer than (k + 2) intervals if the point set does not happen to
occupy a square region. In each square of the grid we find the points with
minimum and maximum z-values; the resulting set of points, called S*,
consists of at most 2(k + 2) 2 points. Finally, we construct the convex hull of S
and use it as the approximate hull of the original set. The hull can be

4.1 Extensions and Variants 	 157

constructed using Preparata—Hong's general hull algorithm for point sets in
3-space (Section 3.4.3). Notice the striking difference with respect to the two-
dimensional method, where we were able to take advantage of the known
ordering of the points in the x dimension: we do not exploit the grid structure
of the points to yield a faster algorithm, but rather use a general algorithm. An
intriguing question is whether the regular placement of the points of S in a
two-dimensional grid can be used to obtain an algorithm more efficient than
the general one.

The analysis of the three-dimensional algorithm is somewhat different
from that of the two-dimensional algorithm. The set S* can be found in time
9(N + k2), but computing the convex hull of S* using the general algorithm
requires time 0(k 2 log k) rather than 0(k 2) since we are unable to exploit any
natural ordering of the grid points as we were in the two-dimensional case.
Thus, the total running time of the algorithm is 0(N + k 2 log k).

To estimate the accuracy of the technique, we note that the length of the
diagonal of a horizontal section of a cell is an upper bound to the distance
from the approximate hull of any point of S external to it. The latter is readily
found to be .✓(Xmax — Xmin) 2 + (Ymax Ymin) 2 /k•

An interesting feature of this approach is that the accuracy of the result can
be made to grow quickly with the expended computational work (by increas-
ing the integer k). Specifically, the number of points in the sample controls the
accuracy of the approximation, while the way the sample is selected controls
the approximation type (liberal or conservative).

4.1.3 The problem of the maxima of a point set

This section is devoted to the discussion of a problem that bears an intriguing
resemblance to that of the convex hull and yet on a deeper level, to be
elucidated later, is fundamentally different from it. This problem occurs in a
large number of applications, in statistics, economics, operations research,
etc. Indeed, it was originally described as the "floating-currency problem" 5 :
In Erehwon, every citizen has a portfolio of foreign currencies; these foreign
currencies wildly fluctuate in their values, so that every evening a person
whose portfolio has the largest cumulative value is declared the King of
Erehwon. Which is the smallest subset of the population that is certain to
contain all potential kings?

The problem can now be precisely formulated. As usual, all points belong
to the d-dimensional space Ed, with coordinates x 1 , x2 , .. . , xd . 6

'This amusing formulation is due to H. Freeman (1973, unpublished).

6 In a somewhat more general formulation, given d totally ordered sets U1, ... , Ud, each element is
a vector v e V, where V is the cartesian product U 1 x • • • x Ud.

1 58 	 4 Convex Hulls: Extensions and Applications

.^

•

i^ 	•

•

•
•

^\

	 E

•

•

Or

r

r
S

Figure 4.3 In the quadrants defined by the four extreme points N, S, E, and W, the
maxima provide a crude representation of the boundary of the point set.

Definition 4.1. Point Pi dominates point p2 (denoted by p2 - p 1) if
x i (p 2) < x.(p 1) for i = 1, 2, ... , d. (The relation "-<" is naturally called

dominance.)

Given a set S of N points in Ed the relation dominance on set S is clearly a
partial ordering on S for d > 1. A point p in S is a maximal element (or, briefly
a maximum) of S if there does not exist q in S such that p q and q >- p. The
"maxima problem" consists of finding all the maxima of S under dominance.

We now illustrate the relationship between the maxima and the convex hull

problems (See also [Bentley—Kung—Schkolnick—Thompson (1978)].) The

essence of this similarity is that both the maxima and the convex hull are

representations of the "boundary" of S, although the former provides a
cruder representation. Specifically, given a point set S we can formulate as
many maxima problems as there are orthants in Ed (i.e., 2d such problems; see
Figure 4.3 for an instantiation to d = 2 where there are four orthants—called

quadrants). Each of these problems is obtained by our assignment of signs

+ and — to each of the coordinates of the points of S (the original formu-
lation corresponds to the assignment (+ + • • • +)). The desired relationship

is expressed by the following theorem.

Theorem 4.7. A point p in the convex hull of S is a maximum in at least one of the
assignments of signs to the coordinates.

PROOF. Assume for a contradiction there is a hull point p which is not a
maximum in any assignment. Imagine the origin of Ed placed in p and consider
the 2d orthants of Ed . Since p is not a maximum in any assignment, in each such

orthant there is at least another point of S. Let S* be the set of these points:
clearly cony (S*) contains p in its interior, and since cony (S*) cony (S), we
contradict the hypothesis that p is a hull point. ❑

4.1 Extensions and Variants 	 159

We shall return to this interesting connection later in this section. Before
describing algorithms for the maxima problem, it is appropriate to estimate its
complexity by establishing a lower bound to the running time of any maxima
algorithm in the computation-tree model. In particular, the argument to be
presented below refers to a slightly weaker instance of the linear decision-tree
model, known as the comparison-tree model, although the extension of the
result to the stronger version is possible. (In the comparison-tree model the
linear functions are restricted to two variables.) As we already did for the
convex hull (Section 3.1), we shall seek a lower bound for the two-dimensional
case. Obviously, since any maxima problem in Ed-i can be viewed as a
problem in Ed, such lower bound will hold for all dimensions (unfortunately,
we do not know how tightly for d > 3, as we shall see). Not surprisingly, as it
frequently happens for nontrivial low-complexity lower bounds, we shall
resort to a familiar reduction:

SORTING oc N MAXIMA.

Let d be an algorithm, described by a comparison-tree T(see Section 1.4),
which is claimed to solve any two-dimensional N-point maxima problem. The
execution of d on any problem instance corresponds to tracing a path from
the root to a leaf of T. The reduction from sorting works as follows. Let x 1 ,
x2 , ... , xN be N real numbers. We now form, in linear time, a set of points in
the plane S = {p i : i = 1,... , N,pi = (xi , y i), x i + yi = const}. The condition
x i + yi = const. for i = 1, ... , N is equivalent to

x i < x; . yi > y; . 	 (4.7)

Note that, by this construction, each element (x i , y i) of S is maximal. To deter-
mine that (x i , y i) is maximal, algorithm d must be able to conclude that "there
is no j i such that x i < x; and yi < y,"; but this is equivalent to saying that
"for all j0 i either x i > xi or yi > y,, that is, either x i > xi or x i < xi" (by
(4.7)). In other words, for each pair {x i , x; } we know the relative ordering of its
elements, i.e., each leaf is associated with a unique ordering of {x 1 , x2 , ... , xN }
which yields a solution to the sorting problem. Therefore, we have proved

Theorem 4.8 [Kung-Luccio-Preparata (1975)]. In the comparison-tree model,
any algorithm that solves the maxima problem in two dimensions requires time
S2(Nlog N).

With the gauge provided by the lower bound, we now consider the design of
maxima algorithms. This problem affords us the excellent opportunity of
comparing the relative merits and efficacies of two basic paradigms of com-
putational geometry: divide-and-conquer and dimension-sweep (Section
1.2.2).

We shall begin with the latter. The first step of a sweep technique is to sort
all the points of S according to a selected coordinate, say xd ; this coordinate
becomes the dimension along which to sweep. With the terminology intro-
duced in Section 1.2.2, the "event-point schedule" is a queue Q of the points

1 60 	 4 Convex Hulls: Extensions and Applications

arranged by decreasing xd ; the nature of the "sweep-section status" structure
will be examined later. By the simplified notation p -< Uwe mean that there is
a point q e U such that p -< q. We can now outline the following general
algorithm:

function MAXIMA 1 (S, d)
1. begin M:= 0;
2. M* := 0; (*M and M* are sets of maxima, of dimensions d and d-1

respectively*)
3. while (Q 0) do
4. begin p G Q (*extract element form queue*);
5. p* := project p on (x 1 , ... , xd - 1);
6. if (p* M*) then
7. begin M* := MAXIMAI (M* u { p*}, d — 1);
8. M:= Mu {p}

end
end;

9. return M
end.

Descriptively, MAXIMA 1 sweeps the point set S by decreasing xd and for
each point p it determines (lines 5-6) whether or not it is dominated on coordi-
nates x 1 , x2 , ... , xd _ 1 by any of the previously scanned points (which already
dominate p on xd by the organization of the sweep). This establishes the cor-
rectness of the approach whose crucial component is clearly lines 6 and 7: "if
p* - M then M* := MAXIMA 1 (M* u { p* }, d — 1)." Basically this activity is
nothing but the incremental (i.e., one point at a time, on-line) construction of
the maxima of a (d — 1)-dimensional set. This is by no means a trivial problem;
efficient solutions for it are known only for d = 2, 3.

Indeed, for d = 2 the set M* is one-dimensional (i.e., it contains only one
element) and the test "p* -< M*?" reduces to "x 1 (p) < 5Z- 1 = max" x 1(q)?,"
while the update M* := MAXIMAI (M* u { p* }, d — 1) becomes x 1 := x 1 (p);
both these operations can be carried out in constant time. For d = 3, the
situation is naturally more complex but still manageable. Here M*a two-
dimensional set of maxima (see Figure 4.4)—has a total ordering and can be
organized as a height-balanced search tree on coordinate x 2 . The test "p*
M*?" is a search of x 2 (p*) in this tree: if x 2 (q) is the successor of x 2 (p*), then
we have the immediate equivalence (p* M*) .4.> x i (p*) < x 1 (q). The update
of M*, when p* . M*, involves a traversal of the tree starting from x 2 (p*) in
the direction of decreasing x 2 , deleting all elements until the first q' is found
for which x 1 (q') > x 1 (p*). The computational work globally expended for this
task in the sweep is readily found to be O(N log N), since each test "p* -< M*?"
(and possible insertion) uses time O(log N), while each deletion required in the
update traversal can be done in constant time by trivially modifying the search
tree (threading). Since there are N tests/insertions and at most N deletions,
the claim is proved.

-g qr
i_•—•— ---•—•—• ♦ p

*

L---_qp
L -----t

1
1
i

L---tq

L- 	

4.1 Extensions and Variants 	 161

xl

x 2 (p49-1 L x2 (g)

Figure 4.4 The set of maxima M* has a total ordering and the test "p* M*?"
consists of comparing the x 1 -coordinate of p* with that of the point of M* immediately
to its right.

Recalling that the sweep technique requires a preliminary sorting opera-
tion, we conclude that for d = 2, 3 the algorithm MAXIMA 1 runs in optimal
time 9(N log N).

Unfortunately this technique yields—to the best of our knowledge—time
0(N 2) already for d = 4. Thus, alternative approaches must be explored. One
such approach is divide-and-conquer. As we shall see, the algorithm contem-
plates partitioning point sets according to the values of the coordinates Xd,

xd_1, ..., x2, in turn. So it is convenient to introduce a preliminary step to
facilitate these frequent operations. This step is a sorting of the elements of the
set S on each of the coordinates. The resulting data structure is a multi-pointer
list ((d — 1)-tuply-threaded list), each node of which is threaded in each of the
single-pointer lists corresponding to the chosen coordinates. This organi-
zation is obtained at an overall cost O(dN log N); however, it affords straight-
forward and efficient set splitting. To avoid clumsy language, we say that a set
S is "split at xi into (S1 , S2)" if for each p E Si we have xi(p) < xi and for each
q E S2 we have xi(q) > x; ; moreover, we say that S is "equipartitioned on xi

 into (Si , S2)" if S is split at x; into (Si , S2) and x; is the median of the x;-
coordinates of the points of S (so that I Sl I I S21).

The first step of the maxima algorithm—referred to later as MAXIMA2-
is the equipartition of the given S on xd into (Si , S2). We then recursively apply
the algorithm to the sets S i and S2 and obtain the two sets, max(S 1) and
max(S2), of their respective maxima. To combine the result of the recursive
calls, we first note that all elements of max(S 2) are also maxima of S, while the
elements of max(S1) are not necessarily so. Indeed an element of max(S 1) is a
maximal element of S if and only if it is not dominated by any element of
max(S2). The situation is illustrated in Figure 4.5 for d = 3. Therefore if Uand
V are two point sets such that for all p e U and q E V we have xd(p) < xd (q), it is

X2

1 62 	 4 Convex Hulls: Extensions and Applications

Figure 4.5 The "merge" step of the divide-and-conquer approach for d = 3.

convenient to define a new set, filter(UI V) 	U, as

filter(UI V) _° { p: p e U and p - V} .

Clearly, the "merge step" of the divide-and-conquer is the computation of
ftlter(max(S 1)Imax(S2)). Thus we have the following simple algorithm:

function MAXIMA2(S, d)
begin if (I SI = 1) then return S

else begin (S1 , S2) := equipartition S on xd ;
M1 := MAXIMA2 (S 1 , d); M2 := MAXIMA2(S2 , d);
return M2 V filter(M1 1M2)

end
end.

If we denote by Td (1S1) the running time of MAXIMA2(S) and by
Fd-1(I S1 I, I S2 I), the time needed to compute filter(S 1 1 S2), 7 we have the
straightforward recurrence (assume that N is even)

Td (N) < 2Td (N/2) + Fd_1 (N/2,N/2) + 0(N), 	(4.8)

where 0(N) is the time used to equipartition S into S1 and S2 .
Clearly, the crux of the technique is the computation of "filter." Again, let

U and V be two point sets in Ed as defined earlier, with I UI = u and 1 VI = v.
We resort once again to the divide-and-conquer approach. Thus we equipar-
tition V on xd _ 1 into (V1 , V2), and let Xd_1 be the largest value of x d _ 1 for all
points in V1 . Next we split U at xd_1 into (U1 , U2). The situation is illustrated in
Figure 4.6, where we have projected all points of U and V on the (xd , xd_1) -
plane. Notice that I V1 1 ^., v/2 and 1 V2 1 ' v/2, while I U1 I = m, and 1U2 1 =

To justify the subscripts of T() and F(,), we note that S is a set of points in Ed . However,
since each point of S2 dominates each point of S, in the coordinate xd , the computation of
filter(S, IS2) is a (d — 1)-dimensional problem.

4.1 Extensions and Variants
	 163

U
	

V

Xd -1

Xd

Figure 4.6 Divide-and-conquer computation of filter(UI V) (transformation into
three simpler subproblems).

u — m, for some integer m. With this subdivision, the original problem of
computing filter(UI V) has been replaced by the four subproblems of comput-
ing filter(U1 I V1), filter(U 1 I V2), filter(U2 I V1), and filter(U2 I V2). Note, how-
ever, that filter(U2 I V1) is trivial, since for any p E U2 and q E V1 we have
xd(p) <_ xd (q) and xd _ 1 (p) > xd _ 1 (q). Moreover, each element of V2 domi-
nates each element of U 1 in both coordinates xd and xd _ 1 , so that the compu-
tation of filter(U 1 I V2) is really a (d — 2)-dimensional problem. The two re-
maining subproblems are still (d — 1)-dimensional, but involve smaller sets.
Descriptively, computation proceeds on the tracks of a double recursion: one
on set sizes, the other on the dimension. The first one stops when the cardi-
nality of one of the two sets of the pair becomes small (one), the second one
when we reach a dimension where a direct efficient approach is applicable
(which happens for dimension 3, by resorting to a modification of the
dimension-sweep technique described earlier). More formally we have (notice
that in algorithm MAXIMA2 the set filter(M 1 1 M2) is computed by the call
FILTER(M1 , M2; d — 1))

function FILTER (U, V; d)
begin if (d = 3) then A := FILTER2(U, V);

if (V = {q}) then A := {p: p E U and p q};
if (U = {p}) then

begin if for each q E V: p . q then A :_ {p}
else A := 0

end
else begin (V1 , V2) := equipartition V on xd ;

xd := max {xd(p): p E V1 };
(U1 , U2) := split U at xd;

1 64 	 4 Convex Hulls: Extensions and Applications

A := FILTER(U2 , V2; d) u (FILTER(U1 , VI ; d) n FILTER
(U1 , V2; d — 1))

end;
return A

end.

We must still describe the procedure FILTER2. This procedure is of the
sweep-type and is similar to MAXIMA 1 for d = 2. The points in U u V are
scanned by descreasing x 2 and placed in a queue Q; if the current p belongs to
V, then M is updated, otherwise p is either accepted (as a maximal element) or
discarded. Thus we have

function FILTER2(U, V)
begin Q := sort U u V by decreasing x 2 ;

M:= 0;
x l * .= 0;
while (Q 0 0) do

begin p G Q;
if (x 1 (p) > x l *) then

begin if (p E U) then M := M u {p} (*p is found to be
maximal*)

else x l * := x 1 (p)
end

end;
return M

end.

To analyze the performance, let Fd (u, y) be the running time of
FILTER(U, V; d). An inspection of the procedure FILTER2 yields the
straightforward result that F2 (u, y) = 0(u + y), (if both U and V have been
presorted on x 2). In general, we obtain from the procedure FILTER the
recurrence

Fd (u, y) < Fd (m, v/2) + Fd(u — m, v/2) + Fd_1(m, v/2), 	(4.9)

for some 0 < m < u. A tedious calculation,' and the obtained expression of
F2, show that the right-side is maximized as 0((u + v) log u (log 0"). There-
fore, inequality (4.8) becomes

Td (N) < 2Td (N/2) + O(N(log N)d-3) + 0(N)

whence

Td (N) = O(N(log N) d-2) 	d >_ 2. 	 (4.10)

When we take into consideration the time used by the presorting operation,
we obtain the following theorem.

'The reader is referred to [Kung-Luccio-Preparata (1975)] for a proof.

4.1 Extensions and Variants
	 165

Cony (S 2)
Cony (S1)__-

1111111-

Figure 4.7 A point p is outside both conv(S 1) and cony (S2) but it is inside the convex
hull of their union.

Theorem 4.9. The maxima of a set of N points in E d, d > 2, can be obtained in
time O(N(log N)d-2) + O(Nlog N).

This remarkable success of the divide-and-conquer approach, which failed
for d > 3 in the convex hull problem (see Section 3.4) is the clue to the
elucidation of the deep difference between the two problems. The key notion is
closely related to, but not quite the same as, that of "decomposability,"
introduced by Bentley (1979). Specifically, let us consider the searching prob-
lems (see Chapter 2) associated with the maxima and convex hull problems,
i.e., "test for maximum" and "convex hull inclusion," respectively. Suppose
that a set S of points is arbitrarily partitioned into {S 1 , S2 }. The query "Is p
a maximum in S u {p}?" is answered affirmatively if and only if affirmative
answers are obtained for both "Is p a maximum in S1 u {p}?" and "Is p a
maximum in S2 u {p}?". However, it is not hard to partition S so that "Is p
outside the convex hull of S?" is answered negatively, while both "Is p outside
the convex hull of 51 ?" and "Is p outside the convex hull of S2?" receive
affirmative answers (refer to Figure 4.7).

Before closing this section, we consider the average-case performance of
the above algorithm for a rather general probability distribution. The result
we need is expressed in the following theorem.

Theorem 4.10 [Bentley-Kung-Schkolnick-Thompson (1978)]. The average
number µ(N, d) of maxima of a set S of N points in E d, under the hypothesis
that the coordinates of each point of S are independent and drawn from an
identical, continuous distribution is

µ(N, d) = O((log N) d-1). 	 (4.11)

We now observe that the set splitting contemplated by algorithm
MAXIMA2 preserves randomness, so that the same probability distribution
applies to each of the two subproblems. Also, set splitting can be done in
constant time by the "pointer-passing" strategy outlined in Section 4.1.1.
With these observations, relation (4.8) is replaced in the average-case analysis
by

166 	 4 Convex Hulls: Extensions and Applications

E[Td (N)] < 2E[Td (N/2)] + E[Fd- 1 (m 1 ,m 2)] + 0(1), 	(4.12)

where m 1 and m 2 —the sizes of the sets of maxima of S i and S2 —are now
random variables, both with average equal to µ(N/2, d). By the preceding
discussion, we have Fd _ 1 (m i , m 2) Ç K1 (m 1 + m2) log m i (log m 2)d -4 , for some
constant K1 .

Since both m 1 and m2 are upperbounded by N/2, we have
Fd-1 (m 1 , m2) ^ K1(m 1 + m2) (log N)d-3, whence

E[Fd_1(ml , m2)] < K1 (log N) d-3
(E[m1] + E[m21)

= K 1 (log N)d-32µ 	, d

= O((log N)d-3 . (log N)d-1) = 0((log N) 2 d -4).

Substituting this value in (4.12), we obtain the following result.

Theorem 4.11. Under the hypothesis that the coordinates of each point are
independent and drawn from an identical continuous distribution, the maxima of
a set of N points in E d can be found in average time

	

E[Td (N)] = 0(N). 	 (4.13)

4.1.4 Convex hull of a simple polygon

Whenever there exists a constraint on the formulation of a given problem, the

set of problem instances one must consider is generally reduced. A most

intriguing question in such cases is whether this restriction affords the devel-
opment of an ad hoc technique which is inherently simpler than the general

one. Of course not always can the situation be decisively settled, either in the

form of the discovery of a simpler algorithm or in the establishment of a lower

bound analogous to that for the general case. In all cases, the investigation is

worthwhile and challenging.
One such constrained situation is the problem of the convex hull of a simple

polygon. Notice that given a set S of N points, we can always think of it as a
polygon, by simply arranging the points of S as a sequence and assuming the
presence of an edge between adjacent (in the cyclic sense) points of this

sequence. Such a polygon, however, is in general not simple, that is, it may

have intersecting edges. What happens, then, if we know that the polygon is

simple? (See Section 1.3. for a definition of simple polygon.)

The lower-bound arguments—even the one for the ordered hull—are

inapplicable to the situation, so one must settle for the trivial f2(N) lower

bound. It is thus natural to seek algorithms with a better than O(N log N)
worst-case time performance, and indeed several have been proposed all with

an 0(N) performance. Unfortunately some of these may fail in very special

cases [Sklansky (1972); Shamos (1975a)], while others correctly solve the

4.1 Extensions and Variants
	

167

-
pm

Figure 4.8 The upper-hull of a simple polygon.

problem. Of the latter we mention the rather complicated one by McCallum—
Avis (1979), which makes use of two stacks. Two new algorithms have been
since proposed, which use only one stack, one by D. T. Lee (1983a) the other
by Graham—Yao (1983). The algorithm described below is an original variant
of Lee's algorithm.

Let P 1 be the leftmost vertex of the given simple polygon P and let
(p i , P2, • • • ,PN) be its directed vertex cycle (obviously, with p l following pN).
We assume that the interior of P lies to the right of the boundary, i.e., the cycle
is directed clockwise (see Figure 4.8). On this cycle, let pm be the rightmost
vertex. Clearly both pi and pm lie on the convex hull of P. Moreover, they
partition the vertex cycle into two chains, one from p l to pm , the other from pm
to p 1 . It is sufficient to consider the hull of the chain (pl,p2, ...' PM) which,
according to our previous terminology (Section 3.3.2) we shall call upper-hull.
A subsequence (q1, q2, ... , qR), with q 1 = Pi and qR = PM, of (pi ,P2, • • • , PM)
is the desired convex hull polygon. Each of the edges gi gi+1 (i = 1, ... ,r — 1)
could be intuitively viewed as the "lid" of the "pocket" Ki , where pocket Ki is a
substring of (p 1, p2, ... , pm), whose first and last vertices are qi and q1+1,
respectively.

The algorithm marches along (p i , ... , pm) and, in this process, constructs
in succession the lids of all pockets. The distinguished event in the execution of
the algorithm is the identification of a vertex q that forms a lid with the last
found q vertex (for ease of reference, we call q an event vertex). Note, however,
that each event vertex is not necessarily a vertex of the final hull, but simply a
candidate for that status. Basically, what the algorithm declares before its
completion is that the so-far discovered sequence (q 1 , q 2 , ...) of event ver-
tices is consistent with the assumption that polygon P is simple (we shall give a
more technical characterization below). Thus, we shall now concentrate on
the activity leading from one event vertex to the next one. We call this the
advancing step.

Suppose that the boundary has been scanned from p l tops (s < M) and that

Î

168 	 4 Convex Hulls: Extensions and Applications

Lid

qi - p s

Figure 4.9 A pocket and its lid.

ps = qi is an event vertex. The situation appears as in Figure 4.9, where pocket
K; _ 1 has been closed by lid qi_1 qi . The march now proceeds beyond ps . Calling
u the vertex preceding qi on the boundary of P, we distinguish two cases,
depending upon the position of u relative to the oriented segment gMgl.

1. u is on or to the right of q q In this case we identify in the vertical strip
determined by q 1 and qM three regions, labelled Ql , ®, and Q in Figure
4.10(a). These regions are defined by the line passing by q i _ 1 and qi , the ray
obtained by extending qi u and the portion of the boundary of P corre-
sponding to pocket K1 _ 1 .

2. u is to the left of q q t . In this case we identify one additional region, region
®, as shown in Figure 4.10(b).

Letting u denote the vertex following qi on the boundary of P, we observe
that y lies in one of the previously identified regions. If u lies in either 3 or ©,
then it is an event vertex, whereas if it lies in either © or ®, then it is not an
event vertex. Specifically we now discuss the four cases:

1. y e region ©. In this case, the boundary enters the pocket (and extends it).
We follow this path until we reach the first boundary edge that has the

(a) 	 (b)

Figure 4.10 Regions where the vertex y following qi may be (depending upon the
relative positions of u and gMgi).

(c) 	̀'M 	 (d)

4.1 Extensions and Variants
	 169

Figure 4.1 1 Illustration of the four situations arising when scanning the boundary of

P beyond event point q; .

other vertex w outside of the pocket, i.e., in region © [Figure 4.11(a)]. Since
polygon P is simple and the pocket with its lid also forms a simple polygon,

by the Jordan curve theorem the boudary of P necessarily crosses the lid.
Vertex w is then treated as y in the case y E region © (discussed next).

2. y E region Z. Vertex y is an event vertex. The supporting line from y to the
chain (q 1 , ... , qi_1) is found. If this line contains q,. (r < i), then vertices
q.+1, ... , qi are deleted and y becomes qr+1. [Figure 4.11(b)]. Clearly y is a
vertex of the convex hull (an event point), since it is external to the current
hull (q 1 , q2 , ... , qM). Tracing the supporting line is equivalent to the con-
struction of conv(g 1 , ... , q., q.+1, qnr).

3. y e region ^3 . Vertex y is an event vertex and y becomes qi+1. Indeed [refer to
Figure 4.11(c)], y is external to the current hull (q 1 , q2 ,... , qi, qnr) and,
being to the right of the line passing by qi_1 and qi (and directed from q._1
to qi), the angle (qi _ 1 qi v) is convex. (Note that Figure 4.11(c) illustrates
the case corresponding to Figure 4.10(b).)

4. y E region ®. The boundary enters the interior of the convex hull. As in

Case 1 above, we follow this path until we reach the first boundary edge

with the following property: one of its extremes is either external to ® or it

coincides with q M . In the second case, the procedure terminates; in the first

case, the external extreme lies either in 03 (handled by Case 3 above) or in

1 70 	 4 Convex Hulls: Extensions and Applications

® (handled by Case 2 above) [Figure 4.11(d)]. Indeed, the portion C of
the boundary being traced from qi is a simple curve terminating at g m ;
moreover, before it crosses gi gM , it does not extend to the right of the
vertical line by q M , nor to the left of the vertical line by ql . Since polygon P
is simple, C cannot cross any of the boundaries of pockets K 1 , ... , Ki_1,
and so it cannot cross any of their lids. It follows that C can only cross
gi gM ; if it does not cross it, then it just terminates at q M .
The preceding discussion contains the proof of correctness of any imple-

mentation that handles Cases 1-4 in the manner described above. We shall
now formalize one such algorithm. The most appropriate data structures are:
(i) a queue P containing the sequence (p2, p3, ... , pm); (ii) a stack Q for the
sequence (q o , q 1 , q2 , ...)— due to the last-in-first-out mechanism of insertion
and deletion of hull points—where qo is a "dummy" sentinel vertex having the
same abscissa as p1 = q 1 and smaller ordinate. As mentioned earlier, u is the
vertex preceding qi on the boundary of P, and y is the currently visited vertex.
Given an ordered triplet (stw) of vertices, we call it a right turn if w is to the
right of the straight line passing by s and t and directed from s to t, and we call
it a left turn otherwise. Also, while U G v is as usual the operation "PUSH y
into U", by POP U we mean: "y G U; ignore v"; qi denotes the vertex at the
top of the stack Q and FRONT(P) is the first element of queue P.

procedure POLYGON HULL(p 1 , ... ,pm)
1. begin PG (p1,•••,PM);
2. QGgo ;
3. Q P1;
4. while (P 0 0) do
5. begin v P;
6. if ((qi _ 1 q i v) is right turn) (*regions Q, c, ®*) then
7. if ((ugi v) is right turn) (*regions 0, ®*) then
8. if ((gM gi v) is right turn) (*region C3 *) then Q G v
9. else (*region ®*)

10. while (FRONT(P) is on or to left of q Mq) do
POP P

11. else (*region Q*)
12. while (FRONT(P) is on or to left of q q _ 1) do POP P
13. else (*region ®*)
14. begin while ((q i _ 1 qi v) is left turn) do POP Q;
15. QGv

end
end

end.

The performance analysis of the algorithm POLYGON HULL is quite
straightforward. After the initialization (lines 1-3), each vertex of the boun-
dary of P is visited exactly once before it is either accepted (lines 8 or 15) or
discarded (lines 10 or 12). Processing of each boundary vertex is done in

4.2 Applications to Statistics 	 1 71

constant time. The while loop of line 14, which constructs the support line,

uses a constant amount of time per deleted vertex. Since both sequences

(P1, . • • , PAi) and (q 1 , ... , qR) have 0(M) terms, and analogous arguments can

be developed for the lower-hull of P, we conclude with the following theorem.

Theorem 4.12. The convex hull of an N-vertex simple polygon can be constructed

in optimal 0(N) time and 0(N) space.

4.2 Applications to Statistics

The connection between geometry and statistics is a close one because a
multivariate statistical sample can be viewed as a point in Euclidean space. In
this setting, many problems in statistics become purely geometric ones. For
example, linear regression asks for a hyperplane of best fit in a specified norm.
Certain problems in voting theory are interpreted as finding which k-
dimensional hemisphere contains the most points of a set. A survey of
geometric techniques in statistics is given in [Shamos (1976)]. Determining the
convex hull is a basic step in several statistical problems, which we treat
separately in the next few paragraphs.

4.2.1 Robust estimation

A central problem in statistics is to estimate a population parameter, such as

the mean, by observing only a small sample drawn randomly from the

population. We say that a function t is an unbiased estimator of a parameter p
if E[t] = p, that is, the expectation value of-t is precisely p [Hoel (1971)]. While
the sample mean is an unbiased estimator of the population mean, it is

extremely sensitive to outliers, observations that lie abnormally far from most

of the others. It is desirable to reduce the effects of outliers because they often

represent spurious data that would otherwise introduce errors in the analysis.

A related property that a good estimator should enjoy is that of robustness, or
insensitivity to deviations from the assumed population distribution. Many

such estimators have been proposed [Andrews (1972)]. An important class,

known as the Gastwirth estimators [Gastwirth (1966)], are based on the fact

that we tend to trust observations more the closer they are to the "center" of

the sample.
Consider N points on the line (see Figure 4.12). A simple method of

removing suspected outliers is to remove the upper and lower a-fraction of the

points and taking the average of the remainder. This is known as the a-
trimmed mean, and is a special case of the Gastwirth estimator,

N 	 N

T = Ew ix(i^, 	E w i = 1,
i=1 	i=1

• 	• • 	• 	••• • • 	• • • • • •

--Only these points remain --1

Depth 2 —

Depth 4 —

Point pa is at depth 2

Figure 4.13 The depth of point in a set.

1 72 	 4 Convex Hulls: Extensions and Applications

a=0.2 (The upper and lower 20% of the points are removed.)

Figure 4.12 The a-trimmed mean.

where xti) denotes the i-th smallest of the x; . The a-trimmed mean is just the
case

wi = 1/(1 — 2a)N, 	aN<i<(1 — a)N.

Any trimmed mean can be computed in 0(N) time (using a linear selection
algorithm) and any Gastwirth estimator in 0(N log N) time (by sorting), but
what are their analogs in higher dimensions? Tukey has suggested a procedure
known as "shelling," or "peeling," which involves stripping away the convex
hull of the set, then removing the convex hull of the remainder, and continuing
until only (1 — 2a)N points remain [Huber (1972)]. This procedure motivates
our next definition and problem.

Definition 4.2. The depth of a point p in a set S is the number of convex hulls
(convex layers) that have to be stripped from S before p is removed. The depth
of S is the depth of its deepest point. (See Figure 4.13.)

This motivates a geometric problem which is interesting in its own right.

PROBLEM CH8 (DEPTH OF A SET). Given a set of N points in the plane, find
the depth of each point.

Theorem 4.13. Any algorithm that determines the depth of each point in a set
must make fl (N log N) comparisons, in the worst case.

PROOF. By transformation from SORTING. Consider a one-dimensional set.
Knowing the depth of each point, we can sort the set in only 0(N) additional
comparisons. 	 ❑

Begin depth 4 scan

Begin depth 3 scan

Begin depth 2 scan

Begin depth 1 scan —►p
0

1

4.2 Applications to Statistics 	 1 73

Figure 4.14 Finding depths by repeating the Jarvis march. Vertices which are succes-
sively labelled START are circled.

Only recently an algorithm attaining this bound has been developed.
Before describing it, however, it is interesting to briefly review the history of
the problem.

A brute force approach consists of finding first the convex hull of the given
set S, subsequently the convex hull of the nonhull points, and so on, at a
worst-case cost of O(N 2 log N) operations. (This is achieved when the hulls
contain a set of LN/3J nested triangles.) A somewhat more subtle approach
[Shamos (1978)] uses a repeated application of the Jarvis' march (Section
3.3.3) and achieves running time OjN 2). Figure 4.14 illustrates the working of
the algorithm. For reasons of uniformity we introduce a dummy point
Po = (x0 , Yo), whose coordinate are equal to the smallest abscissa and ordinate
in S. The scan begins from po and the first point reached is labelled START.
The march then proceeds counterclockwise. Each visited point (except
START) is removed from S. When the march cycles back to START, the
depth 1 hull has been constructed. Point START is removed from S, the
predecessor of START assumes the role previously held by p c, , and the process
continues until all points are removed from S.

A more complex although more efficient algorithm is afforded by the
planar configuration maintenance technique of Overmars—van Leeuwen (see
Section 3.3.7). We just recall that the primary data structure is a binary search
tree, the nodes of which point to secondary data structures, which are con-
catenable queues. Moreover, the queue pointed to by the root gives the upper-
hull of the point set, and each point deletion is carried out in O((log N) 2) time.
Thus, by simultaneously using the structures corresponding to the upper- and
the lower-hull, one obtains the depth 1 hull. Each of the points on this hull is
then deleted from both structures, which are now ready to deliver the depth 2
hull, and so on. The hulls are trivially obtained in linear time (traversal of a
concatenable queue), while the global cost of the deletions is O(Nlog 2 N).

This idea has been further refined by Chazelle (1983b). Indeed, the general
technique of Overmars—van Leeuwen maintains planar configurations under
an arbitrary schedule of insertions or deletions. However, when constructing
the convex layers, the schedule of deletions is under the control of the
algorithm designer. Chazelle shows how to carefully batch these deletions to

174
	

4 Convex Hulls: Extensions and Applications

•
•

•
•

• 	•

Figure 4.15 An isotone function (not best) approximating a finite point set.

efficiently obtain the layers. The reader is referred to the original work for a
proof of this interesting theorem.

Theorem 4.14. The convex layers, and, therefore the depth of a set of N points in
the plane can be computed in optimal time ©(N log N).

4.2.2 Isotonic regression

Regression may be regarded as a problem of best approximation in a subspace.
We are given a finite set of points in Ed , considered as the values of a functionf
of (d — 1) variables, and must specify both the allowed class of approximating
functions and the norm in which the error is to be measured. 9 A regression
function is some functionf* of the (d — 1) variables which minimizes the norm

Il f-f*II.
The problem of isotonic regression is to find a best isotone (that is, mono-

tone nonincreasing or nondecreasing) approximation to a finite point set. The
error norm usually chosen is L 2 , or least-squares, because of its connection
with maximum likelihood estimation. 10 In other words, we are given a set of
points {(x 1 , y.): i = 1, ... , N} and we are seeking an isotone function f that
minimizes

N

E (yi -f(xt)) 2 .
i=1

An isotone approximating function is shown in Figure 4.15.
The above diagram is misleading because it reinforces the intuition that the

required function f should be smooth. A best least-squares isotone fit is a step
function, as illustrated in Figure 4.16. It "only" remains to determine the
locations and heights of the steps.

9 In two variables the points (x ; , y;) represent the function y ; = f(x ;), and x ; is said to be the
independent variable. In k dimensions we have x k = f(x, , ... , x k _,).

10 Isotonic regression is discussed at length in [Barlow—Bartholomew—Bremner—Brunk (1972)].

•

• •
•

4.2 Applications to Statistics 	 1 75

Figure 4.16 A best isotone fit is a step function. The number of steps and the points

at which they break must both be determined.

Suppose the data have been ordered by x-coordinate. (In many experi-
mental situations sorting is not necessary because the independent variable is

time or the points are taken in order of increasing x.) Define the cumulative
sum diagram (CSD) to be the set of points p; = (j, s.), po = (0, 0), where s; is
the cumulative sum of the y's

i
s; =E y^

t=^

The slope of the line segment joining p_ 1 to p; is just y; . Suppose now
that we construct the lower-hull H (see Section 3.3.2) of the points set

{Po,Pi, • • • ,Px}. There is a remarkable relationship between the lower-hull H
just obtained and isotonic regression: indeed the isotonic regression of a point
set is given by the slope of the lower-hull of its cumulative sum diagram
[Barlow (1972)] (see Figure 4.17).

Thus we have the result

Figure 4.17 The lower convex hull of the CSD defines the isotonic fit.

1 76 	 4 Convex Hulls: Extensions and Applications

Theorem 4.15. Least-squares isotonic regression can be performed on a set of N
points in the plane in O(Nlog N) time. If the points are ordered by abscissa, then
linear time suffices.

If the data are already ordered, the Graham scan can be run in linear time
to find the lower hull. If the points are unordered, O(N log N) time will be used
in the worst case.

4.2.3 Clustering (diameter of a point set)

To quote from [Hartigan (1975)], clustering is the grouping of similar objects.
A clustering of a set is a partition of its elements that is chosen to minimize
some measure of dissimilarity. Hartigan's book contains a large number of
different such measures and procedures for clustering using them. We will
focus on point data in two dimensions, where we assume that the x and y
variables are scaled so that Euclidean distances are meaningful. A measure of
the "spread" of a cluster is the maximum distance between any two of its
points, called the diameter of the cluster. We feel intuitively that a cluster with
small diameter has elements that are closely related, while the opposite is true
of a large cluster. One formulation, then, of the clustering problem is

PROBLEM CH9 (MINIMUM DIAMETER K CLUSTERING). Given N
points in the plane, partition them into K clusters C1, ... , CK so that the
maximum cluster diameter is as small as possible.

It is difficult to imagine how to solve this problem unless we at least have an
algorithm for determining cluster diameter. This motivates

PROBLEM CH 10 (SET DIAMETER). Given N points in the plane, find two
that are farthest apart.

This problem is seemingly so elementary that it is difficult to perceive that
there is any real issue involved. After all, we can compute the distance between
each of the N(N — 1)/2 pairs of points in a completely straightforward man-
ner and choose the largest of these to define the diameter. What is left to
investigate? We certainly must wonder if this 0(N 2) procedure is the best
possible algorithm. The complexity of problems of this type are basic ques-
tions in computational geometry, which we would have a duty to ask even in
the absence of practical considerations.

An argument obtaining a nontrivial lower bound for the DIAMETER
problem has been only recently developed.' 1 It is based on transforming SET

" The original idea of the transformation can be found in K. Q. Brown's thesis (1979a).
Apparently, D. Dobkin and I. Munro independently discovered the same mapping.

4.2 Applications to Statistics 	 1 77

Figure 4.18 Mapping A and B to points on the unit circle C.

DISJOINTNESS (a problem for which a nontrivial lower bound is known) to
SET DIAMETER. Let A = {a l , ... , aN } and B = {b 1 , ... , bN } be two sets of
real nonnegative numbers. To test whether A and B do not share any elements
(i.e., the disjointness of sets A and B) requires 0(Nlog N) comparisons
[Ben-Or (1983)]. We now transform SET DISJOINTNESS to SET
DIAMETER by mapping A and B to the first and third quadrant of the unit
circle C in the plane as follows: a; is mapped to the intersection of C with the
line y = a;x in the first quadrant, while bi is mapped to the analogous
intersection in the third quadrant (Figure 4.18). Let S be the set of these 2N
intersections. It is trivial to realize that the diameter of S equals 2 if and only if
there are two diametrically opposed points on C, that is, A n B 0 0. So we
have (with obvious validity in higher dimensions)

Theorem 4.16. The computation of the diameter of a finite set of N points in E d
 (d > 2) requires Q(Nlog N) operations in the algebraic computation-tree

model.

Turning now our attention to the design of an algorithm for the
DIAMETER problem, the key idea for possibly avoiding the examination of
all pairs of points is provided by the following theorem.

Theorem 4.17 [Hocking—Young (1961)]. The diameter of a set is equal to the
diameter of its convex hull. (See Figure 4.19.)

In the worst case, of course, all of the original points of the set may be
vertices of the hull, so we will have spent O(N log N) time without eliminating
anything.

Until further notice, we shall consider the two-dimensional problem. In this
case the convex hull is a convex polygon, not just a set of points, so we have a
different problem.

1 78 	 4 Convex Hulls: Extensions and Applications

Figure 4.19 Diam(S) = Diam(CH(S)).

PROBLEM CH 11 (CONVEX POLYGON DIAMETER). Given a convex poly-
gon, find its diameter.

We have immediately that

SET DIAMETER oc-N,og NCONVEX POLYGON DIAMETER.

If we can find the diameter of a convex polygon in less than quadratic time
we will also be able to find the diameter of a set quickly.

While there is no a priori reason to suspect that convexity helps here, it is
worthwhile to investigate further before giving up. We should at least examine
alternative characterizations of the diameter. One of these is

Theorem 4.18. The diameter of a convex figure is the greatest distance between
parallel lines of support [Yaglom—Boltyanskii (1961), p. 9].

Consult Figure 4.20 and notice that parallel lines of support cannot be
made to pass through every pair of points. For example, no lines of support
through vertices p4 and p6 can be parallel. This means that p 4p6 is not a
diameter. A pair of points that does admit parallel supporting lines will be

Figure 4.20 Not all vertex pairs are antipodal. Parallel lines of support cannot pass
through p4 and p6 simultaneously. Thus p4p6 cannot be a diameter.

4.2 Applications to Statistics 	 179

a ;

(b)

Figure 4.21 Characterization of antipodal pairs. The intersection of ai and as is a pair
of planar wedges sharing their vertex.

called antipodal. Because of Theorem 4.18, we need only consider antipodal
pairs. The problem is to find them without examining all pairs of points.

Referring now to Figure 4.21(a), consider a vertex pi of a convex polygon P
(vertices are indexed in counterclockwise order). Suppose we traverse, the
counterclockwise chain of the boundary of P starting at pi until we reach a
vertex d which is farthest from pi _ lpi : in case of ties—i.e., when P has
parallel edges—qV is the first vertex encountered in this traversal with the
desired property. Analogously, we define q(1!) as farthest vertex from pipi+1 in
the traversal of the clockwise boundary chain starting at pi . We claim that the
chain of vertices between qR) and qi) (extremes included) defines the set C(pi)
of vertices, each of which forms an antipodal pair with pi . Indeed, let a i > is be
the external angle formed by pi_lpi and pipi+i . Clearly, (p i , ps) is an antipodal
pair if and only if there is a straight line in the intersection of a s and a i [refer to
Figure 4.21(b)]. Since C(pi) is a convex chain, each vertex ps e C(pi) enjoys

1 80 	 4 Convex Hulls: Extensions and Applications

this property: moreover, the opposite holds for any other vertex of P not
belonging to C(p1).

This property immediately affords an algorithm for the generation of all
antipodal pairs. The primitive operation that is needed is a test for the farthest
point from a segment p.p1+1 . This is readily accomplished by computing the
"signed area," Area (p i , pi+1, p) (see Section 2.2.1), of the triangle (p; , p1+1 , p)•
We can now describe a simple algorithm, where we assume that the vertices of
P form a counterclockwise sequence (p 1 , p2, ... , pN) (in which, obviously, p i

 follows pN) organized as a list governed by a pointer NEXT[].

procedure ANTIPODAL PAIRS
1. begin p:= pN ;
2. q:= NEXT[p];
3. while (Area(p, NEXT [p], NEXT [q]) > Area(p, NEXT[p], q)) do

q:= NEXT[q];
(*march on P until you reach the first vertex farthest from
pNEXT[p]*)

4. qo := q;
5. while (q 0 po) do
6. begin p := NEXT[p];
7. print (p, q);
8. while (Area(p, NEXT[p], NEXT[q]) > Area(p,

NEXT[p], q)) do
9. begin q := NEXT[q];

10. if ((p, q) 0 (q o , po)) then print (p, q)
end;

	

1 1 . 	 if (Area(p, NEXT[p], NEXT[q]) = Area(p, NEXT[p], q))
then

	

12. 	 if ((p, q) 0 (qo , pN)) then print (p, NEXT[q])
(*handling of parallel edges*)

end
end.

The above algorithm is illustrated by an example in Figure 4.22.
Note that lines 1-3 locate the vertex q(P, in the preceding terminology (here

referred to as q0). The subsequent while loop, which constructs the set C(p;),
uses two pointers p and q. These two pointers move counterclockwise around
P, p advancing from pN to qR and q advancing from q(IP to pN . An antipodal
pair is generated either each time any of these two pointers is advanced (lines
5-7 and lines 9-10) or each time we encounter a pair of parallel eges of P (lines
11 - 12). The first pair to be generated is clearly (p, q) = (po , q0) (the first time
line 7 is executed). We claim that the last pair is (p, q) = (qo , pN) since pN is the
last value assumed by q (otherwise the main while loop at line 5 aborts). Thus
each antipodal pair is generated once, and since p advances from p o to qo and q
advances from q o to pN , in the while loop, we have a total of N moves, that is, N

4.2 Applications to Statistics

P 	q 	Print Step

P9 1

Po 2
P1 3
P2 3
P3 3
P4 3
	P5 3

Po 6

(Po p5) 7

Pt

6

(p l p5) 7

P6 9 a

(P1 P6) 10 0

(P1 p 7) 12
^
a)

P2 6 L

(P 2 p6) 7 3

P7 9

(p2 p7) 10

P8 9

(p2 p8) 10

P9 9

(P2 P9) 10

p3 6

(p3 p9) 7

P4 6

(p4 p9) 7

P5 6

(p5 p9) 7

Po 	9

181

Figure 4.22 Illustration of ANTIPODAL PAIRS. Note that p,p 2 and p6p7 are
parallel edges.

antipodal pairs, in the absence of parallel edges. If there are pairs of parallel
edges, their numbers is at most LN/2j, so the total number of antipodal pairs
generated by the algorithm is < 3N/2.

The algorithm could be modified to report only those antipodal pairs
(exactly N) which are candidates for being the diameter: indeed, any time two
polygon edges are parallel, only the diagonals of the trapezoid they determine
need be considered.

Because enumeration of all antipodal pairs suffices to find the diameter of a
polygon (by Theorem 4.18), we have the following results.

Theorem 4.19. The diameter of a convex polygon can be found in time linear in

the number of its vertices.

1 82 	 4 Convex Hulls: Extensions and Applications

Corollary 4.1. The diameter of a set of N points in the plane can be found in
optimal 0(N log N) time.

Theorem 4.20. The diameter of a set of N points chosen from an N"-distribution
(Section 4.1.1) in the plane can be found in 0(N) expected time.

PROOF. The convex hull can be found in linear expected time by Theorem 4.5
and then Theorem 4.19 applies. 	 CI

Theorem 4.19 can be combined with Theorem 4.12 (Section 4.1.4) to give
the following interesting result.

Corollary 4.2. The diameter of a simple polygon can be found in linear time.

It may superficially appear that some redundant work is performed in
generating all the antipodal pairs to obtain the diameter. We shall now
convince ourselves that—in the absence of parallel edges—this is not the case.
The key notion is that of diametral pair of P, that is, a pair of vertices of P
whose distance is exactly the diameter of the set itself. Since a diametral pair is
also an antipodal pair, there are no more than N diametral pairs. Indeed, there
is a classical result by Erdds (1946) that says

Theorem 4.21. The maximum distance between N points in the plane can occur at
most N times.

Obviously a regular N-gon (N > 3) achieves this bound.

4.3 Notes and Comments

The problem of computing the diameter of a planar set of points has been optimally
solved by the technique discussed in Section 4.2.3. It is therefore tempting to extend the
approach to higher dimensional spaces. For E3 a further inducement into this temp-
tation is provided by the following result [Grünbaum (1956)] (originally known as
Vaszonyi conjecture).

Theorem 4.22. In three dimensions the maximum distance between N points can occur at
most 2N — 2 times.

The strong similarity between Theorems 4.21 and 4.22 unfortunately conceals the
fact that while in the plane the numbers of diametral pairs and antipodal pairs are both
0(N), the analogous notions in the space are 0(N) and 0(N 2), respectively. Indeed, it
is not hard to constructively show that the number of antipodal pairs can be 0(N 2).
This is illustrated in Figure 4.23, where a tetrahedron has been modified by replacing
two nonadjacent edges by two "chains" of N/2 vertices. Any two vertices in distinct
chains are obviously antipodal. Thus the generation ofthe antipodal pairs is an 0(N2)-

4.4 Exercises 	 183

Figure 4.23 Construction of a set of N points in the 3-space with 0(N 2) antipodal
pairs.

time task, perhaps even more consuming than the brute-force computation of the
distances of all pairs of points. The diametral pairs are a subset of the antipodal pairs,
but no efficient way to select them has been found to-date. In spite of its apparent
simplicity, the computation of the diameter of a three-dimensional set has been a
source of frustration to a great many workers.

In ddimensions the diameter of a set can always be found by rote in O(dN 2) time by
computing all interpoint distances. The possibility of doing better is darkened by the
following theorem.

Theorem 4.23 [Erdds (1960)]. The maximum distance between N points in d-space can
occur N 2 /(2 — 2/Ld/2J) + 0(N 2- t) times, for d > 3 and some s > 0.

A different approach to the diameter problem has been proposed by Yao (1982).
This approach results in a o(N 2)-time algorithm. Specifically the time bound is T(N, d)

 = 0(N2- ° (d) (logN)' - °(d)) , where a(d) = 2 -(d + 1) . For d = 3 the time bound can be
improved to 0((N log N) 1-8). Whether or not the gap between T(N, d) and S2(N log N)
can be reduced is an open problem.

4.4 Exercises

1. Let S be a set of N points in the plane, so that both coordinates of each point are
integers < m (lattice points). Devise an algorithm to construct CH (S) whose run-
ning time is 0(N + m).

2. Let S be a set of N = m 2 points in E3 defined S = { p ; : x(p;;) = i, y(p ;;) = j,
z(p ;;) > 0, 0 < i,j < m}. Devise a specialized algorithm to construct the upper hull
of S.

3. Lee. Given N straight lines in the plane, find an o(N 2) algorithm for computing the
convex hull of the points defined by the intersections of these N lines.

1 84 	 4 Convex Hulls: Extensions and Applications

4. Test for maximum in E 2 . Given a set S of N points in the plane, devise a method for
testing if a query point q is a maximum in S u {q} in time O(log N). (Repetitive-mode
operation is assumed—Section 2.1) The search data structure should be constructed
in time 0(N log N) and use storage 0(N).

5. Test .for maximum in E 3 . Given a set S of N points in E 3 , devise a method for testing
if a query point q is a maximum in S u {q} in time O(log N). (Repetitive-mode
operation is assumed.) The search data structure should be constructed in time
0(N log N) and use storage 0(N).
(Hint: Use planar point location in a suitable planar subdivision.)

6. Dominance depth. Given a set S of N points in the plane, the dominance hull of S is
the set max(S) of the maxima of S. The dominance depth of a point p in S is the
number of dominance hulls that have to be stripped before p is removed; the
dominance depth of S is the dominance depth of its deepest point.
(a) Devise an O(N log N) algorithm to compute the dominance depth of each point

in S.
(b) Is this algorithm optimal?

CHAPTER 5

Proximity: Fundamental Algorithms

In Chapter 4 we illustrated an O(N log N) algorithm for finding the two
farthest points of a plane set. One may think that finding the two closest points
would be a simple extension, but it is not. The two farthest points are
necessarily hull vertices and we may exploit convexity to give a fast algorithm;
the two closest points do not necessarily bear any relation to the convex hull,
so a new technique must be developed, which is the subject of this chapter. We
will be concerned with a large class of problems that involve the proximity of
points in the plane and our goal will be to deal with all of these seemingly
unrelated tasks via a single algorithm, one that discovers, processes, and
stores compactly all of the relevant proximity information. To do this, we
revive a classical mathematical object, the Voronoi diagram, and turn it into
an efficient computational structure that permits vast improvement over the
best previously known algorithms. In this chapter, several of the geometric
tools we have discussed earlier—such as hull-finding and searching will be
used to attack this large and difficult class—the closest-point, or proximity
problems.

As suggested above, the status of this topic of computational geometry is
no exception to the by now familiar current standard: in the plane, powerful
and elegant techniques are available, while for the space—and even more in
higher dimensions—very little is known and formidable difficulties lurk to
suggest a negative prognosis.

Most of the problems studied in the previous chapters (the farthest-pair
problem being an exception) involve exclusively the incidence properties of
the geometric objects considered; thus, the corresponding results hold under
the full linear group of transformations (Section 1.3.2). The problems treated
in the next two chapters involve metric properties, and thus the validity of

186 	 5 Proximity: Fundamental Algorithms

results is restricted to the Euclidean group of transformations (group of rigid
motions).

5.1 A Collection of Problems

We begin by presenting a catalog of apparently diverse proximity problems
which we shall then see to be intimately related in computational terms.

PROBLEM P.1 (CLOSEST PAIR). Given N points in the plane, find two whose
mutual distance is smallest.'

This problem is so easily stated and important that we must regard it as one
of the fundamental questions of computational geometry, both from the point
of view of applications and from pure theoretical interest. For example, a real-
time application is provided by the air-traffic control problem: with some
simplification, the two aircraft that are in the greatest danger of collision are
the two closest ones.

The central algorithmic issue is whether it is necessary to examine every
pair of points to find the minimum distance thus determined. This can be done
in O(dN 2) time in ddimensions, for any d. In one dimension a faster algorithm
is possible, based on the fact that any pair of closest points must be con-
secutive in sorted order. We may thus sort the given N real numbers in
O(N log N) steps and perform a linear-time scan of the sorted sequence
(x i , x2 , ... , xN) computing x i+1 — xi , i = 1, ... , N — 1. This algorithm, obvi-
ous as it is, will be shown later to be optimal.

PROBLEM P.2 (ALL NEAREST NEIGHBORS). Given N points in the plane,
find a nearest neighbor of each.

The "nearest neighbor" is a relation on a set S of points as follows: point
b is a nearest neighbor of point a, denoted a —> b, if

dist(a, b) = min dist(a, c).
cc$ — a

The graph of this relation is pictured in Figure 5.1. Note that it is not
necessarily symmetric, that is, a —> b does not necessarily imply b --> a. Note
also that a point is not the nearest neighbor of a unique point (i.e., "—>" is not
necessarily a function). 2 The solution to Problem P.2 is a collection of ordered
pairs (a, b), where a --> b.

' More than one pair may be closest. We will consider finding one such pair as a solution to the
problem.

2 Although a point can be the nearest neighbor of every other point, a point can have at most six
nearest neighbors in two dimensions, and at most 12 in three dimensions. This maximum number
of nearest neighbors in ddimensions is the same as the maximum number of unit spheres that can
be placed so as to touch a given one. ([Saaty (1970)] states that this number is not known for d
greater than 12.)

5.1 A Collection of Problems
	 187

Figure 5.1 The nearest-neighbor relation "—>" on a set of points.

A pair which does satisfy symmetry (a —> b and b —> a) is called a reciprocal
pair. If N points are chosen in the plane according to a Poisson point process,
the expected fraction of reciprocal pairs is given by [Pielou (1977)]

6n/(8n + 3(3) 1 / 2) '' 0.6215.

In mathematical ecology, this quantity is used to detect whether members
of a species tend to occur in isolated couples. The actual number of reciprocal
pairs is computed, and the ratio compared. Other studies involving nearest-
neighbor computations arise in studying the territoriality of species, in which
the distribution of nearest-neighbor distances is of interest, as well as in
geography [Kolars—Nystuen (1974)] and solid-state physics. Obviously, in
one dimension the same sorting algorithm which solves CLOSEST PAIR
yields all the nearest neighbors. We shall later address the question of the
respective difficulties of these two problems in higher dimensions.

PROBLEM P.3 (EUCLIDEAN MINIMUM SPANNING TREE). Given N
points in the plane, construct a tree of minimum total length whose vertices are
the given points.

By a solution to this problem we will mean a list of the N — 1 pairs of points
comprising the edges of the tree. Such a tree is shown in Figure 5.2.

The Euclidean minimum spanning tree (EMST) problem is a common
component in applications involving networks. If one desires to set up a
communications system among N nodes requiring interconnecting cables,
using the EMST will result in a network of minimum cost. A curious facet of
federal law lends added importance to the problem: When the Long Lines
Department of the Telephone Company establishes a communications
hookup for a customer, federal tariffs require that the billing rate be propor-
tional to the length of a minimum spanning tree connecting the customers'
termini, the distance to be measured on a standard flat projection of the

1 88 	 5 Proximity: Fundamental Algorithms

Figure 5.2 A minimum spanning tree on a planar point set.

(a) 	 (b)

Figure 5.3 A Steiner Tree (b) may have smaller total length than the MST (a).

Earth's surface.' This is true regardless of the fact that the Earth is not flat and
the Telephone Company may not choose to set up the actual network as an
MST; nonetheless, the billing is based on a real Euclidean problem, one which
must be solved hundreds of times daily, as telephone network configurations
are constantly changing.

This law is a Solomon-like compromise between what is desirable and what
is practical to compute, for the minimum spanning tree is not the shortest
possible interconnecting network if new vertices may be added to the original
set. With this restriction lifted, the shortest tree is called a Steiner Tree (Figure
5.3). 4

The computation of Steiner trees has been shown by Garey, Graham and
Johnson (1976) to be NP-hard, and we are unable with present technology to
solve problems with more than about 20-25 points. It is therefore unreason-
able for the FCC to require billing to be by Steiner tree.

The minimum spanning tree has been used as a tool in clustering [Gower—
Ross (1969); Johnson (1967); Zahn (1971)], in determining the intrinsic
dimension of point sets [Schwartzmann—Vidal (1975)], and in pattern recogni-
tion [Osteen—Lin (1974)]. It has also been used [Lobermann—Weinberger
(1957)] to minimize wire length in computer circuitry, and provides the basis
for several approximation algorithms for the traveling salesman problem,
which we discuss in Section 6.1.

3 Thanks go to Stefan Burr for providing this information.

'The Steiner tree in Figure 5.3 is taken from [Melzak (1973)].

5.1 A Collection of Problems 	 189

The Minimum Spanning Tree problem is usually formulated as a problem
in graph theory: Given a graph with N nodes and E weighted edges, find the
shortest subtree of G that includes every vertex. This problem was solved
independently by [Dijkstra (1959)], [Kruskal (1956)], and [Prim (1957)] and
the existence of a polynomial time algorithm (which they all demonstrated) is
a considerable surprise, because a graph on N vertices may contain as many as
NN- 2 spanning subtrees [Moon (1967)]. 5 A great deal of work has been done
in an attempt to find a fast algorithm for this general problem [Nijenhuis-Wilf
(1975); Yao (1975)], and the best result to date [Cheriton-Tarjan (1976)] is
that 0(E) time suffices if E > Nt+E (See also Section 6.1.)

In the Euclidean problem, the N vertices are defined by 2N coordinates of
points in the plane and the associated graph has an edge joining every pair of
vertices. The weight of an edge is the distance between its endpoints. Using the
best known MST algorithm for this problem will thus require 0(E) = 0(N2)
time, and it is easy to prove that this is a lower bound in an arbitrary graph
because the MST always contains a shortest edge of G. 6 Indeed, since the edge
weights in a general graph are unrestricted, an MST algorithm that ran in less
than 0(N 2) time could be used to find the minimum of N 2 quantities in o(N 2)
time, which is impossible. It follows that any algorithm that treats a Euclidean
MST problem as being embedded in the complete graph on N vertices is
doomed to take quadratic time. What would then lead us to suspect that less
time is sufficient? For one thing, the Euclidean problem only has 2N inputs
(the coordinates of the points), while the graph problem has N(N — 1)/2
inputs (the edge lengths). The Euclidean problem is therefore highly con-
strained, and we may be able to use its metric properties to give a fast
algorithm.

PROBLEM P.4 (TRIANGULATION). Given N points in the plane, join them
by nonintersecting straight line segments so that every region internal to the
convex hull is a triangle. (See Section 1.3.1.)

Being a planar graph, a triangulation on N vertices has at most 3N — 6
edges. A solution to the problem must give at least a list of these edges. A
triangulation is shown in Figure 5.4.

This problem arises in the finite-element method [Strang-Fix (1973);
Cavendish (1974)] and in numerical interpolation of bivariate data when
function values are available at N irregularly-spaced data points (x i , y.) and an
approximation to the function at a new point (x, y) is desired. One method of
doing this is by piecewise linear interpolation, in which the function surface is
represented by a network of planar triangular facets. The projection of each
point (x, y) lies in a unique facet and the function value f (x, y) is obtained by

5 This was first proved by Cayley in 1889.

'This was shown by Kruskal and Prim.

190 	 5 Proximity: Fundamental Algorithms

Figure 5.4 Triangulation of a point set.

interpolating a plane through the three facet vertices. Triangulation is the
process of selecting triples that will define the facets. Many criteria have been
proposed as to what constitutes a "good" triangulation for numerical pur-
poses [George (1971)], some of which involve maximizing the smallest angle or
minimizing the total edge length. These conditions are chosen because they
lead to convenient proofs of error bounds on the interpolant, not because they
necessarily result in the best triangulation.

The preceding four problems—P.1 through P.4—are "one-shot" applica-
tions which concern the construction of some geometric object (closest pair,
all nearest neighbors, Euclidean minimum spanning tree, and triangulation).
Next we shall review two problems of the "search type" (see Chapter 2), that
is, problems to be executed in a repetitive mode, allowing preprocessing of the
initial data.

PROBLEM P.5 (NEAREST-NEIGHBOR SEARCH). Given N points in the
plane, with preprocessing allowed, how quickly can a nearest neighbor of a
new given query point q be found [Knuth (1973)]?

We may solve this problem in O(dN) time in d dimensions, but we are
interested in using preprocessing to speed up the search. There are a multitude
of applications for such fast searching, possibly the most important of which is
the classification problem. One classification method is the nearest-neighbor
rule [Duda–Hart (1973)], which states that when an object must be classified
as being in one of a number of known populations, it should be placed in the
population corresponding to its nearest neighbor. For example, in Figure 5.5
the unknown point U would be classified "B."

A similar application occurs in information retrieval, where the record
that best matches the query record is retrieved [Burkhard–Keller (1973)];
[Friedman–Bentley–Finkel (1977)]. If many objects are to be processed,
either in classification tasks [Duda–Hart (1973)] (speech recognition, elemen-
tary particle identification, etc.) or in retrieval tasks (best match retrieval), we
must be able to perform nearest-neighbor searching quickly.

5.2 A Computational Prototype: Element Uniqueness 	 1 91

A' 	B'

A'

Â 	A'

A' B'

A B'

B 6 • B

Â
	Br A'
	

Â

le

Figure 5.5 The nearest-neighbor rule.

PROBLEM P.6 (k-NEAREST NEIGHBORS). Given N points in the plane,
with preprocessing allowed, how quickly can the k points nearest to a new
given point q be found?

The k-nearest neighbors have been used for interpolation and contouring
[Davis (1975)] and for classification (the k-nearest-neighbor rule is more
robust than just looking at a single neighbor). Though the problem seems to
be more difficult than P.5, we shall see later that they can both be solved by
means of analogous geometric structures (Section 6.3.1).

5.2 A Computational Prototype: Element
Uniqueness

In investigating the computational complexity of a problem, that is, lower
bounds to some significant performance parameters such as running time and
memory use, we frequently seek to transform (or to "reduce," as the jargon
goes) a well-known problem, for which nontrivial lower bounds are known, to
the problem under consideration (Section 1.4). Examples of this approach are
now classical, and we have already encountered them in our study of compu-
tational geometry: recall, for example, the transformation of sorting—in the
computation-tree model—to the problem of computing the ordered convex
hull of a set of points. Another famous instance is SATISFIABILITY as
regards NP-complete problems [Garey–Johnson (1979)]. It seems appropri-
ate to refer to such archetypal problems, which act as fundamental representa-
tives for classes of problems, as computational prototypes.

For the one-shot problems presented in the preceding section it is easy to
develop straightforward polynomial time algorithms. It is therefore natural to
try to resort to "sorting" as a possible prototype. Although we cannot rule out
that sorting could be found to be an adequate prototype, so far the necessary

192 	 5 Proximity: Fundamental Algorithms

transformation has not been found for all the problems P.1–P.4. Fortunately,
however, we can resort to another prototype, ELEMENT UNIQUENESS
[Dobkin–Lipton (1979)], which is stated as follows.

PROBLEM (ELEMENT UNIQUENESS). Given N real numbers, decide if any
two are equal.

We shall now obtain a lower bound on the time complexity of ELEMENT
UNIQUENESS in the algebraic decision-tree model.

A set of N real numbers {x 1 , ... , xN } can be viewed as a point (x 1 , ... , xN)
in EN . Using the terminology of Section 1.4, let W EN be the membership
set of ELEMENT UNIQUENESS on {x 1 , ... , xN } (i.e., W contains all points,
no two coordinates of which are identical). We claim that W contains N! dis-
joint connected components. Indeed, any permutation n of { 1, 2, ... , N}
corresponds to the set of points in EN

Wn = { (X1,..., XN): Xn(1) < Xn(2) < ... < X,,(N)}.

Clearly W = U a l,n i'Vn, the Wn's are connected and disjoint, and # (W) = N!.
Therefore, as a consequence of Theorem 1.2 we have

Corollary 5.1. In the algebraic decision tree model any algorithm that determines
whether the members of a set of N real numbers are distinct requires SZ(N log N)
tests.

We shall use this important result in the next section.

Remark. Three important low-complexity prototypes considered in compu-
tational geometry for the algebraic decision-tree model—sorting, extreme
points, and element uniqueness—have complexity Q(N log N) but are not
readily transformable to one another. However, they all share the funda-
mental trait that their complexity is derived from the cardinality of the set of
permutations of N letters (the symmetric group SN). Although it is tempting
to look for a common "ancestor" of these prototypes—something like
PERMUTATION IDENTIFICATION—we fail to see a natural way to
formulate the latter.

5.3 Lower Bounds

As usual, before embarking in the study of algorithms for solving the prob-
lems of Section 5.1, we confront the question of their complexity. We begin
with the search-type problems, NEAREST-NEIGHBOR SEARCH and
k-NEAREST NEIGHBORS.

Here the computational prototype is BINARY SEARCH. We can easily

5.3 Lower Bounds 	 193

ELEMENT UNIQUENESS

SORTING

CLOSEST PAIR (P.1)

IN

ALL NEAREST
NEIGHBORS (P.2)

• 	EMST (P.3) N

N

N

TRIANGULATION (P.4)

Figure 5.6 Relationship among computational prototypes and proximity problems.

show that

BINARY SEARCH cc a(1) NEAREST NEIGHBOR.

Suppose that N real numbers x 1 , x2 , ... , xN are given. A binary search
(with preprocessing allowed!) identifies the x i that is the closest to a query
number q. But we recognize that this very problem can be viewed in a
geometric setting, whereby each x i corresponds to the point (x i , 0) in the plane.
Thus the "nearest-neighbor search" provides the answer sought by "binary
search." Therefore we have by the standard information-theoretic argument:

Theorem 5.1. S2(log N) comparisons are necessary to find a nearest neighbor of
a point (in the worst case) in any dimension.

In the decision-tree model, if we assume that q is equally likely to fall in any
of the N + 1 intervals determined by the x i , then Theorem 5.1 bounds the
expected behavior of any nearest-neighbor search algorithm.

As regards k-NEAREST NEIGHBORS, the transformation NEAREST-
NEIGHBOR SEARCH cc k-NEAREST NEIGHBORS is immediate by set-
ting k = 1. Thus, Theorem 5.1 applies to k-NEAREST NEIGHBOR as well.

Having rapidly disposed of the search type problems, we now turn our
attention to the "one-shot" applications P.1—P.4. The problem transforma-
tions are shown diagrammatically (an arc replacing the usual symbol "cc ") in
Figure 5.6.

We begin by showing the transformation ELEMENT UNIQUENESS cc N
CLOSEST PAIR. Given a set of real numbers {x 1 , ... , xN }, treat them as
points on the y = 0 line and find the two closest. If the distance between them
is nonzero, the points are distinct. Since a set in one dimension can always be
embedded in k dimensions, the transformation generalizes.

The transformation CLOSEST PAIR oc N ALL NEAREST NEIGHBORS
is immediate, since one of the pairs obtained by the latter is a closest pair and
can be determined with 0(N) comparisons.

194 	 5 Proximity: Fundamental Algorithms

Figure 5.7 Illustration for the lower bound on TRIANGULATION.

We next consider Problem P.3, EMST. In the preceding section we have
reviewed that the EMST contains a shortest edge of the Euclidean graph on
the N given points, whence CLOSEST PAIR is trivially transformable in
linear time to EMST. However we can also show

SORTING oc N EM ST.

Indeed, consider a set of N real numbers {x 1 , ... , xN }. Each x i is interpreted as
a point (x i , 0) in the plane, and the resulting set of points possesses a unique
EMST, namely, there is an edge from x i to x; if and only if they are consecutive
in sorted order. A solution to the EMST problem consists of a list of N — 1
pairs (i, j), giving the edges of the tree, and it is a simple exercise to transform
this list into the sorted list of the x i 's in time 0(N).

Finally, we consider the problem TRIANGULATION (P.4), and show
that

SORTING oc N TRIANGULATION.

Consider the set of N points {x 1 , x2 , ... , xN } pictured in Figure 5.7, which
consists of N — 1 collinear points and another not on the same line. This set
possesses only one triangulation, the one shown in the figure. The edge list
produced by a triangulation algorithm can be used to sort the x i in 0(N)
additional operations, so f/(Nlog N) comparisons must have been made.'

The preceding analysis establishes the problem transformations illustrated
in Figure 5.6. Since in the computation-tree model both ELEMENT
UNIQUENESS and SORTING of N-element sets have a lower bound
f/(N log N) we have the following theorem.

Theorem 5.2. In the computation-tree model, any algorithm that solves any of
the problems CLOSEST PAIR, ALL NEAREST NEIGHBORS, EMST, and
TRIANGULATION requires f2(Nlog N) operations.

We shall next undertake the study of algorithms for these problems, and the
search for optimal algorithms.

' An equivalent transformation—ORDERED HULL oc N TRIANGULATION—is based on
the fact that a triangulation of S is a planar graph (embedded in the plane), whose external
boundary is the convex hull of S.

5.4 The Closest Pair Problem: A Divide-and-Conquer Approach 	 195

x

--lb

—•
—II

• p2

Figure 5.8 The failure of projection methods. Points p 1 and p2 are the closest pair but
are farthest in y-distance.

5.4 The Closest Pair Problem: A Divide-and-
Conquer Approach

The lower bound of Theorem 5.2 challenges us to find a 0(N log N) algorithm
for CLOSEST PAIR. There seem to be two reasonable ways to attempt to
achieve such behavior: a direct recourse to sorting or the application of the
divide-and-conquer scheme. We can readily dispose of the former, since the
environment where sorting is useful is a total ordering. The only reasonable
way to obtain a total ordering seems to be to project all the points on a straight
line: unfortunately projection destroys essential information, as illustrated
informally in Figure 5.8: points pl and p2 are the closest, but they are farthest
when projected on the y-axis.

A second way toward a 0(N log N) performance is to split the problem into
two subproblems whose solutions can be combined in linear time to give a
solution to the entire problem [Bentley—Shamos (1976); Bentley (1980)]. In
this case, the obvious way of applying divide-and-conquer does not lead to
any improvement, and it is instructive to explore why it fails. We would like
to split the sets into two subsets, S 1 and S2, each having about N/2 points,
and obtain a closest pair in each set recursively. The problem is how to make
use of the information so obtained. The possibility still exists, though, that
the closest pair in the set consists of one element of S 1 and one element of S2 ,
and there is no clear way to avoid making N2 /4 additional comparisons.
Letting P(N, 2) denote the running time of the algorithm to find the closest
pair in two dimensions, the preceding observations lead to a recurrence of the
form

P(N, 2) = 2P(N/2, 2) + 0(N 2)

whose solution is P(N, 2) = 0(N 2). Let us try to remedy the difficulty by
retreating to one dimension.

The only 0(N log N) algorithm we know on the line is the one which sorts
the points and performs a linear-time scan. Since, as noted above, sorting will
not generalize to two dimensions, let us try to develop a one-dimensional

196 	 5 Proximity: Fundamental Algorithms

s 	 S2
r 	

A 	

\ I r 	 .A 	 ,
- - 	 Pl P2 	P3 1 q3 - 	 - gl 42

m

Figure 5.9 Divide-and-conquer in one dimension.

divide-and-conquer scheme that will. Suppose we partition a set of points on
the line by some point m, into two sets S i and S2 with the property that p < q
for all p E Si and q E S2. Solving the closest pair problem recursively on S i and
S2 separately gives us two pairs of points {p i ,p2 } and {q i , q 2 }, the closest
pairs in Si and S2, respectively. Let S be the smallest separation found thus
far (see Figure 5.9):

S = min(IP2 — P11,1472 — q11).

The closest pair in the whole set is either { P1, p2 }, {q 1 , q 2 } or some {p 3 , q 3 },
where p 3 e Si and q3 e S2. Notice, though, and this is the key observation, that
both p 3 and q 3 must be within distance S of m if { p 3 , q 3 } is to have a separation
smaller than 8. (It is clear that p 3 must be the rightmost point in S i and q3 is
the leftmost point in S2 , but this notion is not meaningful in higher dimensions
so we wish to be somewhat more general.) How many points of S i can lie in
the interval (m — 8, m]? Since every semi-closed interval of length 5 contains
at most one point of Si , (m — S, m] contains at most one point. Similarly,
[m, m + 8) contains at most one point. The number of pairwise comparisons
that must be made between points in different subsets is thus at most one. We
can certainly find all points in the intervals (m — S, m] and [m, m + S) in linear
time, so an O(N log N) algorithm results (CPAIRI).

function CPAIR 1 (S)
Input: X[1 : N], N points of S in one dimension.
Output: S, the distance between the two closest.

begin if (I SI = 2) then S:= X[2] — X[1]I
else if (1 5 1 = 1) then 5 := oo

else begin m := median(S);
Construct(S i , S2) (*Si = { p: p < m}, S 2 = 1p: p > m}*);
5 1 := CPAIR1(Si);
6 2 := CPAIRI (S2);
p := max(S1);
q := min(S2);
8 := min(6 1 , 6 2, q — p)

end;
return 8

end.

This algorithm, while apparently more complicated than the simple sort
and scan, provides the necessary transition to two dimensions.

•
.s, I
•

•
•

• •
Pl P2

^^
	

8
 •

SI

Pl

5.4 The Closest Pair Problem: A Divide-and-Conquer Approach 	 197

1
S2

^

•

•

s
•

s l

• •
•

Figure 5.10 Divide-and-conquer in the plane.

1

^^;

s2

•
P2

Figure 5.11 All points may lie within 8 of 1.

Generalizing as directly as possible, let us partition a two-dimensional set S
into two subsets S, and S2, such that every point of S 1 lies to the left of every
point of S2. That is, we cut the set by a vertical line 1 defined by the median
x-coordinate of S. Solving the problem on Si and S2 recursively, we obtain
S1 and 8 2, the minimum separations in S l and S2 , respectively. Now let
S = min(8 1 , (5 2). (See Figure 5.10.)

If the closest pair consists of some p e S1 and some q E S2, then surelyp and q
are both within distance S of 1. Thus, if we let P, and P2 denote two vertical
strips of width (5 to the left and to the right of 1, respectively, then p e P1 and
q E P2 . At this point complications arise that were not present in the one-
dimensional case. On the line we found at most one candidate for p 8 and at
most one for q. In two dimensions, every point can be a candidate because it is

only necessary for a point to lie within distance 8 of 1. Figure 5.11 shows a set
with this property. It again seems that N 2/4 distance comparisons will be

8 In CPAIRI there is exactly one candidate for p: p = max (SI).

P1
P2

p ♦- • .

•

198 	 5 Proximity: Fundamental Algorithms

Figure 5.12 For every point in P 1 only a constant number of points in P2 need to be
examined (at most six).

required to find the closest pair, but we will now show that the points lying
within the strips of width 6 around 1 have special structure indeed.

Referring now to Figure 5.12, consider any point p in P1 . We must find all
points q in P2 that are within 6 of p, but how many of these can there be? They
must lie in the 8 x 26 rectangle R and we know that no two points in P2 are
closer together than 6. 9 The maximum number of points of separation at least
6 that can be packed into such a rectangle is six, as shown in the figure. This
means that for each point of P i we need only examine at most six points of P2 ,

not N/2 points. In other words, at most 6 x N/2 = 3N distance comparisons
will need to be made in the subproblem merge step instead of N 2/4.

We do not yet have an 0(N log N) algorithm, however, because even
though we know that only six points of P2 have to be examined for every point
of P1 , we do not know which six they are! To answer this question, suppose we
project p and all the points of P2 onto l. To find the points of P2 that lie in
rectangle R, we may restrict ourselves to consider the projection points within
distance S from the projection of p (at most six). If the points are sorted by
y-coordinate, for all points in P 1 their nearest-neighbor "candidates" in P2

can be found in a single pass through the sorted list. Here is a sketch of the
algorithm as developed so far.

procedure CPAIR2(S)
1. Partition S into two subsets, S l and S2 , about the vertical median line /.
2. Find the closest pair separations S 1 and 6 2 recursively.
3. 8 := min(8 1 , 6 2);
4. Let P 1 be the set of points of S 1 that are within 8 of the dividing line l and let

P2 be the corresponding subset of S2. Project P 1 and P2 onto 1 and sort by
y-coordinate, and let Pi and P2 be the two sorted sequences, respectively.

9 This crucial observation is due to H. R. Strong (personal communication, 1974).

5.4 The Closest Pair Problem: A Divide-and-Conquer Approach 	 1 99

5. The "merge" may be carried out by scanning P* and for each point in P*
by inspecting the points of P2 within distance 8. While a pointer advances
on Pi , the pointer of P2 may oscillate within an interval of width 26. Let (5,
be the smallest distance of any pair thus examined.

6. 6s := min(S, 8,).

If T(N) denotes the running time of the algorithm on a set of N points,
Steps 1 and 5 take 0(N) time, Steps 3 and 6 take constant time, and Step 2
takes 2T(N/2) time. Step 4 would take O(Nlog N) time, if sorting were to be
performed at each execution of the step; however, we can resort to a standard
device—called presorting— whereby we create once and for all a list of points
sorted by y-coordinate, and, when executing Step 4, extract the points from
the list in sorted order in only 0(N) time. 10 This trick enables us to write the
recurrence for the running time P(N, 2) of the closest-pair algorithm in two
dimensions

P(N, 2) = 2P(N/2, 2) + 0(N) = O(Nlog N) 	(5.1)

which gives the following theorem.

Theorem 5.3. The shortest distance determined by N points in the plane can be
found in 0(N log N) time, and this is optimal.

The central features of the described divide-and-conquer strategy, which
enable its extension to higher-dimensional cases, are summarized as follows:

1. The step at which the subproblem solutions are combined takes place in
one lower dimension (from the plane to the line).

2. The two point sets involved in the combination of the subproblem so-
lutions have the property of sparsity, i.e., it is guaranteed that in each set
the distance between any two points is lower-bounded by a known
constant.

The emergence of sparsity in the combination step is really the crucial
factor. More formally we say

Definition 5.1. Given real 8 > 0 and integer c > 1, a point set S in d-
dimensional space has sparsity c for given S, if in any hypercube of side 26 11
there are at most c points of S.

Here sparsity is defined as a (monotone nondecreasing) function of S.
Sparsity can be induced, as we shall see, by choosing 8 as the minimum

' ° This algorithm was implemented nonrecursively by Hoey and Shamos and a curious pheno-
menon was observed: the number of distance computations made was always strictly less than N.
That this is always the case will be shown later in this section. Of course, the behavior of the
algorithm is still dominated by the sorting step.

" Such cube is also called a box.

i

200 	 5 Proximity: Fundamental Algorithms

Figure 5.13 Sparsity is preserved through orthogonal projection (for d >_ 2).

distance between pairs of points. In the preceding example, the set of points
within 8 of the dividing line 1 is sparse, with sparsity c = 12, as can be inferred
from Figure 5.12. (Note that c = 12 = 4 x 3 for d = 2.)
Jor d > 2, the portion of Ed contained between two hyperplanes ortho-

gonal to one of the coordinate axes and at distance 2(5 from each other is called
a (5-slice. Note that if a (5-slice has sparsity c for given S, this sparsity is
preserved through projection of the 6-slice on the hyperplane bisecting the
(5-slice (a (d — 1)-dimensional variety). Indeed the d-dimensional cube of side
2(5 projects to a (d — 1)-dimensional cube, also of side 26, containing exactly
as many points as the original cube (Figure 5.13).

Suppose now to have a set S of N points in Ed . According to the previous
pattern, we propose the following algorithm:

procedure CPAIR d(S)
1. Partition set S (in time 0(N)) by means of a suitable hyperplane l (called

cut-plane) orthogonal to a coordinate axis, into two subsets S i and S2 of
sizes aN and (1 — a)N respectively (where 0 < a o < a < 1 — a() , to be later
determined).

2. Apply recursively the algorithm to S i and S2 and obtain the minimum
distances 6 1 and (5 2 in Si and S2 , respectively, and let 6 = min(8 1 , 6 2).

3. Combine the results by processing a (5-slice of E d of width 28 bisected by 1.

We now concentrate on Step 3. Assume, as a working hypothesis, that the
set of points in the (5-slice, called S12, has sparsity c for the given S (we shall
later satisfy ourselves that such c exists). Let S; 2 be the projection of S 12 onto
the hyperplane 1 (a (d — 1)-dimensional space). Clearly, a necessary condition
for a pair of points of S 12 to be the closest pair in S is that their projections in 1
have distance less than (5. Thus we have a sparse set, Si` 2 , in which we must find
all pairs of points at bounded distance (<6). This is an instance of the
following problem, which is of interest in its own right.

PROBLEM P.7 (FIXED RADIUS NEAREST-NEIGHBOR REPORT IN
SPARSE SET). Given real 8 and a set of M points in Ed , with sparsity c for
given 8, report all pairs at distance less than S.

5.4 The Closest Pair Problem: A Divide-and-Conquer Approach 	 201

Figure 5.14 Definition of rectangle R = [x i , x2] x [yi,y2]•

If we let I Si 2 1 = M and FF,(M, d) denote the running time of Problem P.7,
the preceding analysis leads to the recurrence

P(N, d) = P(aN, d) + P((1 — a)N, d) + 0(N) + FF,,.(M, d — 1). (5.2)

Our objective is the minimization of FF , C (M, d — 1). This, in turn, corresponds
both to choosing a cut-plane minimizing M, and to developing an efficient
algorithm for Problem P.7. Both of these tasks are realizable by virtue of the
following interesting theorem.

Theorem 5.4 [Bentley-Shamos (1976)]. Given a set S of N points in E d, there
exists a hyperplane 1 perpendicular to one of the coordinate axes with the
following properties:

(i) both subsets S i and S2 of S on either side of 1 contain at least N/4d points;
(ii) there are at most dbN 1-l id points in a 6-slice of E d around 1, where (5 =

min (6 1 , S 2) and (5 is the minimum interpoint distance in S i (i = 1, 2), and b is
an upper bound to the number of points with least distance (5 contained in a
box of side 2(5.

PROOF. We shall carry out the proof for d = 2, because of its more immediate
intuitive appeal. Its d-dimensional generalization involves the same steps. We
assume, with a negligible loss of generality, that N is a multiple of 8. On the x-
axis we determine an interval [x 1 , x2], such that there are N/8 points of S both
to the left of x 1 and to the right of x 2 ; letting C,, _ S denote the set of points
whose abscissae are between x 1 and x2 , we note that I C, c 1 = 3N/4. Similarly,
we determine [y i , y 2] on the y-axis. The Cartesian product [x1, x2] x [Y1 , Y2]
is called R (Figure 5.14).

On the x-axis we determine the largest interval, totally contained in [x 1 , x 2]
and containing the projections of 2bN 1 / 2 points; we do likewise on the y-axis.
Let y be the maximum of the lengths of these two intervals. Without loss of
generality, we assume that [xi, x'2] is the subinterval (of [x l , x2]) yielding y. We
claim that the line 1 of equation x = (xi + x2)/2 (perpendicular bisector of the
segment xi x'2) satisfies properties (i) and (ii) (see Figure 5.15).

To prove this claim, we begin by showing by contradiction that y < 2(5 is

202
	

5 Proximity: Fundamental Algorithms

N points 8

XI'
	

X2'
	

X2

Figure 5.15 Relationship between [x,, x 2] and [x2, x'2].

impossible; we shall then see that the condition y > 2(5 ensures the desired
result.

The condition y < 28 means that any horizontal and vertical strip of width
28 projecting in the interior of [y l , y 2] and [x 1 , x 2], respectively, contains
more than 2bN 1 " 2 points.

If we now partition [x 1 , x 2] into subintervals of size 2(5, in each of the
vertical strips of the plane projecting to these subintervals there are more than
2bN 1 / 2 points. Since there are L(x 2 — x 1)/26] such subintervals, we have

L(x2 — x1)/ 26] 2bN 1/2 < 1 CXI = 3N/4, or L(x 2 — x 1)/26] < 3N 1 / 2 /8b. Argu-
ing in the same way for the [y i , y 2] interval we obtain L(y2 — yl)/ 28] <
3N 1 " 2 /8b. Consider now the rectangle R = [xl ,x 2] x [y l ,y2]. This rectangle
contains at most 1(x 2 — x i)/2(51.1(Y2 — Y1)/ 2b1 squares of side 26. Each such
square is exactly a box of side 2(5 and so, by the hypothesis of the theorem, it
contains at most b points. It follows that the number of points of S in R is at
most

[x2 — x i 1 [Y2 — Y1 b
26 	2(5 < (Lx2

 xl
26
— 	 + 1Y2

2b
Yi + 1 b

3N1i2 	2

8b + l
	• b. <

Since b is a small constant > 1, the right side is maximized by b = 1, so that R
contains at most 2(3/8) 2 N 0.28N points for N > 8.

On the other hand, the vertical strips external to [x 1 , x2] contain 2 • N/8
points, and so do the horizontal strips external to [y , y 2] (see Figure 5.15). By
the principle of inclusion—exclusion, the number of points external to R is at
most 4N/8 = N/2, so that R contains no less than N/2 points. A contradiction
has been obtained whence the condition y < 2(5 is impossible.

Since y > 2(5, the result follows, for property (i) is ensured by the construc-

5.4 The Closest Pair Problem: A Divide-and-Conquer Approach 	 203

tion of [x 1 , x2], and property (ii) holds since the (5-slice around / contains at
most 2bN 1 " 2 points. Therefore line 1 satisfies the specifications of the theorem.

El

We use this theorem to show first that a cut-plane / can be chosen in Step 1
of CPAIRd(S) so that 1/4d < a < 1 — 1/4d, and S12, the set of points in the
8-slice around /, has cardinality at most cdN 1-1 /d , where c = 4.3d-1 . Indeed, if
S = min(8 1 , 8 2), a box of side 2(5 in the 6-slice contains at most c = 4.3d -1

 points, as can be easily seen by induction on d. The induction starts with d = 2,
for which we have already seen that at most 12 points are contained in a "box"
of side 2(5. This proves that cut-plane / exists. To determine it, we presort S,
once and for all, on all coordinates in time O(dN log N). By a simple 0(dN)
scan of each of the resulting sorted sequences, we determine intervals so that
there are N/4d points on either sides of them. In each of these intervals, by
another simple 0(N) scan we can determine the maximum of the widths of the
windows (subintervals) containing exactly LcdN1-1/d j points. The maximum
of these maxima yields a unique coordinate of the space and an interval whose
bisector is the sought cut-plane. Note that, exclusive of presorting, the cut-
plane can be determined in time linear in the size of S.

Thus, we have obtained a sparse set S12 of cardinality <cdN 1-1 id (with
sparsity c = 4.3d-1 for the computed 8). We next solve Problem P.7 for Sf2,
the projection of S12 on the previously obtained cut-plane 1. We shall use again
the divide-and-conquer approach for this (d — 1)-dimensional problem. Spe-
cifically, we find a cut-plane /', as guaranteed by Theorem 5.4, with given 8 (as
obtained in Step 2 of procedure CPAIRd), and c equal to the sparsity of S1 2 ,
just obtained. It follows that the point set in the (5-slice around the cut plane l'
has size bounded by (d — 1)•cM 1-11(d-1), i.e., o(M). In conclusion, the (d — 1)-
dimensional problem P.7 is solved by determining, in time 0(M), a cut-plane,
followed by recursively solving the same problem on two subsets of sizes aM
and (1 — a)M, and finally by solving a residual (d — 2)-dimensional problem
on a set size o(M). This leads to the recurrence

FF , c (M, d — 1) = Fa,, 4d, d — 1 + FF,c M 1 —
4d

, d — 1 + 0(M) (5.3)

+ FF.c(o(M), d — 2).

This recurrence is readily solved as Fb c (M, d — 1) = O(M log M). This fact is
interesting per se and is summarized in the following theorem.

Theorem 5.5. All the pairs at distance less than S in a sparse set of M points in Ed
 (with sparsity c for given S) can be reported in time 0(M log M).

On the other hand, returning to the original closest-pair problem, M, the
cardinality of S12 , is by construction 0(N 1 -l i(1), i.e., it is o(N/ log N). It
follows that FF , C (M, d — 1) = 0(M log M) = 0(N). As a conclusion, recur-

204 	 5 Proximity: Fundamental Algorithms

rence relation (5.2) has solution P(N,d) = O(N log N). This computational
work is of the same order as that of the initial presorting. So we have

Theorem 5.6. The determination of a closest pair of points in a set of N points in
E d can be completed in time 0(N log N), and this is optimal.

5.5 The Locus Approach to Proximity Problems:
The Voronoi Diagram

While the previous divide-and-conquer approach for the closest-pair problem
is quite encouraging, it even fails to solve the ALL NEAREST NEIGHBORS
problem, which would seem to be a simple extension. Indeed, if we try to set up
the analogous recursion for ALL NEAREST NEIGHBORS, we find that the
natural way of splitting the problem does not induce sparsity, and there is no
apparent way of accomplishing the merge step in less than quadratic time. On
the other hand, a valuable heuristic for designing geometric algorithms is to
look at the defining loci and try to organize them into a data structure. In a
two-dimensional formulation, we want to solve

PROBLEM P.8 (LOCI OF PROXIMITY). Given a set S of N points in the plane,
for each point pi in S what is the locus of points (x, y) in the plane that are
closer to pi than to any other point of S?

Note that, intuitively, the solution of the above problem is a partition of the
plane into regions (each region being the locus of the points (x, y) closer to a
point of S than to any other point of S). We also note that, if we know this
partition, by searching it (i.e., by locating a query point q in a region of this
partition), we could directly solve the NEAREST-NEIGHBOR SEARCH
(Problem P.5). We shall now analyze the structure of this partition of the
plane. Given two points, pi and pi , the set of points closer to pi than to pi is just
the half-plane containing pi that is defined by the perpendicular bisector of
pip; . Let us denote this half-plane by H(pi , pi). The locus of points closer to pi
than to any other point, which we denote by V(i), is the intersection of N — 1
half-planes, and is a convex polygonal region (see Section 1.3.1) having no
more than N — 1 sides, that is,

V(i) = n H(Pi,P;)•

V(i) is called the Voronoi polygon associated with p i . A Voronoi polygon is
shown in Figure 5.16(a) [Rogers (1964)]. 12

12 These polygons were first studied seriously by the emigré Russian mathematician G. Voronoi,
who used them in a treatise on quadratic forms [Voronoi (1908)]. They are also called Dirichlet
regions, Thiessen polygons, or Wigner- Seitz cells. Dan Hoey has suggested the more descriptive
(and impartial) term "proximal polygons."

5.5 The Locus Approach to Proximity Problems: The Voronoi Diagram 	 205

•
•

•

•

•

•

•
• •

•

•

(a)

(b)

Figure 5.16 (a) A Voronoi polygon; (b) the Voronoi diagram.

These N regions partition the plane into a convex net which we shall refer to
as the Voronoi diagram, denoted as Vor(S), which is shown in Figure 5.16(b).
The vertices of the diagram are Voronoi vertices, and its line segments are
Voronoi edges.

Each of the original N points belongs to a unique Voronoi polygon; thus
if (x, y) e V(i), then pi is a nearest neighbor of (x, y). The Voronoi diagram
contains, in a powerful sense, all of the proximity information defined by the
given set.

5.5.1 A catalog of Voronoi properties

In this section we list a number of important properties of the Voronoi
diagram. Although the Voronoi diagram can be defined for any number of
dimensions, our review will refer to the planar case for a two-fold reason: first,
to maintain an immediate link with intuitive evidence; second, to focus the

•
•

206
	

5 Proximity: Fundamental Algorithms

V(1)
	 V(2)

v

i \
/ 	\

/ 	\

V(k) /
/
	• • • \ V(3)

/ ^
/ ^

i
e k

Figure 5.17 Voronoi edges incident on a Voronoi vertex.

treatment on the only known situation where efficient algorithmic techniques

are available.
Throughout this section we make the following assumption.

Assumption A. No four points of the original set S are cocircular.

If this assumption is not true, inconsequential but lengthy details must be

added to the statements and proofs of the theorems.

We begin by noting that every edge of the Voronoi diagram is a segment of

the perpendicular bisector of a pair of points of S and is thus common to
exactly two polygons. We then have

Theorem 5.7. Every vertex of the Voronoi diagram is the common intersection of

exactly three edges of the diagram.

PROOF. Indeed, a vertex is the common intersection of a set of edges. Let e l , e 2 ,
... , ek (for k > 2) be the clockwise sequence of edges incident on vertex y (refer

to Figure 5.17). Edge e t is common to polygons V(i — 1) and V(i), for i = 2,
... , k, and e 1 is common to V(k) and V(1). Notice that y is equidistant from
pt _ 1 and pi since it belongs to e ; ; on the other hand, by the same argument, it

is equidistant from pt and pi+1, and so on. Thus y is equidistant from p i , p2,
... , pk . But this means that p i , ... , pk are cocircular, violating Assumption A
if k > 4. Therefore k < 3. Suppose now that k = 2. Then e 1 is common to
V(2) and V(1), and so is e 2 : indeed they both belong to the perpendicular
bisector of the segment p1 p2 , so that they do not intersect in y, another
contradiction. ❑

Equivalently, Theorem 5.7 says that the Voronoi vertices are the centers of
circles defined by three points of the original set, and the Voronoi diagram is
regular of degree three. 13 For a vertex y, we denote by C(v) the above circle.
These circles have the following interesting property.

' 3 In graph-theoretical parlance, a graph is regular if all vertices have the same degree.

5.5 The Locus Approach to Proximity Problems: The Voronoi Diagram 	 207

Figure 5.18 The circle C(v) contains no other point of S.

Theorem 5.8. For every vertex v of the Voronoi diagram of S, the circle C(v)
contains no other point of S.

PROOF. By contradiction. Referring to Figure 5.18, let p 1 , p2 , and p 3 be the
three points of S determining circle C(v). If C(v) contains some other point,
say p4 , then p4 is closer to y than to any of p 1 , p2 , or p 3 , in which case v must lie
in V(4) and not in any of V(1), V(2), or V(3), by the definition of a Voronoi
polygon. But this is a contradiction since v is common to V(1), V(2), and V(3).

Theorem 5.9. Every nearest neighbor of pi in S defines an edge of the Voronoi
polygon V(i).

PROOF. Let pi be a nearest neighbor of pi and let v be the midpoint of their
adjoining segment. Suppose that v does not lie on the boundary of V(i). Then
the line segment p i v intersects some edge of V(i), say the bisector of piPk
at u. (Figure 5.19). Then length(p i u) < length(p i v), so length(p ipk) <
2 length(p i u) < 2 length(p i v) = length(pip;) and we would have pk closer to
pi than p; is, which is contradictory. ❑

Theorem 5.10. Polygon V(i) is unbounded if and only if p i is a point on the
boundary of the convex hull of the set S.

PROOF. If pi is not on the convex hull of S, then it is internal to some triangle

P1P2P3 by Theorem 3.4. Consider the circles C12, C13, and C23 determined by
pi and each of the three pairs of vertices {p, ,p 2 1, {P1 ,p 3 }, and {p 2 ,p 3 },
respectively. (See Figure 5.20.) Each of these circles has finite radius. On circle
C12 (and analogously for C13 and C23) the external arc A l2 is the circular arc
between pi and P2 not containing pi ; it is straightforward to show that any
point of A 12 is closer to Pi or to P 2 than to pi . Let C be a circle that encloses

C12, C13, and C23. We claim that any point x that lies outside C is closer to
one of p1, p2 , or p 3 than it is to pi . Indeed, consider the segment xp i . By the
Jordan curve theorem, Vi intersects one of the sides of triangle P1 p2p3, say

208
	

5 Proximity: Fundamental Algorithms

Figure 5.19 Every nearest neighbor of p; defines an edge of V(i).

plp2; thus, it intersects also A 1 2 in point u. But u is closer to eitherp l or p2 than
to pi , whence the claim. Since x is closer to p 1 , p2 , or p3 than to pt , V(i) is
contained entirely within C and hence is bounded.

Conversely, assume that V(i) is bounded and let e l , e2 ,... , ek (k >_ 3) be the
sequence of its boundary edges. Each eh (h = 1, ... , k) belongs to the bisector
of a segment p•ph, ph e S. It is immediate to conclude that pi is internal to the
polygon p'i p'2 • • • pk, i.e., p; is not on the convex hull of S. ❑

Since only unbounded polygons can have rays as edges, the rays of the
Voronoi diagram correspond to pairs of adjacent points of S on the convex
hull.

We now consider the straight-line dual of the Voronoi diagram, i.e., the
graph embedded in the plane obtained by adding a straight-line segment
between each pair of points of S whose Voronoi polygons share an edge. The
result is a graph on the original N points. (Figure 5.21.)

Figure 5.20 For the proof of Theorem 5.10.

5.5 The Locus Approach to Proximity Problems: The Voronoi Diagram 	 209

Figure 5.21 The straight-line dual of the Voronoi diagram.

The dual may appear to be unusual at first glance, since an edge and its dual
may not even intersect (consider, e.g., the edges joining consecutive hull
vertices.) Its importance is largely due to the following theorem of Delaunay
(1934).

Theorem 5.11. The straight-line dual of the Voronoi diagram is a triangulation of
5, 14

(This implies that the Voronoi diagram can be used to solve the Triangulation
problem, P.4, but the theorem has much more significant consequences.)

PROOF. To prove that the straight-line dual of the Voronoi diagram is a
triangulation, we must show that the convex hull of S is partitioned into
triangles determined by the points of S. To this end we shall show that a set of
triangles .9 = { T(v): v is a Voronoi vertex} can be constructed, so that no two
intersect and each point in the interior of conv(S) belongs to one such triangle
(and, therefore, to exactly one such triangle).

The triangles are constructed as follows. Let y be a Voronoi vertex shared
by V(1), V(2), and V(3) (see Theorem 5.7): T(v) is defined as the triangle whose
vertices are p 1 , p2 and p 3 . We claim that if T(v) intersects the interior of
conv(S), then T(v) is nondegenerate (i.e., p i , P 2 , and p 3 are not collinear).
Indeed, assume, for a contradiction, that p i , p2 , and p 3 are collinear: then the
three segments P1P2, P iP3, and p 2p3 all belong to the same straight line 1, and
their perpendicular bisectors are parallel. Since y is the common intersection
of these three bisectors, y is a point at infinity, which implies that V(1), V(2),

14 In this simple form the theorem fails if certain subsets of four or more points are cocircular. In
this case, however, completing the triangulation will be straightforward.

210
	

5 Proximity: Fundamental Algorithms

C(v2)
C(v,)

Figure 5.22 There is no point of T(v 1) in the interior of the shaded region.

and V(3) are unbounded. This means, by Theorem 5.10, that collinear p 1 , p2,
and p 3 lie on the convex hull, contrary to the assumption that T(v) intersects
the interior of conv(S). This establishes the claim.

Next, consider the two triangles T(v 1) and T(v 2), for v 1 0 y2 , and the
corresponding circles C(v 1) and C(v 2) (notice that C(v 1) is the circumcircle of
T(v ;)). If C(v i) and C(v 2) are disjoint, so are T(v 1) and T(v 2). So assume that
C(v 1) and C(v 2) share internal points. Note that neither one can be entirely
contained in the other, by Theorem 5.8: so C(v 1) and C(v 2) must intersect in
two points q 1 and q 2 , which define a straight line / (refer to Figure 5.22)
separating v 1 from v 2 . We claim that l also separates T(v 1) and T(v2). Indeed,
assume the contrary: say, there are points of T(v 1) on the v 2 -side of line 1(i.e.,
in the shaded area in Figure 5.20, since T(v 1) c C(v 1)). This implies that there
is a vertex of T(v 1) in the shaded area, and hence in C(v 2), contrary to
Theorem 5.8. Thus, T(v 1) and T(v 2) do not share interior points.

Finally, consider an arbitrary point x in conv(S) and assume for a contra-
diction that x ct T(v), for any Voronoi vertex v. This implies that there is a small
disc y, centered in x, of points with the same property as x (refer to Figure
5.23). Let q be a point in T(v), for an arbitrary v. We can choose a pointy e y so
that the line 1 through q and y does not pass by any point of S. Line /intersects
triangles of J in a set of closed intervals: let t be the endpoint of the interval
closest to x, and let t be on the boundary edge p l p 2 of T(v 1), for some Voronoi
vertex v l . Next, let p 3 be the third vertex of T(v 1) and consider the per-
pendicular 1 1 from y 1 to p 1 p 2 . The initial portion of 1 1 is the boundary edge of
V(l) and V(2). Since x is assumed to be in conv(S), and x and p 3 are on
opposite sides of p 1 p2 , the segment p 1 p 2 does not belong to the convex hull of
S. This implies that the boundary edge on 1 1 is not a ray (by Theorem 5.10), but
a segment of which the other extreme is called v 2 . Therefore, T(v 2) hasp s and
p 2 as two of its vertices, and since T(v 1) n T(v 2) = Q (by a previous result),
v 1 and v 2 lie on opposite sides of p 1 p2 . This shows that t is internal to
T(v 1) u T(v 2), contrary to our (unfounded) assumption that the points of ly
belong to no triangle of J". ❑

5.5 The Locus Approach to Proximity Problems: The Voronoi Diagram 	 21 1

Figure 5.23 Each point in the convex hull of S belongs to some triangle.

An immediate consequence of the preceding theorem is

Corollary 5.2. A Voronoi diagram on N points has at most 2N — 5 vertices and
3N — 6 edges.

PROOF. Each edge in the straight-line dual corresponds to a unique Voronoi
edge. Being a triangulation, the dual is a planar graph on N vertices, and thus
by Euler's formula it has at most 3N — 6 edges and 2N — 4 faces. Therefore,
the number of Voronoi edges is at most 3N — 6; however, only the bounded
faces (at most 2N — 5) dualize to Voronoi vertices. ❑

By the established duality, the Voronoi diagram can also be used to solve
the TRIANGULATION problem (Problem P.4).

Since the Voronoi diagram is a planar graph, it can be stored in only linear
space. This makes possible an extremely compact representation of the prox-
imity data. Any given Voronoi polygon may have as many as N — 1 edges, but
there are at most 3N — 6 edges overall, each of which is shared by exactly two
polygons. This means that the average number of edges in a Voronoi polygon
does not exceed six.

In the next two sections we will use these properties to construct the
Voronoi diagram quickly and employ it to solve the closest-point problems.

5.5.2 Constructing the Voronoi diagram

Even though we will be using it for other purposes, it is well to note that
construction of Voronoi diagrams is an end in itself in a number of fields. In
archaeology, Voronoi polygons are used to map the spread of the use of tools
in ancient cultures and for studying the influence of rival centers of commerce
[Hodder—Orton (1976)]. In ecology, the survival of an organism depends on
the number of neighbors it must compete with for food and light, and the

21 2 	 5 Proximity: Fundamental Algorithms

Voronoi diagram of forest species and territorial animals is used to investigate
the effect of overcrowding [Pielou (1977)]. The structure of a molecule is
determined by the combined influence of electrical and short-range forces,
which have been probed by constructing elaborate Voronoi diagrams.

By constructing the Voronoi diagram Vor(S) of a set of points S (hereafter
referred to formally as Problem VORONOI DIAGRAM), we shall mean to
produce a description of the diagram as a planar graph embedded in the plane,
consisting of the following items (see Section 1.2.3.2):

1. The coordinates of the Voronoi vertices;
2. The set of edges (each as a pair of Voronoi vertices) and the two edges that

are their counterclockwise successors at each extreme point (doubly-
connected-edge-list, see Section 1.2.3.2). This implicitly provides the coun-
terclockwise edge cycle at each vertex and the clockwise edge cycle around
each face.

Next, according to a familiar pattern, we consider first the question of a
lower bound to the time necessary for constructing the Voronoi diagram. The
answer is provided by the following simple theorem.

Theorem 5.12. Constructing a Voronoi diagram on N points in the plane must
take SZ(N log N) operations, in the worst case, in the algebraic computation-tree
model.

PROOF. We will see later that the closest-point problems are all linear-time
transformable to VORONOI DIAGRAM, so many proofs of this theorem
are possible but we content ourselves here with a very simple one. The Voronoi
diagram of a set of points in one dimension consists of a sequence of N — 1
bisectors separating adjacent points on the line. From these consecutive pairs
we can obtain a sorted list of the points in only linear time, whence SORTING
can be transformed in linear time to VORONOI DIAGRAM. ❑

A naive (almost brutal) approach to the construction of a Voronoi diagram
is the construction of its polygons one at a time. Since each Voronoi polygon is
the intersection of N — 1 half-planes, using a method to be described in
Chapter 7, it can be constructed in time O(NlogN), thereby resulting in an
overall time O(N 2 log N). We will show next that the entire diagram can be
obtained in optimal time 0(Nlog N), which means that constructing the
diagram is asympototically no more difficult than finding a single one of its
polygons!

Indeed, in spite of its apparent complexity, VORONOI DIAGRAM is
eminently suited to attack by divide-and-conquer. The method we employ
depends for its success on various structural properties of the diagram that
enable us to merge subproblems in linear time.

We can therefore attempt a rough sketch of the algorithm:

5.5 The Locus Approach to Proximity Problems: The Voronoi Diagram
	 213

procedure VORONOI DIAGRAM (preliminary)
Step 1. Partition S into two subsets S i and S2 of approximately equal sizes.
Step 2. Construct Vor(S 1) and Vor(S2) recursively.
Step 3. "Merge" Vor(S 1) and Vor(S2) to obtain Vor(S).

We assume now, and later substantiate, that in any case Step 1 can be
carried out in time 0(N). If we let T(N) denote the overall running time of the
algorithm, then Step 2 is completed in time approximately 2T(N/2). Thus, if
Vor(S1) and Vor(S2) can be merged in linear time to form the Voronoi
diagram Vor(S) of the entire set, we will have a 0(N log N) optimal algorithm.
But before we tackle the algorithmic question, there is a deeper question to be
settled: What reason is there to believe that Vor(S 1) and Vor(S2) bear any
relation to Vor(S)?

To answer this question, we begin by defining a geometric construct which
is crucial to our approach.

Definition 5.2. Given a partition {S l , S2 } of S, let a(S 1 , S2) denote the set of
Voronoi edges that are shared by pairs of polygons V(i) and V(j) of Vor(S),
for pi ES1 and pi e S2.

This collection a(S 1 , S2) of edges enjoys the following properties.

Theorem 5.13. a(S 1 , S2) is the edge set of a subgraph of Vor(S) with the
properties:

(i) a(S1 , S2) consists of edge-disjoint cycles and chains. If a chain has just one
edge, this is a straight line; otherwise its two extreme edges are semi-infinite
rays.

(ii) If S l and S2 are linearly separated,' then, a(S1 , S2) consists of a single
monotone chain (see Section 2.2.2.2).

PROOF. (i) If in Vor(S) we imagine painting each of the polygons { V(i): p i E S1 }
in red and each of the polygons { V(j): p i e S2 } in green, clearly Vor(S) is a
two-colorable map. Then it is well-known that the boundaries between poly-
gons of different colors are edge-disjoint cycles and chains [Bollobds (1979)].
(Notice that two components of a(5 1 , S2) may share a vertex only if the degree
of that vertex is at least four; so if all Voronoi vertices have degree three, then
the components are also vertex-disjoint.) Each component of o(S 1 , S2) par-
titions the plane into two parts. Thus a chain either consists of a single straight
line or it has rays as initial and final edges. This establishes (i).

(ii) Without loss of generality, assume that S 1 and S2 are separated by a
vertical line m, and let C be a component of a(S 1 , S2). Starting from a point q

"If If more than one point belongs to the separating line, all of these are assigned to the same set of
the partition.

214 	 5 Proximity: Fundamental Algorithms

1

P
r

3

(a)
	

(b)

Figure 5.24 Si and S2 are vertically separated. Then: (a) each component of î(S 1 , S2)
is a vertically monotone chain; (b) a(S 1 , S2) consists of a single chain.

of an edge of C, we begin traversing C in the direction of decreasing y and
continue until we reach a Voronoi vertex v i where C turns upward (see Figure
5.24(a)). Edge v 1 v 2 is the bisector of p1p2, and v 1 v 3 is the bisector of p1p3•
Since y(v 3) > y(v 1) and y(v 2) > y(v 1), we have x(p 3) < x(p 1) < x(p2); how-
ever, by the shape of C, p2 and p3 belong to the same set, contrary to the
assumption that S 1 and S2 are separated by a vertical line. So, a vertex like v 1 is
impossible and C is vertically monotone. This implies that C is a chain.

Suppose now that a(S 1 , S2) contains at least two (vertically monotone)
chains, C 1 and C2. A horizontal line / intersects each of C 1 and C2 in a single
point, due to monotonicity; assume also that the intersection with C 1 is to the
left of that with C2 (see Figure 5.24(b)). Then there are three points of S: p 1 ,
P2 , andp 3 , with x(p 1) < x(p 2) < x(p 3), ofwhichp 1 andp 3 belong to the same
set of the partition {S i , S2 }, contradicting the hypothesis of vertical separa-
tion of these two sets. So, a(S 1 , S2) consists of a single monotone chain. ❑

When Si and S2 are linearly separated, the single chain of a(S 1 , S2) will be
referred to as a. If the separating line m is chosen vertical, we can unam-
biguously say that a cuts the plane into a left portion nL and a right portion 7t R .
We then have the following decisive property.

Theorem 5.14. If S i and S2 are linearly separated by a vertical line with Si to the
left of S 2 , then the Voronoi diagram Vor(S) is the union of Vor(S1) n 1L and
Vor(S2) n ltR .

PROOF. All points of S to the right of a are the points of S2. Then all edges of
Vor(S) to the right of a separate polygons V(i) and V(j), where both pi and p;
are in S2. This implies that each edge of Vor(S) in n R either coincides or is a
portion of an edge of Vor(S 2). All analogous statement holds for lrL . 111

5.5 The Locus Approach to Proximity Problems: The Voronoi Diagram 	 21 5

The preceding theorem answers our original question on how Vor(S 1) and
Vor(S2) relate to Vor(S). Indeed, it states that when S i and S2 are linearly
separated (a situation which is entirely under our control and can be enforced

in Step 1 of the algorithm), then it provides a method for merging Vor(S 1) and
Vor(S2). The algorithm is therefore revised as follows.

procedure VORONOI DIAGRAM
Step 1. Partition S into two subsets S i and S2 , of approximately equal sizes,

by median x-coordinate.
Step 2. Construct Vor(S 1) and Vor(S2) recursively.
Step 3'. Construct the polygonal chain a, separating S i and S2.

Step 3". Discard all edges of Vor(S2) that lie to the left of a and all edges of
Vor(S1) that lie to the right of a. The result is Vor(S), the Voronoi
diagram of the entire set.

Clearly, the success of this procedure depends on how rapidly we are able to

o
o

o

o 	 - `ir ir /

• ; 	•• 	; 	•

-- 	o 	̂^^^`^--,^\ — 	 ^ 	 . ^ ----------< ^\ 	• i • 	̂̀̂ o N \ 	1
JI

• \

(a)

• •
/ 	• ^^^, 	 o

^--^ 	 ^8-----...... --_— y^` ! 	 \ 	 ''Y _ ^^

� ^

`\^^ 	• / ^ ^ i^ ^ — '
^ 1 	/ 	 7 	o 	o 	O

^ 	/ y,
	 /

1 	• 	/
• i 	 /
 /

/IS '''. 	/ 	 O 	O _
/ 	'... ...4

/ 	 1
/ 	• 	1

/ 	 ` 	o
\
\

(b)

Figure 5.25 The Voronoi diagrams of the left set (a) and of the right set (b).

•

216 	 5 Proximity: Fundamental Algorithms

1

1 	 ^
► ^
^ „ 	• 	1 • _ ^^ 	• — 	■1 • • — ^ f- — 	_. -~ 	_: ^ r 	̂ _ --_^ ^-r ^.^ 	• 	̂_ 	̂̂ 	I

• 1^ 	
•f

^
■

►

Figure 5.26 Vor(S 1), Vor(S2), and Q superimposed.

construct a, since Step 3” poses no difficulties. For an illustration, the dia-
grams Vor(S 1) and Vor(S2) are shown separately in Figure 5.25(a) and
5.25(b), respectively; Vor(S 1), Vor(S2), and a are shown superimposed in

Figure 5.26.
From a performance viewpoint, the initial partition of S according to the

median of the x-coordinates can be done in time 0(N) by the standard median
finding algorithms. Moreover, Step 3" can be carried out in time 0(1S 1 1
+ I S2 1) = 0(N). What remains is to find an efficient way of constructing the

dividing chain a. This will be our next task [Shamos—Hoey (1975); Lee (1978),

(1980a)].

5.5.2.1 Constructing the dividing chain

•

The first step in the construction of a is to find its semi-infinite rays. We

observe that each ray of a is the perpendicular bisector of a supporting

segment of CH(S 1) and CH(S2). We also note that, since S 1 and S2 are linearly
separated by hypothesis, there are just two supporting segments of CH(S1)
and CH(S2) (thereby confirming that a(S 1 , S2) consists of just one chain a). If
we now assume (inductively) that these two convex hulls are available, their

two supporting segments, denoted t 1 and t 2 , are constructed in (at most) linear

time (see Section 3.3.5) and the rays of a are readily determined (see Figure

5.27). Notice that as a byproduct of this activity we also obtain CH(S),

thereby providing the induction step for the availability of the convex hulls.

Once we have found a ray of a, the construction continues, edge by edge,

until the other ray is reached. It is useful to refer to the example of Figure 5.28,
where, for simplicity, point p ; is shown by its index j. The upper ray of a is the

i 	 I

`\\^ ^// 	_ r • ^ •^^ VOr (S 2) n TrR
•

•
•

Y 	,

r

• ^

^

^

5.5 The Locus Approach to Proximity Problems: The Voronoi Diagram 	 21 7

► The rays of o- are the
perpendicular bisectors
of the supporting segments
of CH(S1) and CH(S2)• tl r

^

►

Figure 5.27 Finding the rays of a.

bisector of points 7 and 14. Imagine a point z on the ray, moving down from
infinity. Initially z lies in polygons of Vor(S 1) and Vor(S2). It will continue to
do so until it crosses an edge of one of these polygons, when it will start moving

in a different direction. In our example, z encounters an edge of Vor(S 2)
before it hits any edge of Vor(S 1). This means that z is now closer to point 11
than it is to 14, so it must move off along the 7-11 bisector. It continues until

the 6-7 bisector of Vor(S 1) is reached, and moves off along the 6-11 bisector.
Eventually it hits the 10-11 bisector of V(1 1) and proceeds via the 6-10

bisector. This jagged walk continues until the bottom ray of a is reached.

; 	 V(14)
i k
i 2 	 : 	̂ %

• r^``^^ ^ 	̂1 14
	

,
• 6 -,, ^ 	^ ^^_--(^ __ 	-- 	_^_`` 	11 • -^ 	̂ -

^

__,`\ 	3 	̀ 	__ 	ti -^^^ -

. 	̂ ^^- 	'^^ 	
I Vor (S1) 	̂.`.^ i^ 	' lp• j l' ^ •16

_ - - _ i 5

// 	, - -`. .- ^. -- 	+ • -__ - / ,, 	.
1•

	

/'
}-__ ^ 	12. -`^. 	

^ •15^ /• 	1 s
	

\\ I •

^

i 	4 	
\\ 	• g `i\ 	Vor (S2)

/ 	 % / 	 \ 	 \ t \ 	 t

Figure 5.28 A zigzag walk to construct a.

V(7)

1
Boundary of V(i) 1
in Vor(S1) s

4

218 	 5 Proximity: Fundamental Algorithms

Figure 5.29 The intersections q 1 , q 2 , q 3 are ordered on C2.

Assuming that a is traversed in the direction of decreasing y, the advancing
mechanism of the walk obtains from the current edge e and current vertex y

 (the upper extreme of e), the next edge e' and vertex y'. If e separates V(i) and
V(j), for pi e S 1 and pi e S2, then y' will be either the intersection of e with the
boundary of V(i) in Vor(S1) or the one with the boundary of V(j) in Vor(S2),
whichever is closer to v. So by scanning the boundaries of V(i) in Vor(S1) and
of V(j) in Vor(S2) we can readily determine vertex y'. Unfortunately, a may
remain inside a given polygon V(i), turning many times, before crossing an
edge of V(i). If we were to scan all of V(i) each time, far too many edge
examinations would be performed; in fact, this procedure could take as much
as quadratic time. However, the particular structure of the Voronoi diagram
affords a much more efficient scanning policy.

Indeed, assume that a contains a sequence of more than one edge e 1 , e 2 , ... ,
ek of V(i), where, say p. e S i (refer to Figure 5.29, where k = 3). Suppose to
extend edge eh from its endpoint v h as a ray rh and consider the intersection qh
of rh with the boundary of V(i) in Vor(S1). Consider the subchain C 1 = e 1 ,
... , ek of a and the portion C2 of the boundary of V(i) in Vor(S1) to the right
of a. C2 is part of the boundary of a (possibly unbounded) convex polygon
V(i) of Vor(S 1); C 1 is also convex and contained in V(i). Since the angles from

vhgh to vhgh+l (h = 1, 2, ... , k — 1) have all the same sign, the intersections q 1 ,

q2, ... , qk are ordered on C2. This proves that C2, i.e., the boundary of V(i) in
Vor(S1), needs to be scanned clockwise, with no backtrack, when determining
q 1 , q 2 , An analogous argument shows that the boundary of any V(j) in
Vor(S2) needs to be scanned counterclockwise, with no backtrack.

Specifically, we assume that both Vor(S 1) and Vor(S2) be given as DCELs
(see Section 1.2.3.2), where the face cycles are directed clockwise in Vor(S 1)
and counterclockwise in Vor(S2). In the DCEL of Vor(S 1) we have a pointer

5.5 The Locus Approach to Proximity Problems: The Voronoi Diagram 	 21 9

NEXT 1 [], which is used for traversing the boundary of a face clockwise;
similarly we define NEXT 2 [] for Vor(S2). The algorithm maintains three
edges: two edges eL and eR , in Vor(S1) and Vor(S2) respectively, and the
"current edge" e of a (actually, the straight line containing edge e). Of edge e,
it also maintains its initial point y (for the initial ray e*, v* is a point of
conveniently large ordinate on e*). Finally, it maintains two points of S, p L E S,
and pR E S2 , so that the current edge e is the perpendicular bisector of p LPR . By
I(e, e) we denote the intersection of edges e and e'; I(e, e') = A means that
e and e' do not intersect. Again, t l and t 2 are the two supporting segments,
with t 1 = M. Thus the implementation of Step 3' runs as follows:

1. begin pL := p;

2. PR := q;
3. e.= e*;
4. v.= v*;
5. eL := first edge on (open) boundary of V(p L);
6. eR := first edge on (open) boundary of V(p R);
7. repeat
8. while (I(e, e L) = A) do eL := NEXT, [eL] (*scan boundary of

V(PL)*);
9. while (I(e, e R) = A) do eR := NEXT2 [eR] (*scan boundary of

V(PR)*);
10. if (I(e, e L) is closer to v than I(e,e R)) then
11. begin v := I(e,eL);
12. pL := point of S on other side of eL ;
13. e:= bisector of pLPR;
14. eL := reverse of eL (*the new eL is an edge of V(p L)*)

end
15. else begin y := I (e, e R);
16. pR := point of S on other side of e R ;
17. e:= bisector of pL pR ;
18. eR := reverse of eR

end
19. until (pLPR = t2)

end.

After the initialization (lines 1-6) we begin the walk on a (lines 7-19). The
actual advancing mechanism is expressed by lines 8-18: here the actual
scanning of the boundaries of V(p L) and V(p R) is done by lines 8 and 9,
respectively, without backtracking. Lines 11 - 14, or 15-18, have the task to
update the relevant parameters among { v, p L , pR , eL , eR } in the two alternative
cases, and each runs in constant time. Since there are no more than 3N — 6
edges in Vor(S1) and Vor(S2) together, and 0(N) vertices in a, then the entire
construction of a takes only linear time. A detailed implementation of this
procedure appears in Lee (1978).

Recall that to form the final Voronoi diagram we must discard all edges of

220 	 5 Proximity: Fundamental Algorithms

Vor(S,) that lie to the right of a and all edges of Vor(S 2) that lie to the left.
This is done as part of the clockwise and counterclockwise scans performed
during the construction of a. It follows that the process of merging Vor(S 1)
and Vor(S2) to form Vor(S) takes only linear time. We conclude the section
with the following theorem.

Theorem 5.15. The Voronoi diagram of a set of N points in the plane can be
constructed in 0(N log N) time, and this is optimal.

PROOF. The time required by the recursive merge procedure is described by
the recurrence relation T(N) = 2T(N/2) + 0(N) = 0(N log N). Optimality
was shown in Theorem 5.12. 	 ❑

5.6 Proximity Problems Solved by the Voronoi
Diagram

As we alluded in Section 5.1, all of the proximity problems there described can
be solved efficiently by means of the Voronoi diagram. This section is devoted
to a detailed illustration of this claim for problems P.1, P.2, P.4, and P.5.

Beginning with problem P.2, ALL NEAREST NEIGHBORS, we have

Theorem 5.16. The ALL NEAREST NEIGHBORS problem is linear-time
transformable to VORONOI DIAGRAM and thus can he solved in O(N log N)
time, which is optimal.

PROOF. By Theorem 5.9, every nearest neighbor of a point pi defines an edge of
V(i). To find a nearest neighbor of pi it is only necessary to scan each edge of
V(i). Since every edge belongs to two Voronoi polygons, no edge will be
examined more than twice. Thus, given the Voronoi diagram, all nearest
neighbors can be found in linear time. ❑

\Obviously, since CLOSEST PAIR (Problem P.1) is transformed in linear
time to ALL NEAREST NEIGHBORS, then the Voronoi diagram can be
used also optimally to solve Problem P.1.

In nearest-neighbor searching, (Problem P.5), we are given a set of points,
and we wish to preprocess them so that given a query point q, its nearest
neighbor can be found quickly. However, finding the nearest neighbor of q is
equivalent to finding the Voronoi polygon in which it lies. The preprocessing
just consists of creating the Voronoi diagram! Since the diagram is a planar
straight-line graph, it can be searched using any of the methods given in
Section 2.2.2. We then have

Theorem 5.17. Nearest-neighbor search can be performed in 0(log N) time,
using 0(N) storage and O(N log N) preprocessing time, which is optimal.

5.6 Proximity Problems Solved by the Voronoi Diagram 	 221

ELEMENT UNIQUENESS --Pi- CLOSEST PAIR (P.1)
4N

N I 	ALL NEAREST
NEIGHBORS (P2)

EMST (P3)----- IN .y

TRIANGULATION (P4)---4- VORONOI DIAGRAM

N 	
Nt

SORTING

ORDERED CONVEX HULL

Figure 5.30 Relationship among computational prototypes and proximity prob-
lems. (Figure 5.6 revisited.)

PROOF. O(N log N) time is used to construct the Voronoi diagram, then
Theorem 2.7 applies. 	 ❑

Since we have already seen that the dual of the Voronoi diagram is a
triangulation (the Delaunay triangulation, Theorem 5.11), it follows that

Theorem 5.18. A triangulation with the property that the circumcircle of every
triangle is empty can be found in 0(N log N) time, and this is optimal for any
triangulation.

Although the Voronoi diagram can be used to obtain, in optimal time, a
triangulation of a set of points, and thereby to solve Problem P.4, the general
problem of planar triangulations is a broader one and we shall return to it in
Section 6.2. Moreover, in a later section we will examine the interesting
relationship between EUCLIDEAN MINIMUM SPANNING TREE and
VORONOI DIAGRAM.

At this point, it is interesting to revisit the diagram in Figure 5.6, which
illustrates the relationship among proximity problems. This diagram, with the
additions reflecting the results of this section, is repeated in Figure 5.30. This
new diagram also shows the known fact that SORTING is linear-time trans-
formable to VORONOI DIAGRAM (Theorem 5.12) and the new transfor-
mation from CONVEX HULL to VORONOI DIAGRAM, established by
the following theorem.

Theorem 5.19. Given the Voronoi diagram on N points in the plane, their convex
hull can be found in linear time.

PROOF. The Voronoi diagram is given as a DCEL with, say, counterclockwise
orientation of the edge cycles of its faces. We then examine the Voronoi edges
until a ray r is found (refer to Figure 5.31). If we direct r toward its endpoint at
finite, let V(i) be the polygon to its right: then pi is a hull vertex (Theorem
5.10). Next we scan the edges of V(i) until another ray r' is found. By reversing

222
	

5 Proximity: Fundamental Algorithms

Figure 5.31 Construction of the convex hull from the Voronoi diagram.

the direction of r', we obtain another hull point p i , and we now scan V(j), etc.,
until we return to V(i). An edge is examined only when one of the polygons
containing it is scanned. Since each edge occurs in exactly two polygons, no
edge is examined more than twice, and linear time suffices. ❑

It is indeed remarkable that such a diverse collection of problems can be
solved by a single unifying structure. However, this is not the whole story:
from other applications, to be examined later, we shall not cease being
surprised at the versatility of the Voronoi diagram.

5.7 Notes and Comments

The results discussed in the preceding sections of this chapter refer to proximity
problems in the Euclidean metric. The Euclidean metric can be readily generalized to
the notion of La-metric (Minkowski metric) in the following way.

Definition 5.3. In the Euclidean space E" of coordinates x 1 , ... , xd , for any real
1 < p < oo the La-distance of two points q, and q2 is given by the norm

d 	 P l/p

dp(q , g2) = E x,(qi) — x.(q2) 	 (5.4)
j=1

Thus, the conventional Euclidean metric coincides with the L 2 -metric. All of the
problems discussed earlier can be considered in the L a-metric for arbitrary p, and such
research has been undertaken, among others, by Lee and Wong (1980) and Hwang
(1979). Beside the L 2 -distance, of particular interest are the L,-distance (also called
Manhattan distance), given by the length of a shortest path each edge of which is
parallel to a coordinate axis, and the L ao -distance, given by the largest of the differences
in the coordinates. Such metrics are relevant to various applications, such as modelling
of arm movements in disc transport mechanisms and in integrated circuit layout.

5.8 Exercises 	 223

It is reasonable to expect that for the specialization of a general problem to a
restricted class of data one may find a more efficient algorithm. One such restricted
class occurs when the N-point set S is the vertex set of a convex polygon. Indeed,
convexity enables us to solve the corresponding all-nearest-neighbors problem in
optimal time 0(N) [Lee-Preparata (1978)]. The existence of a time 0(N) algorithm for
the Voronoi diagram of a convex polygon had remained an outstanding problem in
computational geometry for about a decade. Only recently this question has been
answered affirmatively [Aggarwal-Guibas-Saxe-Shor (1987)]. Their technique is
based on the general correspondence illustrated in Section 6.3.1.2 between Voronoi
diagrams of a set S of N points in the plane z = 1 and the space partition determined
by the planes tangent to the paraboloid z = x 2 + y 2 + 1 at the points {(x ; , y ; , x; +
y? + 1): (x ; , y ;) E S}. In particular, the projection on z = 1 of the intersection of the
appropriate half-spaces determined by these planes yields the closest-point Voronoi
diagram of S. If S is the set of vertices of a convex polygon P in the plane z = 1, the
outlined technique constructs the Voronoi diagram of P. The crucial feature is that
the known order of the vertices around the boundary of P affords an ingenious
algorithm to compute the desired half-space intersection in linear time.

In this chapter the Delaunay triangulation has been presented as a byproduct of the
construction of the Voronoi diagram. It is possible, however, to define the Delaunay
triangulation as the unique triangulation such that the circumcircle of each triangle
does not contain any other point in its interior. It is then possible to construct directly
the Delaunay triangulation by means of a recursive procedure analogous to the
procedure presented for the Voronoi diagram and running within the optimal time
bound, as has been shown by Lee and Schachter (1980). Indeed, this is the approach
suggested for the L 1 -metric, since in this metric the Voronoi diagram is not unique,
thereby destroying the close tie between Voronoi diagrams and Delaunay triangulation.

Another interesting class of problems concerns the distance between sets of points.
The distance between two sets A and B of points is normally defined as the minimum
distance between a point in A and a point in B, namely, d(A, B) = mina min b d(a, b),
where a E A, be B, and d is the Euclidean distance. With this definition d(A, B) =
d(B, A). Another measure that is of interest is the Hausdorff distance [Grünbaum
(1967)], which is not symmetric. The Hausdorff distance from A to B is
maxa minb d(a, b), and the Hausdorff distance between two sets A and B is equal to
max {d(A, B), d(B, A)}. For finite sets A and B, the CLOSEST PAIR BETWEEN
SETS problem is solved with the aid of the Voronoi diagram in optimal 0(N log N)
time. When the points are the vertices either of a simple polygon or of a convex
polygon, faster solutions are expected. Atallah (1983) discusses the Hausdorff dis-
tance between two convex polygons and gives an 0(N) time algorithm. Schwartz
(1981) considers the problem of finding the closest pair of points between two convex
polygons (two nonfinite sets), and gives an 0(log 2 N) time algorithm; this result was
later improved to O(log N) [Edelsbrunner (1982); Chin-Wang (1983)]. To find the
closest pair of vertices of two convex polygons, 0(N) time is both sufficient and
necessary [Chin-Wang (1984); Toussaint (1983a)].

5.8 Exercises

1. Lee. Given two sets A and B of points in the plane, each containing N elements,
find the two closest points, one in A and the other in B. Show that this problem
requires f/(N log N) operations. What if these two sets A and B are linearly
separable?

224 	 5 Proximity: Fundamental Algorithms

1

2. Lee. Given two sets A and B of points in the plane, each arranged as a staircase
(that is, each set coincides with its set of maxima in the dominance relation—
Section 4.1.3):
(a) Find the pair (p; , pi), p; E A and pi E B, closest in the L 1 -metric.
(b) Is linear time achievable?

3. Inverse of Voronoi diagram. Given an N-vertex planar map with valence 3 (each
vertex has degree 3), develop an efficient algorithm to test if it is the Voronoi
diagram of a finite set S of points. In the affirmative, your algorithm should also
explicitly construct S.

4. Voronoi diagram on the sphere. Let S be a set of N points on the 3-dimensional
sphere S 3 . In the Euclidean metric, consider the Voronoi diagram S 3 -Vor(S) of S
on S 3 :
(a) Show that each edge of S 3 -Vor(S) is an arc of a great circle of 5 3 .
(b) Suppose that all points of S lie in a hemisphere of S 3 (all on one side of a plane

through the center of S 3). Show how the algorithm developed for the planar
Voronoi diagram (Section 5.5) can be used to construct S 3 -Vor(S).

5. (a) In the plane, characterize the Voronoi diagram of a set of N points in the L,-
metric.

(b) Solve the same problem for the L oo -metric.
(c) What is the relationship between the Voronoi diagram in the L,-metric and

that in the L oo -metric?

6. In the L 2 -metric the points of a set S whose Voronoi polygons are unbounded form
the convex hull of S (Theorem 5.10). Does the same hold in the L 1 -metric?

7. Formulate and prove the analog of Theorem 5.8 in the L 1 -metric.

8. Lee. Consider the following definition for the Delaunay triangulation of a set of N
points in the plane, no four of which are cocircular. Two points p; and pi determine
an edge of the Delaunay triangulation if and only if there exists a circle passing by
these two points that does not contain any other point in its interior. Show that this
definition leads to a triangulation that satisfies the circumcircle property, i.e., the
circumcircle of each triangle does not contain any other point in its interior.
Therefore, it is the same as the dual graph of the Voronoi diagram of the set of
points.

9. Lee. Show that the above definition for Delaunay triangulation gives a unique
triangulation (assuming no four points are cocircular).

10. Lee. Let S i and S2 be linearly separable point sets in the plane, and let u(S 1 , S2)
denote the merge curve of their respective Voronoi diagram Vor(S,) and Vor(S 2 1.
Show that Q(S 1 , S2) may intersect an edge of Vor(S 1) or Vor(S2) at most twice.

5.8 Exercises 	 225

11. Given two sets of points A and B in the plane, use the Voronoi diagram to compute

min min dist(a, b)
aeA beB

(in the Euclidean metric) in time O(N log N), where N = I A I + I BI.

CHAPTER 6

Proximity: Variants and Generalizations

The main conclusion derived from the preceding chapter is that the Voronoi
diagram is both an extremely versatile tool for the solution of some funda-
mental proximity problems and an exceptionally attractive mathematical
object in its own right. Indeed, these two facets—the instrumental and the
aesthetic—have been the inspiration of a considerable amount of research on
the topic. This chapter is devoted to the illustration of these extensions.
Specifically, we shall at first discuss two very important applications: the
already mentioned Euclidean Minimum Spanning Tree problem (and its
ramifications) and the general problem of plane triangulations. We shall then
show how the locus concept can be generalized in a number of directions. We
shall then close the chapter with the analysis of "gaps and covers," which will
afford us a chance to appreciate the power of different computation models.

6.1 Euclidean Minimum Spanning Trees

In the preceding chapter we considered the Euclidean Minimum Spanning
Tree problem (EMST) (Problem P.3, Section 5.1) and showed that SORTING
is transformable to it in linear time. This establishes an S2(Nlog N) lower
bound to the time for finding the EM ST on a set of N points. In this section we
shall see that this bound is algorithmically attainable.

The algorithm to be described, as any known minimum spanning tree
algorithm on general graphs, is based on the following straightforward
lemma.

6.1 Euclidean Minimum Spanning Trees 	 227

Lemma 6.1 [Prim (1957)]. Let G = (V, E) be a graph with weighted edges and let
{ V 1 , V2 } be a partition of the set V. There is a minimum spanning tree of G which
contains the shortest among the edges with one extreme in V 1 and the other in V2 .

In our case the vertex set V is the point set S, and the length of an edge is the
Euclidean distance between its two endpoints. The EMST algorithm will
handle, at each step, a forest of trees (which will turn out to be subtrees of the
final EMST). The initial forest is the collection of the points (i.e., each point is
an individual edgeless tree). The general step of the algorithm runs as follows
(here d(u, y) is the length of the segment ûv):

(i) Select a tree T in the forest;
(ii) Find an edge (u', y') such that d(u', y') = min {d(u, y): u in T, y in S — T}

(iii) If T' is the tree containing u', merge T and T' by binding them with edge
(u', y').

The algorithm terminates when the forest consists of a single tree, the EMST
of the given point set.

Although activities (i) and (iii) require careful implementation, it is clear
that activity (ii) is the crux of the method. Indeed one may instinctively fear
that it may use work proportional to I TI x (N — I T%), corresponding to
examining the distances from each vertex in T to each vertex outside of T.
Fortunately, the machinery of the Voronoi diagram comes to our rescue with
the following lemma.

Lemma 6.2. Let S be a set of points in the plane, and let A(p) denote the set of
points adjacent to p E S in the Delaunay triangulation of S. For any partition
{S 1 , S2 1 of S, if qp is the shortest segment between points of S 1 and points of S 2 ,
then q belongs to 0(p).

PROOF. Let pq realize the minimum distance between points of S 1 and points of
S2 , with p E S 1 and q e S2 (see Figure 6.1). We claim that q E 0(p). For, if
q 0 A(p), the perpendicular bisector of segment pq does not contain a segment
of the boundary of V(p), the Voronoi polygon of point p (Theorem 5.9). This
implies that V(p) intersects Vg in a point u between p and the midpoint M of
N. The Voronoi edge /containing u is the perpendicular bisector of a segment
pp', where p' E S. For all possible choices of u and 1, p' is confined to the interior
of the disk C with center M and diameter qp. Now we have two cases: (i)
p' E St . In this case d(q, p') < d(q, p) whence p', and not p, is closest to q
(a contradiction); (ii) p' e S2 . In this case d(p, p') < d(q, p), whence p', and not
q, is closest to p (again a contradiction). ❑

In other words, this lemma tells us that we need only examine the edges of
the Delaunay triangulation, that is, we must compute the minimum spanning
tree of a planar graph [Shamos (1978)].

We now return to the implementation of the general step of the EMST

228
	

6 Proximity: Variants and Generalizations

q ES

Figure 6.1 Illustration for the proof that q 0(p).

algorithm. Cheriton and Tarjan (1976) propose, among other techniques, the
following simple strategy. For the selection of the tree T (to be merged with
another tree of the forest) they suggest the following uniform selection rule,
where initially all single-vertex trees are placed in a queue:

1. Pick tree T at the front of the queue.
2. If T" is the tree obtained by combining T with some other T', delete T and

T' from the queue, and enter T" at the back of the queue.

Since two trees are combined each time and there are initially N trees in the
queue, the general step is executed exactly (N — 1) times.

Suppose now that for each T in the queue we define an integer called
stage(T), where stage(T) = 0 if I TI = 1 and stage(T) = min(stage(T'),
stage(T")) + 1 if T results from the combination (merging) of trees T' and T".
An interesting invariant of the queue of trees is that at any time during the
execution of the algorithm the stage numbers of its members form a
nondecreasing sequence from front to back. We shall then say that stage j has
been completed when T is deleted from the queue, stage(T) = j and no other
T' in the queue has stage(T') = j. Note then that at the completion of stage j
the queue contains at most N/2' +1 members, and that there are at most
[loge Ni stages. We could then proceed as follows: each time we access T
(where stage(T) = j) at the front of the queue, we select the shortest edge
among the edges connecting vertices of T to vertices outside of T In this
manner, at each stage each edge is examined at most twice (except those
already in some tree T). Thus each stage can be completed in time propor-
tional to the number of edges, which is O(N) due to the planarity of the graph.
Since—as we noted earlier—there are at most [log e Ni stages we have ob-
tained an O(N log N) algorithm. The reader may observe at this point that we
could content ourselves with this result, since O(N log N) time is used to
compute the Delaunay Triangulation and we have an optimal algorithm
anyway. However, it is interesting to seek a technique that enables us to obtain
the EMST from the Voronoi diagram in linear time. This achievement is made
possible by the "clean-up" refinement proposed by Cheriton and Tarjan.

6.1 Euclidean Minimum Spanning Trees 	 229

The clean-up activity has the objective of shrinking the original graph G (in
our case, the Delaunay Triangulation) to a reduced graph G*, which, at each
point in the execution of the algorithm, contains exactly the relevant
information. This means that each tree T in the forest F is shrunk to a single
vertex of G* (i.e., all unselected (chordal) edges connecting vertices of T are
deleted), and all but the shortest of the unselected edges bridging different
trees T' and T" are also deleted. It is important to note that if G is planar, so is
G*

The clean-up work is carried out as a clean-up step to be executed
immediately after the completion of a stage (see above). It is rather
straightforward to devise an implementation which runs in time proportional
to the number of edges of the graph to be cleaned-up.

Less informally, we can summarize the preceding description as follows,
where with each tree T we associate a list of the unselected edges incident on
vertices of T

procedure EM ST
1. begin F:= 0;
2. for i:= l to N do
3. begin stage(p i) := 0;

Fpi
end; (*the queue is initialized*)

4. j:= 1; (*the stage number is initialized to the next value*)
5. while (F contains more than one number) do
6. begin T = F;
7. if (stage(T) = j) then begin clean-up;
8. j:=j+ 1

end;
9. (u, v) := shortest unselected edge incident on T (with u in

T);
10. T' := tree in F containing y;
11. T" := merge(T, T');
12. delete T' from F;
13. stage(T") := min(stage(T), stage(T')) + 1;
14. FG T" (*T" is entered at the back of the queue*)

end
end.

We now have all the items to be combined for the analysis of performance.
At the completion of stage (j — 1) there are at most N/2' trees in the queue,
whence the corresponding G* has at most N/2' vertices and fewer than
3N/2' edges, being a planar graph. Stage j is completed in time proportional
to the number of edges (each edge being examined at most twice by line 9
during the stage) and so is the clean-up work at the completion of stage j (lines
7-8, just before entering stage (j + 1)). Thus loop 6-14 uses time 0(N 12f).
Recalling that there are at most (log e Ni stages the total running time of loop

230
	

6 Proximity: Variants and Generalizations

/
/

/
/

/
/

/

Figure 6.2 A set of points, its Voronoi diagram, and its EMST.

6-14 is upper bounded by

I l oB , NI 	N
` K 1 ^ <K 1 N

j=1 	2

for some constant K 1 . This proves the following theorem.

Theorem 6.1. An EMST of a set S of N points in the plane can be computed from
the Delaunay Triangulation of S in optimal time 0(N).

Combining this result with the fact that the Delaunay triangulation is
computable in time 0(N log N) we have

Corollary 6.1. An EMST of a set S of N points in the plane can be computed in
optimal time 0(N log N).

In Figure 6.2 we illustrate a set of points, its Voronoi diagram, and an
EMST of this set.

Next we shall consider an interesting application of the EMST of a finite set
of points.

6.1.1 Euclidean traveling salesman

PROBLEM P.9 (EUCLIDEAN TRAVELING SALESMAN). Find a shortest
closed path through N given points in the plane.

6.1 Euclidean Minimum Spanning Trees
	

231

Figure 6.3 A traveling salesman tour.

A shortest tour is shown in Figure 6.3. (A reader familiar with the complex-
ity of this problem may wonder how we were able to obtain the solution to a
16-point example. This was done by applying the Christofides heuristic des-
cribed below.)

This problem differs from the ordinary traveling salesman problem in the
same way that Euclidean minimum spanning tree differs from the MST
problem in graphs: the interpoint distances are not arbitrary, but are inherited
from the Euclidean metric. The general traveling salesman problem (TSP) is
known to be NP-hard. 1 One may be tempted to suspect (or to hope) that
properties of the Euclidean metric could be used to produce a polynomial-
time algorithm in the plane. However, Garey, Graham, and Johnson (1976),
Papadimitriou and Steiglitz (1976), and Papadimitriou (1977) have succeeded
in proving that the ETSP is NP-hard, among a number of NP-completeness
results for other geometric problems. We will therefore not attempt an effi-
cient worst-case ETSP algorithm, but will concentrate on the relationship
between ETSP and other closest-point problems, with a view toward develop-
ing good approximation methods.

We begin by considering the simpler (and less effective) of two known
methods, expressed by the following theorem.

Theorem 6.2 [Rosenkrantz—Stearns—Lewis (1974)]. A minimum spanning tree
can be used to obtain an approximate TSP tour whose length is less than twice the
length of a shortest tour.

PROOF. Let T* denote a Euclidean minimum spanning tree of the given set S of
points, and let denote the optimal traveling salesman tour. We begin by
doubling each edge of T*, thereby obtaining a graph W, each vertex of which
has even degree (see Figure 6.4). Graph W is a connected Euler graph, i.e., its
edges can be numbered so that the resulting sequence is a circuit, or, in other
words, a tour that visits all vertices (some more than once). Therefore,

' For definitions relating to NP-complete problems and a proof of the NP-hardness of the TSP,
see [Karp (1972); Garey—Johnson (1979)].

232
	

6 Proximity:Variants and Generalizations

Figure 6.4 Doubling the EMST results in an Euler tour of all vertices of the set.

length(W) = 2 length(T*). Observe now that if we remove an edge e from 0
we obtain a path called Opath, which is also a spanning tree of S. Clearly
length(T*) < lengthOpath) (by the definition of T*) and lengthOpath) <
length (0) (trivially). Thus, we obtain length(W) < 2 length(F). I]

Notice that the approximate tour shown in Figure 6.4 could be further
shortened by bypassing all unnecessary stops, i.e., by never revisiting a point
that has already been visited. Specifically, we choose an arbitrary direction on
the circuit W and start from an arbitrary vertex (which we leave unmarked).
Each visited vertex is marked, and the next vertex on the final tour is obtained
by proceeding to the first unmarked vertex on the directed W. With this
refinement the example of Figure 6.4 gives the tour shown in Figure 6.5.
(Notice that this refinement cannot increase the total length of the tour, since
the distances obey the triangle inequality.)

The next approximate result makes use of a minimum weighted matching on
a set of points.

PROBLEM P.10 (MINIMUM EUCLIDEAN MATCHING). Given 2N points
in the plane, join them in pairs by line segments whose total length is a
minimum.

Figure 6.5 "Short-cuts" on the Euler tour ensure that each vertex is visited exactly
once.

6.1 Euclidean Minimum Spanning Trees 	 233

•• 	I \
N /

• . /
Figure 6.6 A minimum Euclidean matching.

Such a matching is shown in Figure 6.6.
Edmonds (1965) has shown that a minimum weight matching in an arbitrary

graph can be obtained in polynomial time, and an 0(N 3) implementation is
given in Gabow (1972). The following result, which relates minimum spanning
trees, matchings, and the traveling salesman problem, is due to Christofides
(1976).

Theorem 6.3. An approximation to the traveling salesman problem whose length
is within 3/2 of optimal can be obtained in 0(N 3) time if the interpoint distances
obey the triangle inequality.

PROOF. The following algorithm achieves the desired result on the given set S:

1. Find a minimum spanning tree T* of S.
2. Find a minimum Euclidean matching M* on the set X _ S of vertices of

odd degree in T*. (X has always even cardinality in any graph.)
3. The graph T* u M* is an Eulerian graph, since all of its vertices have even

degree. Let (D e be an Eulerian circuit of it.
4. Traverse to edge by edge and bypass each previously visited vertex. 1 appr is

the resulting tour.

Denoting as usual by the optimal tour, we note: (i) length(T*) < length(0);
(ii) length(M*) < i length(0). Indeed if we select every other edge from 0 we
obtain two matchings on S (the selected edges and the remaining ones), the
length of the shorter of these two matchings is no more than (1/2) length(0)
and certainly no less than length(M*), since M* is minimal. We have shown
earlier that length(T*) < length('F). Finally since the distances obey the
triangle inequality, length(0.,,,) < length0 e). Combining these results we
have

length(Fappr) < length0e)

= length(T*) + length(M*)

< length(D) + i length(0)

= i length (4)).

The time bound follows from Gabow's result.

•------.

234 	 6 Proximity:Variants and Generalizations

Remark. By employing the Euclidean minimum matching one is able to
improve the approximation from twice to 3/2 of the optimal value, while the
computational cost grows from 0(N log N) to 0(N 3). For several years since
Christofides' result no one has succeeded either in improving the approxima-
tion below 3/2 of the optimal or in reducing the computation time. It is a
remarkable fact in its own right that the method used to obtain the Euclidean
minimum matching makes no use of geometric properties. Indeed the only
known method consists in transforming the given problem into a maximum
weighted matching problem (by replacing the length 1 of each edge by M — 1
where M = maxau edges 1) and by applying to the transformed problem a
technique that was developed for general graphs.

6.2 Planar Triangulations

We have noted in Section 5.1 the importance of planar triangulations for a
multitude of practical applications in surface interpolation, both for the
purposes of a graphical display and for calculations in numerical analysis. In
addition to those very significant applications, the ability to perform planar
triangulations is a very useful tool in its own right for its use in other problems
in computational geometry. Suffice it to mention two instances: (i)
Kirkpatrick's geometric searching technique (Section 2.2.2.3) assumes that
the planar subdivision is a triangulation; (ii) a polyhedron intersection
algorithm (see Section 7.3.1) requires that the polyhedral surface be
pretriangulated.

We have already shown in the preceding chapter that a triangulation—the
Delaunay triangulation—of a set of points can be found in optimal time.
However, this does not preempt the problem, since, although the Delaunay
triangulation is a remarkable object enjoying very attractive properties, there
may be applications whose requirements are not satisfied by the Delaunay
triangulation. For example, one may wish to minimize the total length of the
triangulation edges (Minimum-Weight Triangulation). It had been conjec-
tured that the Delaunay Triangulation is also a minimum-weight triangula-
tion. Another conjecture stated that a triangulation method to be described in
Section 6.2.1 (the "greedy triangulation" method) also yields a minimum-
weight triangulation. Both conjectures were disproved by Lloyd (1977), and as
of now the status of the problem (i.e., its NP-hardness or the existence of a
polynomial-time algorithm) remains open. 2

Other criteria do not involve the edge lengths, but refer to the sizes of the
internal angles of the triangles. Indeed, in many applications it is desirable to

2 However, the minimum-weight triangulation of the interior of the single polygon with N vertices
can be computed on time 0(N 3) [Gilbert (1979)].

6.2 Planar Triangulations 	 235

have triangles as "regular" as possible, that is, triangles that are "more or less
equilateral." The Delaunay triangulation is very attractive from this view-
point, since the minimum angle of its triangles is maximum over all triangu-
lations. (Indeed, this is equivalent to the fact that the circumcircle of a De-
launay triangle does not contain any point of the given set in its interior
[Lawson (1977); Lee (1978)].)

We refer the reader to Section 5.6 for a detailed discussion of the Delaunay
triangulation. In what follows we shall consider some other triangulation
methods, either for sets of points or for composite sets of points and segments.
As a general reference we recall from Section 5.3 that SZ(N log N) operations
are required for any algorithm that triangulates a set of N points in the plane.

6.2.1 The greedy triangulation

A "greedy" method—as is well known—is one that never undoes what it did
earlier. Thus, a greedy triangulation method adds one edge of the triangula-
tion at a time and terminates after the required number of edges (entirely
determined by the size of the point set and of its convex hull) has been
generated. If one's objective is the minimization of the total edge length all
that he can do in a greedy method is to adopt the local criterion to add at each
stage the shortest possible edge that is compatible with the previously gen-
erated edges, i.e., it does not intersect any of them.

This is the essence of the technique. A straightforward implementation of
this idea runs as follows (as usual S is the point set and N is its size). All the (N)
edges between points of S are generated and ordered by increasing lengths
(pool of edges) and the triangulation is initialized as empty. At the general
step, we pick and remove from the pool the shortest edge: if this edge does not
intersect any of the current triangulation edges, we add it to the triangulation,
otherwise we discard it. The process correctly terminates either when the
triangulation is complete (by tracking the number of added edges) or when the
pool of edges is empty [Diippe–Gottschalk (1970)].

This outlined method is not only very simple to implement but also very
simple to analyze. The initial sorting of the edge lengths uses O(N 2 log N)
operations. Next, there are (N) selections of edges from the pool and each
selected edge is matched against the, edges currently in the triangulation in
some time 9(N): the form of 9 depends upon the technique used to carry out
this test. In conclusion the running time of the method is O(N 2 log N +
N 2 (p(N))•

The most naive way to carry out the test is to check whether the selected
edge intersects each of the k edges currently in the triangulation. Since each of
these intersection tests runs in constant time, cp is of the form co(k) = C1 k (for
some constant C 1), thereby resulting in an overall running time 0(N 3).

A more efficient approach was proposed by Gilbert (1979). The objective is
here to balance the works of the decision task (whether the selected edge

236
	

6 Proximity:Variants and Generalizations

(a)
	

(b)

Figure 6.7 "Star of spokes" at p, . Edges in the triangulation are shown as heavy
segments.

belongs to the triangulation) and of the selection task (the scanning of the
edges by increasing length). The latter is clearly 0(N 2 log N), whether through
presorting or through the management of a heap [Aho—Hoperoft—Ullman
(1974)]. So, the goal is that the handling of an edge should cost no more than
O(log N) operations. This can be achieved as follows. Referring to Figure
6.7(a), suppose that the currently selected edge is p i p; . Consider the set of
edges connecting pi to every other point in S: we refer to it as STAR(p i), the
"star of spokes" of p1. These "spokes" are ordered, say, counterclockwise,
and they subdivide the Zit-angle at p i into (N — 1) sectors, or angular inter-
vals. If an edge pkpJ has been placed into the triangulation, it spans a set of
consecutive sectors in the star of spokes of p 1 , and, for that matter, of any pi for
/ 0 k, j. Notice also that no two edges currently in the triangulation intersect
(by definition), so that the edges present in each angular interval of STAR(p i),
1 = 1, ... , N are ordered. Assume that in STAR(p i) point pi falls in the sector

p;pipk• To decide whether p i p; is to be added to the triangulation, we must
check whether it intersects the triangulation edges that cut this sector, and,
specifically, the one that is closest to p i in the sector. Thus, the decision has
been reduced to a special case of planar point location, where in each sector of
STAR(pi) (for all l) we must maintain one triangulation edge (called spanning
edge). A typical situation is illustrated in Figure 6.7(b), where the shaded area
corresponds to the acceptance of triangulation edges.

The search data structure designed to support the acceptance test is of a
dynamic type, since it must be updated each time an edge is accepted in the
triangulation. Recalling however that an update involves a sequence of con-
secutive sectors in each star of spokes, it is natural to resort to segment trees
(see Section 1.2.3.1). Specifically, the sectors of a generic STAR(A) are

6.2 Planar Triangulations 	 237

organized as the (N — 1) leaves of a segment tree Ti . Each node y of Ti is
associated with an edge e(v), which, among those allocated to y by insertions
into the segment tree, is closest to pi . (Obviously e(v) may be the empty edge.)
To test for pip; we search T by tracing the path identified by p ; ; at each node y
in this path we test p; against e(v), and eventually accept pip; only if it does not
intersect any of the edges so encountered. This search completes the task when
the currently selected edge is to be rejected. In the other case—i.e., when edge
pip; is accepted—each STAR(p i), for l i,j must still be updated: this is
simply done by inserting pip; in STAR(pi) and, updating, as required, each
node y in the insertion paths. (The reader is referred back to Section 1.2.3.1 for
a detailed illustration of the mechanics of segment trees.) Clearly, each
STAR(pi) is updated in time O(log N). Since there are (N — 2) stars to be
updated at each edge acceptance and there are 0(N) acceptances in the
triangulation, the entire updating task is completed in time 0(N 2 log N).

In conclusion, since the management of the edge selection, the edge ac-
ceptance tests, and the updates of the data structures can each be performed in
time 0(N 2 log N), we have

Theorem 6.4. The greedy triangulation of a set of N points can be constructed in
time 0(N 2 log N) and space 0(N 2).

6.2.2 Constrained triangulations

In many cases the triangulation problem may be of a constrained nature, that
is, a set of triangulation edges may be prespecified in the problem statement.
Typically, this is the case when we are asked to triangulate the interior of a
simple polygon.

Of the previously described techniques, the greedy method will succeed for
such constrained problems, but it has the drawback that its performance is
substantially far from optimal. On the other hand, there is no immediate way
to adapt to this case the Delaunay triangulation method. (See Sections 5.6 and
6.5.) So, a new technique has to be found.

As usual, we are given a set S of N points; in addition, we have a set E of M
nonintersecting edges on S (the constraints), which must appear in the trian-
gulation. We slightly, and insignificantly, modify our previous convention by
stipulating that the region to be triangulated is the smallest rectangle, rect(S),
with sides parallel to the coordinate axes, which inscribes S. (Notice that in
rect(S) there are at least two vertices with largest y, and at least two with
smallest y.)

The objective is to efficiently decompose rect(S) into simpler polygonal
regions that can be easily triangulated. These polygons are characterized as
follows [Garey—Johnson—Preparata—Tarjan (1978)].

Definition 6.1. A polygon P is said to be monotone with respect to a straight

238 	 6 Proximity:Variants and Generalizations

line 1 if it is simple and its boundary is the union of two chains monotone with
respect to 1 (see Section 2.2.2.2). 3

In the following we assume that the line lis they-axis and that no two points
of S have the same ordinate (as usual, this assumption is in no way crucial, but
simplifies the presentation). We shall present later a simple algorithm for the
triangulation of a monotone polygon; now we illustrate how to partition
rect (S).

The technique is of the plane-sweep type and is essentially the same as the
"regularization" procedure of a planar graph described in Section 2.2.2.2.
Indeed the sets S and E define a planar graph embedded in the plane. The
regularization procedure (which is not described again here, to avoid un-
necessary repetitions) in time O(N log N) adds edges so that the following
properties hold:

(i) No two edges intersect (except at vertices);
(ii) Each vertex (except the ones with largest y-coordinate) is joined directly

to at least one vertex with a larger y-coordinate;
(iii) Each vertex (except the ones with smallest y-coordinate) is joined directly

to at least one vertex with a smaller y-coordinate.

We claim that each of the regions of the planar graph resulting from the
regularization procedure is a monotone polygon. The proof of the claim is
based on the notion of interior cusp. A vertex v of a simple polygon is an
interior cusp if the internal angle at v exceeds it and its adjacent vertices both
have not larger y-coordinates than v or both have not smaller y-coordinates
than v. It follows from properties (ii) and (iii) above that no vertex of the
regularized graph can be an interior cusp. The following lemma is the key to
our claim:

Lemma 6.3. If P is a simple polygon with no interior cusp, then P is monotone
with respect to the y-axis.

PROOF. Let v 1 , v 2 , ... , v„, be the clockwise sequence of the vertices of P, and let
v 1 and v s be the vertices with the largest and smallest y, respectively (see Figure
6.8). If P is not monotone, then at least one of the two chains from v 1 to vs

 formed by the boundary edges of P is not strictly decreasing by y-coordinate.
Consider the case in which the chain passing through v 2 fails to be strictly
decreasing (the other case is symmetric). Choose v i , 1 < i < s, to be the first
vertex on this path such that the y-coordinate of v i+1 exceeds that of v i .

We first observe that the three-vertex sequence (vi_1 vivi+1) must form a
right turn, for otherwise v i would be an interior cusp of P (see Figure 6.8(a)).
Now consider the line through v i and v s (see Figure 6.8(b)), and let r v i be the

3 I has been shown that a simple polygon can be tested for monotonicity is linear time
[Preparata-Supowit (1981)].

(a) (c)

6.2 Planar Triangulations
	

239

Figure 6.8 (a) v ; is the first vertex in v 1 v 2 ... for which y(v;+1) > y(v;). (b) The line
from v i to vs first intersects P in point r. (c) The vertex u with highest y in P' is an
interior cusp of P.

first point on the boundary of P encountered when traveling from v i to vs along
this line (r might be vs). Then the line segment joining v ; to r divides the exterior
of P into two parts, one of which is a finite polygon P', as shown in Figure
6.8(c). Except for r, the vertices of P' are all vertices of P. Among all the
vertices of P', let u be the one with largest y. Then u is also a vertex of P, which
must also be an interior cusp of P (a contradiction). 0

Lemma 6.3 and the fact that no polygon obtained by the regularization
procedure has an interior cusp, prove the claim that each polygon is mono-
tone. We can now turn our attention to the triangulation of a monotone
polygon [Garey—Johnson—Preparata—Tarjan (1978)].

6.2.2.1 Triangulating a monotone polygon

Since P is monotone with respect to the y-axis, by merging the two monotone
chains forming the boundary of P we can sort in time 0(N) the vertices of P in
order of decreasing y-coordinate. Let u l , u 2 , ... , uN be the resulting sequence.
Clearly monotonicity means that for each ui (1 < i < N — 1) there is a u;, with
i < j, so that ui u; is an edge of P.

The triangulation algorithm processes one vertex at a time in order of
decreasing y. In this process diagonals of P are generated. Each diagonal
bounds a triangle and leaves a polygon, with one less side, still to be trian-
gulated. The algorithm makes use of a stack containing vertices that have been
visited but not yet reached by a diagonal. Both the top and the bottom of the
stack are accessible by the algorithm (the bottom only for inspection).

The stack content, v 1 (= bottom of STACK), v 2 , ... , v i , form a chain on
the boundary of P and y(v 1) > y(v 2) > • • • > y(v;), and if i > 3 angle
(v; v;+1 v;+2) >— 180° for j = 1, ... , i — 2 (see Figure 6.9(a)—(c)). The algorithm
runs as follows.

Initial step. Vertices u 1 and u 2 are placed in the stack.
General step. Let u be the current vertex.

240
	

6 Proximity: Variants and Generalizations

V2

\ "4
/ ^ . 	 1

/ 	. 	 v =vi 	 11

,%^' ^ 	— ^ ^ 	 Top (STACK) 	̂̂1
:--

_,^ 	
11

^1 u 	 ‘‘
4

u

= vi

(b)

(c)

Figure 6.9 The three cases of the general step. Dashed lines are the added diagonals.

(i) if u is adjacent to v 1 but not v i (top(STACK)), then add diagonals ûu2 ,
uv 3 , ... , uv i . Replace stack content by v i , u. (See Figure 6.9(a)).

(ii) if u is adjacent to v i but not to y 1 , then while i > 1 and angle (uvivi_1) <
180°, add diagonal tWi _ 1 and pop v i from stack. When the two-fold

condition no longer holds (or if it did not hold to begin with) add u to
stack (see Figure 6.9(b)).

(iii) otherwise (u adjacent to both v 1 and vi), add diagonals uv 2 , uv 3 , ... , uvi _ 1 .
(In this case processing is completed—see Figure 6.9(c).)

The correctness of the algorithm depends upon the fact that the added

diagonals lie completely inside the polygon. Consider for example the

diagonal (ûv2) constructed in case (i). None of the vertices v 3 , ... , vi can lie
inside or on the boundary of the triangle (u, U 1 , v 2) because the internal angles
of at least 180° at v 2 , y 3 , ..., v i _ 1 force u and y3 , y4 , ..., vi to lie on opposite
sides of the line containing v 1 v 2 . No other vertex of the polygon lies inside
or on the boundary of this triangle because all such vertices have smaller y-
coordinates than u. No point inside the triangle can be external to the polygon,
because the polygon would then have to pass through the interior of the
triangle, and at least one of its vertices would be in the interior of the triangle.
Thus, the diagonal uv2 lies completely within the polygon. The proofs for
cases (ii) and (iii) are analogous, and it is also quite simple to verify that the
stack properties are an invariant of the algorithm.

From a performance viewpoint, O(N) time is taken by the initial merge.
In the triangulation process, each vertex is added to the stack and visited

= v;

(a)

6.3 Generalizations of the Voronoi Diagram 	 241

just once, except when, in case (ii), the condition "while i > 1 and angle
(uv i v i _ 1) < 180°" fails. If we charge the corresponding work, as well as the
access to top(STACK) and bottom(STACK), to the current vertex u, it is
clear that this task is also completed in time 0(N). In conclusion we have
the following theorem.

Theorem 6.5. A monotone polygon with N sides can be triangulated in optimal
time 0(N).

Combining this result with the previous result that rect(S) can be decom-
posed into monotone polygons in time 0(N log N), and further recalling the
lower bound for the triangulation problem, we obtain

Theorem 6.6. The constrained triangulation on a set of N points can be algorith-
mically constructed in optimal time 0(N log N).

Note, however, that Theorem 6.6 does not apply to the triangulation of a
simple polygon, since in this case the prespecified edges are no longer arbitrary.
We shall return to this question in Section 6.5.

6.3 Generalizations of the Voronoi Diagram

We recall from the preceding chapter the definition of the Voronoi diagram:
"The Voronoi diagram of a finite set S of points in the plane is a partition of the
plane so that each region of the partition is the locus of points which are closer
to one member of S than to any other member." In this definition we have
italicized three items (set of points, plane, one member), which are exactly the
ones that are susceptible of generalization. Indeed, generalizations have been
attempted and obtained with varying degrees of success, in each of these three
directions.

First of all, while still remaining in the plane (i.e., in two dimensions), the
given set may be extended to contain other geometric objects besides points,
such as segments, circles and the like. This direction, however, will not be
treated in detail in this book (see Notes and Comments at the end of the
chapter).

Next, to seek a data structure that efficiently supports k-nearest-neighbor
searches (see Problem P.6, Section 5.1), one may wish to define loci of points
closer to a given subset of k members of S than to any other subset of the same
size. It is interesting that, if one lets k become N — 1, one obtains the farthest
point Voronoi diagram.

Finally, although the definition of the standard Voronoi diagram in any
number of dimensions is straightforward, its construction is plagued with
considerable algorithmic difficulties. Indeed, it is readily shown that for given
N points the number of items required to describe the Voronoi diagram grows
exponentially with the dimension. This is a phenomenon we already observed
for the convex hull problem: indeed, the connection between Voronoi dia-

SomeVoronoi polygons
of order two are empty.
For example, there is
no (5,7) polygon.

(6,8)
•g

242 	 6 Proximity: Variants and Generalizations

Figure 6.10 A Voronoi diagram of order two. Points are shown by their indices.

grams and convex hulls goes well beyond the exponential growths of their
respective descriptions.

6.3.1 Higher -order Voronoi diagrams (in the plane)

The Voronoi diagram, while very powerful, has no means of dealing with
farthest points, k closest points and other distance relationships. As such, it is
unable to deal with some of the problems we have posed. The difficulty is that
we have been working with the Voronoi polygon associated with a single
point, but such a restriction is not necessary and it will be useful to speak of the
generalized Voronoi polygon V(T) of a subset T of points [Shamos—Hoey
(1975)], defined by

V(T) = {p: VveTVwE S — T, d(p, y) <d(p,w)}.

That is, V(T) is the locus of points p such that each point of T is nearer to p
than is any point not in T. An equivalent definition is

V(T) = nH(p i ,pi), pi e T, pi e S — T,

where H(pi , pi) is, as usual, the half-plane containing pi that is defined by
the perpendicular bisector of pipi . This shows that a generalized Voronoi
polygon is still convex. It may, of course, happen that V(T) is empty. In Figure
6.10 for example, there is no point with the property that its two nearest
neighbors are p 5 and p,. A set S with N points has 2' subsets. How many of
these can possess nonempty Voronoi polygons? If the number is not large,
there will be some hope of performing k-nearest-neighbor searching without
excessive storage.

6.3 Generalizations of the Voronoi Diagram 	 243

Let us define the Voronoi diagram of order k, denoted Vork (S), as the
collection of all generalized Voronoi polygons of k-subsets of S, so

Vork (S) = u V(T), 	T c S, I TI = k.

In this notation, the ordinary Voronoi diagram is just Vor k (S). It is proper to
speak of Vork (S) as a "diagram" because its polygons partition the plane.
Given Vork (S), the k points closest to a new given point q can be determined
by finding the polygon in which q lies. Figure 6.10 shows a Voronoi diagram of
order two, the set of loci of nearest pairs of points.

Before tackling computational problems, it is necessary to investigate the
structure of generalized Voronoi diagrams. The next subsection is devoted to
this task.

6.3.1.1 Elements of inversive geometry

We begin with a brief digression on Inversive Geometry, a tool that is
particularly suited to our objective. We have

Definition 6.2. Inversion in E d is a point-to-point transformation of E d which
maps a vector y applied to the origin to the vector y' = y • 1/M 2 applied to the
origin.

We notice at first that inversion is involutory, since the inner product of y
and of its image y' is

V•V 'T = V•V T 	
1

=1
iv 1 2

(the involutory property derives immediately from y • V T = 1, which shows
that y and y' are the inversive images of each other). Next, we will show the
characteristic property of inversion, as expressed by the following theorem.

Theorem 6.7. Inversion of E d maps hyperspheres to hyperspheres.

PROOF. A hypersphere o- of center c (a vector applied at the origin) and radius
r is the set of all vectors y applied at the origin satisfying Iv — cI2 = r 2 . From
this we readily obtain 2v•c T = iv 1 2 + ICl2 — r 2 . Now consider the quantity
Iv' — c/(1c1 2 — r2)12 where y' is the inversive image of y, i.e., y' = 1/1v1 2 • v.
We now obtain

V'

C

2 	1 	ICl 2 	2V • C T
Iv12 + (IcI 2 — r2)2 	Ill 	 • (1C12 — r2)

(1c12 — r 2) 2 + Iv1 2 1c1 2 — Ivl2(Ic12 — r2) — (1c12 — r 2) 2

I
C1 2 — r2

Iv 2 1 • (I Cl2 - r2)2

r2

(ICl 2 — r2)2.

244 	 6 Proximity: Variants and Generalizations

Since the latter quantity is a constant (indeed it depends on constants ici2 and
r) we have that the inversive image of a is a hypersphere of center c/(1c1 2 — r2)
and radius r/(1c1 2 — r2). 	 ❑

The only singularity of the inversive mapping is that the origin of Ed is the
image of the hyperplane at infinity. This leads to the consequence that the
interior of a hypersphere a maps to the interior of its inversive image a' if and
only if a (and therefore a') does not contain the origin in its interior; in the
opposite case, the interior of a maps to the exterior of a'.

Of particular interest for our purposes are the hyperspheres passing by the
origin, since they represent the limiting case of the two classes mentioned
above. Specifically, a hypersphere through the origin maps to a hyperplane,
and the interior of the hypersphere maps to the half-space (determined by the
image hyperplane) not containing the origin. In other words, the family of
hyperplanes of Ed maps to the family of hyperspheres through the origin.

To provide both intuitive support and illustration, from now on we shall
refer to the two- and three-dimensional cases. Moreover, the three-
dimensional space will provide the setting for the discussion of higher-order
Voronoi diagrams in the plane; however, the figures—for simplicity—will
illustrate two-dimensional instances. Therefore, the preceding discussion
yields that inversion in the plane maps circles to circles, whereas in the space it
maps spheres to spheres.

A unique role in E 3 is played by the unit sphere (sphere of radius one
centered at the origin) because its points are the fixed points of the inversion.
For example, the transformation is illustrated in Figure 6.11 for two dimen-
sions, where line 4 and circle C1 , for i = 1, 2, 3, are inversion pairs.

6.3.1.2 The structure of higher-order Voronoi diagrams

We now have all the necessary premises. Let S be a set of N points in a plane.
We immerse this plane in E 3 of coordinates x, y, and z and identify it with the
plane z = 1 (notice however that any other choice would be equally suitable).
We construct the inversive image of this plane, i.e., the sphere C of radius z
centered at (0, 0, 2). (See Figure 6.12 for an analogy in one less dimension.) We
then map each point of the set S to its image on C, by a straightforward
projection from the origin of E 3 . 4 Thus we obtain a set S' of N points on the
sphere C.

Consider now a plane it determined by three points A, p'1 , and pi of S'
(respectively the inversive images of p ; , p., and pi of S.) (Refer to Figure 6.12.)
This plane determines a spherical cap on C not containing the origin, and let
S'(ir) S' be the subset of S' contained in the interior of this spherical cap.
Note that S'(ir) is a set of points in the interior of the half-space H(ir)
determined by it and not containing the origin. Next consider the inversive

4 This projection is known as stereographic.

6.3 Generalizations of the Voronoi Diagram 	 245

Figure 6.11 Illustration of inversion in the plane, with restriction to straight lines and
circles by the origin.

image C(n) of n: we know that C(ir) is a sphere by the origin and passing by
points p; , p., and p1 (indeed, the sphere determined by these four points). Since
the half-space H(n) maps to the interior of sphere C(ir), the inversive images of
the points of S' (n) lie in the interior of C(ir). In particular, they lie in the
interior of the circle C(p 1 , pi , pi) passing by p; , p; , and p,, since this circle is the
intersection of the sphere C(ir) with the plane z = 1. Let y be the center of circle
C(p1 , p; , pi) and let R c S be the "set of points in the interior" of C(pi , p,, pi)
(obviously R is the image of S' (n)). We claim that v isa vertex in some higher-
order Voronoi diagram. Indeed, let 'RI = k, and assume, for a moment, that
0 < k < N — 3. Clearly, R is the set of points closer to y than any of { p i , pi, pi }.
Now, y appears in the order-(k + 1) Voronoi diagram as the common point of
V(R u { p 1 }) , V(R u {pi p, and V(R u {p,}) and in the order-(k + 2) diagram

Figure 6.12 Illustration of the inversion between a point set on the plane z = 1 and
its image on the sphere C.

246 	 6 Proximity: Variants and Generalizations

as the common point of V(R u {p i , pi p V(R u {pi, AI), and V(R u { p ; , pI }).
If R = 0, that is, k = 0, then y is a vertex of just Vor k (S), whereas for 'RI =
N — 3, visa vertex of just Vor N _ 1 (S). We now remark that plane n can be
chosen in (3) ways, and each choice determines a Voronoi vertex (most of
them appearing in two higher-order Voronoi diagrams). Since each Voronoi
diagram is a planar graph and each Voronoi vertex has degree at least three
(and barring degeneracies, exactly three), in each Vor k (S), k = 1, ... , N — 1,
the number of polygons is proportional to the number of vertices. Combining
these facts we obtain the following interesting result [Brown (1979a), (1979b)].

Theorem 6.8. The number of Voronoi polygons of all orders is 0(N 3).

To gain more insight into the structure of the family of higher-order
Voronoi diagrams we follow an approach of the type recently proposed by
Edelsbrunner and Seidel (1986). Consider the stereographic projection which
describes the restriction of the inversion on E 3 to the plane z = 1 (or equiva-
lently, to the sphere C, inversive image of this plane). It is convenient to
explicitly refer to the equation of C, that is,

1 2 	1
x2 +y2 + z - 2 = 4 . (6.1)

Suppose that we now apply a suitable projective transformation ço to E 3 and
let , pi, and C be the coordinates in the transformed space. Specifically, we seek
a transformation that maps the plane z = 0 to the plane at infinity. We carry
out the transformation as follows: first we introduce homogeneous coordi-
nates x 1 , x 2 , x3 , and x4 in E 3 (see Section 1.3.2 for a discussion of the
correspondence between homogeneous and inhomogeneous coordinates);
then we consider these as the coordinates of E 4 , and finally we apply a
rotation to E 4 expressed by the following relation (where 1, 2 , 3, and 4 are
the homogeneous coordinates in the transformed space):

1 129 b3+ b4) 7' —

1

0

0

_0

0

1

0

0

0

0

0

1

0

0

1

0

•(x1,-x2,x3,x4) T • (6.2)

By rewriting (6.1) in homogeneous coordinates and applying transformation
(6.2), we obtain the homogeneous-coordinate equation of cp(C):

1 + 2 + 	= 3b4• 	 (6.3) b4

Restoring now the inhomogeneous coordinates = 1/49 ri = b2/4, and
= K 3/ z4, we obtain the inhomogeneous-coordinate equation of cp(C):

c=K2 +r1 2 +1, 	 (6.4)

which describes a (rotation) paraboloid £.

z

247 6.3 Generalizations of the Voronoi Diagram

^ = $ (C)

i
i

i
^ 4)(unit sphere)

• • 	• ï, - 1(^(z =1))
P3 P4 P5

E

i
e

i
i

(a) (b)

Figure 6.13 Transformation cp maps diagram (a) to diagram (b).

In addition, 9 maps plane z = 1 to plane C = 1, the unit sphere to the
hyperboloid of equation c 2 + yi2 — C2 + 1 = 0, and the origin to the point at

infinity of the -axis. In summary, the diagram of Figure 6.12, repeated for

convenience in Figure 6.13(a), is mapped under 9 to the diagram of Figure
6.13(b). Consider now the images, under (p, of pairs of points, respectively in C
and z = 1, which are mutual inversive images. These new points, respectively

in g and = 1, are now obtained by a simple projection parallel to the c-axis

(vertical). It is useful to denote by y the vertical projection y: C = 1) —> g.
Again, let S be a finite point set in the plane 4 = l and let S' = {y(p): p e S}.

Given any two points p1 and p2 in S, consider the planes n(p 1) and it(p 2)
tangent to J' at the points y(p i) and y(p 2), respectively. A very important
property of these two planes is provided by the following lemma, whose proof

is left as an exercise.

Lemma 6.4. The projection of the intersection line of n(p 1) and i (p2) onto the
plane C = 1 is the perpendicular bisector of the segment p 1 p2 .

Suppose now we have constructed the set of planes {n(p): p e S}. These
planes partition the space into cells {D 1 , D 2 , ... , D M }. We establish the con-
nection between cells and Voronoi polygons (of some Vor k (S)) on the plane

= 1. For each p e S, we define as HS(p) the half-space determined by n(p)
(again, n(p) is the plane tangent to g at y(p)) and external to the paraboloid

.g. Let us now consider a generic cell D of the partition of the space determined

by the set of planes {ir(p): p e S}. With D we associate a unique set T(D) g S

248
	

6 Proximity: Variants and Generalizations

(a)
	

(b)

Figure 6.14 (a) Two-dimensional analog of the space partition determined by tangent
planes. (b) Illustration for the proof of Theorem 6.9.

defined as the unique subset of S such that

for each p E T(D), D HS(p).

(See Figure 6.14 for a two-dimensional analog.) Let q' be a generic point in D
and q its vertical projection on the plane = 1; moreover, let pi e T(D) and
pi e S — T(D) (refer to Figure 6.14(b)). By the definition of T(D), we have that
q' E HS(p i) and q' 0 HS(p;). The vertical plane passing by the intersection of
n(p 1) and n(pi) determines two half-spaces; the condition q' eHS(p;) and
q' HS(pl) implies that q' lies in the half-space containing p.. Recalling
Lemma 6.4, we have that q belongs to the half-plane H(p1 , pi), and, due to the
arbitrariness of p; in T(D) and of pi e S — T(D), we reach the following
conclusion.

Theorem 6.9. The projection on = 1 of a cell D of the space partition
determined by {n(p): p E S} is a Voronoi polygon V(T), where T is the largest
subset of S so that D HS(p) for each p e T.

This shows that the above partition of the space provides complete infor-

6.3 Generalizations of the Voronoi Diagram 	 249

Figure 6.15 Closest and farthest point Voronoi diagrams for a three-point set.

mation about the family of higher-order Voronoi diagrams. In the next
section we shall address the question of their algorithmic construction.

6.3.1.3 Construction of the higher-order Voronoi diagrams

To develop the necessary algorithmic mechanism, we shall now explore the
relationship between Vor k (S) and Vork+ 1 (S)• (Note, incidentally, that
VorN _ t (S) is appropriately called the farthest point Voronoi diagram, since
each of its polygons is the locus of the points of the plane closer to any member
of S — {p i } (for some i) than to pi , i.e., the locus of the points for which pi is
the farthest point.)

We begin by considering a set S of three points: 1, 1 , p2 , and p 3 (refer to
Figure 6.15). In this case there is a single Voronoi vertex y, where the three
bisectors meet. The ordinary Voronoi diagram is shown with solid lines. If we
now take the complementary ray on each bisector (shown as a broken line), we
partition the plane into three regions, such that each point in any given region
is closer to two of the given points than to the third one: we have obtained the
farthest point Voronoi diagram of S = {pl,p2,p3}.

Consider now a polygon V(T) of the diagram Vor k (S), where T =
{ p i , ...,pk }. We know that V(T) is a convex polygon and let v be one of its
vertices. Vertex v is common to three polygons of Vor k (S): V(T), V(T 1), and
V(T2). Now we distinguish two cases':

(i) I TQ+T1 Q+T2 1 =k+ 2, 	(voidif k=N-1)
(ii) IT Q+ T1 Q+ T2 1 = k — 2, 	(void if k = 1)

Vertex v is called of the close - type in case (i), and of the far-type in case (ii). To
gain some intuition on this classification, note that in case (i) we have, for
example:

(a) 	T= R l v {p k }, 	T1 = R 1

5 Here C+ denotes the symmetric difference.

V {Pk+t }, 	T2 = R1 V {Pk+2}

250
	

6 Proximity:Variants and Generalizations

Close-type
In Vor k (S)

Far-type in Vor k (S)
Close-type inVor k _ 1 (S)

Figure 6.16 Illustration of the "life-cycle" of a Voronoi vertex.

where R 1 = {p1 , • • • ,Pk-1 }. So, if we remove R 1 from S, y and its incident
edges (now becoming infinite rays) form the closest point Voronoi diagram of

{ Pk, Pk+1 , Pk+2 1. By contrast, in case (ii) we typically have:

(b) 	T = R2 u {Pk - 1 , 1A} , 	T1 = R2 u { Pk

T2=R2u {Pk,Pk+ 1 },

where R2 = { p 1, . . . ,Pk-2 }. If, again, we remove R2 from S, v and its incident
edges form the farthest point Voronoi diagram of { pk-1,Pk,Pk+1 }. 6 It is
interesting to point out that the Delaunay circle centered at y contains k — 1
points of S in its interior if v is of the close type, and (k — 2) points in the other
case.

Moreover, suppose that v is a vertex of the close-type of Vor k (S), and let it
be the common point of V(T), V(T 1) and V(T2) as given in (a) above. If in a
suitable neighborhood of y we replace each of the three Voronoi edges incident
on y with its extension beyond y, vertex v becomes the common vertex of three
new polygons, which are readily recognized as V(Tu T 1), V(Tu T 2), and

Ti u T2). But ITu T1 1 = 1 T u T2 1 = 1 T1 u T2 1 = k + 1. Thus, by extending
the Voronoi edges incident on a close-type vertex of Vor k (S), this vertex has
become a far-type vertex of Vor k+ , (S)! This is, in a nutshell, the key idea for
the construction of the sequence Vor k (S), Vor k (S), ..., VorN _ 1 (S).

To analyze the mechanism further, suppose that y is a close-type vertex of
Vork (S) (refer to Figure 6.16) and suppose it is adjacent to a far-type vertex y l .

This means that y has been generated in Vor k (S) by extending, in the sense
described earlier, the edges incident on close-type vertices of Vor k _ 1 (S) (one
such vertex is v 1). In the construction of Vor k+l (S), in turn, we shall extend the
edges incident on y. In the process, however, we shall delete edge vl v, so that y 1

disappears from Vork+1 (S). This illustrates, so to speak, the life cycle of a
Voronoi vertex: it appears in two Voronoi diagrams of consecutive orders,
first as a close-type vertex and then as a far-type vertex.

6 Note that the Vor, (S) contains only close-type vertices, while Vor N _, (S) contains only far-type
vertices.

6.3 Generalizations of the Voronoi Diagram 	 251

The construction of Vor k+l (S) is essentially the partitioning of each poly-
gon of Vork (S) into portions of polygons of Vor k+l (S). This is equivalent to
obtaining the intersection of each polygon V(T) of Vor k (S) with the ordinary
Voronoi diagram Vor 1 (S — T). However, we do not have to compute the
entire Vor k (S — T), but only that portion of it that is internal to V(T).
Specifically, let e be an edge of V(T) incident on a close-type vertex y; then e
is the common boundary of V(T) and V(T'), where IT Q = 2, and will
become internal to V(T v T'), a polygon in Vk+l (S). It follows that denoting
by s the number of close-type vertices on the boundary of V(T), V(T) will
be decomposed into s portions if bounded and into (s + 1) portions if un-
bounded. Since the close-type vertices identify the subset of S — T affecting
the partition of V(T), the latter can be obtained either by computing an
ordinary Voronoi diagram in time O(s log s) or by using a specific technique
due to Lee (1976, 1982), which also runs time in O(s log s). In all cases, if Vk 1
is the number of close-type vertices in Vor k (S), Vork+l (S) can be obtained in
time at most O(Vk(U) log V').

Lee (1982) has produced a detailed analysis of the various parameters of
Vork (S). In particular we have (stated here without proof)

Lemma 6.5. The number V I!" of close-type vertices of Vork (S) is upper-

bounded by

2k(N — 1) — k(k — 1) —
i=1

where v i is the number of unbounded regions in Vork (S).

Clearly Vkc1) = O(kN). It follows that Vork+l(S) can be obtained from
Vork (S) in time O(kN log N), and, globally, Vork+l (S) can be obtained from
S in time

k-1

E O(iN log N) = O(k 2 N log N).
i=1

Thus we summarize as follows

Theorem 6.10. The order-k Voronoi diagram of an N point set is obtained in

time O(k 2 N log N).

This approach can be iterated to the construction of all Vork (S) for k = 1,
... , N — 1, and would exhibit a running time O(N 3 log N). However, a more
recent approach [Edelsbrunner—Seidel (1986)], based on the theory outlined
in the preceding section 6.3.1.2, constructs the space partition determined by
the family of planes {ir(p): p e S} tangent to the paraboloid .9, and runs in time
proportional to the intersections of triplets of planes, that is, in time 0(■ 3).
Thus we have

• •

252 	 6 Proximity: Variants and Generalizations

V(7)
V(5)

V(6)

V(8)

•

V(4) 	1
•

This region is the locus of
points whose most distant
neighbor is point 4.

Points that are not on
3 	the hull are unnumbered
• and do not have regions

associated with them. •
• 4

8 7,,

• 5

• 6
V(1)

V(3)

Figure 6.17 The farthest-point Voronoi diagram.

Theorem 6.11. The family of all higher-order Voronoi diagrams for a given point
set S in the plane can be constructed in time 0(N 3).

We close this section with two observations. The first is that Problem P.6,
k-NEAREST NEIGHBORS search reduces to a point location problem in
Vork (S). This task uses a searching time—location in a region of Vor k (S)-
and a report time. The latter is trivially 0(k), while the former is proportional
to log Vk , where Vk is the number of vertices of Vor k (S). Recalling that
Vk = Vk(1) + Vk 1 i and that Vk = 0(kN), we have that the k-NEAREST
NEIGHBORS search is carried out in time O(log kN + k) = O(log N + k).
We summarize this discussion as a theorem (refer to Section 2.2 for the
pertinent results on searching):

Theorem 6.12. The k nearest out of N neighbors at a point in the plane can be
found in time 0(log N + k) with 0(k 2 Nlog N) preprocessing.

The second observation is that the notion of generalized Voronoi diagram
unifies closest- and farthest-point problems, since the locus of points whose k
nearest neighbors are the set T is also the locus of points whose N — k farthest
neighbors are the set S — T. Thus, the order-k closest-point diagram is exactly
the order-(N — k) farthest-point diagram. Let us examine one of these more
closely, the order-(N — 1) closest-point diagram, or equivalently, the order-1
farthest-point diagram (Figure 6.17).

Associated with each point pi is a convex polygonal region VN_1(p;) such
that pi is the farthest neighbor of every point in the region. This diagram is
determined only by points on the convex hull, so there are no bounded
regions. Of course, Vor N _ 1 (S) can be constructed by a straightforward appli-
cation of the general method just described. However, the task would be
completed in 0(N 3) (Theorem 6.12). It must then be pointed out that there is a

z
■

•

•

•
r
r

--------4
%

%

/
/

/
/

/
/

•

%
%
1

r
r
r

1

6.3 Generalizations of the Voronoi Diagram
	

253

(a)
	

(b)

Figure 6.18 Illustration of a three-dimensional N-point set with 0(N 2) Voronoi
edges.

direct method, based on the divide-and-conquer scheme and analogous to the
algorithm for the closest-point diagram, which achieves the result in optimal
0(N log N) time [Shamos (1978); Lee (1980b)]. Having found the farthest-
point diagrams of the left and right halves of the set, the polygonal dividing
line a has the same properties as in the closest-point case. This time, however,
we discard all segments of Vor N _ 1 (Sl) that lie to the left of a, and also remove
those segments of Vor N _ 1 (S2) that lie to the right. We shall have the opportu-
nity to further discuss the intimate relationship existing between Vor 1 (S) and
VorN _ 1 (S) in the next section.

6.3.2 Multidimensional closest-point and farthest-point
Voronoi diagrams

As we saw earlier, the generalized planar Voronoi diagrams (of all orders)
have the topology of planar graphs. This implies that the numbers of vertices,
faces, and edges of each of them are of the same order, and also allows the
development of optimal time algorithms for the construction of the closest-
point and the farthest-point Voronoi diagrams.

Can the same result be obtained in dimensions higher than two? Any hope
is readily demolished by observing [Preparata (1977)] that the closest-point
Voronoi diagram on N points in three dimensions may have 0(N 2) edges. An
instance exhibiting this property is easily found. (Refer to Figure 6.18.)
Consider a set Si of N/2 points uniformly placed on a circle in the (x, y)-plane
and centered at the origin. Next consider a set S2 of N/2 points uniformly

254 	 6 Proximity:Variants and Generalizations

z = 1

Figure 6.19 Illustration of the relation between convex hulls sand Voronoi diagram.
The near side of conv(S*) is in solid lines, the far side in broken line.

placed on the z-axis with median at the origin, and let S = Sl V S2. We claim
that any segment joining a point of S 1 and a point of 52 is an edge of the
Delaunay graph, that is, it dualizes to a polygon of the Voronoi diagram (a
facet of a Voronoi polytope). This is readily seen by considering a section with
a plane containing the z-axis and a point of S 1 (Figure 6.18(b)). (The details
are left to the reader.) Therefore, although the Voronoi diagram has 0(N)
regions, it may have 0(N 2) vertices and edges. This finding was later extended
to arbitrary dimension d by V. Klee (1980), and is summarized as follows.

Theorem 6.13. If M(d, N) is the maximum number of vertices of the Voronoi
diagram on N points in the d-dimensional space, then

Id/21!nrd121 < M(d, N) < 2((d/2]!nr(1 " 21), for d even

and

(rd/2] —1)! •
nrdI 21 < M(d, N) < 1d/21!n 21 , for d odd

e

This exponential growth in the complexity of the Voronoi diagram reveals
an intriguing similarity with the behavior of higher-dimensional convex hulls.
This similarity has deep roots, which are brought to full evidence in the
context of the inversive transformation described in Section 6.3.1.1., as first
noted by K. Brown (1979b).

We examine, without loss of generality, the Voronoi diagrams in the plane.
Let S = {p'... , pN } be a set of N points in the plane z = 1 of E 3 , let C be the
inversive image of this plane in E 3 , and let S' = {p'1 , ... , p'N } be the inversive
image (on C) of S (here pi and pi are reciprocal inversive images). Consider
now the convex hull CH(S'), of S', and partition it into two parts, the far side
and the near side, depending upon whether its points are "visible" or not from
the origin (refer to Figure 6.19 for a two-dimensional illustration).

6.4 Gaps and Covers 	 255

Let rc be a plane containing a facet Fof CH(S'), determined by three points
pi, p'2 , and p3 (here we assume that CH(S') is simplicial; i.e., each facet is a
triangle). The inversive image of n—a sphere C(n)—passes by O, p l , p 2 , and
p3 , and intersects z = 1 in the circle determined by p t , p2 , and p3 . We
distinguish two cases, depending upon whether F belongs to the near side or
the far side of CH(S'):

(i) Fbelongs to the near side of CH (S'). In this case the half - space determined
by it and not containing the origin contains no point of S' in its interior.
Since this half-space maps to the interior of C(7r), the circle by p t , p2 , and
p3 is a Delaunay circle, whose center is a vertex of Vor l (S). Thus each
facet of the near-side of CH(S') determines a triangle of the Delaunay
triangulation of S (and, dually, a vertex of Vor t (S)).

(ii) F belongs to the far side of CH(S'). Again, the half-space determined by it
and not containing the origin maps to the interior of C(n). In this case,
however, the half-space contains N — 3 points of S' in its interior, so that
the circle by p l , p2 , and p 3 contains N — 3 points of S in its interior. It
follows that the center of this circle is a vertex of the farthest-point
Voronoi diagram of S.'

This observation not only establishes a closer link between Vor l (S) and
VorN _ l (S), but also connects the nearest-point Voronoi diagram on N points
in d dimensions to the convex hull on N points (lying on a spherical surface) in
(d + 1) dimensions. Therefore, one can resort to the existing machinery on
multi-dimensional convex hulls (Section 3.3) to obtain multi-dimensional
Voronoi diagrams. Work on these lines has been done by Avis and Bhatta-
charya (1983) and Seidel (1982).

6.4 Gaps and Covers

We shall now study a few additional very significant proximity problems,
which can be characterized under the succinct heading of "gaps and covers."
Gaps are the "balls" in space, (in the plane, the disks) that are void of given
points, while covers are sets of balls whose union contains all the given points.
We begin with

PROBLEM P.11 (SMALLEST ENCLOSING CIRCLE). $ Given N points in the
plane, find the smallest circle that encloses them.

' With the usual hypothesis that no four points of S are cocircular, the circle intersection of C(n)
with z = 1 passes by exactly three points of S. Correspondingly, F is determined by their three
images and no other point of S', that is, F is a triangle (CH(S') is a simplicial polytope).

8 This problem is also frequently referred to as MINIMUM SPANNING CIRCLE.

256 	 6 Proximity:Variants and Generalizations

This is a classical problem with an immense literature, the search for an
efficient algorithm having apparently begun in 1860 [Sylvester (1860)]. The
smallest enclosing circle is unique and is either the circumcircle of some three
points of the set or defined by two of them as a diameter [Rademacher-
Toeplitz (1957), Ch. 16]. Thus there exists a finite algorithm which examines
all pairs and triples of points, and chooses the smallest circle determined by
them which still encloses the set. The obvious implementation of this pro-
cedure would run in 0(N4) time and an improvement to 0(N 2) time was
proposed by Elzinga and Hearn (1972a, 1972b).

The enclosing circle problem is familiar in Operations Research as a
minimax facilities location problem, in which we seek a point po = (xo , yo) (the
center of the circle) whose greatest distance to any point of the set is a
minimum. We may characterize p o by

min max (x i — x0) 2 + (yi — yo) 2 . 	 (6.5)
Po 	i

The minimax criterion is used in siting emergency facilities, such as police
stations and hospitals, to minimize worst-case response time [Toregas et al.
(1971)]. It has also been used to optimize the location of a radio transmitter
serving N discrete receivers so as to minimize the RF power required
[Nair—Chandrasekaran (1971)]. Some authors have apparently been misled
by Equation (6.5) into treating the smallest enclosing circle as a continuous
optimization problem because there seem to be no restrictions on the location
of po . This approach has given rise to a number of iterative algorithms
[Lawson (1965); Zhukhovitsky—Avdeyeva (1966)], even though the problem
is known to be discrete. This illustrates an important point: Just because a
problem d can be formulated as a special case of is no reason for believing
that a general method for solving M is an efficient way of solving d. We saw
another instance of the validity of this maxim in connection with the Euclidean
minimum spanning tree problem (Section 6.1): even though it can be embedded
in the complete graph over the given set of points, the search for a method
that capitalizes on the specific properties of the problem was rewarded with
an optimal algorithm.

We now turn our attention to

PROBLEM P.12 (LARGEST EMPTY CIRCLE). Given N points in the plane,
find a largest circle that contains no points of the set and whose center is
internal to the convex hull of those points (see Figure 6.20).

The restriction on the center is necessary, for otherwise the problem would be
unconstrained and would not possess a bounded solution. This problem is
dual to P.11 in that it is maximin. In other words, we want p o as defined by

max min (x i — x0) 2 + (yi — yo) 2 • 	 (6.6)
poE Hull(S) i

Obviously, there may be more than one p o satisfying (6.6). The largest

6.4 Gaps and Covers 	 257

Figure 6.20 A largest empty circle whose center is internal to the hull.

empty circle is another facilities location problem, but one in which we would
like to position a new facility so that it is as far as possible from any of N
existing ones. The new site may be a source of pollution which should be
placed as to minimize its effect on the nearest residential neighborhood, or it
may be a new business that does not wish to compete for territory with
established outlets. Such problems arise frequently in industrial engineering
[Francis—White (1974)]. An early solution of the present problem is an al-
gorithm whose worst-case running time is 0(N 3) [Dasarathy—White (1975)].

It is a quite puzzling question that 0(N 3) is achievable for problem P.12
while we seem to obtain a better result (0(N 2)) for its "dual." Is there a deep
difference between the two? We shall now see that the contrast between 0(N 3)
and 0(N 2) reflects an imperfect analysis of the problems, since both can
certainly be solved in O(N log N) time with the aid of the Voronoi machinery;
whereas time 0(N log N) is optimal for P.12, we will see that an optimal 0(N)
solution is attainable for P.11.

We begin by considering how P.11 can be solved by means of the Voronoi
diagram. We know that the smallest enclosing circle C is determined either by
the diameter of the given set S or by three of its points. Recall that the circle
centered at a vertex of the farthest point Voronoi diagram of S (VorN _ 1 (S))
and passing through its three determiners (points of S) encloses all the points
of S. Moreover, the circle centered at any point of an edge e of VorN _ 1 (S) and
passing through the two points of which e is the perpendicular bisector, also
encloses all the points of S. Thus if C is determined by three points of S, then
its center lies at a vertex of Vor N _ 1 (S). If, on the other hand, C is determined
by two points, then its center lies on an edge of Vor N _ 1 (S). A possible
approach [Shamos (1978)] consists of first finding the diameter of S in
O(Nlog N) time (for example, with the method of Section 4.2.3) and of
determining whether it encloses the set. If so, we are done. Otherwise, the
center c of C is a vertex of VorN _ 1 (S). This diagram contains only 0(N) points
and the circumradius associated with each vertex is the distance from it to any
of the three points of whose polygons it is the intersection. The minimum over
all vertices of this distance is the radius of the circle C. This task can clearly be
carried out in total time O(N log N), since O(N log N) time is used by both the
determination of the diameter of S and by the construction of VorN_1(S);

258 	 6 Proximity:Variants and Generalizations

additional 0(N) time is used by the inspection of the vertices of Vor N _ 1 (S). 9
 We can summarize the discussion as follows.

Theorem 6.14. A smallest enclosing circle of a set of N points can be obtained in
time O(N l og N).

Is this result optimal? The determination of the minimum enclosing circle
does not require in reality complete knowledge of the farthest point Voronoi
diagram, but rather only of a portion of it in a suitable neighborhood of the
center of the circle. It is indeed this idea that enabled Megiddo to obtain an
optimal 0(N) algorithm [Megiddo (1983)], by viewing the original formula-
tion (6.5) as an instance of convex programming problems. This new elegant
technique will be described in Section 7.2.5.

We now turn our attention to the dual of the problem just discussed, i.e.,
the largest empty circle. In two or more dimensions, we will now show that the
problem can be solved with the aid of the Voronoi diagram. For concreteness
and simplicity, we shall as usual refer to the planar case, although the multi-
dimensional generalization is rather straightforward. We have the following
theorem.

Theorem 6.15. The largest empty circle for an N-point set in the plane can be
constructed in time 0(N log N).

PROOF. Given a set S of N points in the plane consider the function_ f (x, y), the
distance of point p = (x, y) to the nearest point of S. Since we have constrained
the center of the largest empty circle to lie within the convex hull of S, we shall
consider the intersection of Vor(S) with conv(S), which is a collection of
convex polygons (each of these polygons is the intersection of conv(S) with a
Voronoi polygon). Within a Voronoi polygon, f (x, y) is a downward-convex
function of both x and y, and the same applies for each polygon of the
described partition. Thus, f (x, y) attains its maximum at a vertex of one such
polygon. This vertex is either a Voronoi vertex (in which case the largest empty
circle is just a Delaunay circle) or the intersection of a Voronoi edge with a hull
edge. All of the Voronoi points can be found in 0(Nlog N) time, so it only
remains to show that the intersection of the convex hull CH(S) and of the
Voronoi diagram Vor(S) can be found quickly. We begin by noting two facts:

Property 1. A Voronoi edge intersects at most two edges of CH(S). Indeed, by
convexity of conv(S), the intersection of any straight line with conv(S) consists
of a (possibly empty) single segment.
Property 2. Each edge of CH(S) intersects at least one Voronoi edge. Indeed,

9 An alternative approach, achieving the same time bound, is discussed in [Preparata (1977)].

6.4 Gaps and Covers
	

259

Figure 6.21 Illustration of the tour of Vor(S) to compute the intersections of Vor(S)
with CH(S).

any edge of CH(S) joins two distinct points of S, which belong to two different
Voronoi polygons.

Next, we conventionally "close" each unbounded Voronoi polygon by means
of a "segment" on the line at infinity of the plane (see Figure 6.21).

Let e l , e 2 , ... ,e„ be the counterclockwise sequence of the edges of CH(S),
and let u be the intersection of an arbitrarily chosen edge ej with an edge r of
the Voronoi diagram (by Property 2 above, u always exists). If from u we direct
r toward the exterior of conv(S), let V(i) be the Voronoi polygon lying to the
left of r. If we traverse the boundary of V(i) counterclockwise (in the exterior
of conv(S)), we shall intersect again CH(S) in a point w for the first time: due
to convexity of V(i), and by Property 2, w belongs either to el or to ej+1 . Thus
each edge of V(i) has to be tested for intersection with just two edges of
CH(S), i.e., in constant time. Once w has been found, the process is repeated
with w playing the role of u, and so on until we reach u again. In this manner all
intersections of Vor(S) with CH(S) can be found.

In this tour, each visited segment of Vor(S) is traversed at most twice; since
each edge has at most two such segments, by Property 1, we conclude that each
edge of Vor(S) is inspected at most four times, and the intersection of Vor(S)
and CH(S) is computed in time 0(N).' ° 0

At this point we may wonder about the optimality of the preceding result,
and, as usual, it is convenient to choose the one-dimensional case as the setting

10 The approach described is related to an analogous result due to Toussaint (1983b).

260 	 6 Proximity: Variants and Generalizations

for our argument. In this case, the problem reduces to finding a pair of
consecutive points on a line that are farthest apart (MAXIMUM GAP), since
a "circle" in one dimension is just a segment. This one-dimensional instance
of Problem P.12 is formally stated as follows:

PROBLEM P.13 (MAXIMUM GAP). Given a set S of N real numbers x 1 ,
x 2 , ... , xN , find the maximum difference between two consecutive members
of S. (Two numbers x i and xj of S are said to be consecutive if they are such
in any permutation of (x 1 ,..., x N) that achieves natural ordering.)

The question of a lower bound for P.13 has been settled only recently
in the algebraic decision-tree model by Lee and Wu (1986), although an
S2(N log N) lower bound had been established earlier by Manber and Tompa
(1985) in the linear decision-tree model. The argument of Lee and Wu uses
typical devices of lower-bound proofs for decision problems, i.e. the transfor-
mation to the problem in question of a "prototype" problem, for which a lower
bound can be directly established. In this case the prototype problem is:

PROBLEM P.14 (UNIFORM GAP). Given a set S of N real numbers x 1 , x 2 ,
... , xN and a real E > O, determine if the differences between consecutive
members of S are uniformly equal to E. (A decision problem.)

The transformation

UNIFORM GAP oc N MAXIMUM GAP

is readily established. Given S, an algorithm for MAXIMUM GAP yields the
real value g >— 0 of the largest difference between consecutive terms of S. If
g 0 E, then the answer to P.14 is "No." If g = E, we determine, in linear time,
both xmin = mini xi and xmax = max i x i . Then, obviously, the differences be-
tween consecutive terms are all equal to E if and only if (Xmax — Xmin) _

 (N — 1)E. This proves the correctness of the transformation.
We now turn our attention to the complexity of UNIFORM GAP and

refer to the general scheme of Ben-Or (Section 1.4). As we noted for the
ELEMENT UNIQUENESS problem (Section 5.2), a set of N real numbers
{x i , x 2 , ... , xN } can be viewed as a point (x i , x2 , ... , xN) of EN . The member-
ship set W for P.14 consists of the points of EN such that, for some permutation
it of (1, 2, ... , N), we have x n(i) + E = xn<e +1), i = 1, ... , N — 1. Clearly, for any
it, the set Wn = {(x i , ... , x N): x n(i) + E = xn0+1), i = 1, ... , N — 11 is a straight
line in EN . For E > 0, these N! straight lines are pairwise disjoint, so that
W consists of N! disjoint connected components. Using Theorem 1.2 we
conclude:

Theorem 6.16. In the algebraic decision tree model any algorithm for the
UNIFORM GAP problem on a set of N real numbers requires S2(N log N) time.

By virtue of the preceding transformation, we have:

6.4 Gaps and Covers
	 261

Corollary 6.2. In the algebraic computation tree model, any algorithm for the
MAXIMUM GAP problem on a set of N real numbers requires S2(N log N) time.

In a modified computation model, however, Gonzalez (1975) has obtained
the most surprising result that the problem can be actually solved in linear
time. The modification consists of adding the (nonanalytic) floor function
"[j" to the usual repertoire. Here is Gonzalez's remarkable algorithm:

procedure MAX GAP
Input: N real numbers X[1:N] (unsorted)
Output: MAXGAP, the length of the largest gap between consecutive

numbers in sorted order.
begin MIN := min X[i];

MAX := max X[i];
(*create N — 1 buckets by dividing the interval from MIN to MAX
with N — 2 equally-spaced points. In each bucket we will retain
HIGH[i] and LOW[i], the largest and smallest values in bucket i*)
for i := 1 until N — 1 do

begin COUNT[i] := 0;
LOW[i] := HIGH[i] := A

end; (*the buckets are set up*)
(*hash into buckets*)
for i:= 1 until N — 1 do

begin BUCKET := 1 + [(N — 1) x (X [i] — MIN)/
(MAX — MIN)];
COUNT[BUCKET] := COUNT[BUCKET] + 1;
LOW [BUCKET] := min (X [i], LOW [BUCKET]); 11

HIGH [BUCKET] := max (X [i], HIGH [BUCKET])11
end;

(*Note that N — 2 points have been placed in N — 1 buckets, so by
the pigeonhole principle some bucket must be empty. This means that
the largest gap cannot occur between two points in the same bucket.
Now we make a single pass through the buckets*)
MAXGAP := 0;
LEFT := HIGH[1];
for i := 2 until N — 1 do

if (COUNT[i] 0 0) then
begin THISGAP := LOW[i]-LEFT;

MAXGAP := max(THISGAP, MAXGAP);
LEFT := HIGH[i]

end
end.

This algorithm sheds some light on the computational power of the "floor"

11 Here, by convention, min(x, A) = max(x, A) = x.

262 	 6 Proximity: Variants and Generalizations

function. In view of the apparent similarity between MAXGAP and
CLOSEST PAIR in one dimension, it is remarkable that a linear algorithm
is possible. Unfortunately, no generalization to two dimensions seems to be
possible.

6.5 Notes and Comments

Although the Euclidean Minimum Spanning Tree of a planar set can be computed
optimally, the construction of the EMST in higher dimensions is by and large an open
problem. Exploiting the geometric nature of the problem Yao (1982) has developed
an algorithm to construct the EMST of N points in d dimensions in time T(N, d) =
0(N 2- a(d) (log N)' - ° (d)), with a(d) = 2-(d+l), with a time bound of O(N log N) 1-8) for
d = 3 (this technique is closely related to Yao's algorithm for point-set diameter,
Section 4.3).

A problem closely related to the Voronoi diagram is the construction of the skeleton
of a polygon, a construct frequently studied in pattern recognition because it is highly
suggestive of the "shape" of the polygon. The skeleton of a simple polygon P is the
locus a of its internal points such that each p e a is equidistant from at least two points
on the boundary of P; for this reason, the skeleton is also known under the name of
medial axis [Duda-Hart (1973)]. One may also imagine to construct the skeleton by
applying fire simultaneously to all sides of P: in the hypothesis that the fire propagates
at constant speed ("prairie fire"), the skeleton is the locus of points where fire waves
meet. In another interpretation, the skeleton is a subgraph of the planar map formed
by the loci of proximity of the sides of P. This offers an extension of the notion of
Voronoi diagram to a particular set of line segments (the sides of a simple polygon).

A more powerful generalization of the Voronoi diagram—mentioned in Section
6.3—consists of extending the notion to a finite collection of points and open line
segments in arbitrary positions. In this case the edges of the ensuing Voronoi diagram
are not just straight-line segments, but also arcs of parabola, since they separate the loci
of proximity of object pairs of the types (point, point), (line, line), (point, line); the last
of these pairs give rise to arcs of parabola. Earlier suboptimal solutions to this problem
were offered by Drysdale and Lee [Drysdale (1979); Lee (1978); Lee-Drysdale (1981)]
(the latter having O(Nlog 2 N) running time for a mixed collection of N objects); an
optimal O(Nlog N) solution was later presented by Kirkpatrick (1979). Kirkpatrick
first solves the independently significant problem of merging in linear time the Voronoi
diagrams of two sets of points that are not linearly separated. He then makes use of this
construction, and of a linear time algorithm to obtain the minimum spanning tree of
a planar graph (See Section 6.1), to solve the general problem. Note that this technique
implicitly solves the medial axis problem.

The machinery of the Voronoi diagram provides an elegant method to obtain a
rather efficient solution of the circular range search problem. The problem is stated as
follows: given a set S of N points in the plane and a circle C of center q and radius r (the
query), report the subset of S contained in C. The target query-time performance is, as
is usual for range-search problems, O(f (N) + K), where K is the size of the retrieved
set. If this is attainable, then we characterize an algorithm by the pair (M(N),f(N)),
where M(N) is the storage requirements. In Chapter 2 we have noted the inadequacy
of the rectangular-range-search approaches to tackle this problem. The original idea
to resort to Voronoi diagrams is to be credited to Bentley and Maurer (1979).

6.5 Notes and Comments 	 263

They proposed to construct the family of Voronoi diagrams { Vor 2 , (S): i = 0,
1, ... , Llog 2 N] }, and to search this collection in succession for i = 0, 1, 2, ... , . The
search consists of locating q in a region of Vor 2 ,(S)—and examining the associated
neighbor list; the search stops as soon as the currently examined neighbor list contains
a point at distance larger than r from q. A straightforward analysis shows that this
algorithm has an (N 3 , log N • log log N) performance. This idea has been recently
refined in several respects [Chazelle–Cole–Preparata–Yap (1986)], within the general
approach of "filtering search," discussed in Section 2.5, resulting in an (N(log N •
log log N) 2 , log N)-algorithm.

In Section 6.1 we noted that the minimum spanning tree (MST) of a planar set S of
N points is a subgraph of the Delaunay triangulation (DT). There are other interesting
geometric structures similarly related to the DT, which have found applications in
pattern recognition and cluster analysis. They are the Gabriel graph and the relative
neighborhood graph. The Gabriel graph (GG) of S is defined as follows [Gabriel–Sokal
(1969)]: Let disk (pi , pi) be the disk having pip; as a diameter; the GG of S has an edge
between p i and p i in S if and only if disk (p i , p i) contains no point of S in its interior.
An efficient algorithm to construct the GG of S in time O(N log N) removes from the
DT each edge not intersecting its dual Voronoi edge [Matula–Sokal (1980)]. The
relative neighborhood graph (RNG) of S is defined as follows [Toussaint (1980b)]: there
is an edge between pi and pj in S if and only if

dist(pi , p.) < min max(dist(p i , pk), dist(pj , Pk)).

kmi.j

This definition means that edge (NO exists if and only if lune(p i , pj), obtained by
intersecting the disks of radius length(p i pj) centered respectively at pi and pi , contains
no point of S in its interior. The construction of the RNG is considerably more
complex than that of the GG: an 0(N log N)-time algorithm has been developed
by Supowit (1983). There is an interesting relation among the four mentioned
graphs

MST RNG GG DT. 	 (6.7)

The construction of these four graphs is well-understood in the planar case, but little
is known in higher dimensi ii. Particularly, an outstanding open problem is the
analysis and the design of worst-case algorithms for the MST problem in three or more
dimensions.

Finally, we mention the class of decomposition problems, whose goal is to partition
a given geometric object into a collection of simpler "primitive" geometric objects.
Frequently such primitives are convex polygons, star-shaped polygons, etc.

Among such problems, of great interest is the decomposition of the interior of a
simple polygon into triangles, that is, the triangulation of a simple polygon. The general
technique for the construction of constrained triangulations discussed in Section 6.2
is certainly applicable to this case and yields an O(N log N)-time algorithm for an
N-vertex polygon. However, as observed earlier, the lower bound for triangulation is
no longer applicable. For nearly a decade, the question of whether polygon simplicity
could afford an o(N log N)-time triangulation algorithm had remained unanswered,
until Tarjan and Van Wyk (1987) exhibited a O(N loglog N)-time algorithm for this
problem. Their result still leaves a performance gap, and makes the achievement of a
0(N)-time algorithm an even more attractive goal.

Basically there are two types of decompositions: partition, which disallows
overlapping of component parts, and covering, which does allow overlapping parts.
Sometimes additional vertices, called Steiner points, may be introduced to obtain
decompositions with the minimum number of parts. A recent survey by Keil and Sack
(1985) discusses minimal decompositions in great detail.

264 	 6 Proximity:Variants and Generalizations

6.6 Exercises

1. Develop in detail an algorithm that constructs the minimum spanning tree of a set
S of N points in the plane by means of a heap containing the edges of the Delaunay
triangulation of S. An edge extracted from the heap is rejected or accepted
depending upon whether it forms a cycle with the previously accepted edges. Show
that this algorithm runs in time 0(N log N).

2. Give a counterexample to the conjecture that the Delaunay triangulation is a
minimum-weight triangulation.

3. Give a counterexample to the conjecture that the greedy triangulation is a
minimum-weight triangulation.

4. Lee. Show that in a minimum Euclidean matching (Problem P.10) the line seg-
ments determined by matched pairs of points do not intersect.

5. Seidel. Let S = {x 1 , x N } c R. Show that one can construct in linear time set
S' = {p i , pN } c R 2 along with a triangulation of S', where x(p i) = xi for
1 < i < N.

6. The k-th nearest neighbor diagram of an N-point set S is a partition of the plane into

(not necessarily internally connected) regions such that each region is the locus R;
 of the points of the plane for which a given pi e S is the k-th neighbor (that is, for

any q e R^, length (gp1) is the k-th term in the ordered sequence of the lengths of ;TA,
 i = 1, ... , N.). Show how the k-th nearest neighbor diagram is related to Vor k _ 1 (S)

 and Vork (S), for k > 1.

7. Show that in the L 1 -metric, the farthest point Voronoi diagram of an N-point set
S(N > 4) consists of at most four regions, in all cases.

8. Consider the inversion of the plane that maps y to y' = v(1/Iv1 2).
(a) Given a line of equation ax + by + c = 0, obtain the equation of its inversive

image (a circle by the origin).
(b) Prove formally that if a circle C contains the origin in its interior, the interior

of C maps to the exterior of its inversive image.

9. Prove formally Lemma 6.4.

10. Given an N-point set S, let I be the perpendicular bisector of pipj , for pi , pi e S.
Suppose that 1 contains a sequence v l , y2 , ... , vs of Voronoi vertices, ordered from
one end to the other. (Each v ; is the circumcenter of some triplet of points of S.)

 Show that if the ray terminating at vl appears as an edge in Vor k (S), then the ray
terminating at v s appears as an edge in Vor N _ h (S).

11. Prove Lemma 6.5.

12. Seidel. Let S = {(x i , y i): 1 < i < N} c R 2 be a set of N points in the plane, S' be
the z-projection of S onto the paraboloid of rotation z = x2 + y2 , i.e., S 1 =
{(x i , y i , x? + y;): 1 < i < N} c R 3 . Consider P, the convex hull of S'.
(a) Show as directly as possible that the orthogonal projection on the (x, y)-plane

6.6 Exercises 	 265

of the faces of P that are "below" P (near-side) coincides with the Delaunay
triangulation of S.

(b) Generalize these results to higher dimensions.

13. Seidel. Consider the following generalization of Voronoi diagrams (known as
Dirichlet Cell Complexes, Power Diagram, or Laguerre diagram). Let S be a set of
N points in E 2 . For each p E S let rp be a real number associated with p. For each
p E S let

GVp (S) = {x e aâ 2 : d(p, x) 2 + rp < d(q, x) 2 + rq , V q e S}

be the generalized Voronoi region of p (with respect to S).
Call GVor(S) = 1G Vp (S): p E S} the generalized Voronoi Diagram of S.
(a) Show that for each p e S, G Vp (S) is convex and has straight line edges.
(b) Show that in the case rp = 0 for all p e S, the generalized Voronoi Diagram

turns out to be the ordinary Voronoi Diagram of S.
(c) Show that for some choice of the r'ps, G Vp(S) can be empty for some p e S.
(d) Give a O(N log N) algorithm to construct the generalized Voronoi Diagram of

S.
(Hint: Use the ideas presented in Section 6.3.1 (higher-order Voronoi diagrams).)

14. The SMALLEST BOMB problem requires the determination of the smallest circle
that encloses at least k of N given points in the plane. Give a polynomial time
algorithm to solve this problem.

15. Prove that the Gabriel Graph of an N-point set S (see Section 6.5 for a definition) is
constructed by removing from the Delaunay triangulation of S each edge that does
not cross its dual Voronoi edge.

16. Prove relation (6.7) in Section 6.5.

17. Lee. Show that the Relative Neighborhood Graph of N points in the plane under
L 1 -metric remains a subgraph of the corresponding Delaunay Triangulation and
give an algorithm to compute it.

18. Give an O(N log N)-time algorithm to construct the medial axis of an N-edge
convex polygon (see Section 6.5 for a definition of medial axis).

CHAPTER 7

Intersections

Much of the motivation for studying intersection problems stems from the
simple fact that two objects cannot occupy the same place at the same time. An
architectural design program must take care not to place doors where they
cannot be opened or have corridors that pass through elevator shafts. In
computer graphics, an object to be displayed obscures another if their projec-
tions on the viewing plane intersect. A pattern can be cut from a single piece of
stock only if it can be laid out so that no two pieces overlap. The importance of
developing efficient algorithms for detecting intersection is becoming appa-
rent as industrial applications grow increasingly more ambitious: a com-
plicated graphic image may involve one hundred thousand vectors, an archi-
tectural database often contains upwards of a million elements, and a single
integrated circuit may contain millions of components. In such cases even
quadratic-time algorithms are unacceptable.

Another reason for delving into the complexity of intersection algorithms is
that they shed light on the inherent complexity of geometric problems and
permit us to address some fundamental questions. For example, how difficult
is it to tell whether a polygon is simple? Although one would be justified in
investigating such a topic even if it had no practical applications, we will find
no shortage of uses for the algorithms of this chapter. Because two figures
intersect only if one contains a point of the other' it is natural that intersection
algorithms should involve testing for inclusion. We may thus consider inter-
section problems to be natural extensions of the inclusion problems treated in
the context of Geometric Searching in Chapter 2.

To gain more insight into this area, we shall now consider some salient
applications in more detail.

' Depending on how boundary intersections are defined.

7.1 A Sample of Applications 	 267

7.1 A Sample of Applications

7.1.1 The hidden-line and hidden-surface problems

A pivotal problem in computer graphics and one that has absorbed the energy
of many researchers [Desens (1969); Freeman—Loutrel (1967); Galimberti-
Montanari (1969); Loutrel (1970); Matsushita (1969); Newman—Sproull
(1973); Sutherland (1966); Warnock (1969); Watkins (1970)], are the hidden-
line and hidden-surface problems. A two-dimensional image of a three-
dimensional scene is necessarily a projection. We may not, however, merely
project each object onto the plane of the observer, for some objects may be
partially or totally obscured from view. In order to produce a faithful display,
those lines which a real observer cannot see must be eliminated from the
picture. Figure 7.1 shows a scene before and after hidden lines have been
removed.

One object obscures another if their projections intersect, so detecting and
forming intersections is at the heart of the hidden-line problem. A consider-
able investment has been made in developing hardware to perform this task,
which is particularly difficult in practice because of the real-time requirements
of graphic display systems and the fact that objects are usually in motion.

In view of the effort that has gone into graphic hardware development, it is
surprising that the complexity of the hidden-line problem has received so little
study, for it is here that the potential gains are the greatest. Building a black
box with a program implemented in microcode cannot in general achieve,
even with the exploitation of parallelism, effects comparable to those achiev-
able with innovative algorithmic design (where the speed-up improves with
increasing problem size).

In many cases, particularly for vector graphic devices, scene components
are represented as polygons. If the projections of two objects are the polygons
P1 and P2 and P1 lies nearer to the viewer than P2, what must be displayed is P1

 and P2 n P1 (obviously P2 n P1 is the intersection of P2 and the complement of
P1).

The basic computational problem in hidden line removal is thus to form the
intersection of two polygons. In practice we must do more than this, since the
image will consist of many separate polygons, all of which must be displayed,

Figure 7.1 Elimination of hidden lines.

\
\

. • M

• M

. .
F • . .

\
.
.

•
oQ ^.\ • m M

.
 . 	 • M
\ F • 	̀41--A linear classifier

\

F •

F •

•M 	 • M

F.

F •

268 	 7 Intersections

Weight

Figure 7.2 A two-variable classification problem.

but one may expect that the primitive remains pairwise intersection. Without
an optimal algorithm for polygon intersection we cannot hope to perform
hidden-line elimination efficiently. In this chapter we will obtain tight bounds
for intersecting convex, star-shaped, and general polygons. The polygon
problem is an example of the first type of intersection problem we will
consider. To keep a desirable degree of generality, we shall refer to the generic
category of geometric objects, which may be polygons, segments, polyhedra,
etc., as the specific application demands. So we have

PROBLEM TYPE I. l (CONSTRUCT INTERSECTION). Given two geometric
objects, form their intersection.

7.1.2 Pattern recognition

One of the major techniques of pattern-recognition is classification by super-
vised learning.' Given N points, each of which is identified as belonging to one
of m samples, we wish to preprocess them so that a new point (query point) can
be correctly classified. Figure 7.2 is a two-dimensional example in which the

axes represent the weights and heights of a group of people of the same age.

Males are designated by "M," females by "F," The point "Q" represents a
person whose weight and height are known. Can we classify Q based on these
quantities alone? What sort of decision rule should be used?

It is desirable, if possible, to obtain a linear classifier, that is, a linear
function f such that a single computation (evaluation of a linear function and a

comparison) will suffice to determine the sample to which Q belongs:

if f(x Q , y Q) > T then Q e M else Q e F.

In the above expression T is a threshold value. In k dimensions the locus

2 Details on a number of geometric problems arising in pattern recognition can be found in

Andrews (1972), Duda-Hart (1973), and Meisel (1972).

7.1 A Sample of Applications
	 269

Separable Non - separable

Figure 7.3 Two sets are separable if and only if their convex hulls are disjoint.

f(x 1 , ... , xk) = T is a hyperplane; in two dimensions it is a straight line. A
linear classifier performs well if it separates the two samples such that all
points of M lie on one side and all points of F lie on the other.

Definition 7.1. Two sets are said to be linearly separable if and only if there
exists a hyperplane H that separates them.

Determining the existence of a linear classifier is thus a matter of deciding
whether the training samples are separable.

Separability is a classical question in combinatorial geometry. A crucial
criterion for linear separability is provided by the following theorem.

Theorem 7.1 [Stoer—Witzgall (1970), Theorem 3.3.9.]. Two sets of points are
linearly separable if and only if their convex hulls do not intersect.

This theorem is illustrated in Figure 7.3 in the plane. Since we know that the
convex hull of a finite point set is a convex polytope, linear separability is
established by testing whether two convex polytopes intersect. The latter
problem is an instance of the following problem type.

PROBLEM TYPE I.2 (INTERSECTION TEST). Given two geometric objects,
do they intersect?

We shall see later that detection of intersection is frequently easier than the
corresponding construction problem.

7.1.3 Wire and component layout

With circuit microminiaturization proceeding at a fantastic pace, the number
of components on chips, conductors on boards, and wires in circuitry has
grown to the point that such hardware cannot be designed without the aid of
machines. The number of elements in a single integrated circuit may easily
exceed the million and each must be placed by the designer subject to a variety
of electronic and physical constraints. The programs that assist in this process

270 	 7 Intersections

are largely heuristic and often produce solutions that are not feasible because
two components overlap or two conductors cross (see [Akers (1972);
Hanan—Kurtzberg (1972); and Hanan (1975)]). Heuristic methods are used
because some of the problems involved in component placement are NP-
complete [Garey—Johnson—Stockmeyer (1976)]. The designs must therefore
be subjected to exhaustive verification that involves pairwise comparisons of
all items on the chip, an expensive and time-consuming operation. This
motivates the following theoretically significant class of problems.

PROBLEM TYPE I.3 (PAIRWISE INTERSECTION). Given N geometric ob-
jects, determine whether any two intersect.

We will, of course, be looking for an algorithm that avoids testing each object
against every other. The solution to a problem of this type, which we develop
in Section 7.2.3 has extensive practical and theoretical applications (see also
Chapter 8).

7.1.4 Linear programming and common intersection of half-spaces.

Linear programming can be viewed as a fourth type of intersection problem.
The feasible region of a linear programming problem is the intersection of the
half-spaces determined by its constraint set. The objective function is max-
imized at some vertex of this convex polyhedral region, which is specified in a
different way from that studied in Chapter 3. Here we are not given a set of
points among which the hull vertices are to be found, but rather a collection of
half-spaces that bound the hull, and we are asked to find the vertices. Clearly,
by constructing the common intersection of these N objects, we obtain a
solution of the linear programming problem. However, all we need is the
identification of one vertex for which the objective function is extremized
(either maximized or minimized) and there is no reason to think that—even
for small dimensionality—the complete construction of the polyhedral region
is necessary.

In one dimension linear programming is trivial. It may be formulated as

Maximize ax + b subject to ai x + bi < 0, i = 1, ... ,N. 	(7.1)

The feasible region is either empty, an interval, or a half-line because it is an
intersection of half-lines that extend either to — co or + co.

Let L be the leftmost point of the positively extending half-lines and let R be
the rightmost point of the negatively extending ones, If L > R, the feasible
region is empty. If L < R it is the interval [L, R]. Clearly L and R can be found
in linear time, so linear programming in one dimension is an 0(N) process. In
higher dimensions, a linear programming problem can be solved by construct-
ing the common intersection of half-spaces. However, the two problems are
not equivalent as we shall see in more depth in Section 7.2.5.

7.2 Planar Applications 	 271

We shall now discuss some basic algorithms for the solution of the pro-
blems outlined above. Most of the algorithms refer to problems of the
CONSTRUCT INTERSECTION type (Problem Type I.1), although, wher-
ever appropriate we shall contrast them with the corresponding "detection"
type problem. We begin with planar applications and shall later proceed to
three-dimensional instances. Needless to say, the state of knowledge on this
topic in relation to the number of dimensions mirrors a pattern by now
familiar in the whole of computational geometry.

7.2 Planar Applications

7.2.1 Intersection of convex polygons

In this section, by "polygon" we mean its boundary and its interior; the edge
cycle of the polygon will be referred to explicitly as the polygon boundary. The
problem is stated as follows.

PROBLEM I.1.1 (INTERSECTION OF CONVEX POLYGONS). Given two
convex polygons, P with L vertices and Q with M vertices, form their
intersection.

We assume without loss of generality that L < M.

Theorem 7.2. The intersection of a convex L-gon and a convex M-gon is a convex
polygon having at most L + M vertices.

PROOF. The intersection of P and Q is the intersection of the L + M interior
half planes determined by the two polygons. 	 ❑

The boundary of P n Q consists of alternating chains of vertices of the two
polygons, interspersed with points at which the boundaries intersect. (See
Figure 7.4.)

The obvious method for forming the intersection is to proceed around P,
edge by edge, finding by rote all of the boundary intersection points involving
Q (of which there are at most two along any edge) and keeping a list of the
intersection points and vertices along the way. This will take O(LM) time
because each edge of P will be checked against every edge of Q to see if they
intersect. Of course, it is natural to attempt to exploit the convexity of the
polygons to reduce the computational work.

One approach consists in subdividing the plane into regions, in each of
which the intersection of the two polygons can be easily computed. The
creation of new geometric objects to solve a given problem is not infrequent in

272 	 7 Intersections

Figure 7.4 Intersection of convex polygons.

computational geometry; the reader may recall its crucial use in the various
geometric searching techniques illustrated in Chapter 2. In our case, the
simplest partition of the plane—the one induced by a star of rays—is ade-
quate [Shamos–Hoey (1976)]. Specifically, we choose an arbitrary point O in
the plane. (This point O may be chosen at infinity; indeed the original method
of Shamos–Hoey is based on choosing O as the point at infinity on the y-axis
of the plane.) From O we trace all the rays to the vertices of the polygons P and
Q. These rays partition the plane into sections. Our goal is to sort the
collection of these rays in angular order around O. Fortunately, this is readily
done. Indeed, if O lies inside a polygon, say P, then the rays to the vertices of P
are obviously sorted around O as the vertices, whose order is given. If, on the
other hand, O lies outside P, then the vertices of P form two chains—both
comprised between the two vertices of P reached by the supporting lines from
0—and for each chain the corresponding rays from O are sorted in angular
order. Thus, in all cases the sectors determined by the vertices of P are sorted
in angular order in time linear in the number of vertices. Once these two
sequences (one for P and one for Q) are available, they can be merged in linear
time.

The key observation is that the intersection of each sector with a convex
polygon is a quadrilateral (a trapezoid when O is a point at infinity). Thus,
within any single sector, the intersection of P and Q is an intersection of two
quadrilaterals, which can be found in constant time. The resulting pieces can
be fitted together in a single linear-time sweep over the sectors. A clean-up
pass is then executed to remove spurious vertices that occur at boundaries
between sectors.

Theorem 7.3. The intersection of a convex L-gon and a convex M-gon can be
found in 0(L + M) time.

In Figure 7.5 we illustrate the method, where the choice of O is the one
originally proposed by Shamos–Hoey. In this case the angular sectors are

Inside a slab each
polygon forms a
trapezoid
I

I 	I
I 	̂

7.2 Planar Applications
	 273

Figure 7.5 Slabs defined by the vertices of two convex polygons.

appropriately called slabs and the polar angle at O is appropriately replaced
by the abscissa x.

Another approach is, surprisingly, an elegant refinement [O'Rourke-
Chien—Olson—Naddor (1982)] of the crude method readily disposed of at the

beginning of this section. The basic idea is informally described as follows.
Suppose that P n Q 0, and consider the polygon P* _° P n Q. The bound-
ary of P* is an alternating sequence of fragments of the boundaries of P and of
Q. If one such fragment is part of the boundary of, say, P, then a fragment of
the boundary of Q wraps around it in the exterior of P* (see Figure 7.6). It is
descriptively appropriate, due to the convexity of both fragments, to call each

pair of facing fragments a "sickle," of which the internal and external chains
are naturally defined. A sickle is comprised between two intersection points,

called initial and terminal, according to the common orientation of P and Q. A
vertex (of P or Q) is said to belong to a sickle either (i) if it lies between the

initial and terminal intersection points (on either chain), or (ii) if it is the

terminus of the edge of the internal chain containing the terminal point of the

sickle (see Figure 7.7). Note that there are vertices which belong to two sickles.

To develop the advancing mechanism let (p1,p2, 	,PL) and (q 1 ,

A sickle

Figure 7.6 Two intersecting polygons. The "sickles" are shown shaded.

Case (3)

ti

Pi

Advance

Case (4)

274 	 7 Intersections

Initial intersection
of the sickle

Final intersection
of the sickle

Figure 7.7 Sickle nomenclature. Solid vertices belong to the shaded sickle.

q 2 , ... , qJ1) be the counterclockwise cycles of the vertices of P and Q,
respectively (so that a polygon is conventionally "to the left" of its boundary).
Suppose that we are advancing on both boundaries and that pi and qi are the
current vertices on the two polygons; moreover, the current edges are those
terminating at pi and qi ; there are four distinct situations to consider, illus-
trated in Figure 7.8. (Other situations are reducible to these four, by
exchanging the roles of P and Q.) Let h(pi) denote the half-plane determined
by p; _ 1 p ; and containing P (h(q,) is analogously defined). Obviously P* is
contained in the intersection of h(p;) and h(q;), that is, in the shaded regions in
Figure 7.8.

The idea is not to advance on the boundary (either of P or of Q) whose current

Advance

Advance

Case (2) Case (1)

Figure 7.8 Illustration of the advancing mechanism. We advance on one boundary
or the other depending upon the relative positions of the current vertices p; and qj
(current edges are shown as solid lines).

7.2 Planar Applications 	 275

edge may contain a yet to be found intersection. Thus, in Case (2) we shall
advance on P, since the current edge q;_ 1 q; of Q may contain a yet to be found
intersection; by an analogous reasoning, in Case (3) we shall advance on the
boundary of Q. In Case (4), all intersections on the current edge of P have
already been found, while the current edge of Q may still contain an undis-
covered intersection; thus we advance on P. Finally, in Case (1) the choice is
arbitrary, and we elect to advance on Q. The handling of these four cases
completely specifies the advancing mechanism of the method, embodied by a
subroutine ADVANCE. The sentence "ADVANCE implements Case (j)"
(for j = 1, 2, 3, 4) means that the advancing action corresponding to Case (j) is
correctly executed.

Neglecting, for clarity and simplicity, the degenerate cases (when the
boundary of P contains a vertex of Q, and vice versa) which require special
care,' we can now formalize the algorithm. Note that pi, and qM immediately
precede p 1 and q 1 , respectively (this means that, conventionally po = AL , and

gm).

procedure procedure CONVEX POLYGON INTERSECTION
begin i:= j:= k:= 1;

repeat
begin if (pi _ i Pi and q;_ 1 q; intersect) then print intersection;

ADVANCE (*either i or j is incremented*);
k:=k+ 1

end
until k = 2(L + M);
if (no intersection has been found) then

begin if pi e Q then P g Q
else if q; E P then Q P

else Pr Q= QS
end

end.

We now establish the correctness of the algorithm. Ifp i and q; belong to the
same sickle, the rules of ADVANCE guarantee that the terminal intersection
of the sickle will be reached (as the next intersection), since we never advance
on a boundary whose current edge may contain the sought intersection point.
This, in turn, guarantees that once both current vertices belong to the same
sickle, all the sickles will be constructed in succession. To complete the proof,
we must show that the algorithm finds an intersection if P and Q intersect.
Note that intersections occur in pairs, so there are at least two intersection
points. Let pi _ 1 p i , the current edge of P, be an edge containing an intersection
point y with q,._, q,., so that qr e h(p i) (see Figure 7.9). If w is the next intersec-
tion point in the sickle beginning at y, there are two significant vertices of Q:

'Details can be found in the original paper by [O'Rourke et al. (1982)].

276 7 Intersections

(b) (a)

Cases (2)
and (4)

Figure 7.9 Illustration for the proof that the algorithm finds an intersection point if
P and Q intersect.

vertex q,., already defined, and vertex qs , which is the farthest in h(pi) from the
line determined by pi_1pi. The boundary of Q is partitioned by these two
vertices into two directed chains C,. and Cs, which respectively have q,. and qs as
their terminal vertices. Letting, as usual, qi_ 1 q. denote the current edge of Q,
we distinguish two cases:

(i) qi E Cr . ADVANCE successively implements sequences (all possibly
empty) of Cases (2), (4), (1) and (3) as illustrated in Figure 7.9(a). The

march takes place onQ while pi_1 p i remains stationary, until y is found.
(ii) q; E Cs (Figure 7.9(b)). Let 1 be the line determined by q;_ 1 qi . There are

two supporting lines of P parallel to 1. Let pm be a vertex belonging to one
such supporting line, which is first reached when tracing the boundary of

P from pi . Clearly, ADVANCE (Cases (2) and (4)) marches from pi top„,
while q_ 1 q^ remains stationary. Then if p„,0 h(q;), ADVANCE further
proceeds on to the first vertex pr e h(q;). In either case ADVANCE
currently points to q. and to a vertex p* of P (either p* = pm or p* = pt)
lying inside h(q;). Note that the current situation is not different from that

where a single vertex q replaces the subchain (q r , qr+l , 	, q_ 1): q is the
intersection of the lines determined by qr_ 1 qr and q_ 1 q respectively.
Thus it is as if qi and p* belong to the same sickle, in which case

ADVANCE reaches the terminal point of this sickle.

If an edge like pi_lpi exists (i.e., the boundaries of P and Q intersect) after
(L + M) ADVANCE steps it has certainly been reached; indeed, after (L +
M) steps the boundary of at least one polygon has been completely traversed
and each polygon contains at least one edge like pi_lpi. It is then easy to

7.2 Planar Applications 	 277

Figure 7.10 Illustration of the execution of the algorithm of O'Rourke et al. An edge
bears the label j if the ADVANCE loop reaches it at its j-th iteration. Initial edges are
shown in heavy line.

realize that at most (L + M) additional ADVANCE steps are sufficient to
obtain the boundary of the intersection of P and Q. Thus we conclude that, if
after 2(L + M) ADVANCE steps the algorithm fails to find an intersection,
the boundaries of the two polygons do not intersect at all. From a perfor-
mance viewpoint, the work done by ADVANCE is completed in time
O(L + M); additional O(L + M) steps are sufficient to decide, if necessary,
among the alternatives P _ Q, Q P, or P n Q = 0. Thus, this method
provides an alternative proof of Theorem 7.3.

An illustration of the action of the algorithm is given in Figure 7.10. There
an edge receives the label j if the repeat loop (ADVANCE step) reaches it at its
j-th iteration. The two initial edges (one of P, the other of Q shown in heavy
line) are correctly labelled with the integer zero.

7.2.2 Intersection of star-shaped polygons

Because star polygons are angularly simple, a property they share with convex
polygons, we might suspect that their intersection can also be found quickly.
This is not the case, as Figure 7.11 shows.

The intersection of P and Q is not a polygon itself, but is a union of many
polygons. P and Q both have N vertices, and every edge of P intersects every
edge of Q, so the intersection has on the order of N 2 vertices. This gives a
(trivial) lower bound:

Theorem 7.4. Finding the intersection of two star-shaped polygons requires
fl(N 2) time in the worst case.

This means that the hidden line problem for arbitrary polygons must also
take quadratic time in the worst case, since merely drawing the intersection
requires that S1(N 2) vectors be drawn. In the next section we shall explore the

278 	 7 Intersections

Figure 7.11 The intersection of two star-shaped polygons.

striking possibility that it may not be necessary to spend this much time if we
only want to know whether P and Q intersect at all.

7.2.3 Intersection of line segments

One of the major patterns in the study of computational geometry is that a
large collection of seemingly unrelated problems can be solved by the same
method if only their common algorithmic features can be isolated. The present
section shows how a diverse set of applications can be unified and reduced to
determining whether or not a set of N line segments in the plane are pairwise
disjoint.

PROBLEM I.2.1 (LINE-SEGMENT INTERSECTION TEST). Given N line
segments in the plane, determine whether any two intersect.

An algorithm for this problem would be quite instrumental for the appli-
cations of wire layout and component placement outlined in Section 7.1.3.
Before tackling Problem I.2.1 we describe additional significant applications
of it.

7.2.3.1 Applications

PROBLEM I.2.2 (POLYGON INTERSECTION TEST). Given two simple
polygons, P and Q, with M and N vertices, respectively, do they intersect?

As noted in Section 7.2.1 for convex polygons, if P and Q intersect, then
either P contains Q, Q contains P, or some edge of P intersects an edge of Q
(Figure 7.12).

7.2 Planar Applications
	

279

Edge

*sect

ion

Qc P No edge intersection

Figure 7.12 Either P c Q, Q c P, or there is an edge intersection.

Since both P and Q are simple, any edge intersections that occur must be
between edges of different polygons. Let T(N) be the time required to solve
Problem I.2.1. We can then detect any edge intersection between P and Q in
T(M + N) operations. If no intersection is found, we still must test whether
PcQ or QcP.

If P is internal to Q, then every vertex of P is internal to Q, so we may apply
the single-shot point-inclusion test of Theorem 2.1 in 0(N) time, using any
vertex of P. If this vertex is found to lie outside Q, we can learn by the same
method in 0(M) time whether Q c P. Therefore we have

Theorem 7.5. Intersection of simple polygons is linear-time transformable to
line-segment intersection testing:

POLYGON INTERSECTION TEST cc N LINE-SEGMENT
INTERSECTION TEST

We have already seen that the complexity of algorithms that deal with
polygons can depend on whether the polygons are known to be simple or not.
For example, the convex hull of a simple polygon can be found in 0(N) time
(Theorem 4.12) but SZ(N log N) is a lower bound for nonsimple polygons. It
would be useful, therefore, to have an algorithmic test for simplicity.

PROBLEM I.2.3 (SIMPLICITY TEST). Given a polygon, is it simple?

Simple and nonsimple polygons are shown in Figure 7.13.
Since a polygon is simple if and only if no two of its edges intersect, we have

immediately that

SIMPLICITY TEST cc LINE-SEGMENT INTERSECTION TEST.

7.2.3.2 Segment intersection algorithms

Suppose we are given N intervals on the real line and wish to know whether
any two overlap. This can be answered in 0(N 2) time by inspecting all pairs of
intervals, but a better algorithm based on sorting comes to mind almost
immediately. If we sort the 2N endpoints of the intervals and designate them
as either right or left, then the intervals themselves are disjoint if and only if the

280 7 Intersections

Figure 7.13 Simple and nonsimple polygons.

endpoints occur in alternating order: L R L R... R L R (Figure 7.14). This test
can be performed in O(N log N) time.

The two questions we will want to deal with are whether this algorithm can

be improved and whether it generalizes to two dimensions.
To show a lower bound, we will exhibit a correspondence between the

segment overlap problem and a familiar and basic question in set theory,

ELEMENT UNIQUENESS (given N real numbers, are they all distinct?—
Section 5.2). We have shown earlier that this problem is easily solved in time

O(N log N) by means of sorting, and although there is no simple way to show

that sorting is required, by the results of Dobkin and Lipton (1976) and of

Ben-Or (1983) we know that time SZ(N log N) is necessary in the algebraic
decision-tree computation model (Corollary 5.1). We now show that

ELEMENT UNIQUENESS oc N INTERVAL OVERLAP.

Given a collection of N real numbers x i , these can be converted in linear time

to N intervals [x i , xi]. These intervals overlap if and only if the original points

were not distinct and this proves

Theorem 7.6. 0(N log N) comparisons are necessary and sufficient to determine
whether N intervals are disjoint, if only algebraic functions of the input can be
computed.

How severe is the restriction to algebraic functions? For one thing, it

forbids the use of the "floor" function, which, as we saw in Section 6.4, is a

very powerful operation. (Recall that the use of this function allowed Gon-
zalez (1975) to solve the MAXGAP problem in time 0(N).) No techniques are

r 	 1 	r --- 1 	r --1 r -- 	1
I 	 I 	I 	t 	I 	t 	t 	 I

L 	R L R L R L 	R

L and R a I ternate. No overlap

r ----1 r --- 1 	r--------^
r - J 	-J-- ^ 1 I 1---1 --- 1 	r --^ -^
I 	i 	-- 	i 	! 	I 	i 	I 	I 	I 	1 	! 	I

LL 	R LR RL L RLRR

L and R do not alternate

Figure 7.14 Detecting interval overlap.

7.2 Planar Applications 	 281

known that would enable us to prove Theorem 7.6 if the "floor" function were
allowed, but it may be conjectured that the lower bound would be unaffected
by its introduction. Theorem 7.6 applies a fortiori in all dimensions. In
particular, to test the disjointness of N segments in the plane requires
fl(N log N) operations.

Let us explore what really happens when we sort to detect overlap. The
motivation for doing this is that there is no natural total order on line
segments in the plane, so a generalization based solely on sorting will have to
fail. If we are able to understand the essential features of the algorithm,
though, we may be able to extend it to the plane.

Overlap occurs if and only if two segments contain some common point.
Each point on the real line has associated with it a set consisting of the
intervals that cover it. This defines a function C: 11 10, 1 I N from the reals to
subsets of { 1, ... , N}. The value of function C can change only at the 2N
endpoints of the intervals. If the cardinality of {C(x)} ever exceeds one, an
overlap has occurred. To detect this, we first sort the endpoints and set up a
rudimentary data structure that consists of just a single integer, the number of
intervals covering the current abscissa. Scanning the endpoints from left to
right, we INSERT an interval into the data structure when its left endpoint is
encountered and DELETE it when its right endpoint is passed. If an attempt is
ever made to INSERT when the data structure already bears the value one, an
overlap has been found; otherwise, no overlap exists. Since the processing of
each endpoint in this way takes only constant time, after sorting the checking
process requires no more than linear time.

In two dimensions we are obliged to define a new order relation and make
use of a more sophisticated data structure.' Consider two nonintersecting line
segments s 1 and .s 2 , in the plane. We will say that s l and s 2 are comparable at
abscissa x if there exists a vertical line by x that intersects both of them. We
define the relation above at x in this way: s 1 is above 5 2 at x, written s 1 > x s2 , if
s 1 and s2 are comparable at x and the intersection of s 1 with the vertical line
lies above the intersection of s 2 with that line.' In Figure 7.15 we have the
following relationships among the line segments s 1 ,s2 , s3 , and s4 :

S2 > U 84, 	.S1 > „ S2, 	.S2 > „ S4 1 and s i > „ 54 .

Segment 5 3 is not comparable with any other segment.
Note that the relation > X is a total order, which changes as the vertical line

is swept from left to right. Segments enter and leave the ordering, but it always
remains total. The ordering can change in only three ways:

4 For purposes of discussion, we will assume that no segment is vertical and that no three segments
meet in a point. If either of these conditions is not met, the algorithms we develop will be longer in
detail but not in asymptotic running time.

'This order relation and the algorithm derived from it were developed by Dan Hoey. A proof of
the validity of the algorithm was supplied by M. Shamos. These results were reported jointly in
[Shamos--Hoey (1976)].

282 	 7 Intersections

S4

I
U
	

V

Figure 7.15 An order relation between line segments.

1. The left endpoint of segment s is encountered. In this case s must be added
to the ordering.

2. The right endpoint of s is encountered. In this case s must be removed from
the ordering because it is no longer comparable with any others.

3. An intersection point of two segments s, and s 2 is reached. Here s 1 and s 2
 exchange places in the ordering.

Note that a necessary condition for two segments s 1 and s2 to intersect is
that there is some x for which s 1 and s 2 are consecutive in the ordering > x .
This immediately suggests that the sequence of the intersections of the seg-
ment set with the vertical line by x (i.e., the relation > x) contains all the
relevant information leading to the segment intersection, and that the natural
device for this class of problems is of the "plane-sweep" type (see Section
1.2.2, for a general formulation of this algorithmic technique). We recall that a
plane-sweep technique makes use of two basic data structures: the sweep-line
status and the event-point schedule.

As noted above, the sweep-line status is a description of the relation > x ,
that is, it is a sequence of items (segments). Referring to the previously
described mechanism, whereby this relation > x changes at a finite set of
abscissae in the plane sweep, it is clear that the data structure £ implementing
the sweep-line status must support the following operations:

a. INSERT(s, £'). Insert segment s into the total order maintained by cr.
b. DELETE(s, £). Delete segment s from £.
c. ABOVE(s, Y'). Return the name of the segment immediately above s in the

ordering.
d. BELOW(s, e29). Return the name of the segment immediately below s in

the ordering.

The postulated data structure is known as a dictionary (see Section 1.2.3), and
all of the above operations can be performed in time at most logarithmic in its
size. In reality by deploying a threaded dictionary (a straightforward use of
pointers, if the address of s is known) ABOVE(s) and BELOW(s) can be
performed in constant time.

As regards the event-point schedule, we note that, in order to report all

7.2 Planar Applications 	 283

s2

xl X4 X5

` ^ -----'^^^

.-A''

Figure 7.16 Intersection point p is detected for x = x, when segments s, and s 2 are
found adjacent for the first time. However event abscissae x 2 , x3 , and x4 must be
processed before point p at x 5 is handled.

intersections, we must be able to maintain the relation >,, as the vertical line
sweeps the plane. As noted earlier (see 1, 2, and 3 above), the relation > x is
modified only at distinguished abscissae, which are either left or right end-
points of segments, or segment intersections. While the left and right end-
points of the segments are all given a priori, an intersection point—found by
the plane sweep—dynamically produces an event, which, in general, must be
recorded and handled by the algorithm at its correct time in the future. Notice,
indeed, that several event abscissae may have to be processed between the time
an intersection point is detected and the time the corresponding event is
processed. In Figure 7.16 we have an illustration of this situation: here,
intersection point p is detected at x 1 (when segments s 1 and s2 become
adjacent); however, abscissae x 2 , x3 , and x4 must be processed before its
corresponding event x 5 is handled. We recognize therefore that, in order to
report all the intersections, the data structure a implementing the event-point
schedule must support the following operations (g stores the total order of the
event points):

a. MIN(e). Determine the smallest element in g and delete it.
b. INSERT(x, 6'). Insert abscissa x into the total order maintained by e.
In addition to this essential operation, we also require that g supports the

operation

c. MEMBER(x, g). Determine if abscissa xis a member of t.

The postulated data structure is a priority queue (see Section 1.2.3) and as is
well-known, it supports all three above operations in time logarithmic in its

size.
We are now ready to outline the algorithm: as the vertical line sweeps the

plane, at each event point data structure Y is updated and all pairs of
segments that become adjacent in this update are checked for intersection. If

.
.

284 	 7 Intersections

an intersection is detected for the first time, it is both reported (printed out)
and its abscissa is inserted into the event point schedule g. Less informally we
have (here d is a queue, internal to the procedure) [Bentley—Ottmann (1979)]:

procedure LINE SEGMENT INTERSECTION
1. begin sort the 2N endpoints lexicographically by x and y and place them

into priority queue g;
2. .^ ._ 0;
3. while (g 0 0) do
4. begin p := MIN(g);
5. if (p is left endpoint) then
6. begin s := segment of which p is endpoint;
7. INSERT(s, .r);
8. s 1 := ABOVE(s, .r);
9. s2 := BELOW(s, s);

10. if (s 1 intersects s) then sal G (s 1 , s);
11. if (s 2 intersects s) then d G (s, s 2)

 end

12. else if (p is a right endpoint) then
begin s := segment of which p is endpoint;

13. s l := ABOVE(s, z°);
14. s 2 := BELOW(s, P);
15. if (s 1 intersects s 2 to the right of p)

then sal G (s 1 , s 2);
16.

DELETE(s, y)
 end

17. else (*p is an intersection*)
18. begin (s 1 , s 2) := segments of which p is intersection

(*with s 1 = ABOVE(s 2) to the left of p*)
19. s3 := ABOVE(s 1 , 2);
20. s4 := BELOW(s 2 , .r);
21. if (s 3 intersects s 2) then d G (s 3 ,s2);
22. if (s l intersects 54) then .4 .(s 1 , s4);
23. interchange s 1 and s2 in £

end;
(*the detected intersections must now be processed*)

24. while (91 0 0) do
25. begin (s, s') G sal;
26. x := common abscissa of s and s';
27. if (MEMBER(x, g) = FALSE) then

28. begin output (s, s');
29. INSERT(x, g)

end
end

end
end.

7.2 Planar Applications 	 285

That no intersection is missed by this algorithm follows from the obser-
vation that only adjacent segments may intersect and that all adjacencies are
correctly examined at least once. Moreover, each intersection is reported
exactly once, for, once its abscissa is inserted into (, the test in line 27 prevents
undesired repetitions. 6

From the performance viewpoint, we note: line 1 (initial sorting) is com-
pleted in time 0(N log N). Program blocks 6-11, 13-16, and 18-23 run each
in time 0(log N), since each operation on £ can be performed within this time
bound, in the worst-case, and a test for intersection uses constant time. For
each event, i.e., each execution of the main while-loop at Line 3, these three
program segments are mutually exclusive. If K denotes the number of intersec-
tions encountered by the algorithm, the main while-loop is executed exactly
(2N + K) times. The only item which still deserves careful attention concerns
data structure g, i.e., how many times is the test embodied in Line 27 going to
be performed? Superficially, we note that a single intersection may be redis-
covered a large number of times; however, if, from an accounting viewpoint,
we charge each intersection pair to the execution of the main while-loop that
produces it, we realize that the total number of intersection pairs produced is
0(N + K). Thus, Line 27 is executed 0(N + K) times, and each execution
runs in time 0(log (N + K)) = 0(log N), since K < (2) = 0(N2). We
conclude therefore that the time globally used by the main while-loop is
0((N + K) log N), which clearly dominates the initial sorting step. We have
therefore

Theorem 7.7 [Bentley–Ottmann (1979)]. The K intersections of a set of N line
segments can be reported in time 0((N + K) log N).

We remark—although this presentation reverses our usual pattern—that
the above algorithm solves the following problem.

PROBLEM I.1.2 (LINE SEGMENT INTERSECTION). Given N line seg-
ments, determine all their intersections.

Simplicity of description is the most important feature of the above algo-
rithm; its performance, however, is not optimal. Indeed SZ(K + N log N) is a
lower bound to the running time for this problem, since the term SZ(N log N)
is due to Theorem 7.6 and 0(K) is trivially due to the size of the output.
Needless to say, this performance gap attracted considerable research interest,
culminating, after a progression of partial findings, in an optimal 0(K +
N log N)-time algorithm due to Chazelle and Edelsbrunner (1988). These
results will be further illustrated in Section 7.4, Notes and Comments, at the
end of this chapter.

6 To handle the hypothetical situation of intesections sharing the same abscissa, it is sufficient to
design g' to maintain the lexicographic order of the pairs (x, y) of the intersections.

286 	 7 Intersections

If we abandon the idea of finding all intersections and content ourselves
with the corresponding detection problem ("Find an intersection if one or
more exist"), things are greatly simplified. Indeed, we may proceed as in the
one-dimensional algorithm. Instead of holding just a single object, however,
the data structure must be able to maintain the total order of the segments
intersected by the sweep-line and coincides with the dictionary 9 used earlier.
The main difference between the construction and the detection algorithms
lies in the data structure for the event-point schedule, which in the latter case is
a simple array, storing just the originally given 2N endpoints. We have the
following algorithm.

procedure LINE-SEGMENT INTERSECTION TEST
begin sort the 2N endpoints lexicographically by x and y and place them in the

real array POINT[l :2N];
for i := 1 until 2N do

begin p := POINT[i];
s := segment of which p is endpoint;
if (p is a left endpoint) then

begin INSERT(s, P);
s l := ABOVE(s, .29);
s 2 := BELOW(s, s);
if (s 1 intersects s) then output (s 1 , s)
if (s 2 intersects s) then output (s 2 , s)

end;
else (*p is the right endpoint of s*)

begin s 1 := ABOVE(s, P);
s 2 := BELOW(s, Y);
if (s 1 intersects s 2) then output (s 1 ,s2);
DELETE(s, e,T)

end
end

end.

The following theorem establishes the correctness of the algorithm.

Theorem 7.8. Procedure LINE-SEGMENT INTERSECTION TEST finds an
intersection if one exists.

PROOF. Since the algorithm only reports an intersection if it finds one, it will
never falsely claim that two segments cross, and we may turn our attention to
the possibility that an intersection exists but remains undetected. We will
show that the algorithm correctly finds the leftmost intersection point qL .
Indeed, if qL coincides with a left extreme p of a segment, qL is found when
processing p. Therefore, assume that qL is not the left extreme of a segment. To
the left of qL data structure .' contains a correct representation of the relation
> x . Since there is a small nonempty interval of abscissae to the left of qL where

7.2 Planar Applications 	 287

two segments intersecting at qL become adjacent, then qL is discovered as
claimed. 	 ❑

The above algorithm, though simple, has some curious properties. Even
though the leftmost intersection is always found, it is not necessarily the first
intersection to be found. (The reader may test his understanding of the
algorithm by characterizing exactly which intersection is found first.) Also,
since the algorithm only performs 0(N) intersection tests, it may fail to find
some intersections. The main if-block—the intersection test—is obviously
carried out in time O(log N), in the worst case. Thus we conclude with the
following theorem (note again, that optimality follows from Theorem 7.6).

Theorem 7.9. Whether any two of N line segments in the plane intersect can be
determined in 0(Nlog N) time, and this is optimal.

An immediate consequence of this result is the following.

Corollary 7.1. The following problems can be solved in time O(N log N), in the
worst case.

PROBLEM I.2.2 (POLYGON INTERSECTION TEST). Do two given poly-
gons intersect?

PROBLEM I.2.3 (SIMPLICITY TEST). Is a given polygon simple?

PROBLEM I.2.4 (EMBEDDING TEST). Does a straight-line embedding of a
planar graph contain any crossing edges?

Further results have been obtained using variations of Algorithm LINE
SEGMENT INTERSECTION and can be found in [Shamos–Hoey (1976)].
We just quote:

Corollary 7.2. Whether any two of N circles intersect can be determined in
O(N l og N) time.

7.2.4 Intersection of half -planes

The construction of the common intersection of N half-planes consists of
finding the region of the solutions of a set of N linear inequalities (constraints)
of the form

a•x+biy+c< <0 	i= 1,2, ... , N. 	 (7.2)

A solution of (7.2) is conventionally called a feasible solution, and their locus
is called feasible region. An illustration of the problem is given in Figure 7.17.

288 	 7 Intersections

Figure 7.17 The feasible region of a set of linear constraints.

There is a simple quadratic algorithm for forming the intersection of N
half-planes. Let us assume that we already have the intersection of the first i
half-planes. This is a convex polygonal region of at most i sides, though it is
not necessarily bounded. Intersecting this region with the next half-plane is a
matter of slicing the region with a line and retaining either the right or left
piece. This can be done in 0(i) time in the obvious way. The total work
required is 0(N 2), but the algorithm has the advantage of being on-line.

Let us see if any improvement is possible with a divide-and-conquer
approach for the problem formally defined as follows.

PROBLEM I.1.3 (INTERSECTION OF HALF-PLANES). Given N half-
planes Hl , H2, ... , HN form their intersection

Hi n H2 n • • • n HN.

Because the intersection operator is associative, the terms may be paren-
thesized any way we wish:

(HI n ...
nHNi2) n (HNi2+i

n ... n HN) (7.3)

The term in parentheses on the left is an intersection of N/2 half-planes and
hence is a convex polygonal region of at most N/2 sides. The same is true of
the term on the right. Since two convex polygonal regions each having k sides
can be intersected in 0(k) time by Theorem 7.3, the middle intersection
operation in (7.3) can be performed in 0(N) time. This suggests the following
recursive algorithm:

procedure INTERSECTION OF HALF-PLANES

Input: N half-planes defined by directed line segments
Output: Their intersection, a convex polygonal region.

1. Partition the half-planes into two sets of approximately equal sizes.
2. Recursively form the intersection of the half-planes in each subproblem.

7.2 Planar Applications 	 289

	• x

Figure 7.18 Illustration of how SORTING can be transformed to HALF-PLANES.

3. Merge the subproblems solutions by intersecting the two resulting convex
polygonal regions.

If T(N) denotes the time used to form the intersection of N half-planes by
this algorithm, we have

T(N) = 2T(N/2) + 0(N) = 0(N log N). 	 (7.4)

We summarize as follows.

Theorem 7.10. The intersection of N half-planes can be found in 0(N log N) time,
and this is optimal.

PROOF. The upper bound follows from equation (7.4). To prove the lower
bound we show that

SORTING oc N HALF-PLANES.

Given N real numbers x l , ... , x N , let Hi be the half-plane containing the
origin that is defined by the line tangent in the point (x i , x;) to the parabola
y = x 2 , i.e., the line y = 2xix — x? (see Figure 7.18). The intersection of
these half-planes is a convex polygonal region whose successive edges are
ordered by slope. Once this region is formed, we may read off the x i 's in sorted
order. 0

The general result of Theorem 7.10 has a significant application expressed
by the following.

Corollary 7.3. The common intersection of N convex k-gons can be found in
O(Nk log N) time.

290 	 7 Intersections

PROOF. It is straightforward to achieve O(Nk log Nk) time by intersecting the
Nk left half-planes of the polygons. To reduce this time we will treat the
polygons as N units rather than as a collection of Nk edges. Let T(N, k) be the
time sufficient to solve the problem. The intersection of N/2 convex k-gons is a
convex polygon of at most Nk/2 sides. Two of these can be intersected in time
ckN, for some constant c. So by recursively splitting the problem as in
INTERSECTION OF HALF-PLANES, we have

T(N,k) = 2T(N /2, k) + ckN = O(Nk log N).

7.2.5 Two -variable linear programming

The preceding formulation (7.2) of the problem of intersecting N half-planes is
(deceptively) similar to the standard formulation of the linear programming
problem [Gass (1969)] in two variables. Indeed, the latter is formulated as
follows.

PROBLEM I.1.4 (2-VARIABLE LINEAR PROGRAMMING). Minimize ax
+ by, subject to

aix+biy+c< <0, 	i= 1,...,N. 	 (7.5)

Again, the feasible region of the linear programming problem is the set of
points (x, y) that satisfy the constraints in (7.5), and is obviously the intersec-
tion of N half-planes. The objective function defines a family of parallel lines
ax + by + A = 0, where), is a real parameter. The lines of this family that
support the feasible region pass through the vertices that minimize and maxi-
mize the objective function. (See Figure 7.19.)

Since we already known how to find lines of support of a convex polygon in
O(log N) time (Section 3.3.6) we have the transformation

2-VARIABLE LINEAR PROGRAMMING cc N HALF-PLANES

and, using the result of the preceding section (Theorem 7.10) we obtain

Theorem 7.11. A linear program in two variables and N constraints can be solved
in O(Nlog N) time. Once this has been done, a new objective function can be
maximized or minimized in O(log N) time.

At first we compare this performance with that of the Simplex algorithm
[Gass (1969)]. Assuming we are given an initial feasible solution, Simplex
operates by moving from vertex to vertex on the feasible region, spending
0(N) time for each move. It is easy to see that, in the worst case, Simplex will
have to visit every vertex, for a total of 0(N 2) time. (In this respect it is very
similar to Jarvis's algorithm in Section 3.3.2.) Furthermore, in order to
maximize a new objective function, Simplex must inspect every constraint, so
it will use 0(N) time. In other words, Simplex is not optimal.

An objective function is a
family of parallel lines

The minimizing vertex
is defined bya line of
support of the
feasible region.

7.2 Planar Applications 	 291

Figure 7.19 A two-variable linear program.

We must point out that explicit construction of the feasible polytope is not
a viable approach to linear programming in higher dimensions because the
number of vertices can grow exponentially with dimension (see Section 3.1).

One of the striking features of the Simplex algorithm is that, while its worst
case is known to be exponential in dimension (and quadratic in two variables),
its expected behavior is almost always excellent in practice. A similar behavior
is exhibited by a method based on the half-plane intersection for a wide class of
inputs [Bentley—Shamos (1978)]. The same principle is invoked that was
presented in Section 4.1.1, namely, if the expected sizes of the subproblem
solutions are small, the merge step of the divide and conquer algorithm can be
performed in sublinear time. This will be the case if many of the half-planes are
redundant, i.e., do not form edges of the intersection polygon. We now show
that most of the half-planes in a random problem can be expected to be
redundant.

It is intuitively straightforward and fairly easy to exhibit a reasonable
probability distribution for random points in the plane; it is less obvious how
to model a random selection of half-planes. However, by resorting to the
fundamental geometric transform, introduced in Section 1.3.3, known as
polarity (of which we shall make an important use in Section 7.3), we make the
following observations. Polarity is an involutory point H straight-line trans-
form. With each line we associate a half-plane (the one which contains the
origin). Suppose now we draw a set S of N points at random in some domain
(say, the unit disk) and we dualize them to half-planes. The points on the hull
of S dualize to a set of lines, each of which contains an edge of the common
intersection of the half-planes. Thus, recalling the results quoted in Section

292 	 7 Intersections

4.1.1, the expected number of nonredundant half-planes in a set of N half-
planes is in this case 0(N"), p < 1, and similar results hold for other reason-
able random models. It follows that a linear average-case algorithm for
intersecting N half-planes results. This leads immediately to an 0(N)
expected-time algorithm for linear programming in two variables. We see that
the expected number of redundant half-planes—those that do not define faces
of the feasible region—is very large, which may, in part, account for the
excellent observed behavior of the Simplex Method.

However, we should not content ourselves with an 0(N) expected time
algorithm that constructs the feasible region, since—as we noted in Section
7.1.4—such construction is not necessary to solve the linear programming
problem! For many years this observation did not bear any fruit, until recently
an extremely clever technique, which capitalizes on it, has been independently
discovered by Megiddo (1983) and by Dyer (1984). This technique (which is
readily adaptable to three dimensions and has been generalized by Megiddo
(1983) to an arbitrary number of dimensions) not only discards redundant
constraints (i.e., those that are also irrelevant to the half-plane intersection
task) but also those constraints that are guaranteed not to contain a vertex
extremizing the objective function (referred to as the optimum vertex). The
technique is based on applying a linear transformation to the points of the
plane so that the objective function becomes equal to one of the two coordi-
nates, say, the ordinate of the plane. At this point the problem reduces to
finding the extreme value of a piece-wise linear convex function of the ab-
scissa. The key feature is that, since all we want is the identification of the
extremizing value x 0 , we need not explicitly construct this convex function,
which remains implicitly defined by a set of linear constraints.

More specifically, the original problem'

minimize ax + by

subject to ai x + biy + ci <_ 0 	i = 1, 2, ... ,N

can be transformed by setting Y = ax + by and X = x, as follows (here, since
both a and b are not simultaneously 0, we assume without loss of generality
b 0 0):

Sminimize Y

subject to ai X+f3 Y+c i < 0 	i = 1,2, ... , N

where ai = (ai — (a/b)bi), and i i = bi/b. In this new form we have to compute
the smallest Y of the vertices of the convex polygon P (feasible region)
determined by the constraints (see Figure 7.20). To avoid the construction of
the entire boundary of P, we proceed as follows. Depending upon whether fii is
zero, negative, or positive we partition the index set 11, ... , N} into sets lo , I_,
I+ , respectively. All constraints whose index is in Io are vertical lines (i.e.,

(7.6)

(7.7)

In the present formulation we assume, without loss of generality, that the objective function is to
be minimized.

7.2 Planar Applications
	 293

X

Optimum vertex

Figure 7.20 After the coordinate transformation, we must find the smallest ordinate
of the feasible region.

parallel to the Y-axis) and determine the feasible interval for X as follows (see
Figure 7.21):

u l < X < u2

u 1 = max { — ci /a i : i E lo , a i < 0}

u2 = min{ — c i /a i : iE lo , ai > 0}

On the other hand letting — (ai / f3 i) °= S i* and —(ci /(3i) °= yi all constraints in I+
 are of the form

Y < S i X + y i 	i E I+

so that they collectively define a piecewise linear upward-convex function
F+ (x) of the form

F+ (X) °A min (0 1 X + y i).
LEl +

Similarly, the constraints in I_ collectively define a piecewise linear
downward-convex function F_ (x) of the form

F_ (X) = max(6 1 X + y i).
iel-

Then we obtain the transformed constraint F_ (X) < Y < F+ (X), and, since
we have a minimizing linear program, F_ (X) is our objective function. Our
problem so becomes

minimize F_ (X)

subject to F_ (X) < F+ (X).
u 1 <X < u2.

294
	

7 Intersections

Figure 7.21 Illustration of F_(X), F+ (X), u 1 , and u2 in the reformulation of the
linear program.

The new situation is illustrated in Figure 7.21, where the relationship between
u l , u 2 , F_(X) and F+ (X) and the boundary of P is shown.

The primitive used by the technique is the evaluation, at a selected value X'
of X, of F_ (X'), F+ (X'), and of their slopes on either side of X'. (We denote by
f_(1-) (X') and f (R) (X') the slopes of F_ (X') to the left and right of X', respec-
tively; j » and AR) are analogously defined.) We now show that this primi-
tive, called evaluation, can be executed in time 0(N). Referring, for brevity, to
F_(X) we have

F_(X') = max(S 1 X' + yi)
tel-

which can be evaluated in time proportional to 1I_ i = 0(N). If there is only
one value io of i that achieves F_(X'), then J (X') = JR) (X') = S io ; otherwise
(if there are two such values i i and i2) we have that fT(X') = min(S i ,, S i) and
f(R) (X') = max(S it , S i) since F_ is downward-convex.

We now claim that given a value X' of X in the range [u 1 , u 2], we are able to
reach one of the following conclusions in time 0(N):

(i) X' is infeasible, and there is no solution to the problem;
(ii) X' is infeasible and we know on which side of X' (right or left) any feasible

value of X may lie;
(iii) X' is feasible and we know on which side of X' the minimum of F_ (X)

lies;
(iv) X' achieves the minimum of F_ (X).

Indeed, if the function H(X) = F_ (X) — F+ (X) is positive at X', then X'
is infeasible. By considering the slopes of F_ (X) and F+ (X) at X' we have (see

F (X)

Region of
possible
feasible
values

F (X)

Region of
possible
feasible

F+ (X) 	values
X'

(b)

7.2 Planar Applications 	 295

or

F (X)

F4.(X)

X'
	

X'

(c)

Figure 7.22 Illustration of the possible cases for which F_ (X) > F+ (X).

Figure 7.22): if f_("(X') > f+"(X'), then H(X) is increasing at X' and a feasible
X can only be to the left of X' (Figure 7.22(a), Case (ii)); if f(R) (X') < f f R) (X')
then, by an analogous argument, a feasible X can only be to the right of X'
(Figure 7.22(b), Case (ii)); finally if f("(X) < A"(X') and f!R) (X') > f.(,.R) (X')
then H(X) achieves its minimum at X' and the problem is not feasible (Figure
7.22(c), Case (i)).

Suppose now that H(X') < 0, i.e., X' is feasible. Again, we leave it now as
an exercise to decide on the basis of the four slopes f_("(X'), f(R) (X'), PP(X'),
and f+R) (X') between cases (iii) and (iv).

A strategy now begins to emerge. We should try to choose abscissa X'
where the evaluation takes place so that, if the algorithm does not immediately
terminate, at least a fixed fraction a of the currently active constraints can be
eliminated from contention, or "pruned" (i.e., each pruned constraint is
assured not to contain the extremal vertex). If this objective is achieved, then
in log lio _ c) N stages the size of the set of active constraints becomes suffi-
ciently small to allow a direct solution of the problem. With this hypothesis, at

i

 i 	i
i 	i 	i

U2 < Xil 	 U1 < X ii U2

(c)

	

(d)

I
U1

296
	

7 I ntersections

Eliminated

(a)
	

(b)

Figure 7.23 For each pair of constraints we check if any of the four illustrated cases
occurs, in which case one constraint is eliminated.

the i-th stage the size of the active constraint set is at most (1 — a)` -1 N and the
required processing is completed in time at most K(1 — a)1-1 N for some
constant K. Thus the overall running time T(N) is upper bounded by

Iogun -e,N 	 KN
T(N) < E K(l — a)` -1 N < 	,

-I 	 a

i.e., it is linear in N and thus optimal! We shall now show that the value a = 4
can be achieved.

At the generic stage, let I_ and I+ be the index sets as defined earlier, with
I+ I + II_ I = M (i.e., the stage has M active constraints, partitioned into two

sets S + and S_). We partition each of S + and S_ into pairs of constraints, with
possibly at most one member per set remaining single. Let i, j E I+ and refer
to Figure 7.23. If 5. = 8;, the corresponding straight lines are parallel and one
can be immediately eliminated (in this case the one with larger value of y)
(Figure 7.23(a)). Otherwise, letting X;; denote the abscissa of their intersec-
tion, we have the following three cases: If Xi; < u 1 we eliminate the constraint
with the larger value of 6 (Figure 7.23(b)); if X;; > u2 we eliminate the

7.2 Planar Applications 	 297

constraint with the smaller value of 8 (Figure 7.23(c)); if u 1 < Xis < u2 , we
retain Xis with no elimination. We then process in an analogous manner the
constraint set S_ . For all pairs, neither member of which has been eliminated,
we compute the abscissa of their intersection.

Thus, if k constraints have been immediately eliminated, we have obtained
a set of [(M — k)/2] intersection abscissae, and this task is completed in
0(M) time. Next we apply to the set of abscissae a linear time median
finding algorithm [Blum—Floyd—Pratt—Rivest—Tarjan_(1973); Schdnhage—
Paterson—Pippenger (1976)] and obtain their median X. The value X is the
abscissa where the "evaluation" takes place; this operation, obviously, runs
in time 0(M). If X is not the extremizing abscissa, then half of the computed
Xii 's lie in the region which is known not to contain the optimum. For each
Xis in this region, we can eliminate one member of the pair in a straight-
forward manner. (For example, if X il is to the left of X and the optimum is
to the right of it, then of the two lines intersecting at X i; we eliminate the one
with the smaller slope, etc.) This concludes the stage, with the result that at
least k + IL(M - k)/2]/21 > LM/4] constraints have been eliminated. This
substantiates the earlier claim that a = 4 , and we have the following sur-
prising result.

Theorem 7.12. A linear program in two variables and N constraints can be solved
in optimal 0(N) time.

As mentioned earlier this technique can be modified for the corresponding
three-dimensional problem yielding again an optimal 0(N)-time algorithm.
The reader is referred to the previously cited papers by Megiddo and by Dyer
for the details of this remarkable method.

Remark 1. The general approach outlined above can be applied, as shown by
Megiddo, to slightly different situations; one such example is the calculation
of the minimum enclosing circle of a N-point set S = { p 1 , p 2 , ... , pp/ }, with
pi = (xi , y i). As we discussed in Section 6.4, the determination of the minimum
enclosing circle of S is expressed as the computation of

N

min max (x i — x) 2 + (y i — y) 2 . 	 (7.8)
x, y i= 1

Introducing a variable z, expression (7.8) can be reformulated as the following
mathematical programming problem:

Sminimize z
subject to z > (xi — x) 2 + (y i — y) 2 	i = 1, 2, ... , N.

(Note that the z-coordinate of the solution gives the square of the radius of the
circle.) The problem (7.9) is not a linear programming problem, since the
constraints are quadratic. However the generic constraint can be rewritten as

(7.9)

298 	 7 Intersections

z

Figure 7.24 Illustration of a two-dimensional cut of the surfaces z = f(x, y) and
z = (p(x, y) =f(x,y) + (x 2 + y2).

z > — 2xi x — 2yi y + c t + (x2 + y2), 	 (7.10)

where ci = x? + y7. We observe that the right side of (7.10) consists of a linear
expression — 2x1 x — 2yty + c i , dependent upon i, and of a common quadratic
term (x 2 + y2). The set of linear constraints

z> —2x 1x-2y ty+c; 	1= 1,2,..., N 	(7.11)

defines a polyhedron, whose boundary is described by z = f (x, y), with f a
downward-convex function. Since also (x2 + y 2) is a downward-convex func-
tion, so is x 2 + y2 + f (x, y) °= cp(x, y) (being the sum of two downward-
convex functions). It is a simple exercise to verify that the surface z = cp (x, y)
resembles a polyhedral surface, in the sense that it has vertices resulting from
the intersection of three 8 arcs of parabola lying in vertical planes (edges) and
that the faces are portions of surfaces of paraboloids. For a two-dimensional
illustration, see Figure 7.24. It is also a simple analysis to verify that the
previously described method of constraint elimination is entirely applicable to
this situation. The only significant difference is that the vertex w achieving the
minimum value of z (among the vertices) may not be desired minimum (while
it is always the minimum in the linear programming case). Thus the search is
completed by inspecting the "edges" of z = 9(x, y) incident on w, and if
necessary, by locating the minimum on one of these edges.

The smallest enclosing circle can therefore be obtained by solving a variant
of a three-dimensional linear programming problem. Combining this result

8 Here we exclude, for simplicity, the presence of four cocircular points in S.

7.2 Planar Applications 	 299

with the analogous of Theorem 7.12 for three dimensions we have the follow-
ing improvement over Theorem 6.14

Corollary 7.4. The smallest enclosing circle for an N-point set can be computed
in optimum time 0(N).

Remark 2. A particularly interesting application of linear programming is the
problem of linear separability (considered here in Ed).

Definition 7.2. Two sets of points S 1 and S2 in Ed are said to be linearly
separable if there exists a linear (d — 1)-dimensional variety n such that S1 and
S2 lie on opposite sides of it. (In two dimensions it is a line, while in three
dimensions it is an ordinary plane.)

We now show that linear separability is a linear programming problem.
Specifically, given two sets of points in d-space, S 1 = {(4, ... , x j): i =
1,... and S2 = {(XV) ,..., xâi)): j = IS1I + 1 , ... , 1S11 + 1S21}, with
1S1 1 + 1S2 1 = N we seek a plane p1 x 1 + • + pdxd • pd+1 = 0 satisfying the
conditions

{

Pi x i`) +''+ Pd41 + Pd+1 <0, for 1 <i<IS1 1
P 	for IS 1 I+ 1 < i N.

This is clearly a linear program, which, by the preceding results can be solved
in time 0(N) in two and three dimensions.

7.2.6 Kernel of a plane polygon

In Section 2.2.1 we showed that finding a point in the kernel of a star-shaped
polygon is an essential step in the preprocessing needed to answer the corre-
sponding inclusion question. At that time, we postponed the development of
a kernel algorithm until the necessary tools were available. The problem is
stated as follows.

PROBLEM I.1.5 (KERNEL). Given an N-vertex (not necessarily simple) poly-
gon in the plane, construct its kernel.

We first note that the kernel is the intersection of N half-planes. Indeed,
each edge of a polygon P determines a half-plane in which the kernel must lie.
(Figure 7.25). These half-planes are referred to as the interior half-planes (or
left half-planes, with reference to a counterclockwise traversal of the bound-
ary). It has been shown [Yaglom—Boltyanskii (1961), p. 103] that the kernel of
a polygon is the intersection of its left half-planes. Thus immediately we have

KERNEL cc N HALF-PLANES,

and using the results of Section 7.2.4 (Theorem 7.10) we obtain

Corollary 7.5. The kernel of an N-gon can be found in 0(Nlog N) time.

The allowed (interior)
half-plane determined
by edge v1 v2.

In this region,
vertex v l is not
visible, so the
kernel cannot
lie here.

300 	 7 Intersections

Figure 7.25 Each edge of P determines an allowed half-plane.

Note though, that the lower bound of Sl(Nlog N) proved in Theorem 7.10
does not apply to the kernel problem because the edges of a simple polygon
cannot be in arbitrary positions, and the transformability from sorting fails.
In other words, there is no reason to believe that any more than linear time is
required to find the kernel; moreover, we shall now show that such an
algorithm exists [Lee—Preparata (1978)].

The input polygon P is represented by a sequence of vertices v o , v 1 , ...,
vN _ 1 , with N > 4, and e ; = v ; _ 1 v i for i = 1, 2, ... , N — 1 is the edge of the
polygon connecting vertices v i _ 1 and v i (e0 = vN _ 1 v o). For ease of reference
we shall describe P by a circular list of vertices and intervening edges as
v o e l v 1 e 2 • • • eN _ 1 vN_I e0 y0. We also assume that the boundary of P is directed
counterclockwise, that is, the interior of P lies to the left of each edge. A vertex
v ; is called reflex if the internal angle at v i is > 180°, and convex otherwise;
without loss of generality, we assume there is no internal angle equal to 180°. If
the kernel K(P) is nonempty, the output will also be in the form of a sequence
of vertices and edges of K(P).

The algorithm scans the vertices of P in order and constructs a sequence of
convex polygons K 1 , K2, ... , KN_1. Each of these polygons may or may not be
bounded. We shall later show (Lemma 7.1) that K. is the common intersection
of the half-planes lying to the left of the directed edges e o , e 1 ,... , e; . This result
has the obvious consequences that KN_1 = K(P) and that K 1 K2
• • • 	K.; the latter implies that there is some ro > 1 such that K; is unbounded
or bounded depending upon whether i < ro or i > ro , respectively.

Notationally, if points w 1 and wi+ 1 belong to the line containing the edge es,
of P, then w 1 es= w i+1 denotes the segment of this line between w ; and wi +1 and
directed from w 1 to wt +1. When a polygon K; is unbounded, two of its edges are
half-lines; so, Aew denotes a half-line terminating at point w and directed like
edge e, while weA denotes the complementary half-line.

During the processing, the boundary of K is maintained as a doubly-linked
list of vertices and intervening edges. This list will be either linear or circular,
depending upon whether K. is unbounded or bounded, respectively. In the
first case, the first and last item of the list will be called the list-head and list-
tail, respectively.

7.2 Planar Applications 	 301

v ^

--^

^ :K

1 ;

Figure 7.26 Illustration of the definition of F and L i .

Among the vertices of K. we distinguish two vertices F and L i , defined as
follows. Consider the two lines of support of Ki through vertex v i of P (Figure
7.26). Let f and 1i be the two half-lines of these lines that contain the points of

support, named so that the clockwise angle from f to li in the plane wedge
containing Ki is no greater than n (Figure 7.26). Vertex F is the point common
to f and Ki which is farthest from v i , L i is similarly defined. These two vertices
play a crucial role in the construction of Ki+1 from Ki .

If P has no reflex vertex, then P is convex and trivially K(P) = P. Thus let
vo be a reflex vertex of P. We can now describe the kernel algorithm.

Initial Step. (*K 1 is set equal to the intersection of the half-planes lying to the
left of edges eo and e l , see Figure 7.27*)

K 1 := Ae l v o eo A;

F1 := point at infinity of Ae 1 v o ;

L 1 := point at infinity of v o eoA.

General Step. (From Ki to Ki +1 .) We assume that the vertices of Ki are

Figure 7.27 Illustration of polygon K1.

302 	 7 Intersections

Figure 7.28 Action of the general step when v ; is reflex and F is on or to the right
of Ae;+1 v; +i

numbered consecutively as w 1 , w2 , ... , counterclockwise. We distinguish
several cases.

(1) Vertex v i is reflex (see Figures 7.28 and 7.29)

(1.1) Fi lies on or to the right of Aei+1vi+1 (Figure 7.28). We scan the
boundary of Ki counterclockwise from F until either we reach a
unique edge w,_ 1 w, of Ki intersecting Aei+1 vi+1 or we reach L i
without finding such an edge. In the latter case, we terminate the
algorithm (K(P) = 0). In the former case, we take the following
actions:

(i) we find the intersection w' of w,-1 w, and Aei+1 vi+1
(ii) we scan the boundary of K. clockwise from F, until either we

reach an edge ws _ 1 ws intersecting Aei+1 vi+1 at a point w" (this is
guaranteed if Ki is bounded) or (only when Ki is unbounded) we
reach the list-head without finding such an edge. In the first
case, letting Ki = ocws • • w r _ 1 J3 (where a and [3 are sequences of
alternating edges and vertices), we set Ki+1 := aw"et+1 w'/3; in the
second case (Ki is unbounded) we must test whether Ki+1 is
bounded or unbounded. If the slope of Ae i+1 vi+1 is comprised
between the slopes of the initial and final half-lines of Ki , then

Ki+1 	Aei+1 w'fi is also unbounded. Otherwise we begin scan-
ning the boundary of Ki clockwise from the list-tail until an edge

Wr_1 W r is found which intersects Aei+1 vi+1 at a point w"; letting
Ki = ywt _ 1 bwrf7 we set Ki+1 := bw"ei+1 W and the list becomes
circular.

The selection of F+1 is done as follows: if Aei+1 vi+1 has just one
intersection with Ki , then F+1 := (point at infinity of Aei+1 vi+1),
otherwise F+1 := w". To determine Li+1, we scan Ki counterclock-

7.2 Planar Applications 	 303

v^ +1

L 1+1

Figure 7.29 Action of the general step when v i is reflex and F lies to the left of
Ae i+1 v i+1 •

wise from L t until either a vertex w. of Ki is found such that w i+1 lies
to the left of vi+1 (vi+ 1 wu)A, or the list of Kt is exhausted without
finding such vertex. In the first case Li+1 := w,,; in the other case

(which may happen only when Ki is unbounded) Li+1 := Li.
(1.2) Fi lies to the left of Aei+1vi+1 (Figure 7.29). In this case Ki+1 := Ki,

but F and L i must be updated. To determine F +1 , we scan Ki
counterclockwise from F until we find a vertex wt of Ki such that wt+1

lies to the right of vi+1(v, w)A; we then set F+1 := w t . The deter-
mination of Li+1 is the same as in case (1.1).

(2) Vertex v i is convex (see Figures 7.30 and 7.31).
(2.1) L i lies on or to the right of vi ei+1 A. (Figure 7.30). We scan the

boundary of Ki clockwise from L i until either we reach a unique edge
wt _ 1 wt intersecting viei+1 A or we reach F without finding such an
edge. In the latter case, we terminate the algorithm (K(P) = 0). In

v^

 7.30 Action of the general step when v i is convex and Li lies on or to the right
of viei+1 A.

304 	 7 Intersections

V.

Figure 7.31 Action of the general step when v ; is convex and L i lies to the left of
vie i+1 A.

the former case, we take the following actions:

(i) we find the intersection w' of w t _ 1 w1 and v i ei+1 A;
(ii) we scan the boundary of Ki counterclockwise from L i until either

we reach an edge ws _ 1 ws intersecting viei + 1 A at point w"
(guaranteed if Ki is bounded) or (only when Ki is unbounded)
we reach the list-tail without finding such an edge. Letting
Ki = awl • • • ws _ 1 f3, in the first case we let Ki+1 := am' ei+1 w"f3; in
the the second case (Ki is unbounded) we must test whether Ki+1
is bounded or unbounded. If the slope of v i e i+1 A is comprised
between the slopes of the initial and final half-lines of Ki , then

Ki+1 := aw'ei+1 A is also unbounded. Otherwise we begin scan-
ning the boundary of Ki counterclockwise from the list-head until
an edge wr _ 1 wr is found which intersects v i e i+1 A at a point w";
letting Ki = Ywr_1 8 wtri we set Ki+1 := bw ei+1 w" and the list
becomes circular.

The selections of F +1 and Li+1 depend upon the position of v1+1 on
the half-line v i ei+1 A and upon whether v i e i+1 A has one or two
intersections with Ki . We distinguish these two cases:

(2.1.1) viei+1 A intersects Ki in w' and w". If vi+1 E [viei+1 w'] then F+1
is selected as in case (1.2). Otherwise F+1 is set to w'. If
v 1 E [v i e i+1 w"] then L1+1 is set to w". Otherwise Li+1 is
selected as in case (1.1) except that we scan Ki+1 counter-
clockwise from w".

(2.1.2) v i ei+i A intersects Ki in just w'. If vi+1 e [viei+i w'],
f +1 is

selected as in case (1.2); otherwise F+1 := w'. Li+1 is set to the
point at infinity of v i ei+1 A.

(2.2) L. lies to the left of v i e i+1 A (Figure 7.31). In this case Ki+1 := Ki. F+1
is determined as in (1.2). If Ki is bounded then Li+1 is determined as
in case (1.1), otherwise Li+1 := Li.

7.2 Planar Applications
	

305

Figure 7.32 An instance where the unmodified algorithm terminates after 0(N 2)
time. The N-sided polygon KN/2 is shown shaded. Then the algorithm wraps around
KN12 a total of N/12 times before reaching VNJ3+ 1, at which point it is discovered that
K(P) = 0.

The correctness of the algorithm is asserted by the following lemma, where
we let Hi denote the half-plane lying to the left of line Ae ;A.

Lemma 7.1. The polygon Kt+ 1 is the intersection of H o , H1 , . , H + 1 for i = 0,
1, ..., N — 2.

PROOF. By induction. Note that K 1 is by definition the intersection of H o
 and H 1 (initial step of the algorithm). Assume inductively that K. =

Ho n H 1 n • • • n H.. Then in all cases contemplated in the general step we
constructively intersect K. and Hi+1 , thereby establishing the claim.

While Lemma 7.1 guarantees that the preceding algorithm correctly con-
structs K(P), a minor but important modification of the general step is needed
to achieve efficiency. In fact, there are cases (see Figure 7.32) of polygons with
empty kernel, for which 0(■ 2) time could be used before termination. This
can be avoided by an additional test to detect the situation illustrated in Figure
7.32. The details of this test are omitted here for brevity, and the reader is
referred to [Lee—Preparata (1978)] for a complete account. It suffices to say
that, with the modification in question, the algorithm is guaranteed to stop
after its march on the boundary of P wraps around any point of the partial
kernel K. for an angle of 37r.

We now consider the performance of the algorithm. It is convenient to
analyze separately the two basic types of actions performed by the kernel
algorithm. The first concerns updating the kernel, by intersecting K1 with
Aet+1 A to obtain Ki+1 ; the second concerns updating F and L. and consists of
counterclockwise or forward scans of K. to obtain the new vertices of support
(notice however that in some cases, as (1.1) and (2.1), the update of K;
implicitly yields updates for one or the other of the support vertices).

306 	 7 Intersections

We begin by considering intersection updates. In case (1.1), (when the
algorithm does not terminate) we scan Ki starting from F both clockwise and
counterclockwise (this scan also finds F +1). Let v i be the total number of edges
visited before finding the two intersections w' and w". This process actually
removes v i — 2 edges from K. (those comprised between w s and wr _ i in Figure
7.28), and since each of the removed edges is collinear with a distinct edge of P,
we have E(v i — 2) < N. Thus, Ev i , the total number of vertices visited by the
algorithm in handling case (1.1), is bounded above by 3N, i.e., it is 0(N). The
same argument, with slight modifications, can be made for case (2.1).

Next, we consider those updates of the support vertices "F" and "L" which
are not implicitly accomplished in the intersection process. These updates
occur for "L" in all cases (1.1), (1.2), (2.1). (2.2) and for "F" in cases (1.2) and
(2.2). Note that in all of these cases the vertices of support advance on the
boundary of Ki . Let us consider, for example, the update of L in case (1.1): the
other cases can be treated analogously. Consider the set of edges of Ki+1 that
the algorithm visits before determining Li+1; the visit to the edge immediately
following Li+1 is referred to as an overshoot. We immediately see that in
handling case (1.1) the number of overshoots is globally 0(N), since there is at
most one overshoot per vertex of P. Next, we claim that, ignoring overshoots,
any edge is visited at most twice. In fact, assume that, when processing v i , an
edge is being visited for the third time. Due to the forward scan feature, this
implies that the boundary of P wraps around Ki at least twice, i.e., there is
some point q e Ki around which the boundary march wraps for angle > 4ir,
contrary to an earlier statement.

Thus the work performed in handling case (1.1)—as well as cases (1.2),
(2.1) and (2.2)—is 0(N). Finally, the updates of "F" and "L" are all accom-
plished implicitly in finding w' and w". Therefore, we conclude that the entire
algorithm runs in time proportional to the number of vertices of P and we
have proved

Theorem 7.13. The kernel of an N-vertex polygon can be computed in optimal
0(N) time.

7.3 Three-Dimensional Applications

7.3.1 Intersection of convex polyhedra

The problem is stated as follows.

PROBLEM I.1.6 (INTERSECTION OF CONVEX POLYHEDRA). Given
two convex polyhedra P with L vertices and Q with M vertices, form their
intersection.

7.3 Three-Dimensional Applications 	 307

By an argument identical to that of Theorem 7.2, the intersection P n Q is
itself a convex polyhedron. The crudest approach to the computation of
P n Q, consists of testing each facet of P against each facet of Q to see if they
intersect. If there are intersections, then it can be simply constructed; if no
intersection is found, then P n Q is empty, or one polyhedron is internal to the
other. Since the surface of either polyhedron has the topology of a planar
graph, by Euler's theorem on planar graphs it is easy to verify that such
approach may take as much as O((L + M) 2) time.

Once this approach is dismissed as unattractive, the next attempt may be
the possible adaptation to three dimensions of the two methods for intersect-
ing two convex polygons, illustrated in Section 7.2.1. The method of
Shamos–Hoey (1976) (partition the plane and compute the intersection of P
and Q in each region of the partition) could be generalized by slicing the space
by a family of parallel planes, each passing by a vertex of P u Q. However, in
each of the resulting slices of space (or "slabs," as they are frequently called),
the portion of either polyhedron is not a simple geometric object as in the
planar case. Indeed it is a "pancake" bounded on each side by two plane
polygons, each of which may have O(Ifacetsl) edges. Thus, this approach
would also lead to an O(L + M) 2) algorithm. As for the method of
[O'Rourke–Chien–Olson–Naddor (1982)], no generalization seems possible.

An entirely different approach—which, of course, can be successfully
specialized to two dimensions—was proposed by Muller–Preparata (1978)
and is discussed below. An alternative very attractive approach
[Hertel–Mehlhorn–Mantyl–Nievergelt (1984)], based on a space sweep, has
been very recently proposed and will be sketched in the Notes and Comments
section.

The central idea of the Muller–Preparata method is that if a point p in the
intersection is known, the intersection can be obtained by known techniques
via dualization. Indeed, if a point pin P n Q exists, by a simple translation we
may bring the origin to coincide with p. Thus, we may assume that both P and
Q contain the origin of space in their interior. Letting x 1 , x2 , and xa be the
coordinates of the space, with each facet f of either P or Q we associate a half-
space

n 1 (J)x1 + n2(f)x2 + n3(f)x3 d(f). 	 (7.12)

Since any point of P n Q satisfies all inequalities (7.12) for each facet f of either
polyhedron, and the origin (0, 0, 0) is a point in P n Q, it follows that we may
normalize all inequalities so that d(f) = 1. (Note that we have assumed the
origin in the interior of both P and Q.)

If we now interpret the triplet (n 1 (f), n 2 (f), n 3 (f)) as a point, we have
effectively established an involutory transformation between facet planes (i.e.,
a plane containing a facet) and points. This transformation is the conventional
dualization (polarity) with respect to the unit sphere with center at the origin,
discussed in Section 1.3.3. In this transformation, points at distance 1 from the
origin are mapped to planes at distance 1// from the origin and vice versa.

308 	 7 Intersections

Notationally, the symbol 8() is used to denote the transformation, i.e., 8(p)
is the plane dual of a point p and b(n) is the point dual of a plane it.

The dualization of a convex polyhedron is meaningful only if P contains
the origin. Indeed in this case we have the following important property.

Lemma 7.2. Let P be a convex polyhedron containing the origin and let S be the
set of points that are the duals of the facet planes of P. Then each point p in the
interior of P dualizes to a plane 8(p) that has no intersection with conv(S).

PROOF. Let a i x l + bi x 2 + ci x 3 < 1 be the inequality defining the half-space
bounded by facet fi of P, for i = 1, ... , I S1. (Recall this half-space contains the
origin.) Next consider a point p = (x l x2 , x3) in the interior of P. Then we
have

ai x l + bi x 2 + ci x 3 <1 	i = 1, 2, ... , ISI.

We can now interpret these expressions as follows. The dual plane of p, (5(p),
has equation x l x i + x 2 x 2 + x 3 x 3 = 1; if we consider point 5(n i), the dual of
the facet plane n i containing f , the above expressions mean that all points
6 (10 for i = 1, 2, ... , Si,1 	lie on the same side of b(p) and none lies on it, i.e.,
8(p) has no intersection with conv(S). 	 ❑

This result leads to the following conclusion.

Theorem 7.14. If P is a convex polyhedron containing the origin, then so is its
dual P(') .

PROOF. Let ii be the plane containing facet f,. Define the point set S {6(n i):
i = 1,... , I S 1 } and consider its convex hull CH(S). We claim that each point
of S is a vertex of CH(S). Indeed, if 6(70 is in the interior of conv(S), then it i

has no intersection with P by Lemma 7.2, contrary to the assumption that

ni contains facet f . Thus CH(S) is the dual P(') of P. ❑

The previous proof also shows that, if P contains the origin, any plane
external to P maps to a point internal to P(') and conversely. Although the
arguments can be developed for all polyhedra satisfying the hypothesis of
Theorem 7.14, in the following discussion we assume that the origin is strictly
in the interior of P (and, hence, of P«'). The reader may verify that this implies
that both P and P(') are bounded.

Let V/P) and Ve) be the vertex sets of P (') and Q (') , respectively. If we recall
that each member of VP'" u VÇ$ is the dual of a facet plane of either poly-
hedron, and observe that P n Q is the locus of the points that simultaneously
lie in all the half-spaces determined by these facets and containing the origin,
we conclude that P n Q is the dual of the convex hull of Vg) u VQ') . Hence, to
compute P n Q we may use the algorithm of Preparata—Hong (see Section
3.4.3) to find cony(v1,6) u 1/66)) in time O(N log N) (where N L + M), and

7.3 Three-Dimensional Applications
	

309

Figure 7.33 Illustration of the intersection of two convex polygons via the duali-
zation approach. The two given polygons are shown in thin solid lines and their duals
(also convex polygons) in broken lines. The support lines of the convex hull are shown
in heavy lines, each of which dualizes to a vertex of the intersection (dual elements are
identically labelled).

upon taking the dual of the result we obtain the desired polyhedron. A two-
dimensional illustration of the approach is given in Figure 7.33.

A remark is here in order. The preceding techniques involve processing the
set of triplets {(n 1 (f), n 2 (f), n 3 (f)): f is a facet either of P or of Q}. We
intuitively interpret these triplets as points, but we could equally well have
interpreted them as planes. The only reason why the former interpretation is
preferred is that the technique receives in this case the full support of intuition,
which is otherwise less conspicuous in the latter. Therefore, polarity dualiza-
tion does not transform the nature of the geometric objects (as the inversion
transform does—see Section 6.3.1.1) but it does aid our intuition. Thus,
P n Q can be constructed by routine algorithms, once a point in it is known.
In general, when P n Q is nonempty, how can we find one such point? We
shall proceed as follows.

Given a convex polyhedron P, we shall consider the set of its planes of
support parallel to the x 3 -axis, briefly referred to as vertical. The intersection
of P with its vertical planes of support is, in general, an annular region R(P) of
the surface of P which, in the absence of degeneracies, reduces to a cycle of
edges. The projection of R(P) on the (x 1 , x2) plane is a convex polygon P*
(Figure 7.34), which is the convex hull of the projections of the points of P on
this plane.

The region R(P) is easily computed. For any face f of P the normal to f is
the vector (n 1 (f), n 2 (f), n 3 (f)). It is perpendicular to f and points toward the
interior of P. Given any edge e of P, let f and f; be its adjacent faces. Then
e e R(P) if and only if

n3(Î1) • n3(.Î;) <— 0. 	 (7.13)

310 	 7 Intersections

X 3

R(P)

X2

f

X1

Figure 7.34 A convex polyhedron P, the annular region R(P) and the projection
polygon P*.

Therefore, we begin by scanning the edge set of P until we find an edge e which
belongs to R(P), by verifying condition (7.13). At this point, we select one of
the two vertices of e, call it v. Among the edges incident on y there are either
one or two new edges, different from e, which belong to R(P) and can be easily
found. (We are assuming of course that the surface of P—a planar graph—be
represented by the DCEL data structure described in Section 1.2.3.2.) Thus we
can advance in the construction of R(P), which will be completed upon re-
encountering the initial edge e. Once R(P) has been computed, P* is trivially
obtained. Thus we have the first two steps of the algorithm:

Step 1. Construct P* and Q*. (This step runs in time 0(N).)
Step 2. Find the intersection of the polygons P* and Q* (using any of the
linear-time algorithms described in Section 7.1). If P* n Q* = 0 halt, for
P n Q is also empty. (This step runs in time 0(N).)

If P* n Q* 0 0, let g be the closed (convex) domain bounded by
P* n Q* . For each point p = (x 1 , x 2) in g, consider the vertical line through
p. The intersection of this with P is a segment ep(p), and similarly eQ (p) is
defined (ep(p) and eQ (p) could each degenerate to a single point). Our objec-
tive is to decide if there is a point ping for which ep(p) and eQ (p) overlap (see
Figure 7.35). Assuming, without loss of generality, that there is a point u E i
for which the bottom of ep(u) lies above the top of eQ (u), respectively, we
define the near-sides of P and Q as the loci of bottom[ep(u)] and top[e Q (u)],
and a function d(u) called the vertical distance— as follows:

d(u) = bottom[ep(u)] — top[e Q (u)]. 	 (7.14)

Thus we must decide whether there is a point u E g such that d(u) < O. This
question can certainly be answered if we determine a point û which achieves
the minimum value of d, i.e.,

X2
P u

Section of P

Bottom [ep ()]

4.—d(u)

7.3 Three-Dimensional Applications
	 311

X3

Figure 7.35 Cross-section of P and Q in the plane x, = .V i . Illustration of the defi-
nitions of ep(), e Q(), and d().

d(û) = min d(u).
ue.9

Obviously, in practice, the search for u will be actually completed only if
d(û) > 0, in which case the two polyhedra do not intersect. Otherwise, the
search may stop as soon as a point y e g is found for which d(v) < 0. Indeed,
in this case we have two points in g, u (the initial point) and y, such that
d(u) > 0 and d(v) < 0. Consider the segments (bottom [ep (u)], bottom [ep(v)])
and (top [eQ (u)], top [eQ (v)]), respectively contained in P and Q (by convexity).
These two segments are coplanar and intersect each other in a point belonging
to both polyhedra.

The approach we shall now describe for the solution of this problem is due
to Dyer (1980), and it represents a considerable technical simplification of the
original method [Muller—Preparata (1978)] (although it does not exhibit a
significant performance improvement).

First of all, we note that the function d(u) is convex in g. Indeed, let Si, be
the portion of the surface of P, which is the locus of bottom [ep(u)] for u E g,
while SQ is the locus of top[e Q (u)]. In other words, S, and SQ are the opposing
sides of the two polyhedra. If we now project S, on the plane x 3 = 0 we obtain
a planar graph Gp with convex regions; similarly we define GQ .

Imagine superimposing Gp and GQ . The resulting graph G* is the intersec-
tion of two planar maps, and its vertices are both the original vertices of Gp
and GQ (conveniently called true vertices) and the vertices resulting from the
intersections of edges of Gp with edges of GQ (conveniently called pseudover-
tices). Thus the domain g is subdivided into convex regions by G*. Notice that
inside any region of Gp the function bottom[ep(u)] is linear in the (x 1 , x2)
coordinates at u; similarly, for the function top[e Q (u)] inside any region of GQ .
Thus in any region induced by G* in g, the function d(u) is linear in x 1 (u) and

X3

Y (Ri)
Boundary

^

of P*

// X 2 (X 1)

/
/

/

i
 /

X I 	

• X1

312 	 7 Intersections

Figure 7.36 Illustration of the definitions of X 1 , X2 (.,7 1), and y(x 1).

x 2 (u). Moreover, bottom[e p(u)] is convex-downward and top[e Q (u)] is
convex-upward; it follows that d(u) is a convex-downward function. We
conclude that the minimum of d occurs at a vertex of G*. Note that the number
of vertices of G* could be 0(N 2): in fact, it is not hard to construct two planar
graphs, each with y vertices, so that, when superimposed, (y — 1) 2 intersec-
tions of edges are obtained. Referring to Figure 7.36, let X 1 be the interval

[min x i (u), max x l (u)].
uEf/ 	 uE1

Also, let X2 (. 1) be the interval

min x 2 (u), max x 2 (u) , for x 1 E X 1
, 1 00= Y i 	x(u) =.C i

(the segment obtained by intersecting g with the line x 1 = x l). Given that
d(x 1 , x 2) = d(u) is convex in g, by a well-known result in convex analysis

[Rockafellar (1970)], the function

y(x 1) _° min d(x 1 , x2), 	x 1 E X 1
x 2 E X2(xi)

is convex in X 1 . Since

min y(x 1) = min d(u),
x i GX I 	 u E ^J

our problem is now reduced to the evaluation of the minimum of y(x 1) in the
interval X 1 .

First of all, we note that the determination of y(x 1), for a given x 1 is
accomplished in time 0(N). Considering one polyhedron at a time, say P,
we determine in a straightforward manner in time 0(L) the value of

7.3 Three-Dimensional Applications
	

313

Visit of
surface of P

Xi = x i -

Figure 7.37 The evaluation of bottom [ep()] on the polygon obtained by intersecting
P with the plane x 1 = .V 1 is done by a routine visit on the DCEL.

X3

A

Figure 7.38 Illustration of d(v) and 7(.V 1). Shown is intersection of P and Q with the
plane x i = .x 1

bottom[ep (û)] for a point û in the plane x 3 = 0 at the intersection of the line x 1
 = 5c- 1 with the boundary of P*. Then by a routine visit of the surface of P on

the DCEL we can determine, still in time 0(L), the values of bottom[ep()]
corresponding to each edge of P intersecting the plane x 1 = r 1 (see Figure
7.37). By the same procedure we can process Q in time 0(M). The functions
bottom[ep(v)] and top[e Q (v)] for x 1 (v) = t1 are illustrated in Figure 7.38. The
function d(v), for v E 9 and x l (v) = x 1 , is then computed in time 0(L + M)
= 0(N) and its minimum, y(x 1), also found in this process.

The next question to be addressed is the evaluation of the extremum of a
unimodal function' (note that a convex function is unimodal). It is a simple

9 A function f(x) is said to be downward-unimodal in an interval [x 1 ,.x 2] if, for some x0 E [x 1 , x 2],
f(x) is nonincreasing in [x 1 ,x0] and nondecreasing in [x o ,x2]. An upward-unimodal function is
analogously defined.

314 	 7 Intersections

X1= x'1

Figure 7.39 Projection on the plane x 3 = 0 of the near-side of P relative to the strip
[x i , x;]. This strip contains no vertex of Gp in its interior.

and well-known fact that the extremum of a unimodal function defined at N
discrete points of the real line can be obtained by a modified binary search
with O(log N) evaluations of the function and O(log N) comparisons.

We can now state the third step of the search, where we assume, without
loss of generality, that L < M;

Step 3. Sort in increasing order the set {x 1 : x 1 = x 1 (v), y is a vertex on the
near-side of P}, and let V be the sorted sequence. Since y(x 1) is unimodal on
the sequence V, determine a unique interval [x' i , x7] of consecutive terms of V,
which is guaranteed to contain the minimum of y(x l) for x 1 e X 1 . (Obviously
the search stops if a value .t i is found for which y()T 1) < O.)

To analyze the running time of Step 3, notice first that 0(L log L) time is
used by the initial sorting of the abscissae. Next, for a given x 1 , the evaluation
of y(x 1) can be accomplished in time 0(N), by the technique described earlier.
Finally, due to the unimodality of y in X1 , by modified binary search we
obtain [x'1 , x'f] with 0(log L) evaluations of y. Thus, the global running time is
0(L log L) + O(N log L) = O(N log L).

We now observe that [xi, .4] does not contain in its interior the abscissa of
any vertex in the near-side of P, by its own construction. Thus, Gp does not
contain any vertex in the strip x'1 < x 1 < xi, that is, the set e of edges of Gp
intersecting this strip can be ordered (see Figure 7.39). Consider now any edge
e of GQ , which has a nonempty intersection with the strip x' 1 < x 1 < xi . The
function d(x l ,x2) along this edge is downward convex, and its minimum
occurs at a vertex of G* (this vertex is either an extreme of e or the intersection
of e with an edge oft). Since the latter edges are ordered, this minimum can be
determined very efficiently. Indeed suppose we organize the members of 4' in a
binary search tree, where the primitive operation is the determination of the
intersection y of two edges and the evaluation of the function d(v) (this
primitive runs in 0(1) time). Then, by the preceding discussion of unimodal
functions, O(log L) time suffices to process an edge of GQ . Thus we have the
final step of the search:

Step 4. For each edge e of GQ intersecting the strip x'1 < x 1 < .4 determine the
minimum of d(x 1 , x2) along it. The minimum of these minima is the absolute

7.3 Three-Dimensional Applications 	 31 5

minimum of d in 9. (Again, the search stops if an edge is found whose
corresponding minimum of d is nonpositive.)

Since the number of edges processed by Step 4 is no larger than the number
of edges of Q (which is 0(M)), and the processing of a single edge is completed
in time O(log L), Step 4 is completed in time 0(M log L). Noting that, since
both L < N and M < N, in O(N log N) time either we have obtained a point u
for which d(u) < 0, and therefore a point in P n Q, or concluded that P n Q is
empty. Combining this result with the earlier result on the determination of
P n Q once one of its points is known, we have

Theorem 7.15. Given two convex polyhedra, P with L vertices and Q with M
vertices, and letting N = L + M, in time 0(NlogN) we can compute their
intersection P n Q.

Unfortunately, the only lower bound we can establish for this problem is
the trivial Q(N). Thus the result of Theorem 7.15 is not known to be optimal.
At this stage it is reasonable to conjecture that a linear-time method may exist
for this problem.

7.3.2 Intersection of half-spaces

The most natural approach to solving a three-dimensional problem is an
attempt to generalize the best-known method for the corresponding two-
dimensional problem. In our case, the two-dimensional analogue is the inter-
section of half-planes, which was solved in Section 7.2.4 by a divide-and-
conquer approach, whose "merge" step was the intersection of two convex
polygons. Correspondingly, in three dimensions, the merge step becomes the
intersection of two convex polyhedra, which we studied in the preceding
section. However, whereas two convex polygons with respectively L and M
vertices (where L + M °= N) can be intersected in time 0(N), two con-
vex polyhedra with the same parameters are intersected in time 0(N log N).
Thus the generalization of the two-dimensional instance would yield an
O(N log2 N) algorithm. Contrasting this result with the SZ(N log N) lower
bound, established in Section 7.2.4, may suggest that some alternative ap-
proach should be explored before declaring that there is a gap between the
bounds we are unable to fill.

Indeed, we shall now show that there exists an optimal method [Preparata-
Muller (1979); Brown (1978)], which is not of the divide-and-conquer type
and makes use both of the polyhedron intersection algorithm and of the
separating plane algorithm (see Section 7.2.5). As in the described inter-
section of polyhedra, the method rests heavily on the use of dualization with
respect to the unit sphere. We must point out that both to simplify the
drawings and in some case just to support intuition (otherwise we should try

316 	 7 Intersections

to represent a four-dimensional object!), all of our examples will refer to two-
dimensional instances. It must be stressed, however, that this does not affect
the validity of the arguments.

The general problem is formulated as follows.

PROBLEM I.1.7 (INTERSECTION OF HALF-SPACES). Find the set of
solutions (x, y, z) (feasible points) of the set of N linear inequalities

	

aix+biy+ciz+di <0 	i= 1,2,..., N 	(7.15)

with ai , b i , c i , and di real and not all simultaneously O.

The desired solution will be the description of the convex polyhedral
surface bounding the domain of the feasible points. Qualitatively, the solution
may have one of these forms of increasing dimensionality:

1. Empty (the set (7.15) is inconsistent).
2. A point.
3. A line segment.
4. A convex plane polygon.
5. A convex polyhedron.

Cases 2, 3, and 4 are degenerate; the interesting cases are 1 and 5.
A simple case occurs when, for every i = 1, ... , N, we have di < O. Indeed in

this instance the origin (0, 0, 0) satisfies each constraint, i.e., it is contained in
the common intersection of the half-spaces. Then, by dualizing the plane ni of
equation aix + biy + ciz + d; = 0 to the point (a/d1 , b i/di , c i/di) and comput-
ing, in time 0(N log N), the convex hull of the resulting point set, we obtain a
convex polyhedron, whose dual is the sought intersection.

The situation is considerably more complex when the di are arbitrary. For
simplicity, we assume in this presentation that no di = 0 so that the index set
{ 1, ... , N} can be partitioned into two subsets, I + and I_ , where i e I+ if di > 0
and i e I_ if di < O. Also, without loss of generality, we assume di = +1.10

To understand the mechanism, it is convenient to view the problem in
homogeneous coordinates, by applying the transformation

	

X = X1 , 	 y= X2 , 	z = x3 . 	 (7.16)

	

X4 	X4 	X4

As we saw in Section 1.3.2, where homogeneous coordinates were introduced,
a point (x, y, z) in E3 may be interpreted as a line of points (cx, cy, cz, c), in E 4 ,
with c e ER. If we denote the coordinates of E4 as x 1 , x2 , x 3 , and x4 , in this
interpretation the ordinary space E 3 is the hyperplane x4 = 1 of E4 (See
Figure 7.40 for an analogue in one less dimension). Also if we project from the
origin the plane x 4 = 1 onto the unit hypersphere S 4 centered at the origin,

10 The general problem admitting the degeneracy d1 = 0 is treated in [Preparata-Muller (1979)].

7.3 Three-Dimensional Applications 	 31 7

X3

Line
(cx,cy,c)

Figure 7.40 Illustration of the correspondence between ordinary coordinates in E 2
(the plane x 3 = 1) and homogeneous coordinates in E 3 . Each point of E 2 corresponds
to a line by the origin in E 3 .

each point p of E 3 corresponds to a unique point p* of S4 (with x4 > 0)
obtained by intersecting S 4 with the segment from the origin O top. The points
of S4 with x4 > 0 and x4 < 0 form, respectively, the positive and negative open
hemispheres; the points for which x 4 = 0, the equator, correspond to the plane
at infinity of E 3 .

With coordinate transformation (7.16) each half-space a; x + b; y + ci z
d; < 0 in E 3 becomes a half-space

a;x 1 +b,x2 +c;x 3 +d.x4 < 0

of E4 , whose bounding hyperplane passes by the origin and where the vector
v ; = (ai, h., c; , d;) is normal to the hyperplane and pointing away from the half-
space. The hyperplane intersects S 4 in a "great circle" C.. Moreover, the
constraint a1 x + b;y + c;z + dt < 0 specifies a unique hemisphere bounded by
this great circle C. This hemisphere contains the origin of E3 if and only if
d. = — 1. Thus, given a set of N linear constraints in E3 , their common inter-
section corresponds to a (possibly empty) connected domain g on the surface
of 54 (see Figure 7.41). The domain 9 is partitioned into two (possibly empty)
connected domains 9 + and 9_, respectively in the positive and negative
hemispheres (see Figure 7.42). Suppose now we project 9 from the origin:
then 9+ projects to a convex domain 9* in the hyperplane x4 = 1 (our
ordinary space E 3) while 9_ projects to a convex domain in the hyper-
plane x 1 = —1. The points of g+ are the common intersection (or common
interior) of the half-spaces specified by the constraints. On the other hand,

318 	 7 Intersections

x l

Figure 7.41 The intersection of the hemispheres of S 3 corresponding to the con-
straints (half-planes in E2) is a connected domain g on the surface of S 3 .

the points of g*_ have a curious interpretation. Since x 4 = —1, g*_ is the
set of points (x i ,x2 ,x3 , —1) for which

aix l + bix 2 + ci x3 — di < 0, 	i = 1,2,..., N.

If we now map each such point to a point in x 4 = 1 by a symmetry with respect
to the origin of E4 (this symmetry replaces x i with —x i , for i = 1, 2, 3), we
obtain the set of points for which ai x i + bix 2 + ci x 3 + di > 0, i = 1, ... , N, or

aix + biy + ci z + di > 0, 	i = 1, 2, ... , N. 	(7.17)

If we compare these inequalities with the constraints (7.15), we recognize that
they define the common exterior of the given half-spaces. Therefore, in x 4 = 1
the combined set of points may consist of two separate unbounded convex

Figure 7.42 Relationships between the gi + , g_ domains and the common interior
and exterior of the given constraints.

7.3 Three-Dimensional Applications 	 319

sets, one being the common interior and the other the common exterior of the
given half-spaces, as illustrated two-dimensionally in Figure 7.42. We call this
the hyperbolic case. If all points of the solution project into the positive (or the
negative) open hemisphere, the corresponding set in E3 is bounded and we call
this the elliptic case. The parabolic case occurs when there is a single, but
unbounded set in E3 , i.e., the case when equatorial as well as positive (or
negative) points occur in V. In all three cases the sets of points form what we
shall call a generalized convex polyhedron. The elliptic case alone corresponds
to a conventional bounded polyhedron.

Our objective is the simultaneous computation of both the common inte-
rior and the common exterior. Notice that the domain g is always contained
in some hemisphere of S 4 , bounded by the hyperplane it whose equation is
p l x 1 + p2x2 + p3x3 + p4 x 4 = O. The ray normal to n, (P13 1, PP2, PP3, PP4)
for p > 0, pierces S 4 in a point u. If we apply a rotation R of E4 which
brings the origin of E 3 to u, then the entire g will be in the positive hemisphere.
We are then reduced to the elliptic case, which is solved by the method
outlined earlier. Once we have obtained the intersection polyhedron, by
applying the inverse rotation R -1 , we transform it back into the sought
common interior and common exterior. Thus, the goal is to obtain the vector

P = (P1,P2,P3,P4)•
Since g is contained in the half-space p l x 1 + p2 x2 + p3 x3 + p4x4 > 0,

letting v ; = (ai , b., c i , di), we must have

p•vT <0, 	i = 1,2,..., N,

(where "•" denotes, as usual, "inner product"). This can be rewritten as

	

aip1 + bip2 + cip3 + dip4 < 0, 	i = 1, 2, ... , N

that is,

{

ai p i + bi p2 + ci p 3 + p4 <_ 0, for di = + l

— a1P1 — bip2 — cip3 + p4 > 0, for di = — 1.

These conditions are now interpreted. Let p i x + p2y + p3 z + p4 = 0 denote
a plane in E3 . Depending upon whether di = +1 or di = — 1, either point
(ai ,bi ,ci) or point (—a i , —b i , —c i) is the dual of the plane ai x + biy + ciz +
di = 0 in the usual polarity. Thus the plane ai x + biy + ciz + di = 0 separates
the dual images of the planes whose indices are in I + and I_ respectively.

This immediately suggests a method to find p:

1. Form the dual sets S + of {n i : i E I+ } and S - of {n i : i e /_}. Construct
CH(S +) and CH(S -). [In time 0(N log N)].

2. If CH(S +) n CH(S -) QS (with interior), then the set of inequalities is
inconsistent. Otherwise construct a separating plane p i x + p2y + p3 z +
p4 = O. [In time 0(N) using the method mentioned in Remark 2, Section
7.2.5.]

At this point the appropriate rotation of E4 can be constructed and

320 	 7 Intersections

applied—in time 0(N) — , after which the techniques described earlier com-
plete the task in additional time 0(N log N). Thus we have

Theorem 7.16. The common interior and the common exterior of a set of N half-
spaces in E3 can be constructed in time O(Nlog N) (i.e., in optimal time).

The optimality follows from the remark that the S2(N log N) lower bound
obtained for the intersection of N half-planes applies trivially to the problem
in question.

7.4 Notes and Comments

The techniques and the results illustrated in the preceding sections are not a full catalog
of the abundant literature on geometric intersection problems. In this section, we
attempt to remedy at least in part to this deficiency by a brief sketch of a number of
additional significant results.

An approach proposed by Chazelle and Dobkin (1980) to intersection problems is
analogous to repetitive-mode query processing. Specifically, rather than considering
two geometric objects and computing their intersection, they propose to consider a
large set of such objects and preprocess them so that their pairwise intersection can be
tested very rapidly (Problem Type I.3). The objects they study are points, lines, planes,
polygons, and polyhedra; given any two objects in these categories (e.g., a (polygon,
polygon) pair, or a (plane, polyhedron) pair, etc.) they give "poly-log" algorithms for
testing whether their intersection is empty. As an example, the case (point, polyhedron)
is readily solved as a planar point location problem (Section 2.2), by projecting
stereographically the polyhedron and the point to a suitable plane; on the other hand,
the solution to this problem provides, by straightforward dualization (Section 1.3.3),
the solution of the problem (plane, polyhedron).

Another class of intersection problems, of which an important case—intersection of
segments—has been presented in Section 7.2.3, is the report of all K intersecting pairs
in a set of N objects. The goal is the development of algorithms whose running time is
0(f(N) + K), i.e., it consists of a fixed overhead 0(f(N)) and is otherwise propor-
tional to the size of the reported set. The algorithm in Section 7.2.3 fails to achieve this
goal since it runs in time O((K + N) log N), while the time lower bound for this problem
is S2(K + N log N). The challenge offered by this performance gap produced substantial
research. In the widespread belief that the gap had to be imputed to the inefficiency of
the algorithms rather than to the looseness of the lower bound, more efficient tech-
niques were sought for cases where the segments obeyed some constraint. A first step
in this direction was taken by Nievergelt and Preparata (1982), who considered the
intersection of two planar maps (i.e., the segments are the edges of two planar graphs
embedded in the plane); they showed that, if the faces of each graph are convex, time
0(N log N + K) is attainable. In reality, the constraint of convexity was unnecessary,
since a more general result was later proved by Mairson and Stolfi (1983): two collec-
tions A and B, each consisting of nonintersecting segments, and such that IA I + I BI = N,
can be intersected in time O(N log N + K), where K is the number of intersections. An
additional instance of this problem occurs when A and B are each a class of parallel
segments, for which an even simpler technique achieving the same time bound will be
presented in Chapter 8. All of these techniques are of the plane-sweep type; in the
general case, the dynamic reinsertion of an intersection in the event point sehedule
automatically determines an O(K log K) cost. In a radical departure from sweep-line

7.4 Notes and Comments 	 321

methods, Chazelle (1983a) proposed a segment intersection algorithm based on a
hierarchical approach and running in time O(K + N log e N/log log N). Subsequently,
Chazelle and Edelsbrunner (1988) have announced an algorithm for this problem
whose running time is optimally 0(N log N + K). This technique is an ingenious
combination of a number of prominent algorithmic devices such as plane-sweep,
segment trees, topological sweep, cost amortization, etc. Although, the crucial device
is still a sweep of the plane, the algorithm maintains not just the sweep-line status but
rather the entire scene formed to the right of the sweep-line by the segments active in
the cross-section. Contrary to the suboptimal algorithm of Bentley—Ottmann, which
uses 0(N) storage, this technique uses space 0(N + K). Therefore, it remains an open
question whether optimal time and space performances are simultaneously attainable.

If rather than reporting the intersections of N line segments the objective is simply
to obtain their number (segment intersection counting) the problem is considerably
different. There exists an obvious transformation, since any intersection reporting
algorithm can be used to solve the corresponding counting problem; however, effi-
ciency can be poor since the number K of intersections can be 0(N 2). The best result
independent of K known to date is an algorithm due to Chazelle (1983a) running in
time 0(N'.695 . log N) and using linear space.

In Section 7.2.3.2 we have seen that to detect if N line segments in the plane are
disjoint requires S2(Nlog N) operations. What happens if the N segments obey the
constraint of being the edges of a polygon? In this case, the detection problem becomes
the test for simplicity of a polygon, and it is interesting to explore if the added condition
leads to algorithmic simplifications. So far, SIMPLICITY TEST has eluded a com-
plexity characterization. Recently some progress has been reported on a related
problem, POLYGON INTERSECTED EDGES, i.e.: given an N-gon P, report all its
edges that are intersected (by some other edge). For this problem, by using the general
theory of Ben-Or (Section 1.4), Jaromczik has shown that S2(N log N) operations are
necessary [Jaromczik (1984)]. Unfortunately, this bound does not affect SIMPLICITY
TEST, since the transformation of the latter to POLYGON INTERSECTED EDGES
goes in the wrong direction. Thus, the complexity of SIMPLICITY TEST remains an
outstanding open problem in computational geometry.

The optimal-time algorithm that constructs the intersection of two convex poly-
gons, reported in Section 7.2.1, is a plane sweep. Its brute generalization to three
dimensions fails for the reasons presented at the beginning of Section 7.3.1 However,
the appropriate generalization has been recently found by Hertel et al. [Hertel-
Mehlhorn—Màntyla—Nievergelt (1984)]; their method is not only an important example
of space-sweep algorithm, but it also represents an alternative to the polygon inter-
section technique of Section 7.3.1, and a good competitor for elegance (if not for
performance). To give an idea of the technique, the two-dimensional analog is a plane
sweep that computes the points that are intersections of the boundaries of two
polygons P1 and P2 : then a march, alternating between the boundaries of P 1 and P2 at
the intersection points, constructs the boundary of P 1 n P2. The two edges of P; (i =
1, 2) intersected by the sweep-line in E 2 become a cycle of polygons (called a crown)
intersected by the sweep-plane in E3 and the role of intersection points in E 2 is taken
by polygonal cycles in E 3 . They show that a space sweep efficiently updates the crowns
and detects at least one vertex of each polygonal cycle, from which the entire boundary
can be readily constructed. The algorithm is shown to run in time 0(N log N). The
corresponding detection problem is certainly no harder than the construction problem,
and is likely to be simpler. Indeed, Dobkin and Kirkpatrick (1984) have devised a 0(N)
algorithm for this problem, and also credit Dyer for an independent discovery of an
analogous result.

The construction of the kernel of a simple polygon (Section 7.2.6), is a representa-
tive of an interesting large class, called visibility problems (indeed, the kernel is the locus
of points from which all vertices are visible). Such problems occur in a variety of

322 	 7 Intersections

applications in graphics, scene analysis, robotics, etc. The basic concept is that two
points p l and p2 are (mutually) visible ifp 1 p 2 does not intersect any "forbidden" curve.
Visibility is normally defined with respect to a point p. In the plane, if the forbidden
curves are segments, the locus of points visible from p, called the visibility polygon of p,
is a (possibly unbounded) star-shaped polygon. The visibility polygon is always
bounded if p is internal to a simple polygon P and the boundary of P is the forbidden
curve. If the set of segments in the plane consists of a single simple polygon, at least two
linear time algorithms are known [ElGindy—Avis (1981); Lee (1983b)]. The technique
used is similar to Graham's scan in that an initial point visible from p is first determined
and then, by using the property of simplicity, the vertices of P are scanned and the
portions of P that are not visible from p are eliminated. In the case where the segment
set consists of in disjoint convex polygons with N edges in total and K denotes the
output size, this problem can be solved in O(m log N + K) [Lee—Chen (1985)]. Edels-
brunner et al. [Edelsbrunner—Overmars—Wood (1983)] also examine this problem and
discuss the maintenance of the visibility polygons when insertions or deletions are
allowed, as well as the issue of coherence when the viewing direction or the points are
allowed to move. By set-theoretic operations on visibility polygons one may define
special types of visibility, and the reader is referred to Toussaint (1980a) for a concise
account of this topic.

7.5 Exercises

1. Let P1 and P2 be two convex polygons, whose numbers of vertices sum to N. Design
a plane-sweep algorithm that computes the intersection of P 1 and P2 in time 0(N) as
follows:
(a) Determine the set 5 of all intersections of the boundaries of P 1 and P2 ;
(b) By using f, construct the boundary of P 1 n P2.

2. Given a collection S of N segments in the plane, devise an algorithm that decides if
there is a line / intersecting all members of S (stabbing line) and, if so, construct it.

3. Given a collection S of N segments in the plane, and a query segment s*, preprocess
S to obtain an efficient algorithm to test if s* intersects any member of S.

4. Let P be a convex polyhedron. A query consists of testing if a segment s in E3 has a
nonempty intersection with P. Assuming to operate in the repetitive mode, pre-
process P and design an efficient query algorithm.

5. Given two convex polyhedra P and Q, whose numbers of vertices sum to N, can you
think of an algorithm that tests if P and Q intersect in time 0(N)?

6. Modify the algorithm for intersecting two convex polyhedra (given in Section 7.3.1)
to test if two polyhedra P and Q are linearly separated and, if so, construct a
separating plane 7E. The algorithm should run in time linear in the total number of
vertices of P and Q.

7. Lee. Consider N linear functions J(x) = a;x + b1 , i = 1, ... , N. Adapt the Megiddo—
Dyer technique, described in Section 7.2.5, to find max i min ; f (x) in 0(N) time.

CHAPTER 8

The Geometry of Rectangles

The methods developed earlier to intersect planar convex polygons are cer-
tainly applicable to a collection of rectangles. Similarly, a collection of seg-
ments, each of which is either parallel or orthogonal to any other member of
the collection, can be handled by the general segment intersection technique
described in the preceding chapter. However, the very special nature of
segments having just two orthogonal directions, or of rectangles whose sides
are such segments, suggests that perhaps more efficient ad hoc techniques can
be developed to treat such highly structured cases. And in the process of
studying this class of problems one may acquire more insight into the geo-
metric properties possessed by the objects mentioned above—rectangles and
orthogonal segments—and may succeed in characterizing the wider class to
which the techniques are still applicable.

All this would be an interesting, albeit a little sterile, exercise, were it not
that rectangles and orthogonal segments are the fundamental ingredients of a
number of applications, some of which have acquired extreme importance in
the wake of current technological breakthroughs, notably Very-Large-Scale-
Integration (VLSI) of digital circuits. Therefore, before entering the detailed
discussion of the algorithmic material, it is appropriate to dwell a moment on
some significant applications.

8.1 Some Applications of the Geometry of Rectangles

8.1.1 Aids for VLSI design

Masks used in the fabrication of integrated circuits are frequently expressed as

324 	 8 The Geometry of Rectangles

of DI
	1

Figure 8.1 Typical geometry of an integrated circuit.

a collection of rectangles with sides parallel to two orthogonal directions.
Each such rectangle is either a portion of a wire, or an ion implantation region,
or a "via" contact, etc., as illustrated in Figure 8.1 [Lauther (1978); Baird
(1978); Mead—Conway (1979)].

These rectangles are laid out in the plane according to certain design rules,
which specify minimum spacings between types of rectangles, minimum
overlaps between other types, and so on. The conditions on clearances and
overlaps arise from the conflicting requirements to minimize the total area
used (an obvious economic constraint) and to ensure the necessary electrical
relationship (insulation or contact) in spite of possible production fluctu-
ations. (Clearly, the more parsimonious is the clearance, the more likely is the
occurrence of an undesired contact.)

Therefore, an important task in the design of an IC-mask (integrated
circuit mask) is the verification that the design rules have been complied with,
briefly referred to as "design-rule checking." For example, in Figure 8.2 one
wishes to ensure a minimum clearance A between rectangle R and the neigh-
boring rectangles. To verify this situation one may enlarge R by means of a
crown of width A, and verify whether the enlarged rectangle R' intersects any
of the surrounding rectangles. Thus the verification of spacing is transformed
to a rectangle intersection problem. Variations of this approach can be used to
verify other design rules, such as overlaps, containments, and the like.

Whereas the above steps concern, in a sense, the "syntactic" correctness of

I 	
X
	R

r --

I
I I 	 ^_____ 	Re

Figure 8.2 A minimum clearance of value ;I. around rectangle R can be verified by
enlarging R by a. (to form R') and checking for overlaps.

8.1 Some Applications of the Geometry of Rectangles
	 325

Figure 8.3 The identification of the connected component of a set of rectangles can
be used in a circuit extraction task.

the mask, another important task is the verification that the mask is the
functionally correct realization of the specified circuits. The first step in this
task is the interpretation of the geometry of the mask as an electric circuit, that
is, the identification of subsets of rectangles whose members are all electrically
connected. This activity is referred to as circuit extraction. In somewhat more
abstract terms, one may imagine a graph, whose vertices correspond to the
rectangles, so that there is an edge between two vertices if the corresponding
rectangles have a nonempty intersection. In this formulation, circuit extrac-
tion is solved by finding the connected components of this graph. However, the
determination of the connected components achieves somewhat less than
required by circuit extraction, since what is really needed is an outline of the
boundary (the so-called contour) of each connected component (see Figure
8.3).

Thus, we see that the design of integrated circuits is a source of a wealth of
geometric problems involving rectangles, of which we have only illustrated
some significant representatives.

8.1.2 Concurrency controls in databases

An interesting geometric model has been recently developed for the concur-
rent access to a database by several users [Yannakakis—Papadimitriou—Kung
(1979)]. Typically, a user transaction is a sequence of steps, each of which
accesses an item of the database (a variable) and updates it. The update of a
variable, however, has a certain duration. In this time interval it is necessary to
prevent any other user from accessing the same variable. (In more concrete
terms, for example, if the variable in question is the seat availability of a
commercial flight, it is obvious that, in order to maintain the correct count, all
transactions involving this variable must occur sequentially.) A very common
method for resolving these conflicts is locking [Eswaran—Gray—Lorie—Traiger
(1976)], whereby a user "locks" a variable at the beginning of an update and
"unlocks" it at its completion. A locked variable is not accessible by any other
user.

326 	 8 The Geometry of Rectangles

This situation can be modeled as follows. The history of each user is a
sequence of steps of the types "lock x," "update x," and "unlock x," where x
is a database variable. If there are d users, we identify each of them with an axis
of the d-dimensional cartesian space Ed , and for each axis we establish a one-
to-one correspondence between transaction steps and points with integer co-
ordinates. In this manner an update of a variable is identified with an interval
(locking interval) on this axis, bounded by the points corresponding to the
lock and unlock steps, respectively. Also, if k < d users have a transaction
involving the same variable, the cartesian product of the corresponding
locking intervals is a k-dimensional rectangle. The situation is illustrated for
two users U 1 and U2 in Figure 8.4(a). The state of the database is represented
by a poing in the plane of coordinates U 1 and U2, indicating the progress
made in the history of each user; for example, point (8, 3) in Figure 8.4(a)
indicates that step 8 of U 1 and step 3 of U2 are currently being executed. It is
clear that in a locked-transaction system the state point cannot be internal to
any rectangle associated with a variable.

As we indicated earlier, each user may access several variables. Each access
to a variable x involves the subsequence of steps "lock x," "update x," and
"unlock x"; the sequence of steps of a given user (user's activity) is displayed
by a set of points on the user axis, as shown in Figure 8.4(b) for two users.

A schedule illustrates the actual evolution of the database activity and is an
arbitrary merge of the activities of each user. Since each activity is a sequence,
a feasible schedule is represented by a monotone nondecreasing staircase
curve in the plane (U 1 , U2) of Figure 8.4(b). An initial portion of such curve
describes a partial schedule.

A serial schedule is one where users are processed sequentially, that is, a
user gains access to the database and maintains it until the completion of his
activity. Clearly, for d users there are d! serial schedules (and, for two users,
there are just two schedules, shown in Figure 8.4(b)). A database system is
considered safe if the effect of any legal schedule (i.e., a schedule avoiding the
rectangles) is the same as that of some serial schedule. This condition can be
expressed in purely geometrical terms [Yannakakis—Papadimitriou—Kung
(1979)], by requiring that any safe schedule be homotopic (continuously
tramsformable avoiding the rectangles) to a serial schedule.

On the other hand, the system may reach a condition of impasse, called
deadlock, in which it would remain indefinitely without an external interven-
tion. For example, this is the situations represented by the partial schedule c
shown in Figure 8.4(b), described by the sequence S21 S11 S22 2 S2 3 • • Step S12
(lock x 1) cannot be executed because x 1 is already locked (by S21); so S12
must wait and attention is given to user U2, who demands execution of S23:
lock x2 . Again, x 2 is already in the locked state (by S 1 1), so that no further
processing may take place, since both users are trying to execute a nonexecu-
table step.

The conditions of safeness and deadlockfreedom are effectively visualized in

S25 unlock x2 i

Serial
schedule S24 unlock X 1i

S23 lock X2 —0-

S22loCk X3—=

S21I0Ck x 1

Begin —^ ■ 	U1

S
1

3
un

lo
ck

 x
2
;

S
16

 u
n

lo
ck

 x
3;

S
i2

 lo
c

k
x

1 -
-

1.-

S1
1

lo
ck

 x2
-
-

0.
-

(b)

327 8.1 Some Applications of the Geometry of Rectangles

U2

Unlock-D.

Update-0-

Lock —^

3

0 f

•
8

	► U1
f 	f

Lock 	Update Unlock

(a)

Figure 8.4 Modeling a locked transaction database system. (a) Two users, one
variable. (b) Two users, three variables.

the transaction diagram. First of all, no curve representing a schedule can

penetrate into the interior of the union of the transaction rectangles. This

union will appear as a collection of connected components (see Figure 8.5).

But this condition alone does not guarantee that the system be free of

deadlocks. Indeed, we should characterize a region, containing the transac-
tion rectangles, such that any schedule (i.e., any monotone nondecreasing

curve) external to it is guaranteed to be deadlock free. Such region is sketched

328
	

8 The Geometry of Rectangles

Figure 8.5 Illustration of the SW-closure of a union of rectangles. Any schedule
avoiding this region is deadlockfree.

in Figure 8.5, where the shaded areas have been added to the union of the

transaction rectangles. It is intuitively clear, at this point, that such extension

of the union of rectangles satisfies the given requirement. This region has been

called the SW-closure (south-west closure) of the union of rectangles

[Yannakakis—Papadimitriou—Kung (1979); Lipski—Papadimitriou (1981);

Soisalon-Soininen—Wood (1982)], and will be technically defined in Section

8.6 of this chapter.

8.2 Domain of Validity of the Results

Although a collection of rectangles was the original setting that motivated

most of the research in the area, and practically all results are cast in terms of

orthogonal directions (typically, the coordinate axes), it is appropriate at this

point to try to identify the widest range of validity of the theory.

We start with two collections of segments S 1 and S2, each one consisting of
parallel segments and with the property that the directions of S 1 and S2 are
mutually orthogonal. The straight lines containing the segments determine

a grid of the plane. We now represent points in homogeneous coordinates

(x 1 , x2 , x3) (see Sections 1.3.2 and 7.3.2) and apply a generic nonsingular pro-
jective transformation to the points of the planes, that is, a transformation

described by a 3 x 3 nonsingular matrix s. It is well-known (see, for example,

[Ewald (1971)] or [Birkhoff—MacLane (1965)]) that this transformation maps

points to points and lines to lines, and preserves incidence, that is, any such trans-
formation does not alter the structure of the grid. If the matrix d is of the form

0
^= 	∎ 0

1
0 0 ∎ a

with M a 2 x 2 nonsingular matrix and a 0 0, then the line at infinity maps to
itself, and the two originally orthogonal directions become now arbitrary

8.2 Domain of Validity of the Results
	

329

Figure 8.6 A nonsingular projective transformation applied to a plane figure formed
with orthogonal segment.

directions. If the nonsingular matrix d does not have the block form given
above, then one or both of the points at infinity of the two original directions
are mapped to points at finite, whence even the parallelism of the lines of each col-
lection of segments disappears. A typical situation is illustrated in Figure 8.6.

The preceding analysis, in a sense, characterizes the range of validity of the
so-called "geometry of rectangles" and motivates the following definitions.

Definition 8.1. A set M of quadrilaterals is said to be isotheticl if the sides of
each member of .W belong to lines of two pencils of lines with centers at points

' Isothetic means "equally placed," from the Greek words isos (equal) and tithenai (to place).
There has been a considerable terminological uncertainty on this notion, ranging from "recti-
linear" to "orthogonal" to "aligned" to "iso-oriented." While the latter are no misnomers
(except, possibly, for "rectilinear"), perhaps "isothetic" is the word closest to the notion.

330 	 8 The Geometry of Rectangles

p i and p 2 , respectively (p l and p 2 possibly on the line at infinity of the plane)
and all members of M lie entirely on the same side of the line by p i and p 2 .

With this clarification, for ease of presentation we shall hereafter refer to
the case in which p l and p2 define orthogonal directions.

The algorithms to be illustrated in this chapter concern the determination
of various properties of sets of rectangles (or of orthogonal segments). A
fundamental classification can be made depending on the basis of the mode of
operation, that is, depending upon whether we operate in a static or in a
dynamic environment. In the first case the data of the problem are entirety
available before computation begins; in the other case, we also allow dynamic
updates of the data set, by means of insertions and deletions.

The two modes of operation—static and dynamic--involve, as is to be
expected, the use of substantially different data structures. While operating in
the static mode is to-date reasonably well understood, the more complex
dynamic mode is still in an active stage of development. Due to this situation,
it is appropriate to examine in detail just the static mode algorithms; reference
to ongoing research on dynamic mode algorithms will be made at the end of
the chapter.

The following presentation will be mostly concerned with the two-
dimensional environment. Extension to the more general d-dimensional case
will be made or mentioned whenever appropriate.

8.3 General Considerations on Static-Mode
Algorithms

A collection of isothetic rectangles (or, equivalently, two orthogonal collec-
tions of parallel segments) is characterized by the unique property that the
plane can be subdivided into strips (for example, vertical strips), in each of
which the environment becomes unidimensional. (Analogously, Ed can be
partitioned into slabs whose environment is (d — 1)-dimensional.) Specifically,
if one considers the abscissae of vertical sides of rectangles, in the plane strip
between two consecutive such abscissae all vertical sections are identical, and
consist of the ordinates of the horizontal sides crossing the strip. Thus the
vertical sections of the plane are subdivided into equivalence classes (each
class being the set of sections between two consecutive abscissae of vertical
rectangle sides). In addition, we realize that the section pertaining to a given
strip appears as a minor modification of the ones pertaining to either one of
the two adjacent strips.

Several of the computationally interesting problems concerning a set of
rectangles (such as area of union, perimeter of union, contour of union, report
of intersections, etc.) have a very useful property. A generic vertical line
determines two half-planes; the solution of the given problem is related in a

8.3 General Considerations on Static-Mode Algorithms 	 331

generally simple manner to the solutions of the analogous subproblems in
each of the two half-planes. This simple relation is sometimes just set-theoretic
union (intersection report), or arithmetic sum (area, perimeter), or a simple
concatenation of appropriate components (contour). In all of these cases the
intersection of the bisecting line with the set of rectangles contains all the
relevant information for the combination of the partial solutions. Moreover,
the static mode of operation suggests that the solution obtained for, say, the
half-plane to the left of a bisecting line is final (i.e., not modifiable by possible
future updates), so that the global solution can be obtained incrementally by
extending to the right the current solution. We recognize that this is the
paradigmatic situation where a plane-sweep technique is called for, the sweep-
line being parallel to one direction and the motion occurring along the
perpendicular direction.

Turning now our attention to the generic vertical section of the rectangle
set—which is just a sequence of ordinates—we note that, since the intersected
segments are parallel, the ordinate sequence of the section is always a subse-
quence of the sorted sequence of ordinates of the horizontal segments.
Through a preliminary normalization that sorts the set of ordinates and
replaces each ordinate with its rank in the sorting, the sequence of ordinates
can be likened to a sequence of consecutive integers. Thus, in order to
maintain the sweep-line status, it seems unnecessary to resort to a general
priority queue, when use can be made of more efficient structures tailored to
the situation. Such structures are all determined (at least as a skeleton) by the
set of ordinates of all horizontal segments, and each particular section can be
obtained—in the "skeleton" metaphore—by "fleshing out" the appropriate
portion of the skeleton. An example of such structure is the segment tree,
which we already discussed and used earlier in this text (see Section 1.2.3.1);
another will be the interval tree [McCreight (1981); Edelsbrunner (1980)], to
be described in Section 8.8.1.

For the convenience of the reader we recall that each node y of the segment
tree is characterized by an interval [B[v], E[v]], and by some additional para-
meters, necessary to carry out specific computations. Of these parameters,
C[v]—the node count—is common to all applications, since it denotes the
multiplicity of the segments currently assigned to y; other parameters, on the
other hand, are specific to the application under consideration.

The primitive operations on the segment tree are insertion and deletion.
Specifically, if [b, e] denotes an interval, these primitives, acting on a node y,
are INSERT(b, e; y) and DELETE (b, e; v). The general form of INSERT, to
be used throughout the next sections, is as follows:

procedure INSERT(b, e; v)
1. begin if (b < B[v]) and (E[v] < e) then C[v] := C[v] + 1
2. else begin if (b < L(B[v] + E[v])/2]) then INSERT(b, e; LSON[v]);
3. if (L(B[v] + E[v])/2] < e) then INSERT(b, e; RSON[v])

end;

332 	 8 The Geometry of Rectangles

4. 	UPDATE(v) (*update specific parameters of v*)
end.

The crucial feature, which will distinguish the different applications, is the
function UPDATE(v) in line 4, whose instances will be discussed case by case.
Analogous considerations apply to the procedure DELETE(b, e; v).

In conclusion, the plane-sweep approach and the use of interval-oriented
data structures are the natural tools for tackling a variety of static compu-
tational problems in the geometry of rectangles. The following sections are
devoted to a detailed presentation of specific techniques.

8.4 Measure and Perimeter of a Union of
Rectangles

In a note [Klee (1977)] that raised considerable interest and can be traced as
the origin of a whole research topic, V. Klee posed the following question:
"Given N intervals [a 1 , b 1], ... , [as , b N] in the real line, it is desired to find the
measure of their union. How efficiently can that be done?"

In this formulation, we have the simplest (unidimensional) instance of the
measure-of-union problem. (The computation of the measure-of-union in
arbitrary dimension will be referred to as Problem R.1.) Klee readily exhibited
an O(N log N) algorithm to solve it, based on presorting the abscissae al ,
b 1 , ... , aN , bN into an array X[1 : 2N]. The additional property of X[1 : 2N] is
that if ai is placed in X[h], bi in X[k], and ai = bf then h < k (that is, a right
endpoint is placed after a left endpoint of the same value). The computation is
completed by a simple linear time scan of X[1 : 2N] (the following algorithm is
an adaptation of Klee's suitable for subsequent generalizations):

procedure MEASURE OF UNION OF INTERVALS
1. begin X[1 : 2N] := sorted sequence of abscissae of intervals;
2. X[0] := X[1];
3. m := 0; (*m is the measure*)
4. C:= 0; (*C is the multiplicity of overlapping segments*)
5. for i:= 1 until 2N do
6. begin if (C 0 0) then m := m + X[i] — X[i — 1];
7. if (X[i] is a left endpoint) then C:= C + 1 else C:= C — 1

end
end.

In his original paper, Klee also noted that, although sorting is the key to the
above result, it is a priori not required, and asked whether there exists a
solution involving o(N log N) steps.

The answer to this question was readily provided by Fredman and Weide
(1978) for the linear decision-tree model (which encompasses the above al-

8.4 Measure and Perimeter of a Union of Rectangles 	 333

Y

x< y

	PI

Figure 8.7 Illustration in E 2 of the distinction between the membership sets of
ELEMENT UNIQUENESS (a) and c-CLOSENESS (b).

gorithm); the general technique of Ben-Or (Section 1.4) extends the result to
general algebraic decision trees. Characteristically, the type of argument fits a
by now familiar pattern, encountered in connection with convex hulls (Section
3.2), maxima of vectors (Section 4.1.3), element uniqueness (Section 5.2), and
maximum gap (Section 6.4). The ubiquitous underlying structure, the sym-
metric group of degree N, is again the key of the argument.

The computational prototype to be used here is the following.

PROBLEM R.2 (c-CLOSENESS). Given N + 1 real numbers x 1 , x 2 , ... , xN ,
and e > 0 determine whether any two x i and xi (i # j) are at distance less than
e from each other.

First, we show that the transformation

e-CLOSENESS oc N MEASURE OF UNION OF INTERVALS

can be easily established. Indeed, construct interval [xi , x i + e] for i =
1, 2, ... , N. These intervals form the input for the algorithm MEASURE OF
UNION, which returns as a result a real value m. Then clearly no two elements
of {x 1 , ... , xN } are at distance less than E from each other if and only if m
= Ne.

There is a close similarity between c-CLOSENESS and ELEMENT
UNIQUENESS, discussed in Section 5.2. However, ELEMENT UNI-
QUENESS is not a special case of e-CLOSENESS, since the value of E = 0,
required to obtain the specialization, is not allowed. Rather, their relation-
ship is shown in Figure 8.7, in a two-dimensional instance: in the context
of ELEMENT UNIQUENESS the disjoint connected components of the
membership set W (see Sections 1.4 and 5.2) are open sets and two of them
may be separated just by their common frontier, whereas in the context of e-
CLOSENESS the components are closed sets and the separation is always
positive. Except for this difference, the argument establishing that the mem-
bership set W of c-CLOSENESS has N! disjoint connected components is

334 	 8 The Geometry of Rectangles

Figure 8.8 The plane-sweep approach to the measure-of-union problem in two
dimensions.

analogous to the one developed in Section 5.2, so that we have the following
corollary to Theorem 1.2.

Corollary 8.1. In the algebraic decision-tree model any algorithm that deter-
mines whether any two members of a set of N numbers differ from each other by
less than c requires SZ(Nlog N) tests.

The preceding result establishes the optimality of Klee's result for the
measure problem in one dimension, but leaves open the question of how well
we can do for d > 2.

Bentley (1977) 2 attacked this problem and succeeded in developing an
optimal measure-of-union algorithm for d = 2. The technique is a natural,
albeit clever, modification of the unidimensional method. Specifically, in one
dimension the length of the interval [X[i — 1], X[i]] is added to the measure
(line 6 of Algorithm MEASURE OF UNION OF INTERVALS) depending
upon whether there is at least one segment that spans it or not, or, equiva-
lently, the parameter C is nonzero or zero, respectively. As a consequence, all
we need to maintain is the value of C (Line 7). In two dimensions (see Figure
8.8) the plane strip between X[i — 1] and X[i] contributes to the measure-of-
union of rectangles the quantity (X[i] — X[i — 1]) x mi , where m i is the length
of the intercept of an arbitrary vertical line in the strip with the union of

2 Also reported in [van Leeuwen-Wood (1981)].

8.4 Measure and Perimeter of a Union of Rectangles 	 335

rectangles itself. Thus the quantity m i (which was constant and equal to 1 in
one dimension) is the key parameter of a two-dimensional technique. If m i can
be maintained and measured in time not exceeding O(log N), then the times
for presorting and scanning would be equalized and an optimal 0(N log N)
algorithm would result.

Since the ordinates of the horizontal sides of rectangles are known a priori,
the objective can be realized by means of the segment tree (see Section 8.3).
Referring to the general format of the segment tree primitives INSERT and
DELETE presented in Section 8.3, for the present application we define the
following additional node parameter:

m[v] := the contribution of the interval [B[v], E[v]] to the quantity m i .

The computation of m[v] is specified by the following procedure (to be called
in line 4 of procedure INSERT):

procedure UPDATE(v)
begin if (C[v] 0 0) then m[v] := E[v] — B[v]

else if (v is not a leaf) then m[v] := m[LSON[v]] + m[RSON[v]]
else m[v] := 0

end.

It is clear that m i = m[root of segment tree]. The general parameter C[v] and
the specific parameter m[v] can both be easily maintained—in constant time
per node when a segment (a vertical side of a rectangle) is inserted into or
deleted from the segment tree. Thus, the maintenance of the segment tree and
the determination of m i can be jointly effected in time O(log N) per vertical
rectangle side, realizing the previously stated objective. We can now formulate
the algorithm, where b i and ei are respectively the minimum and maximum
ordinates of the vertical side at abscissa X[i]. (Note that this algorithm is a
direct generalization of the one-dimensional one given earlier.)

procedure MEASURE OF UNION OF RECTANGLES
1. begin X[1 : 2N] := sorted sequence of abscissae of vertical sides;
2. X[0] := X[1];
3. m:= 0;
4. construct and initialize segment tree T for ordinates of rectangle

sides;
5. for i:= 1 until 2N do
6. begin m* := m[root(T)];
7. m := m + m* x (X[i] — X[i — 1]);
8. if (X[i] is a left-side abscissa) then

INSERT(bi , ei ; root(T))
9. else DELETE(b i , e i ; root(T))

end
end.

We summarize the discussion with the following theorem.

336 	 8 The Geometry of Rectangles

Theorem 8.1. The measure of the union of N isothetic rectangles in the plane can
be obtained in optimal time 0(N log N).

If we reconsider the last algorithm, we readily recognize it in the plane-
sweep category, (see Section 8.3), where the array X[1 : 2N] provides the event-
point schedule and the segment tree gives the sweep - line status. This realiza-
tion immediately offers a further generalization of the technique to more
than two dimensions. Indeed the sweep approach transforms the original
d-dimensional problem (on N hyperrectangles in Ed) into a "sequence"
of N (d — 1)-dimensional subproblems (each on at most N hyperrectangles
in Ed--1). For d = 3, the subproblems become two-dimensional and, by
Theorem 8.1, each can be solved in O(Nlog N) time; thus, the measure of
union problem in three dimensions can be solved in time O(N 2 log N). This
establishes the basis for an induction argument which leads to the following
corollary.

Corollary 8.2. The measure of the union of N isothetic hyperrectangles in
d > 2 dimensions can be obtained in time O(N d- ' log N).

What is grossly unsatisfactory about the outlined method for d > 3 is the
fact that there is a "coherence" between two consecutive sections in the sweep
that we are unable to exploit. (For d = 2, the segment tree takes full advantage
of the section-to-section coherence by efficiently constructing the current
section as a simple update of the preceding one.) This idea was further pursued
in three dimensions by van Leeuwen and Wood (1981), who proposed to use
as data structure the "quad-tree" [Finkel-Bentley (1974)]. The quad-tree
could be viewed as a two-dimensional generalization of the segment tree, but,
curiously enough, it was developed earlier than the more specialized structure.
We shall now briefly review its organization.

The quad- tree is a way to organize a rectangular grid of N x M cells,
determined by (N + 1) horizontal lines and (M + 1) vertical lines. (Corre-
spondingly, the segment tree is a way to organize N contiguous intervals.) To
simplify the discussion, we assume that N = M = 2k . The quad-tree T is a
quaternary tree where with each node we associate a 2` x 2` portion (called a
2`-square) of the grid (i = 0, 1, ... , k). The 2`-square associated with a given
node y of T (for i > 0) is subdivided into four 2 1- '-squares by vertical and
horizontal bisections (refer to Figure 8.9); each of these four squares (referred
to as NW, NE, SE, and SW squares) is associated with one of the four
offsprings of v. The construction is initialized by associating the entire grid
with the root of T, and terminates when the quadrisection process yields 2 °

-squares (the leaves of T). Since T has N 2 leaves, its construction takes 0(N 2)
time and uses 0(N 2) space.

We now examine how a rectangle R can be stored in a quad-tree. The basic
grid is formed by the 2N abscissae and 2N ordinates of the given N rectangles,
and the quad-tree T is constructed on this grid. Each node y of T has an

8.4 Measure and Perimeter of a Union of Rectangles

C - 	GCIIJ 	 ► j

NW

2i -1 square

NE

2 1-1-square

A

21

r

SW

2 1-1-square

SE

2-square

Figure 8.9 Illustration of the partition of the plane-grid accomplished by a node of
the quad-tree corresponding to a 2`-square.

occupancy integer parameter C[v], which is initially set to 0 (we refer to this
condition as the skeletal quad-tree). A rectangle R contributes 1 to C[v] if and
only if (i) R contains the square of v and (ii) no ancestor of y in T enjoys the
same property. Clearly, this specifies a unique way to partition R into squares,
each of which is stored in a node of v. While in the segment tree each segment is
partitioned into at most 0(log N) intervals, it is relatively simple to show 3 that
a rectangle is partitioned into at most 0(N) squares. Thus an insertion into
and deletion from a quad-tree, as well as the determination of the measure-of-
union (area), can each be accomplished at a cost of 0(N) op-
erations. We conclude therefore that the section-to-section update in a space-
sweep application will cost 0(N) time, and, since there are 2N sections, a total
0(N 2) running time obtains for the measure-of-union problem in the three-
dimensional space. This technique—rather than the two-dimensional one
based on the segment-tree—can be used as the basis of induction, thereby
proving the following result.

Theorem 8.2. The measure of the union of N isothetic hyperrectangles in
d >_ 3 dimensions can be obtained in time 0(N d- ')

Although it seems rather difficult to improve upon this result, no conjec-
ture about its optimality has been formulated.

Remark. The algorithm for computing the measure of a union F of rectangles
can be appropriately modified to solve the following problem.

PROBLEM R.3 (PERIMETER OF UNION OF RECTANGLES). Given the
union F of N isothetic rectangles, find the perimeter of F, i.e., the length of its
boundary.

s The reader is referred to the paper by van Leeuwen-Wood (1981) for a proof.

337

ells

338
	

8 The Geometry of Rectangles

Contribution
at X [i -1]
to perimeter

mi
- 1_ 	m i

X[i -1] X[i]

Figure 8.10 Illustration of the calculation of the length of the vertical sides.

The technique is based on the following observation. Suppose that at the
i-th step a rectangle is either inserted into or deleted from the segment tree
(conventionally, we say that a rectangle is inserted or deleted when the plane
sweep reaches either the left or the right side of the rectangle, respectively).
Refer to Figure 8.10 and recall that m i gives the total length of the vertical
section immediately to the left of X[i] (see line 6 of the algorithm MEASURE
OF UNION OF RECTANGLES). The total length of the vertical sides
of the boundary of Fat X[i — 1] is given by the difference between the lengths
of a vertical section of F immediately to the left of X[i — 1] and of one
immediately to the right of it. While the first is by definition m i _ 1 , the second
is equal to m i , since the section is invariant in the interval [X[i — 1], X[i]].
Thus the sought total length is given by I mi — mi-11. 4 In addition, we must
consider the contribution of the horizontal boundary sides in a vertical strip.
In [X[i — 1], X[i]] this is obviously given by (X[i] — X[i — 1]) x a i , where the
integer a is the number of horizontal sides of the boundary of Fin the vertical
strip under consideration. The parameter a i is very similar in nature to m i .
Indeed, let us define for each node y of the segment tree three new specific
parameters, an even integer parameter a[v] and two binary parameters LBD[v]
and RBD[v]. Denoting by f the current vertical section of F (f is a disjoint
collection of intervals), these parameters are defined as follows:

a[v] := twice the number of disjoint portions of f n [B[v], E[v]];

Note that it is possible to have X[i — I] = X[i], i.e., two vertical sides occur at the same abscissa.
In this case we adopt a conventional lexicographic ordering (for example, on the ordinates of their
lower extremes), and imagine that the two sides are fictitiously separated by s in the x-direction.

8.4 Measure and Perimeter of a Union of Rectangles 	 339

LBD[v] := 1 or 0, depending upon whether or not B[v] is the lower
extreme of an interval in 5 n [B[v], E[v]];

RBD[v] := 1 or 0, depending upon whether or not E[v] is the upper
extreme of an interval in .5 n [B[v], E[v]].

These three specific parameters are initialized to 0 and their maintenance is
carried out by the following specialization of the subroutine UPDATE, to be
called in line 4 of procedure INSERT (see Section 8.2):

procedure UPDATE(v)
1. begin if (C[v] > 0) then
2. begin a[v] := 2;
3. LBD[v] := 1;
4. RBD[v] := 1

end
5. else begin a[v] := a[LSON[v]] + a[RSON[v]] — 2 • RBD[LSON[v]]

• LBD[RSON[v]];
6. LBD[v] := LBD[LSON[v]];
7. RBD[v] := RBD[RSON[v]]

end
end.

The correctness of this UPDATE procedure is readily established. If C[v] > 1,
i.e., [B[v], E[v]] is fully occupied, there is just one term in J n [B[v], E[v]],
whence a[v] = 2, LBD[v] = RBD[v] = 1, as in lines 2-4. If C[v] = 0, then
it n [B[v], E[v]] contains as many terms as the sum of the terms in its two
offspring nodes, except when the section .5 contains an interval bridging the
point E[LSON[v]] = B[RSON[v]]; this last case is characterized by
RBD[LSON[v]] = LBD[RSON[v]] = 1. This establishes the correctness of
lines 5-7. It is also easily realized that the additional parameters a, LBD, and
RBD are maintained at a constant cost per visited node.

It is now evident that at = a[root(T)]. The algorithm that computes the
perimeter of F is then obtained by a simple modification of the corresponding
measure-of-union algorithm. Notice, however, that while the measure-of-
union algorithm accumulates the area of F in the just completed vertical strip
(so that the segment-tree update follows the area accumulation), here the
situation is slightly different. Referring to Figure 8.11, the contribution of the
current step to the perimeter consists of two items: the horizontal edges in the
strip [X[i — 1], X[i]]—contributing ai x (X[i] — X[i — 1])—and the vertical
edges at abscissa X[i]—contributing Imi+1 — m i l. Thus the value of ai must be
extracted from the segment tree before the update of the latter, while mi+1 is to
be extracted after the update. Thus we have

procedure PERIMETER OF UNION OF RECTANGLES
begin X[1 : 2N] := sorted sequence of abscissae of vertical sides;

X[0] := X[1];
mo =0;

340 	 8 The Geometry of Rectangles

t
[l] Rectangle

being inserted

Current Abscissa

Figure 8.11 The contribution of the current step to the perimeter consists of hori-
zontal edges and vertical edges.

p:= 0;
construct and initialize segment tree T of ordinates of rectangle sides;
for i := 1 until 2N do

begin a* := a[root(T)];
if (X[i] is a left side abscissa) then INSERT(bt , e t ; root(T))
else DELETE(b 1 , et ; root(T));
m* := m[root(T)];
p:=p+a* x (X[i]—X[i— 1])+Im*—m o l;
m o := m*

end
end.

In conclusion, we have

Theorem 8.3. The perimeter of a union of N isothetic rectangles can be computed
in time O(Nlog N).

8.5 The Contour of a Union of Rectangles

The same general approach (a plane-sweep technique supported by the seg-
ment tree) can be profitably used to solve another interesting problem: the
determination of the contour of the union F of N isothetic rectangles
R1, . .. , RN. Again, F = R 1 u ... u RN may consist of one or more disjoint
connected components, and each component may or may not have internal
holes (note that a hole may contain in its interior some connected components
of F). The contour (boundary) of F consists of a collection of disjoint cycles

8.5 The Contour of a

el f

Union

e 3

of Rectangles

es e8 ►

341

Y8
Y7
Y6

e2r

e5 e 7w
e Y5 10

Y4

A e9
Y3

404
Y2

I

Y1

	

X1 X2 	X4 	X7 X9 	X10

	

X3 	X5 	X8
X 6

Figure 8.12 An instance of the problem.

composed of (alternating) vertical and horizontal edges. By convention, any
edge is directed in such a way that we have the figure on the left while
traversing the edge; this is equivalent to saying that a cycle is oriented
clockwise if it is the boundary of a hole, and counterclockwise if it is an
external boundary of a connected component. So we have

PROBLEM R.4 (CONTOUR OF UNION OF RECTANGLES). Given a col-
lection of N isothetic rectangles find the contour of their union.

We note at first that the perimeter—for which a rather simple algorithm
was described in the preceding section—is nothing but the length of the
contour. However, we shall see that it is significantly simpler to obtain the
perimeter than the contour itself, as a collection of disjoint cycles.

The algorithm is best introduced, informally, with the aid of an example.
The technique has two main phases. In the first phase we find the set V of
vertical edges of the contour (edges e l through e, 0 in Figure 8.12); in the
second phase we link these vertical edges by means of horizontal edges to form
the oriented cycles of the contour [Lipski–Preparata (1980)].

We denote by (x; b, t) a vertical edge of abscissa x having b and t (b < t) as
its bottom and top ordinates, respectively; similarly, (y; 1, r) represents a
horizontal edge of ordinate y having / and r (1 < r) as its left and right
abscissae, respectively.

In order to obtain the set V we scan the abscissae corresponding to vertical
sides of rectangles from left to right. At a generic abscissa c, the section .5 (c) of
the vertical line x = c with F is a disjoint union of intervals. This section
remains constant between two consecutive vertical sides of the rectangles, and
is updated in the scan each time one such side is reached. If s is a left vertical
side of some rectangle R at abscissa c, the portion of the contour of F
contributed by s is given by s n .J(c_), where 5(c_) is the union of intervals
immediately to the left of abscissa c, and 5(c_) is its set-theoretic comple-

342 	 8 The Geometry of Rectangles

(y; x1, x2)
Y

x l 	 x2

Figure 8.13 Each horizontal edge is adjacent to two vertical edges.

ment. Similarly, if s is the right vertical side of R at c, then the contribution of s
to the contour is s n .J(c +), with straightforward notation. Storing and
updating the section f and an efficient determination of either s n Jo' (c _) or
s n (c +) represent the most delicate part of the algorithm, which we shall
address later.

Thus, for the time being, we assume that the set V has been obtained, and,
in conformity with the adopted convention on the orientation of the contour,
each of the edges in V is directed either upward or downward depending on
whether it originates from a right or left side of a rectangle, respectively.

We now observe that, once the set V of vertical edges is available, the
horizontal edges can be obtained in a straightforward manner. Indeed if there
is a horizontal edge (y; x 1 , x 2) (see Figure 8.13), then there are two vertical
edges at abscissae x 1 and x 2 , respectively, each having an endpoint at ordinate
y. Suppose then that for vertical edge e; E V, with e; = (xi ; b;, ti) we generate
the pair of triples <x1 , b,; ti > and <x i , t; ; b i >. Each of these triples is to be
interpreted as a point (given by the two leftmost coordinates), and the two
triples correspond to the two endpoints of ei ; the third term of each triple is
simply a reference to the other endpoint of e; . We now sort the set of triples
lexicographically in ascending order (first on the ordinate, next on the abscissa).
In our example we obtain the following sequence.

<-X2, b2; t2 > <x4, b4; t4> <X4,14; b4> <x9, b9; t9> <x9, t9; b9> <-X10, b10; 110>
<.X5, b5, i5> <X7, b7, t7> <.X1, b1, t1 ><x2, t2, b2 ><-X5, t5, b5 ><-X7, b7, t7>

<X 1 , tl b 1><-X3, b3, 1.3> <X6, b6, 16i <-X8, b8, t8> <x8, t8, b8> <X10 , t10; b10>
<X3, t3; b3 > <X6, t6, b6>.

The reason for the chosen arrangement is the following. Let a l , a2 ,
(p even) be the resulting sequence. It is easy to see that the horizontal edges of
the contour can now be obtained as the segments joining the vertices represent-
ed by a2k _ 1 and a 2k , for k = 1, 2, ... ,p/2. More exactly, let a2k_1 = <l,y;y1
a2k = <r, y; y 2 >. The horizontal edge (y; 1, r) is assigned the direction from left
to right if either the edge corresponding to the triple <1, y; yl > is directed
downward and y <y i , or if <1, y; Yi > is directed upward and y 1 < y; otherwise
we direct (y;1, r) from right to left. In our example, the pair (a 1 , a2) =

8.5 The Contour of a Union of Rectangles 	 343

(<x2, b2; t2>, <x4, b4; t4>), with b 2 = b4 , gives rise to the horizontal edge
(b 2 ; x 2 , x4) which is oriented from left to right because the edge e 2 , corre-
sponding to <x2 , b 2 ; t 2 >, is directed downward and b 2 < t 2 ; by contrast, the
pair (a 17 , a 18) = (<x8 , t 8 ; b8 >, <x10, t10; b10>), with t 8 = t 10 , gives rise to the
edge (t 8 ; x 8 , x 10), which is directed from right to left because e8 is directed
downward but t 8 .t b8 . It is clear that by a single scan of the sequence
al , ... , ap we may produce all the horizontal edges and doubly link each of
them to its two adjacent vertical edges. The resulting lists give explicitly the
cycles of the contour. Moreover, if we identify each cycle by means of its
vertical edge of minimal abscissa, this edge determines with its direction
whether the cycle is the boundary of a hole (when the edge is directed upward),
or is a portion of the external boundary (when the edge is directed downward).

From a performance viewpoint, the reader should not worry about the
recourse to a sorting operation of 2p items (the lexicographic sorting described
above). Indeed, by a preliminary sorting of the abscissae and ordinates of the
rectangle sides (an O(N log N) operation), we may normalize the coordinates
and replace them by consecutive integers. At this point, the 2p triples to be
lexicographically sorted consist of integers. By using standard bucket sorting
techniques [Knuth (1973)], the desired sorting is obtained in time 0(p);
additional time 0(p) is used to generate the horizontal edges and the contour
cycles.

We now turn our attention to the efficient implementation of the first phase
of the algorithm, that is, the generation of the set V of vertical contour edges.
As it is to be expected, the proposed technique is a plane sweep supported by
the segment tree T. Referring to the general scheme discussed in Section 8.3,
the specific node parameter used in the application is STATUS[v], which
provides a rough classification of the measure of f n [B[v], E[v]]. Specifically,
STATUS may assume one of three values as follows:

STATUS[v]

full, if C[v] > 0,

partial, if C[v] = 0 but C[u] > 0

for some descendant u of v,

empty, if C[u] = 0 for each u in the subtree rooted at v.

With this definition, the current section f is the union of all segments
[B[v], E[v]] over all nodes of the segment tree whose STATUS is full.

Given a segment s = (x; b, e) (a vertical side of a rectangle), the set s n f is
illustrated in Figure 8.14; s n J is the sequence of the gaps between consecu-
tive members of 5 in the window [b, e]. The side s, when stored in the segment
tree, is partitioned into 0(log N) fragments in the well-known manner.

It is convenient to obtain s n f as the union of the contributions of each of
these fragments. (Recall that each such fragment corresponds to a node v of T
for which b < B[v] < E[v] < e.) It is easy to realize that the contribution
contr(v) to s n f of a node v, corresponding to a fragment of s, is given by:

344 	 8 The Geometry of Rectangles

1

	'Segments

.1

b e

Figure 8.14 Illustration of the set of intervals s n J. (Note that s is represented as a
horizontal segment.)

if STATUS[v] is full or
STATUS[u] is full for
some ancestor u of y
in T contr(v) = [B[v], E[v]] n 5 =

[B[v], E[v]] 	if STATUS[v] is empty

contr(LSON[v]) u contr(RSON[v])
if STATUS[v] is partial.

It follows that the subtree rooted at v must be searched only if STATUS[v]

= partial. We shall return later to the implementation of this search.

Assuming for the time being that the sequence (contr(v): v corresponds to a
fragment of s) has been obtained, in order to ensure that each contour edge is

produced as a single item, contiguous intervals have to be merged. The

situation is illustrated in Figure 8.15. Here, a segment s = (x; b, e) is decom-
posed by T into five fragments, each corresponding to a node of T. Each such
node generates, in general, a collection of intervals for s n 5. Any two
intervals, which are contiguous and have been generated by distinct segment-
tree nodes, have to be merged together. To implement this task, the intervals

of contr(v) are assembled in a STACK corresponding to a bottom-to-top scan

of the figure in the plane. At the top of STACK there is always the upper

Segment s

H F- 1

b
Merge

H Partition of s

ir

_
i= s fl.^

Merge i
e

Figure 8.15 Merging of continguous intervals produced in the computation of s n J.
 (Again, s is displayed horizontally.)

8.5 The Contour of a Union of Rectangles 	 345

extreme of the last inserted interval. If the lower extreme of the next interval to
be added to STACK coincides with the top of STACK, then the latter is
deleted from STACK prior to adding to STACK the upper extreme of the next
segment, thereby realizing the desired merges.

We can now describe the search for the gaps of 	in s = (x; b, e). The
original implementation of Lipski and Preparata has the standard structure,
and makes use of a subroutine CONTR(b, e; root(T)), which reports the set
[b, e] n and the common abscissa of its points:

procedure CONTOUR OF UNION OF RECTANGLES
begin X[l : 2N] := sorted sequence of abscissae of vertical sides; (*see

comment below*)
:= Q ;(*.cl is the set of vertical edges*)

construct and initialize segment tree T of ordinates of rectangle sides;
for i := 1 until 2N do

begin if (X[i] is a left-side abscissa) then
begin .e7 := CONTR(b; , e.; root(T)) v sit;

INSERT(b; , e.; root(T))
end

else begin DELETE(b; , e,; root(T));
:= CONTR(b„ ei ; root(T)) u sal

end
end.

It is appropriate to point out that the update of the set of vertical edges must
precede the insertion of a left side, while it must follow the deletion of a right
side. This has the consequence that if a right side and a left side share the same
abscissa, processing of the left side must precede processing of the right side;
therefore, the sorting step of the above algorithm must satisfy this condition.

Two items must still be discussed. The first is the update of the specific
parameters (in this case, STATUS[v]) in INSERT and DELETE; the second is
the subroutine CONTR.

As to the first item we have the following action, which is obviously
executed in constant time per visited node:

procedure UPDATE(v)
begin if(C[v] > 0) then STATUS[v] := full

else if (LSON[v] = A) then STATUS[v] := empty (*v is a leaf*)
else if (STATUS[LSON[v]] = STATUS[RSON[v]] = empty)

then STATUS[v] := empty
else STATUS[v] := partial

end.

We now describe the subroutine CONTR:

function CONTR (h, e; y)
(* this function makes use of a STACK, which is external to it. STACK is

Allocation node
STATUS [v] = partial

(a) (b)

^ Set of 	B [v] Segment u

allocation nodes

346 	 8 The Geometry of Rectangles

Figure 8.16 (a) Typical substructure of T visited by INSERT or DELETE. (b) For

each partial-status allocation node reached by CONTR, the subroutine visits all the

paths leading to end-nodes of segments in Jr n [B[v], E[v]].

initialized as empty when the call CONTR(b, e; root(T)) is issued by the
main procedure. This function pushes on STACK a sequence of segments
representing [b, e] n contr(v). The content of STACK is returned by the
call CONTR(b, e; root(T))*)

begin
1. if (STATUS[v] 0 full) then
2. if (b < B[v]) and (E[v] < e) and (STATUS[v] = empty) then

(*[B[v], E[v]] is contributed*)
3. begin if (B[v] = top(STACK)) then (*merge contiguous segments*)

4. delete top(STACK)
5. else STACK G B[v] (*beginning of edge*);
6. STACK G E[v] (*current termination of edge*)

end
7. else begin if (b < ([(B[v] + E [v])/ 2 j) then
8. CONTR(b, e; LSON[v]);
9. if ([(B[v] + E[v])/2] <e) then

10. CONTR(b, e; RSON[v])
end

end.

The itinerary followed by procedure CONTR in the segment tree (i.e., the

sequence of the visited nodes) substantially overlaps with that of the corre-
sponding INSERT (or DELETE), with two significant differences, which we

now discuss in the context of INSERT (with no loss of generality). It is well-
known that the itinerary of INSERT has a typical structure, already discussed

in Section 1.2.3.1 and repeated in Figure 8.16 for the reader's convenience. A

(possibly empty) initial path PIN leads to a node, referred to as the fork, from

8.5 The Contour of a Union of Rectangles 	 347

which two (possibly empty) paths PL and PR diverge; shown is also the set of
the allocation nodes identifying the segmentation of the inserted interval.
Subroutine CONTR visits PAN, PL , and PR ; however, if a node on any of these
paths is a full-status node, then the traversal of the path is aborted (line 1 of

CONTR). This occurs because the y-interval of segment s (or a portion
thereof) is "covered" by .5 and its contribution to s n.5 is empty. For any
allocation node y with nonfull status reached by CONTR, if STATUS[v]

= empty then the entire [B[v], E[v]] is contributed; otherwise CONTR begins
a search of the subtree rooted at y (lines 7-10) (this happens, of course, only if

STATUS[v] = partial). This search is the most time consuming portion of the

task, as we shall now analyze. Referring to Figure 8.16(b), for each segment u
in J n [B[v], E[v]] there are two unique nodes in the subtree rooted at y

corresponding to the leftmost and rightmost fragments of u. A simple analysis
shows that CONTR performs a preorder traversal of the paths leading from y

to these nodes, performing a fixed amount of work at each node visited, and

possibly at its siblings. Thus the total work is proportional to the total length

of these paths. By a general property of binary trees [Lipski—Preparata (1980)]

if there are v end-nodes in the subtree, then the desired total path length is

bounded by v log(16N/v). Therefore, denoting by n i the number of disjoint
pieces in s i n .5, where si is the i-th rectangle side processed by the algorithm,

we have that the total work of CONTR is bounded by

C Kni log
 16N ^

Cp log
32N2

i=1 	ni 	 P

where p is the total number of contour edges and C is a constant. Combining
this result with the straightforward analysis of INSERT and DELETE and
with the result on the performance of the second phase of the technique (which
links horizontal and vertical contour edges), we have

Theorem 8.4. The p-edge contour of a union of N isothetic rectangles can be
found in time O(Nlog N + p log (N 2/p)).

To address the question of optimality, we note that S ./(N log N + p) is the
known lower bound for this problem. Indeed 0(p) is a trivial bound induced
by the contour size, while an SZ(N log N) lower bound is obtained by trans-
forming SORTING to finding the contour of a (hole-free) union of rectangles
as shown by the following.

Theorem 8.5. The complexity of finding a contour of F = R 1 u • • • u R N , where
F is without holes, is S2(N log N) under the decision-tree model.

PROOF. We show that sorting of N numbers x 1 , ... , xN is transformed in 0(N)
time to our problem. Indeed, given x i , let R i be the Cartesian product of the x-
interval [0, x i] and of the y-interval [0, M — x i], where

348
	

8 The Geometry of Rectangles

M- x;

Figure 8.17 Transforming SORTING to finding the contour of a hole-free union of
rectangles.

M = max x i + 1
1 <i<N

(see Fig. 8.17; without loss of generality we assume x 1 ,... , xN > 0). It is clear
that F = R 1 L.)-. • u R N is without holes and that from the contour of F we can
obtain the sorted sequence of the x i in 0(N) time.

The preceding algorithm falls short of the lower bound. Indeed, it is not
difficult to detect some inefficiency in the search of the subtrees of allocation
nodes with partial status, since the cost of traversing long paths has as payoff
only their terminal nodes. This shortcoming was obviated by Güting (1984),
who designed an ingenious data structure for reporting the gaps in each
subtree in time proportional to their number, thereby achieving an asymptot-
ically optimal algorithm. As may be expected, Outing's data structure is
considerably complex in its maintenance. The reader is referred to the original
paper for a treatment of the technique.

8.6 The Closure of a Union of Rectangles

We begin by giving a precise definition of the closure of a union of rectangles.
We say that two points pi = (x l , y 1) and p2 = (x 2 , y 2) in the plane are
incomparable if they are not related in the "dominance" relation (see Section
4.1.3), i.e., if (x 1 — x2) (yl — y2) < 0. If we assume, without loss of generality,
that x 2 > x 1 , following a convenient terminology [Soisalon-Soininen and
Wood (1982)] we call the SW- and NE-conjugates of p1 and p 2 the two points

q1 = (xl, y2) and q 2 = (x 2 , y l), respectively (see Figure 8.18). Given a plane
region R (not necessarily connected), two points are said to be connected in R
if there exists a curve, totally contained in a component of R, connecting the
two points. We then have

Definition 8.2. A region R of the plane is NE-closed if for any two incomparable
points p l and p 2 connected in R, the NE-conjugate of p1 and p2 is also in R.
Analogously, we define a SW-closed region of plane.

8.6 The Closure of a Union of Rectangles
	

349

p1 = (x i , Yi) q 2 = (NE conjugate)
	o

q 1 = (SW conjugate) p 2 = x 2 ,Y2)

Figure 8.18 Two points pi and p2 , incomparable under dominance, and their con-
jugates q 1 and q2 .

Definition 8.3. The NE -closure of a region S of the plane, denoted NE(S), is
the smallest NE-closed region R containing S. Analogously we define the
SW - closure, SW(S), of S. The NESW -closure (or closure, for short) denoted
NESW(S), is the smallest region R containing S, that is both SW-closed and
NE-closed.

A theory of closure has been developed in the works of Yannakakis-
Papadimitriou—Kung (1979), Lipski—Papadimitriou (1981), and Soisalon-
Soininen and Wood (1982). For our purposes, it suffices to note some signif-
icant properties.

A curve F in the plane is said to be x -monotonic if for any two points
(x 1 , y i) and (x 2 , y2) on r, x2 > x1 y2 ? yi . Also, given a forbidden
domain D, two curves F 1 and r2 in the plane are homotopic if they can be
transformed continuously one to the other, without intersecting D.

If by R(F) we denote the minimum enclosing isothetic rectangle of a given
(not necessarily connected) plane domain F, then we have the obvious
inclusions

F _ NESW(F) _ R(F).

If NESW(F) is connected, then it is easily shown that the NE- and SW-corners
of R(F) (see Figure 8.19(a)) belong to the closure of F. Also, for each
connected component G of NESW(F) (see Figure 8.19(b)), the boundary of
NESW(F) consists of two x-monotonic curves, respectively homotopic to the
upper-left and to the lower-right boundary portions of R(G). Each of these
two curves is, in its family of homotopic curves, the extreme of x-monotonic
curves not intersecting G. It is appropriate to refer to these two curves as the
upper and lower contours of the closed region NESW(F). In general, for an
arbitrary domain F, the closure NESW(F) of F consists of one or more
components; if there are more than one component, any two of them must be
separable by an x-monotonic curve (otherwise the closure property would be
violated) (see Figure 8.19(c)).

Soisalon-Soininen and Wood also prove the following significant property,
which holds for any figure F in the plane:

NESW(F) = NE(SW(F)) = SW(NE(F)). 	 (8.1)

R(F)

SW-corner

N E-corner

350 	 8 The Geometry of Rectangles

Lower-right boundary of R(G)

(a)
	

(b) 	 (c)

Figure 8.19 (a) A plane figure F and its minimum enclosing rectangle. (b) A con-
nected component of the NESW-closure of a plane figure F. (c) Separability of two
components of NESW (F).

In our applications, we are interested in the case in which F is a union of
isothetic rectangles, so that we have the following.

PROBLEM R.5 (CLOSURE OF UNION OF RECTANGLES). Given a collec-
tion of N isothetic rectangles find the closure of their union.

Property (8.1) suggests two equivalent algorithms to compute the closure
of a given figure F. For example the identity NESW(F) = SW(NE(F))
suggests to compute first the NE-closure of F, and subsequently to complete
the task by computing the SW-closure of NE(F). These two tasks are con-
siderably simplified when Fis the union of isothetic rectangles, since the upper
and lower contours of any component of NESW(F) are each an x-monotonic
staircase curve. Informally, the algorithm will act as follows. It consists of two
plane sweeps, in opposite directions. The first, from left to right, constructs the
NE-closure of the figure F(a union of isothetic rectangles), that is, it identifies
the NE-closed components. The second plane sweep, from right to left,
constructs the SW-closure of NE(F), that is, starting from the connected
components of NE(F), it identifies the components of SW(NE(F)) (viz., of
NESW(F)).

A component of NE(F) is said to be active (in the plane sweep) if it is
intersected by the sweep-line; clearly, a component of NE(F) is active if and
only if it contains at least one rectangle of F intersecting the sweep-line
(referred to as an active rectangle).

Let us first examine the two basic situations to be handled by the plane
sweeps (for concreteness, we make reference to the left-to-right sweep that
constructs NE(F)). Obviously the event-points are the abscissae of the vertical
sides of the rectangles. When the current event is a left-side, then we (i)
initialize an active component, or (ii) extend an active component, or (iii)
merge two or more active components; on the other hand, the completion

(c)

8.6 The Closure of a Union of Rectangles
	 351

Maximum ordinate
i 	of all rectangles

T — found so far
in component

Active
interval of
component

Minimum ordinate
of currently
active rectangles
in component

Figure 8.20 An active component and its active interval. (A shaded strip will be used
here and hereafter to denote active intervals.)

(and deactivation) of an active component may only occur in coincidence with
a right-side of a rectangle. An active component is characterized by an active
interval (at the sweep-line) which is a plane strip comprised between the
maximum ordinate of all rectangles found so far in the component and the
minimum ordinate of the currently active rectangles in the components (a
typical situation is shown in Figure 8.20). The active interval plays a crucial
role in discriminating the three possible situations that may occur when the
sweep line reaches a left side, as illustrated in Figure 8.21.

When the current event is a right side of a rectangle R, three situations may
occur: (i) R ceases being an active rectangle without affecting the active
interval (Figure 8.22(a)); or (ii) R ceases being an active rectangle and the

Figure 8.21 Situations that may arise when the plane sweep reaches a left side. (a) A
new component is initiated; (b) an existing component is extended; (c) two (or more)
components are bridged. (Shown are the active intervals after the insertion.)

-1
I

352
	

8 The Geometry of Rectangles

I
(a)

i

(b) (c)

Figure 8.22 Situations that may arise when the plane sweep reaches a right side. (a)
A rectangle is deactivated without affecting the active interval; (b) a rectangle is
deactivated shrinking the active interval; (c) the component is terminated. (Again,
shown are the active intervals after the deletion.)

active interval shrinks upward (Figure 8.22(b): this occurs only when R is the
bottommost active rectangle of the component); or (iii) the component is
terminated (Figure 8.22(c): this occurs only when R is the only active rectangle
of the component).

To handle the previously described actions, the sweep-line status is im-
plemented by a moderately complex data structure. There is a primary struc-
ture containing the extremes of the active intervals, organized as the leaves of a
height-balanced tree T. Each leaf of T storing the lower endpoint of an active
interval points to a secondary structure, itself a height-balanced tree, storing
the active rectangles in the component. Insertions (of left sides of rectan-
gles) and deletions (of right sides) are carried out as follows.

When a left side [y 1 , y 2] is to be processed, y 1 is first located in T and then
the leaf sequence is traversed until y 2 is also located. This operation is carried
out in time O(log N + h), where h is the number of merged active intervals
(Figure 8.21(c)); y 2 is inserted also into a secondary structure and, if h > 2, the
corresponding secondary structures are concatenated (as concatenable
queues). The work pertaining to the concatenation of secondary structures is
easily estimated for the overall execution of the algorithm by charging the
O(log N) work of concatenating two such structures A 1 and A 2 to the right-
most active rectangle of A l : since each rectangle can be charged at most once,
the upper bound 0(N log N) is established for this activity.

When a right side [y 1 , y 2] is to be processed, again y 1 is located in an active
interval (in the primary structure T). Next, y 1 is also located in the appropriate
secondary structure and deleted from it, and, if it coincides with the minimum
element in the secondary structure, the lower extreme of the active interval is
updated (refer to Figure 8.22(b)). Finally, if y1 is the only member of the
secondary structure, the corresponding active interval is deleted altogether
from the primary structure. Clearly, processing of a right side can be carried
out in time O(log N).

8.7 The External Contour of a Union of Rectangles 	 353

The right-to-left plane sweep that constructs SW(NE(F)) is analogous, so
that we have

Theorem 8.6. The NESW-closure of a union of N isothetic rectangles can be
optimally constructed in time 0(Nlog N) and space 0(N).

PROOF (Sketch). Indeed, after a preliminary sorting of the abscissae of the
rectangle sides, processing of the 2N sides also runs in time 0(N log N) as
shown above. The data structures are stored in space 0(N). These perfor-
mance bounds are optimal, since the ELEMENT UNIQUENESS problem
can be easily transformed to the closure of rectangles problem. CI

Remark. The above technique can be readily specialized to compute the
connected components of a set of rectangles within the same space and time
bounds.' Indeed, it is easily realized that all that is needed is the replacement
of the (single) active interval of a component (as described above) with the
collection of disjoint intervals represented by the intersections of the active
rectangles of a component with the sweep-line.

8.7 The External Contour of a Union of
Rectangles

In the preceding sections we have seen how the same basic technique—the
plane sweep—can be adapted to solve a variety of different problems concern-
ing a union of isothetic rectangles, i.e., area, perimeter, closure, and contour
(Problems R.1, R.3, R.4, and R.5). As we noted earlier (refer to Section 8.5)
the contour of a union of N rectangles may have 0(N 2) edges; this does not
hold for a portion of the contour, identified by the following definition.

Definition 8.4. The external contour of a union F of isothetic rectangles is the
boundary between F and the unbounded region of the plane.

We shall now show that the external contour has 0(N) edges. This result is
readily established if one refers to two interesting supersets of the external
contour, the first of which is defined as follows.

Definition 8.5. The nontrivial contour of a union Fof isothetic rectangles is the
set of contour cycles, such that each of them contains at least one vertex of the
given rectangles.

S See also [Edelsbrunner-van Leeuwen-Ottmann-Wood (1984)].

354 	 8 The Geometry of Rectangles

l

-±

1 	I

(a) (b) (c)

Figure 8.23 The contour (a), nontrivial contour (b), and external contour (c) of a
union of rectangles.

The three notions of contour, nontrivial contour, and external contour are
exemplified in Figure 8.23. It is straightforward to see that the external
contour is a subset of the nontrivial contour.

It is convenient at this point to regard each edge as being lined by two arcs
with opposite directions and lying on either side of the edge, as illustrated in
Figure 8.24. The edges of the rectangles R 1 , ..., RN partition the plane into
regions, one of which is unbounded. With the introduction of lining arcs, the
boundaries of all regions of the partition give rise to a collection of directed
circuits of arcs; a circuit is called external or internal depending upon whether
it is clockwise or counterclockwise. An arc of a circuit is said to be terminal if it
contains an endpoint of the original segment (a rectangle side) to which it
belongs. A circuit is said to be nontrivial or trivial depending upon whether or
not it contains a terminal arc. The set of nontrivial circuits for the example of
Figure 8.23 is illustrated in Figure 8.25. We can now introduce the following
problems.

PROBLEM R.6 (NONTRIVIAL CONTOUR OF UNION OF RECTAN-
GLES). Given a set of N isothetic rectangles, find the nontrivial contour
of their union.

PROBLEM R.7 (EXTERNAL CONTOUR OF UNION OF RECTANGLES).
Given a set of N isothetic rectangles, find the external contour of their union.

------------0-

Figure 8.24 Conventions on directions of lining arcs of a given edge.

8.7 The External Contour of a Union of Rectangles
	 355

C!)

IS

S.

^^

0 Q 0,1 	■

Figure 8.25 Nontrivial circuits for the union of rectangles of Figure 8.23.

It is straightforward to note the following nested inclusions.

External contour ç Nontrivial contour ç Nontrivial circuits.

An interesting property of these sets is that the number of arcs in the nontrivial

circuits is 0(N), as established by the following theorem.

Theorem 8.7. The total number of arcs of the nontrivial circuits of the union of N

isothetic rectangles is 0(N).

PROOF. We say that a vertex is of type i (i = 1, 3) if the clockwise angle formed
by the arcs meeting at the vertex (ordered according to the direction on the

)

Type-1 vertex 	 Type - 3 vertices

Figure 8.26 Types of vertices.

356
	

8 The Geometry of Rectangles

Case 1

Case 2

Figure 8.27 Cases arising in the advancing step of the algorithm.

circuit) is in/2 (see Fig. 8.26). We also let v ; denote the number of vertices of
type i on a given circuit. Then, for any circuit we have the following relation:

4, 	for an internal (counterclockwise) circuit,

—4, for an external (clockwise) circuit.

Consequently, the total number y of vertices (i.e., of arcs) is expressible as

v=v 1 +v3 =2v 1 ±4<2v 1 +4.

By summing y over all nontrivial circuits we obtain (the summations are
extended over all such circuits) for the total number of arcs t:

t < 2Ev 1 + 4E1

<2.4N+4.4N_24N. 	 0

This theorem indicates that if the (total) contour has 0(N 2) arcs, the
increase is due to trivial circuits. Thus, if we want to obtain just the nontrivial,
or the external, contours, we may wish to develop special techniques, which
avoid the overhead represented by the trivial circuits. Before confronting this
task, however, we note that S2(N log N) is a lower bound to the computational
effort, since the argument used in the proof of Theorem 8.5 (in Section 8.5)
applies to the present situation: indeed, in that proof, total, nontrivial, and
external contours coincide.

A plane-sweep technique is not likely to cope with our problem, since in the
sweep we can detect whether a circuit is trivial or nontrivial only at the
completion of its construction (rather than at the beginning of it). Indeed, a
recently proposed technique [Lipski—Preparata (1981)] performs a "march"
along the circuits of the contour to be constructed, adding one arc at a time.
Clearly, if each arc can be added in time O(log N), then, by Theorem 8.5 and
8.7, a time-optimal algorithm results. We shall now describe this technique.

The basic component of the march is an advancing mechanism, whereby,
starting from the current vertex v 1 (see Figure 8.27), we march along the
current segment i 1 in the assigned direction, and one of the following two cases

V3 - V1 =

8.7 The External Contour of a Union of Rectangles 	 357

--- 1-;-1-__-:: j
	I 1

-•

(a) 	 (b)

Figure 8.28 The set V of vertical segments and the resulting horizontal adjacency
map.

occurs:

1. There is a segment 12 , closest to v 1 , which intersects I 1 and crosses the region
to the left of I 1 . In this case we make a left turn, i.e., the intersection y 2

 becomes the current vertex and l2 becomes the current segment;
2. We reach the endpoint v 3 of 1 1 , which is also the endpoint of a segment 1 2

 (obviously, 12 does not cross the region to the left of 1 1). In this case we
make a right turn, i.e., v 3 becomes the current vertex and l 2 becomes the
current segment.

The advancing step outlined above can be implemented by searching two
suitable geometric structures, called the horizontal and vertical adjacency
maps, which we now describe. We confine ourselves to the horizontal adjacency
map (HAM), since the discussion is entirely applicable to the vertical adja-
cency map (VAM).

Consider the set V of the vertical segments that are the vertical sides of the
given rectangles (Figure 8.28). Through each endpoint p of each member of V
we trace a horizontal half-line to the right and one to the left; each of these
half-lines either terminates on the vertical segment closest to p or, if no such
intercept exists, the half-line continues to infinity. In this manner the plane is
partitioned into regions, of which two are half-planes and all the others are
rectangles, possibly unbounded in one or both horizontal directions. We shall
refer to these regions as "generalized rectangles." Each generalized rectangle
is an equivalence class of points of the plane with respect to their horizontal
adjacency to vertical segments (whence the name "horizontal adjacency
map"). A simple induction argument shows that the total number of regions
in the HAM is at most 31V1 + 1.

The horizontal adjacency map is just a special case of a subdivision of the
plane induced by an embedded planar graph. Assuming that the current
segment l l is horizontal (refer to Figure 8.27), to locate the current vertex v 1 in
this map (i.e., to identify the generalized rectangle containing v 1) means to
identify the vertical sides of this region. It is easy to convince ourselves that

-- e--

358 	 8 The Geometry of Rectangles

this is all that is needed to perform the advancing step. In fact suppose that y 1
 = (x 1 , y l) and that l l belongs to the line y = y l in the interval [x 1 ,x3]. We

locate in the HAM the point (x 1 , y 1) and we obtain the abscissa x 2 of the
closest vertical segment to the right of (x 1 , y1). If x 2 < x3 , then we have a left
turn (Case 1); if x 2 > x3 , then we have a right turn (Case 2). The other three
possible cases for the current segment (to the left, above, and below the
current vertex) are handled in exactly analogous ways. Thus the addition of
one arc to a nontrivial circuit costs one interrogation of either adjacency map.

To perform an interrogation of an adjacency map (i.e., a planar point
location) we may resort to one of the various 0(log N)-time search techniques
described in Chapter 2, Section 2.2. Particularly suited to the situation is the
so-called "(median-based) trapezoid method" (Section 2.2.2.4) for which, due
to the nature of the planar map (defined by a set of parallel segments) the
trapezoids specialize to rectangles. For 0(N) points (as is the case, since there
are 4N points, the vertices of the given isothetic rectangles) this technique has
a search time 0(log N), on a data structure (a binary search tree) which can be
constructed in time 0(N log N). An undesirable aspect of this otherwise very
simple technique is that it has a worst-case space requirement O(N log N),
rather than 0(N). However, a probabilistic analysis [Bilardi—Preparata
(1982)], tightly supported by extensive simulations, shows that for a wide
range of hypotheses on the statistical distribution of the segments, the average
space requirement is 0(N), with a very small, practically acceptable constant
of proportionality (approximately 6).

The nontrivial contour (and, consequently, the external contour) can be
obtained by first constructing, in a systematic way, the nontrivial circuits and
then removing the unwanted terms. The generation of the nontrivial circuits
can be effected by initializing the advancing step described earlier to a rec-
tangle vertex and the arc issuing from it and external to the rectangle.
Therefore each of the rectangle vertices becomes a "circuit seed." Initially, all
vertices are placed in a pool (array) and are tagged. They are extracted one by
one from the pool, to generate all the nontrivial circuits, and the process
terminates when the pool becomes empty. Since there are 0(N) arcs in
nontrivial circuits, and the construction of one such arc can be done in time
0(log N), the set of nontrivial circuits can be constructed in time 0(N log N),
including the preprocessing required to construct the search trees of the
adjacency maps.

To complete the construction of the external contour we must remove
those circuits that do not separate Ffrom its exterior. To discriminate between
the nontrivial circuits that belong to the external contour and those that do
not, a plane-sweep routine can be designed to run in time O(N log N) (see
Exercise 1 at the end of this chapter).

Theorem 8.8. The nontrivial contour and the external contour of a union of N
isothetic rectangles can be constructed in optimal time 0(N log N) with worst-
case space O(N log N).

8.8 Intersections of Rectangles and Related Problems 	 359

8.8 Intersections of Rectangles and Related
Problems

In the previous sections we have discussed some techniques for computing
some global property of a set of isothetic rectangles, such as the measure, the
perimeter, etc. In this section we shall instead consider the problem of comput-
ing two relations that are naturally defined on a set of rectangles. These two
relations "intersection" and "inclusion" (or "enclosure," as it is sometimes
called) are considered separately in the next subsections.

8.8.1 Intersections of rectangles

Two isothetic rectangles intersect if and only if they share at least one point.
The simplest instance occurs in one dimension, where the "rectangles" are
intervals on the line. Since a d-dimensional rectangle is the Cartesian product
of d intervals, each on a different coordinate axis, two d-dimensional rectan-
gles intersect if and only if their x.-projections (two intervals) intersect, for
j = 1, 2, ... , d. Thus, we realize that the one-dimensional case plays a funda-
mental role and we shall study it first.

Given two intervals R' = [xi, x2] and R" = [xï, 4], the condition
R' n R" 0 0 is equivalent to one of the following mutually exclusive
conditions:

xi < xï < x'2 ;

x'; <x'i < x2.

(8.2)

(8.3)

The four possible configurations of interval extremes corresponding to the
situation R' n R" 0 0 are indeed encompassed by (8.2) and (8.3) above, as
can be immediately verified. Thus to test whether R' and R" intersect, we
check if either the left extreme of R' falls in R" or the left extreme of R" falls in
R'

This characterization of the one-dimensional problem plays a crucial role
in the solution of

PROBLEM R.8 (REPORT INTERSECTION OF RECTANGLES). Given a
collection of N isothetic rectangles, report all intersecting pairs.

To solve this problem, it is natural to resort to a plane-sweep technique,
where the event points are, as usual, the abscissae of the vertical sides of the
rectangles. The sweep-line status is given by the intersections of the rectangles
with the sweep-line; for ease of reference, the rectangles intersected by the
sweep-line are again called active rectangles (see Section 8.6). In a left-to-right
plane sweep, suppose the current event point is the left side of a (new)
rectangle R = [x 1 , x2] x [y 1 , y2]. Clearly the sweep-line abscissa x 1 (which is

360 	 8 The Geometry of Rectangles

I
x i

Sweep-line /

Figure 8.29 Situation arising when the left side of R is reached in the plane sweep.
Only active rectangles are illustrated.

also the left extreme of the x-interval of R) belongs to the x-interval of each of
the active rectangles; thus, all we need to do is to determine for which of the
active rectangles either condition (8.2) or condition (8.3) holds for the y-
interval as well (see Figure 8.29). This seems to involve a two-fold search, one
for condition (8.2) and one for condition (8.3). The reciprocal nature of these
two searches (one, the identification of all the intervals containing a point, the
other, the identification of all the points contained in an interval) may suggest
the use of two different data structures and the development of slightly
complicated algorithms [Bentley—Wood (1980); Six—Wood (1980)].

A brilliant solution was achieved by the introduction [McCreight (1981);
Edelsbrunner (1980)] of a new data structure, called the interval tree by
Edelsbrunner. Although a sophisticated dynamic version of the interval tree is
possible, we shall now describe a simple static version suited to our purposes.

If [b(`) , e(`)] denotes the y-interval of rectangle R (`) , we let (y1, Y2, • • • 5Y2N)

be the sorted sequence of the extremes of the Ny-intervals. The (static) interval
tree has a skeletal structure (called primary structure), statically defined for a
given sequence of points (in our case, the sequence (y 1 ,... , y2N)), while it may
store an arbitrary subset (active subset) of the intervals whose extremes are
in the set { y1 , y2, ... , y2N}. Thus, the interval tree T for the sequence
(Y1, y2, • • • , Y2N) and interval set I c { [b (`) , t(1)]: i = 1, ... , N} is defined as
follows:

1. The root w of T has a discriminant S(w) = (yN + yN+1)/2 and points to two
(secondary) lists Y(w) and M(w). P(w) and Ii(w) contain, respectively, the
sorted lists of the left and right endpoints of the members of I containing
5(w). ('(w) and .P(w) are sorted in ascending and descending order,
respectively.)

2. The left subtree of w is the interval tree for the sequence (y i , ... , y N) and

8.8 Intersections of Rectangles and Related Problems 	 361

Intervals .f

1 	
Figure 8.30 An example of the allocation of a set of intervals to the static interval
tree. Regular arcs form the primary structure; broken-line arcs point to the secondary
structures; dot-line arcs form the special superstructure 5 - .

the subset 4 g I of the intervals whose right extreme is less than 8(w).
Analogously, one defines the right subtree of w.

3. Each primary node of T is classified as either "active" or "inactive." A
node is active if either its secondary lists are nonempty or it contains active
nodes in both of its subtrees.

The static interval tree has some interesting properties, which follow
directly from the definitions:

(i) The primary structure T is a balanced binary tree, the leaves of which are
associated with the values y1, ..., y2N, and an inorder traversal of T
yields the ordered sequence (y i , ... , y2N)

(ii) The secondary lists .99 (v) and M(y), for a nonleaf primary node y, must
support insertions and deletions. They are conveniently realized as
height-balanced or weight-balanced trees.

(iii) The active nodes can be uniquely connected as a binary tree 5", each arc
of which corresponds to a (portion of a) path issuing from the root of T.
Thus, each primary node y has two new pointers LPTR (left pointer) and
RPTR (right pointer) that are used to realize the tree 5". If y is inactive,
then LPTR[v] = A and RPTR[v] = A; however, if y is active, then
LPTR[v] 0 A only if there are active nodes in the left subtree of y, and,
similarly, RPTR[v] 0 A only if there are active nodes in the right subtree
of v. Note that more than half of the active nodes have nonempty
secondary lists.

In Figure 8.30 we show an example of the allocation of intervals to a static
interval tree.

We first consider the management of insertions and deletions in the static
interval tree. Notice that both the primary structure and each of the secondary
lists are binary trees at depth O(log N). Inserting interval [b, e] consists of

362
	

8 The Geometry of Rectangles

Root

Figure 8.31 Interval tree search. The shaded triangles are secondary lists to be visited.

Also to be visited (via LPTR and RPTR) are the indicated subtrees.

tracing a path from the root until the first node v* of T is found such that
b < S(v*) < e (fork node): at this point, the ordinate h is inserted into 2 (v*)
and the ordinate e is inserted into M(v*). It is also a relatively simple exercise

to see how the LPTRs and RPTRs can be maintained, at a constant cost per

node, in this process. Analogously, with nonsignificant changes, we can

implement deletions. Either operation runs in time O(log N).
Let us now analyze the interval tree search, that is, the detection of

intersecting pairs of intervals when inserting an interval [b, e] into T. Again, we
trace a (possibly empty) path from the root to the first node v* (fork) such that

b < 8(v*) < e. Next we trace from v* two diverging paths to two leaves in the

subtree rooted at v*, respectively associated with values b and e (see Figure
8.31). Let PIN be the sequence of nodes from the root to the node preceding v*;

also, let PL be the node sequence from v* to leaf b, and PR be the node sequence
from v* to e. We now consider the two main cases:

1. v E PIN. In this case, [b, e] lies either to the left or to the right of 8 (v). Let us
assume, without loss of generality, that e < 5(v). Thus, before proceeding,
we must check if [b, e] intersects any of the active intervals that contain 8 (v).
For any such active interval [b(+) , 0)], this is done by detecting either if

b < b(+) _< e or if b(1) < b < 	. But since b < e < 8(v) < 	, the charac-
teristic condition for [b(`) , e" 1] n [b, e] Qf is b(^) < e, which is tested by
scanning £(v) in ascending order and reporting all intervals for

which the condition holds. This is done, efficiently, in time proportional

to the number of reported intersections (with no search overhead).

2. v E PL (and, analogously with the appropriate changes, if v E PR). If
S(v) < b, then, arguing as for v E PIN, we must scan in descending order the

8.8 Intersections of Rectangles and Related Problems 	 363

right list 1)(v) of y, (again, with no overhead). If b < 8(v), then [b, e] is
known to intersect not only all the active intervals assigned to y, but also all
the intervals assigned to nodes in the right subtree of v. The first set is
obtained by just reporting all the intervals whose right extreme is in M(y).
The second set involves a visit of the active nodes of the right subtree. To
efficiently accomplish this task, we shall use the arcs realized by LPTR and
RPTR. By a previous argument (less than half of the active nodes in this
subtree have empty secondary lists), the number of nodes visited is of the
same order as the number of reported intervals.

The performance of the method outlined above is readily analyzed. First of
all, the static interval tree for a collection of N intervals uses space 0(N), since
there are 4N — 1 primary nodes and at most 2N items to be stored in the
secondary lists. The skeletal primary structure is constructed in time
0(N log N), since a preliminary sorting of the abscissae is needed. Each
interval is inserted or deleted in time 0(log N), as noted earlier. The search of
the tree uses time O(log N) to trace the search paths (see again Figure 8.31),
while a constant amount of time is spent for each reported interval; the only
overhead, to be charged to the corresponding primary node, is proportional to
the number of secondary lists to be visited in this process. Notice also that if
the tree search is performed only in conjunction with the insertion of a
rectangle (i.e., when inserting its left side), each intersecting pair is reported
exactly once. In conclusion, we summarize the previous discussion with the
following theorem.

Theorem 8.9. The s intersecting pairs in a collection of N isothetic rectangles can
be reported in optimal time 0(Nlog N + s), with an 0(N log N) preprocessing
time and using optimal space 0(N).

PROOF. The time and space upper bounds are established by the preceding
discussion. Thus we shall restrict ourselves to the consideration of optimality.
The space optimality is trivial. As to the time optimality, note that
ELEMENT UNIQUENESS, for which an fl(Nlog N)-time lower bound
holds in the decision-tree model (see Chapter 5), can be trivially transformed
to our problem. Indeed, given N real numbers {z 1 , ... , zN } and chosen an
interval [h, e], from z i we construct the rectangle [b, e] x [z1 , z i] and apply the
rectangle intersection algorithm. If no intersection is reported, then all num-
bers are distinct. CI

8.8.2 The rectangle intersection problem revisited

As noted at the beginning of Section 8.8.1, two intervals R' = [xi, x2] and
R" = [xi, x2] intersect if either of the following conditions holds:

(i) xi < x'f < x2; 	 (8.2)

(ii) x; < xi < x'2. 	 (8.3)

[x 1 , x 2-1

u2

. 	 p'= (- x i , x 2)

. ^

x ^„

^•\
^

p"' ■ -x 2 ,x 1) \

ul
^

364 	 8 The Geometry of Rectangles

Figure 8.32 Mapping of an interval to two points p' and p" in the plane.

It is easy to realize that the disjunction of the above two conditions is

equivalent to the conjunction of the two conditions

x l — x2 ,

which are trivially transformed into'

—x 2 < — x l , (8.4)

The latter is the expression of a "dominance" relation -< in the plane (see

Section 4.1.3) between point (— xï , .4) and point (— x2, xi). With this inter-
pretation, the problem of determining all intersecting pairs in a collection of N
intervals, is transformed as follows. Given a set M = { R") =
j = 1, ... , N} of N intervals, we first define a function a 0 : —> E 2 which
maps the interval [x 1 , x2] to the point (x 1 , x2) in the plane (refer to Figure
8.32; note that point (x l , x 2) lies above the bisector x 1 = x2 of the first quad-
rant). Next we define the map a': E 2 E2 , which is a symmetry of the plane
with respect to the x 2 -axis (i.e., point (x 1 , x 2) is mapped to point (—x 1 ,x2)).
Finally we define a map a": E 2 --* E 2 , which is a symmetry of the plane with

respect to the bisector x 2 = — x 1 of the second quadrant (i.e., point (—x i , x 2)
is mapped to (—x 2 , x 1)). For ease of reference, we call p' and p" the composite
functions a'60 and 6"6'60 , respectively, and establish the following equi-
valence, which is a straightforward consequence of the definitions of maps p'
and p" and of (8.4) above:

R (1) n Ru) 0 0..p'(Rt) >- p"(Ru)) - p' (le)) >- p" (R(`')

5 Indeed, let P1 := (x; < xi), P2:= (xi < x'2), P3:= (xl < x') and P4 := (x', < x2). Symbolically
we have

PI P2 y P3 P4 = T .4'>(Pi P3)(P2 V P3)(P, V P4)(P2 v P4) = T

which, due to P, = P3, P, v P4 = T, P3 v P2 = T, is transformed into

P2 P4(P2 y P4) = P2 P4 = T.

8.8 Intersections of Rectangles and Related Problems
	

365

Figure 8.33 Dominance pairs, each equivalent to interval intersection.

The situation is illustrated with an example in Figure 8.33. Note that each pair
of intersecting intervals gives rise to two pairs in the dominance relation.

Turning now our attention to Problem R.8, (report of all intersecting pairs
of a set M of rectangles—a two-dimensional problem), given a rectangle R =
[x l , x 2] x [y l , y 2], we first map it to the two points P'(R) = (— x 1 ,

x2, — Y1,y2) and P"(R) = (— x2, x1, — y2,y1) in E4 , with coordinates u l , u2ï
 u3 , u4 . Next we form the two sets of points in E4 :

S' _ {P'(R): REM}

S" = {P"(R): R ED}.

The preceding discussion establishes that two rectangles R 1 and R2 in
.W intersect if and only if 7(R 1) y P"(R 2) (or, equivalently, if P'(R2) >-
P" (R 1)). Thus the "all-intersecting pairs" Problem R.8 is a special instance of
the following general dominance problem.'

PROBLEM R.9 (DOMINANCE MERGE). Given two sets of points S 1 and S2

in Ed, find all pairs p i e S1 and P2 E S2 such that Pi >- P2

The special nature of the problem is due to the fact that, in our situation, S'
and S" are separated by the two hyperplanes u 1 + u2 = 0, u3 + u4 = 0 in the
four-dimensional space. By applying an algorithm to be described in the next
section, we could solve our four-dimensional dominance merge problem, and
thus solve the "all-intersecting pairs" problem, in time O(Nlog 2 N + s),
rather than in optimal time O(Nlog N + s), as provided by the technique of
Section 8.8.1. The gap between the two results is more likely to be due to our
inability to exploit the special nature of the problem instance, rather than to
an inadequacy of the general algorithm for "dominance merge."

'Note that there is some redundancy in the solution not only because each pair will be reported
twice, but because all trivial pairs (R, R) will also be reported.

366 	 8 The Geometry of Rectangles

8.8.3 Enclosure of rectangles

The rectangle enclosure problem (or containment or inclusion problem, as it is

frequently referred to) is, in a sense, a special case of the intersection problem,

and is defined as follows.

PROBLEM R.10 (RECTANGLE ENCLOSURE). Given a set S of N isothetic
rectangles in the plane, report all ordered pairs of S so that the first member
encloses the second.

(Notice that while intersection is a symmetric relation, enclosure is a partial

ordering relation.)
Again, we assume M = {Ru) , ... ,R(N) }. An earlier solution to the enclo-

sure problem resorted to data structures as the segment and range trees

[Vaishnavi—Wood (1980)]; the corresponding algorithm has running time

O(N log2 N + s) and uses space 0(N log N). By transforming the rectangle

enclosure problem to a point dominance problem, we shall now show that

the same time bound can be achieved with optimal space 0(N) [Lee—Preparata
(1982)].

Denoting as usual R (1) = [xi`) , x (2̀)] x [y1`) , y2`>], we have that Ru) 	R(`) if
and only if the following four conditions jointly hold:

	

x(ii) < x 11) 	x21) < x2`), 	Yi`' < yi'', 	y < y2`'. 	(8.5)

These conditions are trivially equivalent to

	

—4) / < — X 1^) , 	xP < x), 	— ycl) <
 - ' , 	 y<2' < y(1', (8.6)

which express the well-known relation "-<" of dominance between two four-
dimensional points, that is

(— xi) , x(i) , — yi ' , yi') -< — 4) , x(1 — yi, yi'). 	(8.7)

Thus, after mapping each R (`) E.A into its corresponding four-dimensional

point, the rectangle enclosure problem becomes the point dominance problem

in 4-space.' Specifically

PROBLEM R.11 (DOMINANCE). Given a set S = { /3 1 , . ,p„} of points in d-
space, for each point pi e S find a subset D i of S defined by D. =
{p: peS,p -<p1}•

The technique we shall describe to solve Problem R.11 is (not surprisingly)

closely reminiscent of the method introduced earlier to solve the problem of

finding the maxima of a set of vectors (Section 4.1.3). Again, for d = 4, we let
u 1 , u2 , u 3 , and u4 denote the coordinates of E4 . The first preliminary step
consists of transforming each RwEM to a point p(R")) of E4 , where the

'This correspondence has also been noted in [Edelsbrunner—Overmars (1982)].

8.8 Intersections of Rectangles and Related Problems
	

367

Figure 8.34 Directed-graph representation of the divide-and-conquer algorithm for

DOMINANCE MERGE. Each subset is a node and each subproblem is an arc.

function p() is described by (8.6) and (8.7) above. Thus we obtain the set S
= { p(R (i)): R` E .M} = { p i , ... , pN }, whose elements have been reindexed so
that (i < j) (u 1 (pi) < u1 (p;)). We then have:

procedure DOMINANCE
D1 . (Divide) Partition S into (S 1 , S2) where Si = { P 1 , 	, PLNi2^ }

and S2 =
{puNi2i+19...,PN}.

D2. (Recur) Solve the point-dominance problem on S i and 52 , separately.
D3. (Merge) Find all the pairs pi -< p; , where pi e Sl and pi e S2.

We shall now discuss the implementation of step D3. Note that this step
solves Problem R.9, "dominance merge." For pi E S1 and p; e S2 , since
u l (pi) < u1 (p) by construction, we have pi -< pi if and only if ui (p i) < u1 (pi)
for l = 2, 3, 4. Thus Step D3 is, in effect, a three-dimensional problem.
Once again, we use divide-and-conquer, and denote by û2 the median of

{u2(pi): P i ES2 }.

procedure DOMINANCE MERGE
M 1. (Divide) Partition S1 into (Sl 1 , S12) and S2 into (S21 , S22), so that S i , =

{p:peS1,u2(p)< û2}, S21= {p:peS2,u2(p)< 172}, and S12=S1 -

S11 , S22 = S2 - S21 .

M2. (Recur) Solve the merge problem on the pairs of set (S11, S21) and

(S12, S22)•
M3. (Combine) Find all pairs pi -< pi such that pi e Si , and pi e S22.

To establish the correctness of the technique outlined above, we note at first

that S is partitioned into sets S11, S12, S21, and S22 . Referring to Figure 8.34
(where each subproblem is represented by an arc), within each of these four

subsets the point-dominance problem is solved in D2; it remains to be solved

between pairs of subsets. Of the six pairs, (S 11 , 512) and (S21, 522) are also
processed in D2; (S11, S21) and (S12, S22) are processed in M2; (511, S22) is
processed in M3, while (S12, S21) need not be considered, because for each

368 	 8 The Geometry of Rectangles

pi E S12 and p.E S21 we have u 1 (p i) < u1 (pi) and u 2 (pi) > u2 (pi). Also note
that Step M3 (Combine) is a two-dimensional merge problem (in u 3 and u4).

It is obvious that the key operation of the entire task is therefore the
implementation of step M3, the two -dimensional Merge (or Combine). Indeed
the entire computation reduces to the careful sequencing of steps like M3;
therefore, in what follows we shall concentrate on devising an efficient imple-
mentation of "Combine." We shall show that "Combine" can be implemen-
ted in time linear in the input size, with O(N log N) time for a preliminary sort,
which can be charged to the overall procedure. We shall later see how this
result affects the entire task.

The sets SI and S22 , appearing in Step M3, are collections of two-
dimensional points in the plane (u 3 , u4). We represent each of these two sets as
a doubly-threaded bidirectional list as follows: for each point p there is a node
containing the information (u 3 (p), u4 (p)); in addition, there are two pointers,
NEXT3 and NEXT4, respectively describing the ordering on u 3 and u4 .
Bidirectional links are established by two additional pointers PRED3 and
PRED4. We temporarily ignore the cost of constructing the doubly-threaded
lists.

By BEG31 and BEG32 we denote pointers to the first elements of the u 3
-coordinate lists for S11 and S22 , respectively. The algorithm has the general

form of a plane sweep, whose event points are the u 3 -coordinates of S11 v S22,

and whose sweep-line status is represented by a list L. This list contains a
sequence, sorted by increasing u 4-coordinates of a subset of S 11 (specifically
the u4-coordinates of the points of S 11 whose u 3 -coordinate is no larger than
the current scan value). Temporarily, we use NEXTL and BEGL to denote the
forward and initial pointers for L, although—as we shall see below--NEXT4
can be used in place of NEXTL. We propose the following algorithm:

procedure COMBINE
I beginj 1 := BEG31; j2 := BEG32;

	

2 	while (j2 0 A) do

	

3 	 begin if (u 3 [j 1] < u3 [j2]) then

	

4 	 begin insert u4[j1] into L maintaining sorted order;

	

5 	 jl := NEXT3[j l]

end

	

6 	 else begin 1:= BEG L;

	

7 	 while (1 0 A) and (u4 [j2] > u4 [I]) do

	

8 	 begin print (.I 2 ,1);

	

9 	 I:= NEXTL[1]
end;

	

10 	 j2 := NEXT3[j2]
end

end
end.

The above algorithm has obviously the structure of a merge technique. On line

(a) (b)

S„ = {P 1 ,... 'Ps } and of the associated doubly Figure 8.35 An example of set
threaded list.

	■ U3

BEG3 B EG4

U 4

G Scan

•r'

8.8 Intersections of Rectangles and Related Problems 	 369

3 we test whether we should advance on S 11 or on S22. In the first case we must
insert u4[jl] into L (line 4). In the second case (lines 6-9) we scan the list L
from its smallest element, thereby determining all the points dominated by p h ;
this part of the procedure is straightforward and runs in time proportional to
the number of pairs (j 2 , !) that are printed.

The crucial task of the procedure occurs on line 4: "Insert u 4 [j 1] into L
maintaining sorted order." Indeed, at first sight, it appears to globally require
time proportional to IS11I2, since each insertion may require a full scan of L,
while a more sophisticated implementation of L with a rearrangeable tree
(either a height-balanced or a weight-balanced tree) would cut the global time
down to O(1 S 11 ' log' S 1 1 1). However, there is an interesting way to organize this
task so that its global time requirement is 0(1S 11 1). Our objective is the
generation of the schedule of insertions into L of the elements of the u 4-list of
Si 1 . Referring to Figure 8.35 this is accomplished as follows. Observe that the
u4-coordinate of the rightmost element of S 11 , i.e., p 8 , must be inserted into L
(the sorted sequence of the u 4-coordinates of the points to the left of p 8)
between u 4 [3] and u4 [5]. But u4 [3] is exactly PRED4[8]; therefore, PRED4[8]
gives the position where to insert u 4 [8] into L. Now, deletingp 8 from the u4-list
and repeating the process on the resulting list, gives the insertion position of a
new element, u4 [7]. In this manner, by scanning the u 3 -list in reverse order, we
obtain the insertion schedule for each element of the u 4-list, as shown by the
following algorithm:

7 5 4 1 8 2 BEG 3

7 5 4 1 03 2 BEG 3

(BEG) 5 4 1 3 2 BEG 3

BEG 5 4 1 3 2 BEG 3

BEG 03 4 1 3 2 BEG 3

BEG 310 1 3 2 BEG 3

BEG 0 1 1 3 2 BEG 3

BEG 1 1 1 3 2 BEG 3

Initial PRED4

Final
(insertion schedule)

P8

P7

P6

P5

P4

P3

P2

370 	 8 The Geometry of Rectangles

begin 1:= LAST(u 3 -list);
while (PRED3 [l] BEG3) do

begin NEXT4[PRED4[I]] := NEXT4[l];
PRED4[NEXT4[1]] := PRED4[/];
l:= PRED3[I]

end
end.

EXAMPLE. Given the set S 11 depicted in Figure 8.35(a), in Figure 8.35(b) we
illustrate the initial configuration of the u3 - and u4-list. The initial configur-
ation of the array PRED4 is

1 2 3 4 5 6 	7 	8

PRED4: 7 5I4 8 2 I BEG 3

The evolution of this array when executing the above scan is shown compactly
below (entries being updated are encircled).

After
2 3 4 5 6 	7 8 Scanning

Therefore, the final configuration of the array PRED4 completely specifies
the insertion schedule into the L-list (which becomes the u 4-list when the scan
is complete) and line 4 of COMBINE can be executed in constant time. This
shows that the entire COMBINE procedure runs in time linear in 15 11 1 + I Sea I
and in the number of pairs (point dominances) obtained. With the subroutine
COMBINE at our disposal, we can see how to organize the entire procedure
DOM INANCE.

First we consider the data structure. After sorting the set S on each of the
four coordinates, we set up a quadruply-threaded list (QTL). As for the
doubly-threaded list mentioned earlier, all links are bidirectional and pointers
NEXTj and PREDj are used for the u i -list. Obviously the construction of the

8.8 Intersections of Rectangles and Related Problems 	 371

QTL for S uses O(N log N) time. The QTL lends itself, very naturally, to the
linear-time implementation of the set-splitting operations specified by steps
D1 and M 1 of the preceding algorithms. Indeed, suppose we wish to split S
into (S1 , S2) and mark the elements of S 1 . Then, by traversing the QTL for
each selected pointer NEXTi, for i = 1, 2, 3, 4, the list corresponding to this
pointer can be split into two lists, corresponding to the two sets S l and S2 of
the partition. Analogously given S i and S2 we can merge the two correspond-
ing lists using "natural merge" [Knuth (1973)] in linear time. Note that the
splitting and merging operations simply involve modification of the pointers
and use no additional space for storing data.

To analyze the performance of the proposed technique we note:

(1) All processing occurs in place, uses the QTL arrays, and reduces to
transformations of the pointers' values. Thus the space used is 0(N).

(2) As regards processing time, each dominance pair (i.e., each nested pair of
rectangles) is found exactly once and in constant time by the while-loop
(7)—(9) of COMBINE. Thus, if s is the number of pairs, 0(s) optimal time
is used for this activity. The remaining computing time depends exclus-
ively on the size N of S: denote it by D(N). Also denote by Md (r, s) the
running time of Algorithm DOMINANCE MERGE on two sets with r
and s d-dimensional points, where d = 2, 3. Assuming, for simplicity, that
N is even, we have

D(N) = 2D(N/2) + M3 (N/2, N/2) + 0(N), 	(8.8)

where 0(N) is the time used by the "divide" step Dl. Analogously, we
have (assuming that 1 5211 = m and r is even)

M 3 (r, s) = M3 (r/2, m) + M3 (r 12, s — m) + M2 (r/2, max (m, s — m))
+ 0(r + s), 	 (8.9)

where, again, 0(r + s) time is needed to perform the set splitting. An
upper bound to M3 (r,$) is obtained by maximizing the right side of (8.9)
with respect to m. Since M 2 (r', s') is 0(r' + s'), arguing as in [Kung-
Luccio—Preparata (1975)], we obtain M 3 (r, s) = 0((r + s) log (r + s))
and, consequently, D(N) = O(N(log N) 2).

This proves the following theorem.

Theorem 8.10. The rectangle enclosure problem on N rectangles (and its equiva-
lent DOMINANCE problem in four dimensions) can be solved in time
0(Nlog2 N + s) and optimal space 0(N), where s is the number of dominance
pairs.

Of course, it remains an open question whether a better algorithm can be
found for the above two equivalent problems. On the other hand, the estab-
lishment of an S2(Nlog 2 N) lower bound is a very improbable prospect.

372
	

8 The Geometry of Rectangles

8.9 Notes and Comments

Several of the problems discussed in this chapter lend themselves to interesting exten-
sions or generalizations. For example, the problem of reporting the intersections of N
rectangles in the plane can be generalized to an arbitrary number d of dimensions. If K
is the number of intersecting pairs of huperrectangles, Six and Wood obtained an
0(Nlog d-1 N + K) time and O(N logd-1 N) space algorithm [Six—Wood (1982)],
whose time bound was later improved by Edelsbrunner (1983) to 0(N logd-2 N).
Within the same time bound Chazelle and Incerpi (1983) and Edelsbrunner and
Overmars (1985) have reduced the space bound down to 0(N), which is obviously
optimal. The corresponding counting problem, unlike for the case of segment inter-
section (see Section 7.2.3) can be solved in 0(N logd-1 N) time and 0(Nlogd-2 N)
space by slightly modifying the intersection reporting algorithm of Six and Wood,
although the algorithm of Chazelle and Incerpi cannot be adapted to solve this
problem efficiently.

An interesting generalization of the rectangle intersection problem is the class
conveniently referred to as ORTHOGONAL INTERSECTION SEARCHING,
where, given N isothetic objects, we must find all those that intersect a given isothetic
query object. (Of course, the canonical form of an isothetic object in Ed is the cartesian
product of dintervals, each of which may reduce to a single value. For instance, a point,
an isothetic rectangle, and a horizontal or vertical line segment are orthogonal objects.)
Examples of such problems, discussed in Chapter 2, are multidimensional range
searching, both in its "reporting" and in its "counting" form. The INVERSE RANGE
SEARCHING, or POINT ENCLOSURE problem i.e., given N isothetic rectangles,
find the rectangles that enclose a query point, also belongs to the class. Vaishnavi
(1982) gives a data structure that supports searching in 0(log N + K) query time with
space = O(N log N). Chazelle (1983c) gives an optimal algorithm for this problem,
i.e., 0(N) space and 0(log N + K) time. Another instance of such problems is the
ORTHOGONAL SEGMENT INTERSECTION SEARCHING problem, which
requests, for given N horizontal and vertical line segments to find all segments
intersecting a given orthogonal query segment; this problem was investigated by
Vaishnavi and Wood (1982), who gave an 0(log N + K) query time algorithm with
0(N log N) preprocessing and space. The space bound can be reduced to 0(N) [Chazelle
(1983c)]. If the set of distinct coordinate values is of cardinality 0(N) and when inser-
tions or deletions of segments are allowed, McCreight presents a dynamic data
structure [McCreight (1981)] for this problem which requires 0(N) space and
O(log 2 N + K) time; and Lipski and Papadimitriou (1981) provide an algorithm with
0(log N • log log N + K) time and 0(N log N) space. Edelsbrunner and Maurer (1981)
have recently unified several of the previous approaches to solving this class of
intersection searching problems and obtained the following results. For the static
problem, there exists a data structure achieving the following performance: query time
0(logd-1 N + K) with preprocessing time and storage both O(Nlog d N). The space
bound has been later improved to 0(N logd-1 N log log N) [Chazelle—Guibas (1984)].
For the dynamic problem, there exists a dynamic data structure achieving the follow-
ing performance: query time O(log d N + K), with space O(N log' N) and update time
0(logd N) [Edelsbrunner (1980)].

8.10 Exercises 	 373

8.10 Exercises

1. Given the set of nontrivial circuits of the union Fof N isothetic rectangles, design an
algorithm that selects the circuits forming the nontrivial contour. (The target time
of this algorithm is O(N log N).)

2. 3-D DOMINANCE. Given a set of N points in E3 , design an algorithm that
constructs the s dominance pairs in time O(N log N + s) and space 0(N).

3. 3-D DOMINANCE. Prove that the time required to compute the s dominance pairs
in a set of N points in E3 is lower-bounded by 0(N log N + s).

4. Enclosure of Squares. The ENCLOSURE-OF-SQUARES problem is obtained by
replacing the world "square" to the word "rectangle" in Problem R.10. Show that
ENCLOSURE-OF-SQUARES is equivalent to 3-D DOMINANCE.

5. Lee. Given an isothetic polygon P with N vertices, design an algorithm that
constructs all maximal isothetic rectangles contained in P. (An isothetic rectangle
contained in P is maximal, if no other isothetic rectangle contained in P contains
it. The target time is O(N log N + k), where k is the number of rectangles generated.)

6. Lee. Given an N-vertex isothetic polygon P with holes, design an algorithm that
constructs a minimum rectangle cover, i.e., find a smallest set of disjoint isothetic
rectangles contained in P whose union is P.

7. Show that 4-D DOMINANCE MERGE for a set of N points can be solved in time
O(N log' N + s), where s is the size of the reported set of pairs.

8. Route-in-a-Maze. A maze is defined by two collections of segments (N in total), each
of which consists of parallel segments (for simplicity, the two respective directions
are orthogonal). A maze partitions the plane into connected regions. Given two
points s and t in the plane, a route is a curve connecting s and t without crossing any
segment.
(a) Design an algorithm to test if there is a route between s and t.
(b) Design an algorithm to construct the route if there exists one.

References

A. Aggarwal, L. Guibas, J. Saxe, and P. W. Shor, A linear time algorithm for computing
the Voronoi diagram of a convex polygon, Proc. 19th ACM Annual Symp. on
Theory of Comput. pp. 39-45 (May 1987).

A. V. Aho, J. E. Hoperoft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

S. B. Akers, Routing, in Design Automation of Digital Systems, M. Breuer, ed.,
Prentice-Hall, Englewood Cliffs, NJ, 1972.

S. G. Akl, Two remarks on a convex hull algorithm, Info. Proc. Lett. 8, 108-109 (1979).
S. G. Akl and G. T. Toussaint, Efficient convex hull algorithms for pattern recognition

applications, Proc. 4th Intl Joint Conf. on Pattern Recognition, Kyoto, Japan, pp.
483-487 (1978).

A. M. Andrew, Another efficient algorithm for convex hulls in two dimensions, Info.
Proc. Lett. 9, 216-219 (1979).

H. C. Andrews, Introduction to Mathematical Techniques in Pattern Recognition,
Wiley-Interscience, New York, 1972.

M. J. Atallah, A linear time algorithm for the Hausdorff distance between convex
polygons, Info. Proc. Lett. 8, 207-209 (Nov. 1983).

D. Avis, On the complexity of finding the convex hull of a set of points, McGill
University, School of Computer Science; Report SOCS 79.2, 1979

D. Avis and B. K. Bhattacharya, Algorithms for computing d-dimensional Voronoi
diagrams and their duals, in Advances in Computing Research. Edited by F. P.
Preparata. 1, JAI Press, 159-180 (1983).

H. S. Baird, Fast algorithms for LSI artwork analysis, Design Automation and Fault-
Tolerant Computing, 2, 179-209 (1978).

R. E. Barlow, D. J. Bartholomew, J. M. Bremner and H. D. Brunk, Statistical
Inference under Order Restrictions, Wiley, New York, 1972.

M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15th ACM Annual
Symp. on Theory of Comput., pp. 80-86 (May 1983).

R. V. Benson, Euclidean Geometry and Convexity, McGraw-Hill, New York, 1966.
J. L. Bentley, Multidimensional binary search trees used for associative searching,

Communications of the ACM 18, 509-517 (1975).
J. L. Bentley, Algorithms for Klee's rectangle problems, Carnegie-Mellon University,

Pittsburgh, Penn., Department of Computer Science, unpublished notes, 1977.

References 	 375

J. L. Bentley, Decomposable searching problems, Info. Proc. Lett. 8, 244-251 (1979).
J. L. Bentley, Multidimensional divide and conquer, Comm. ACM 23(4), 214-229

(1980).
J. L. Bentley, G. M. Faust and F. P. Preparata, Approximation algorithms for convex

hulls, Comm. ACM 25, 64-68 (1982).
J. L. Bentley, H. T. Kung, M. Schkolnick and C. D. Thompson, On the average

number of maxima in a set of vectors, J. ACM 25, 536-543 (1978).
J. L. Bentley and H. A. Maurer, A note on Euclidean near neighbor searching in the

plane, Inform. Processing Lett. 8, 133-136 (1979).
J. L. Bentley and H. A. Maurer, Efficient worst-case data structures for range search-

ing, Acta Informatica 13, 155-168 (1980).
J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric

intersections, IEEE Transactions on Computers 28, 643-647 (1979).
J. L. Bentley and M. I. Shamos, Divide-and-Conquer in Multidimensional Space,

Proc. Eighth ACM Annual Symp. on Theory of Comput., pp. 220-230 (May
1976).

J. L. Bentley and M. I. Shamos, A problem in multivariate statistics: Algorithms, data
structure, and applications, Proceedings of the 15th Annual Allerton Conference on
Communication, Control, and Computing, pp. 193-201 (1977).

J. L. Bentley and M. I. Shamos, Divide and conquer for linear expected time, Info.
Proc. Lett. 7, 87-91 (1978).

J. L. Bentley and D. F. Stanat, Analysis of range searches in quad trees, Info. Proc.
Lett. 3, 170-173 (1975).

J. L. Bentley and D. Wood, An optimal worst case algorithm for reporting intersection
of rectangles, IEEE Transactions on Computers 29, 571-577 (1980).

P. Bézier, Numerical Control—Mathematics and Applications. Translated by A. R.
Forrest. Wiley, New York, 1972.

B. Bhattacharya, Worst-case analysis of a convex hull algorithm, unpublished manu-
script, Dept. of Computer Science, Simon Fraser University, February 1982.

G. Bilardi and F. P. Preparata, Probabilistic analysis of a new geometric searching
technique, unpublished manuscript, 1981.

G. Birkhoff and S. MacLane, A Survey of Modern Algebra, McMillan, New York,
1965.

M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest and R. E. Tarjan, Time bounds for
selection, Jour. Compt. Sys. Sci. 7, 448-461 (1973).

B. Bollobâs, Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979.
K. Q. Brown, Fast intersection of half spaces, Carnegie-Mellon University, Pittsburgh,

Pennsylvania, Department of Computer Science; Report CMU-CS-78-129, 1978.
K. Q. Brown, Geometric transformations for fast geometric algorithms, Ph. D. thesis,

Dept. of Computer Science, Carnegie Mellon Univ., Dec. 1979a.
K. Q. Brown, Voronoi diagrams from convex hulls, Info. Proc. Lett. 9, 223-228

(1979b).
W. A. Burkhard and R. M. Keller, Some approaches to best match file searching,

Comm. ACM 16, 230-236 (1973).
A. Bykat, Convex hull of a finite set of points in two dimensions, Info. Proc. Lett. 7,

296-298 (1978).
J. C. Cavendish, Automatic triangulation of arbitrary planar domains for the finite

element method, Intl J. Numerical Methods in Engineering 8, 679-696 (1974).
D. R. Chand and S. S. Kapur, An algorithm for convex polytopes, JA CM 17(1), 78-86

(Jan. 1970).
B. M. Chazelle, Reporting and counting arbitrary planar intersections, Rep. CS-83-16,

Dept. of Comp. Sci., Brown University, Providence, RI, 1983a.
B. M. Chazelle, Optimal algorithms for computing depths and layers, Proc. 21st

Allerton Conference on Comm., Control and Comput., pp. 427-436 (Oct. 1983b).
B. M. Chazelle, Filtering search: A new approach to query answering, Proc. 24th IEEE

376 	 References

Symp. on Foundations of Comp. Sci., Tucson, AZ, 122-132 Nov. 1983c.
B. M. Chazelle, R. Cole, F. P. Preparata, and C. K. Yap, New upper bounds for

neighbor searching, Information and Control, 68(1-3), 105-124 (1986).
B. M. Chazelle and D. P. Dobkin, Detection is easier than computation, Proc. 12th

ACM Annual Symp. on Theory of Comput., pp. 146-153, (May 1980).
B. M. Chazelle and H. Edelsbrunner, Optimal solutions for a class of point retrieval

problems, J. Symbol. Comput. 1, 47-56 (1985).
B. M. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line

segments, Proc. 29th IEEE Symp. on Found. of Comput. Sci. (Oct. 1988).
B. M. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique.

Algorithmica 1, 133-162 (1986).
B. M. Chazelle, L. J. Guibas and D. T. Lee, The power of geometric duality, Proc. 24th

IEEE Annual Symp. on Foundations of Comput. Sci., pp. 217-225 (Nov. 1983).
B. M. Chazelle and J. Incerpi, Triangulating a polygon by divide-and-conquer, Proc.

21st Allerton Conference on Comm. Control and Comput., pp. 447-456 (Oct. 1983).
D. Cheriton and R. E. Tarjan, Finding minimum spanning trees, SIAM J. Comput.

5(4), 724-742 (Dec. 1976).
F. Chin and C. A. Wang, Optimal algorithms for the intersection and the minimum

distance problems between planar polygons, IEEE Trans. Comput. C-32(12),
1203-1207 (1983).

F. Chin and C. A. Wang, Minimum vertex distance between separable convex poly-
gons, Info. Proc. Lett. 18, 41-45 (1984).

N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman
problem, Symposium on Algorithms and Complexity. Department of Computer
Science, Carnegie-Mellon University, Apr. 1976.

V. Chvâtal, A combinatorial theorem in plane geometry, J. Comb. Theory B. 18, 39-41
(1975).

R. Cole, Searching and storing similar lists, Journal of Algorithms, 7(2), 202-220 (1986).
J. L. Coolidge, A Treatise on the Circle and the Sphere, Oxford University Press,

Oxford, England, 1916. Reprinted 1971 by Chelsea.
B. Dasarathy and L. J. White, On some maximin location and classifier problems,

Computer Science Conference, Washington, D.C., 1975 (Unpublished lecture).
P. J. Davis, Interpolation and Approximation, Blaisdell, NY (1963). Reprinted 1975 by

Dover, New York.
B. Delaunay, Sur la sphère vide, Bull. Acad. Sci. USSR(VII), Classe Sci. Mat. Nat.,

793-800 (1934).
R. B. Desens, Computer processing for display of three-dimensional structures, Tech-

nical Report CFSTI AD-7006010, Naval Postgraduate School, Oct. 1969.
E. W. Dijkstra, A note on two problems in connection with graphs, Numer. Math. 1(5),

269-271 (Oct. 1959).
D. P. Dobkin and D. G. Kirkpatrick, Fast algorithms for preprocessed polyhedral

intersection detection, submitted for publication (1984).
David Dobkin and Richard Lipton, Multidimensional searching problems, SIAM J.

Comput. 5(2), 181-186 (June 1976).
David Dobkin and Richard Lipton, On the complexity of computations under varying

set of primitives, Journal of Computer and Systems Sciences 18, 86-91 (1979).
R. L. Drysdale, III, Generalized Voronoi diagrams and geometric searching, Ph.D.

Thesis, Dept. Comp. Sci., Stanford University, Tech. Rep. STAN-CS-79-705
(1979).

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley-
Interscience, New York, 1973.

R. D. Düppe and H. J. Gottschalk, Automatische Interpolation von Isolinien bei
willkürlich verteilten Stützpunkten, Allgemeine Vermessungsnachrichten 77,
423-426 (1970).

M. E. Dyer, A simplified O(nlogn) algorithm for the intersection of 3-polyhedra,

References
	

377

Teesside Polytechnic, Middlesbrough, United Kingdom, Department of Math-
ematics and Statistics; Report TPMR 80-5, 1980.

M. E. Dyer, Linear time algorithms for two- and three-variable linear programs,
SIAM J. Comp. 13(1), 31-45 (Feb. 1984).

M. I. Edahiro, I Kokubo and T. Asano, A new point-location algorithm and its
practical efficiency—comparison with existing algorithms, ACM Trans. Graphics
3(2), 86-109 (1984).

W. Eddy, A new convex hull algorithm for planar sets, ACM Trans. Math. Software
3(4), 398-403 (1977).

H. Edelsbrunner, Dynamic data structures for orthogonal intersection queries, Rep.
F59, Tech. Univ. Graz, Institute für Informationsverarbeitung 1980.

H. Edelsbrunner, Intersection problems in computational geometry, Ph. D. Thesis,
Rep. 93, IIG, Technische Universitat Graz, Austria, 1982.

H. Edelsbrunner, A new approach to rectangle intersections, Part II, Int'l. J. Comput.
Math. 13, 221-229 (1983).

E. Edelsbrunner, L. J. Guibas and J. Stolfi, Optimal point location in a monotone
subdivision, SIAM J. Comput., 15(2), 317-340 (1986).

H. Edelsbrunner, J. van Leeuwen, T. A. Ottman, and D. Wood, Computing the
connected components of simple rectilinear geometric objects in d-spaces, RAI RO
Inf. Th. 18, 171-183 (1984).

H. Edelsbrunner and H. A. Maurer; On the intersection of orthogonal objects, Info.
Proc. Lett. 13, 177-181 (1981).

H. Edelsbrunner and M. H. Overmars, On the equivalence of some rectangle problems,
Information Processing Letters 14(3), 124-127 (May 1982).

H. Edelsbrunner and M. H. Overmars, Batched dynamic solutions to decomposable
searching problems, J. Algorithms, 6, 515-542 (1985).

H. Edelsbrunner, M. H. Overmars and D. Wood, Graphics in flatland: A case study, in
Advances in Computing Research. Edited by F. P. Preparata. Vol. 1, JAI Press,
35-59 (1983).

H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete Comput.
Geom. 1, 25-44 (1986).

H. Edelsbrunner and E. Welzl, Halfplanar range search in linear space and O(n**
0.695) query time, Info. Proc. Lett., 23, 289-293 (1986).

J. Edmonds, Maximum matching and a polyhedron with 0,1 vertices, J. Res. NBS,
69B, 125-130 (Apr.–June 1965).

B. Efron, The convex hull of a random set of points, Biometrika 52, 331-343 (1965).
H. El Gindy and D. Avis, A linear algorithm for computing the visibility polygon from

a point, J. Algorithms 2(2), 186-197 (1981).
D. J. Elzinga and D. W. Hearn, Geometrical solutions for some minimax location

problems, Transportation Science 6, 379-394 (1972a).
D. J. Elzinga and D. W. Hearn, The minimum covering sphere problem, Mgmt. Sci.

19(1), 96-104 (Sept. 1972b).
P. Erdds, On sets of distances of n points, Amer. Math. Monthly 53, 248-250 (1946).
P. Erdds, On sets of distances of n points in Euclidean space, Magy. Tud. Akad. Mat.

Kut. Int. Kozi. 5, 165-169 (1960).
K. P. Eswaran, J. N. Gray, R. A. Lorie and I. L. Traiger, The notions of consistency,

and predicate locks in a database system, Comm. ACM 19, 624-633 (1976).
S. Even, Graph Algorithms, Computer Science Press, Potomac, MD, 1979.
H. Eves, A Survey of Geometry, Allyn and Bacon, Newton, Mass., 1972.
G. Ewald, Geometry: An Introduction, Wadsworth, Belmont, Calif., 1971.
I. Fâry, On straight-line representation of planar graphs, Acta Sci. Math. Szeged. 11,

229-233 (1948).
R. A. Finkel and J. L. Bentley, Quad-trees; a data structure for retrieval on composite

keys, Acta Inform. 4, 1-9 (1974).
A. R. Forrest, Computational Geometry, Proc. Royal Society London, 321 Series 4,

378 	 References

187-195 (1971).
R. L. Francis and J. A. White, Facility Layout and Location: An Analytical Approach,

Prentice-Hall, Englewood Cliffs, NJ, 1974.
M. L. Fredman, A lower bound of the complexity of orthogonal range queries, J. ACM

28, 696-705 (1981).
M. L. Fredman and B. Weide, The complexity of computing the measure of U [a; , b ;],

Comm. ACM 21(7), 540-544 (July 1978).
H. Freeman, Computer processing of line-drawing images, Comput. Surveys 6, 57-97

(1974).
H. Freeman and P. P. Loutrel, An algorithm for the solution of the two-dimensional

hidden-line problem, IEEE Trans. Elec. Comp. EC-16(6), 784-790 (1967).
H. Freeman and R. Shapira, Determining the minimum-area encasing rectangle for an

arbitrary closed curve, Comm. ACM. 18(7), 409-413 (1975).
J. H. Friedman, J. L. Bentley and R. A. Finkel, An algorithm for finding best match in

logarithmic expected time, ACM Trans. Math. Software 3(3), 209-226 (1977).
H. Gabow, An efficient implementation of Edmond's maximum matching algorithm,

Technical Report 31. Computer Science Department, Stanford Univ., 1972.
K. R. Gabriel and R. R. Sokal, A new statistical approach to geographic variation

analysis, Systematic Zoology 18, 259-278 (1969).
R. Galimberti and U. Montanari, An algorithm for hidden-line elimination, CACM

12(4), 206-211 (1969).
M. R. Garey, R. L. Graham and D. S. Johnson, Some NP-complete geometric

problems, Eighth Annual Symp. on Theory of Comput., pp. 10-22 (May 1976).
M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory

of NP-Completeness. W. H. Freeman, San Francisco, 1979.
M. R. Garey, D. S. Johnson and L. Stockmeyer, Some simplified NP-complete graph

problems, Theor. Comp. Sci. 1, 237-267 (1976).
M. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a simple

polygon, Info. Proc. Lett. 7(4), 175-180 (1978).
S. I. Gass, Linear Programming, McGraw-Hill, New York, 1969.
J. Gastwirth, On robust procedures, J. Amer. Stat. Assn. 65, 929-948 (1966).
J. A. George, Computer implementation of the finite element method, Technical

Report STAN-CS-71-208. Computer Science Department, Stanford University,
1971.

P. N. Gilbert, New results on planar triangulations, Tech. Rep. ACT-15, Coord. Sci.
Lab., University of Illinois at Urbana, July 1979.

T. Gonzalez, Algorithms on sets and related problems, Technical Report. Department
of Computer Science, University of Oklahoma, 1975.

J. C. Gower and G. J. S. Ross, Minimum spanning trees and single linkage cluster
analysis, Appl. Stat. 18(1), 54-64 (1969).

R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar
set, Info. Proc. Lett. 1, 132-133 (1972).

R. L. Graham and F. F. Yao, Finding the convex hull of a simple polygon, Tech. Rep.
No. STAN-CS-81-887, Stanford University, 1981; also J. Algorithms 4(4),
324-331 (1983).

P. J. Green and B. W. Silverman, Constructing the convex hull of a set of points in
the plane, Computer Journal 22, 262-266 (1979).

B. Grünbaum, A proof of Vazsonyi's conjecture, Bull. Res. Council Israel6(A), 77-78
(1956).

B. Grünbaum, Convex Polytopes, Wiley-Interscience, New York, 1967.
R. H. Güting, An optimal contour algorithm for isooriented rectangles, Jour. of

Algorithms 5(3), 303-326 (Sept. 1984).
H. Hadwiger and H. Debrunner, Combinatorial Geometry in the Plane, Holt, Rinebart

and Winston, New York, 1964.
M. Hanan and J. M. Kurtzberg, Placement techniques, in Design Automation of Digital

References 	 379

Systems. Edited by M. Breuer. Prentice-Hall, Englewood Cliffs, NJ, 1972.
M. Hanan, Layout, interconnection, and placement, Networks 5, 85-88 (1975).
J. A. Hartigan, Clustering Algorithms, Wiley, New York, 1975.
T. L. Heath, A History of Greek Mathematics, Oxford University Press, Oxford,

England, 1921.
S. Hertel, K. Mehlhorn, M. Mântyla and J. Nievergelt, Space sweep solves intersection

of two convex polyhedra elegantly, Acta Informatica 21, 501-519 (1984).
D. Hilbert, Foundations of Geometry, (1899). Repr. 1971 by Open Court, La Salle, IL.
J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, MA, 1961.
C. A. R. Hoare, Quicksort, Computer Journal 5, 10-15 (1962).
I. Hodder and C. Orton, Spatial Analysis in Archaeology, Cambridge University Press,

Cambridge, England, 1976.
P. G. Hoel, Introduction to Mathematical Statistics, Wiley, New York, 1971.
P. J. Huber, Robust statistics: A review, Ann. Math. Stat. 43(3), 1041-1067 (1972).
F. K. Hwang, An O(n log n) algorithm for rectilinear minimal spanning tree, J. ACM

26, 177-182 (1979).
T. Imai and T. Asano, Dynamic segment intersection with applications, Proc. 25th

IEEE Annual Symp. on Foundations of Comput. Sci., pp. 393-402 (1984).
J. W. Jaromczyk, Lower bounds for polygon simplicity testing and other problems,

Proc. MFCS-84, Prague (Springer-Verlag), 339-347 (1984).
R. A. Jarvis, On the identification of the convex hull of a finite set of points in the plane,

Info. Proc. Lett. 2, 18-21 (1973).
S. C. Johnson, Hierarchical clustering schemes, Psychometricka 32, 241-254 (1967).
M. Kallay, Convex hull algorithms in higher dimensions, unpublished manuscript,

Dept. Mathematics, Univ. of Oklahoma, Norman, Oklahoma, 1981.
R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer

Computations. Edited by R. E. Miller and J. W. Thatcher. Plenum Press, New
York, 1972.

J. M. Keil and J. R. Sack, Minimum decomposition of polygonal objects, in Compu-
tational Geometry. Edited by G. T. Toussaint. North-Holland, Amsterdam, The
Netherlands (1985).

M. G. Kendall and P. A. P. Moran, Geometrical Probability, Hafner, New York, 1963.
D. G. Kirkpatrick, Efficient computation of continuous skeletons, Proc. 20th IEEE

Annual Symp. on Foundations of Comput. Sci., pp. 18-27 (Oct. 1979).
D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput. 12(1),

28-35 (1983).
D. G. Kirkpatrick and R. Seidel, The ultimate planar convex hull algorithm?, SIAM J.

Comput. 15(1), 287-299 (1986).
V. Klee, Convex polytopes and linear programming, Proc. IBM Sci. Comput. Symp..

Combinatiorial Problems, IBM, White Plains,NY, pp. 123-158 (1966).
V. Klee, Can the measure of U [a; , b.] be computed in less than O(n log n) steps?, Amer.

Math. Monthly, 84(4), 284-285 (April 1977).
V. Klee, On the complexity of d-dimensional Voronoi diagrams, Archiv der Mathe-

matik, 34, 75-80 (1980).
F. Klein, Das Erlangen Programm: vergleichende Betrachtungen über neuere geo-

metrisches Forschungen, 1872. Reprinted by Akademische VerlagsGesellschaft
Greest und Portig, Leipzig, 1974.

D. E. Knuth, The Art of Computer Programming. Volume I: Fundamental Algorithms,
Addison-Wesley, Reading, MA, 1968.

D. E. Knuth, The Art of Computer Programming. Volume III: Sorting and Searching,
Addison-Wesley, Reading, Mass., 1973.

D. E. Knuth, Big omicron and big omega and big theta, SIGACT News 8(2), 18-24
(April-June 1976).

J. F. Kolars and J. D. Nystuen, Human Geography, McGraw-Hill, New York, 1974.
J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman

380 	 References

problem, Proc. AMS 7, 48-50 (1956).
H. T. Kung, F. Luccio and F. P. Preparata, On finding the maxima of a set of vectors,

JACM 22(4), 469-476 (Oct. 1975).
U. Lauther, 4-dimensional binary search trees as a means to speed up associative

searches in the design verification of integrated circuits, Jour. of Design Auto-
mation and Fault Tolerant Computing, 2(3), 241-247 (July 1978).

C. L. Lawson, The smallest covering cone or sphere, SIAM Rev. 7(3), 415-417 (1965).
C. L. Lawson, Software for C' surface interpolation, JPL Publication, pp. 77-30

(Aug. 1977).
D. T. Lee, On finding k nearest neighbors in the plane, Technical Report. Department

of Computer Science, University of Illinois, 1976.
D. T. Lee, Proximity and reachability in the plane, Tech. Rep. No. R-831, Coordinated

Sci. Lab., Univ. of Illinois at Urbana, IL, 1978.
D. T. Lee, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Trans. Comput.

C-31(6), 478-487 (June 1982).
D. T. Lee, Two dimensional Voronoi diagram in the L a-metric, J. ACM 27, 604-618

(1980a).
D. T. Lee, Farthest neighbor Voronoi diagrams and applications, Tech. Rep. No. 80-

11-FC-04, Dpt. EE/CS, Northwestern Univ., 1980b.
D. T. Lee, On finding the convex hull of a simple polygon, Tech. Rep. No. 80-03-FC-

01, EE/CS Dept., Northwestern Univ., 1980. See also Intl J. Comput. and Infor.
Sci. 12(2), 87-98 (1983a).

D. T. Lee, Visibility of a simple polygon, Computer Vision, Graphics and Image
Processing 22, 207-221 (1983b).

D. T. Lee and I. M. Chen, Display of visible edges of a set of convex polygons, in
Computational Geometry. Edited by G. T. Toussaint. North Holland, Amster-
dam, to appear (1985).

D. T. Lee and R. L. Drysdale III, Generalized Voronoi diagrams in the plane, SIAM
J. Comput. 10, 1, 73-87 (Feb. 1981).

D. T. Lee and F. P. Preparata, Location of a point in a plànar subdivision and its
applications, SIAM Journal on Computing 6(3), 594-606 (Sept. 1977).

D. T. Lee and F. P. Preparata, The all nearest neighbor problem for convex polygons,
Info. Proc. Lett. 7, 189-192 (1978).

D. T. Lee and F. P. Preparata, An optimal algorithm for finding the kernel of a
polygon, Journal of the ACM 26, 415-421 (1979).

D. T. Lee and F. P. Preparata, An improved algorithm for the rectangle enclosure
problem, Journal of Algorithms, 3(3), 218-224 (1982).

D. T. Lee and B. Schachter, Two algorithms for constructing Delaunay triangulations,
Intl J. Comput. and Info. Sci. 9(3), 219-242 (1980).

D. T. Lee and C. K. Wong, Worst-case analysis for region and partial region searches
in multidimensional binary search trees and balanced quad trees, Acta Informa

-tica 9, 23-29 (1977).
D. T. Lee and C. K. Wong, Voronoi diagrams in L 1 -(L.-) metrics with 2-dimensional

storage applications, SIAM J. Comput. 9(1), 200-211 (1980).
D. T. Lee and Y. F. Wu, Geometric complexity of some location problems, Algorithmica

1, 193-211 (1986).
J. van Leeuwen and D. Wood, Dynamization of decomposable searching problems,

Info. Proc. Lett. 10, 51-56 (1980).
J. van Leeuwen and D. Wood, The measure problem for rectangular ranges in d-space,

J. Algorithms 2, 282-300 (1981).
E. Lemoine, Géométrographie, C. Naud, Paris, 1902.
W. Lipski, Jr. and C. H. Papadimitriou, A fast algorithm for testing for safety and

detecting deadlocks in locked transaction systems, Journal of Algorithms 2,
211-226 (1981).

W. Lipski, Jr. and F. P. Preparata, Finding the contour of a union of iso-oriented

References 	 381

rectangles, Journal of Algorithms 1, 235-246 (1980).
W. Lipski, Jr. and F. P. Preparata, Segments, rectangles, contours, Journal of Al-

gorithms 2, 63-76 (1981).
R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, Conference on

Theoretical Computer science, Waterloo, Ont., pp. 1-10 (August 1977a).
R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, Proc. 18th

IEEE Annual Symp. on Found. of Comp. Sci., Providence, RI, pp. 162-170
(October 1977b).

R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM J.
Comput. 9(3), 615-627 (1980).

C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.
E. L. Lloyd, On triangulations of a set of points in the plane, Proc. 18th IEEE Annual

Symp. on Foundations of Comput. Sci., pp. 228-240 (Oct. 1977).
H. Loberman and A. Weinberger, Formal procedures for connecting terminals with a

minimum total wire length, JACM 4, 428-437 (1957).
D. O. Loftsgaarden and C. P. Queensberry, A nonparametric density function, Ann.

Math. Stat. 36, 1049-1051 (1965).
P. P. Loutrel, A solution to the hidden-line problem for computer-drawn polyhedra,

IEEE Trans. Comp. C-19(3), 205-215 (March 1970).
G. S. Lueker, A data structure for orthogonal range queries, Proceedings of the 19th

Annual IEEE Symposium on Foundations of Computer Science, pp. 28-34 (1978).
U. Manber and M. Tompa, The complexity of problems on probabilistic, nondeter-

ministic and alternating decision trees, JACM 32(3), 720-732 (1985).
H. G. Mairson and J. Stolfi, Reporting and counting intersections between two sets of

line segments, Proc. NATO Adv. Study Inst. on Theoret. Found. Comput. Graphics
and CAD, Springer-Verlag, 1987.

Y. Matsushita, A solution to the hidden line problem, Technical Report 335. Depart-
ment of Computer Science, University of Illinois, 1969.

D. W. Matula and R. R. Sokal, Properties of Gabriel graphs relevant to geographic
variation research and the clustering of points in the plane, Geographical Analysis
12, 205-222 (July 1980).

D. McCallum and D. Avis, A linear algorithm for finding the convex hull of a simple
polygon, Info. Proc. Lett. 9, 201-206 (1979).

E. M. McCreight, Priority search trees, Tech. Rep. Xerox PARC CSL-81-5, 1981.
P. McMullen and G. C. Shephard, Convex Polytopes and the Upper Bound Conjecture,

Cambridge University Press, Cambridge, England, 1971.
C. A. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading,

Mass., 1979.
N. Megiddo, Linear time algorithm for linear programming in R 3 and related prob-

lems, SIAM J. Comput. 12(4), 759-776 (Nov. 1983).
W. S. Meisel, Computer-Oriented Approaches to Pattern Recognition, Academic Press,

New York, 1972.
Z. A. Melzak, Companion to Concrete Mathematics, Wiley-Interscience, New York, 1973.
J. Milnor, On the Betti numbers of real algebraic varieties, Proc. AMS 15, 2745-280

(1964).
J. Milnor, Singular Points of Complex Hypersurfaces, Princeton Univ. Press,

Princeton, NJ, 1968.
M. I. Minski and S. Papert, Perceptrons, MIT Press, Amherst, Mass., 1969.
J. W. Moon, Various proofs of Cayley's formula for counting trees, in A Seminar on

Graph Theory. Edited by F. Harary. Holt, Rinehart and Winston, New York,
1976.

D. E. Muller and F. P. Preparata, Finding the intersection of two convex polyhedra,
Theoretical Computer Science 7(2), 217-236 (Oct. 1978).

K. P. K. Nair and R. Chandrasekaran, Optimal location of a single service center of
certain types, Nay. Res. Log. Quart 18, 503-510 (1971).

382
	

References

W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graphics,
McGraw-Hill, New York, 1973.

J. Nievergelt and F. Preparata, Plane-sweep algorithms for intersecting geometric
figures, Comm. ACM 25(10), 739-747 (1982).

A Nijenhuis and H. S. Wilf, Combinatorial Algorithms, Academic Press, New York,
1975.

J. O'Rourke, C.-B Chien, T. Olson and D. Naddor, A new linear algorithm for
intersecting convex polygons, Computer Graphics and Image Processing 19,
384-391 (1982).

R. E. Osteen and P. P. Lin, Picture skeletons based on eccentricities of points of
minimum spanning trees, SIAM J. Comput. 3(1), 23-40 (March 1974).

M. H. Overmars, The design of dynamic data structures, Ph. D. Thesis, University of
Utrecht, The Netherlands (1983).

M. H. Overmars and J. van Leeuwen, Maintenance of configurations in the plane, J.
Comput. and Syst. Sci. 23, 166-204 (1981).

C. H. Papadimitriou, The Euclidean traveling salesman problem is NP-complete,
Theoret. Comput. Sci. 4, 237-244 (1977).

C. H. Papadimitriou and K. Steiglitz, Some complexity results for the traveling
salesman problem, Eighth ACM Annual Symp. on Theory of Comput., pp. 1 -9
(May 1976).

E. Pielou, Mathematical Ecology, Wiley-Interscience, New York, 1977.
F. P. Preparata, Steps into computational geometry, Technical Report. Coordinated

Science Laboratory, University of Illinois, 1977.
F. P. Preparata, An optimal real time algorithm for planar convex hulls, Comm. ACM

22, 402-405 (1979).
F. P. Preparata, A new approach to planar point location, SIAM J. Comput. 10(3),

473-482 (1981).
F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and three

dimensions, Comm. ACM 2(20), 87-93 (Feb. 1977).
F. P. Preparata and D. E. Muller, Finding the intersection of n half-spaces in time

O(n log n), Theoretical Computer Science 8(1), 45-55 (Jan. 1979).
F. P. Preparata and K. J. Supowit, Testing a simple polygon for monotonicity, Info.

Proc. Lett. 12(4), 161-164 (Aug. 1981).
R. C. Prim, Shortest connecting networks and some generalizations, BSTJ 36,

1389-1401 (1957).
M. O. Rabin, Proving simultaneous positivity of linear forms, Journal of Computer and

System Sciences 6, 639-650 (1972).
H. Rademacher and O. Toeplitz, The Enjoyment of Mathematics, Princeton University

Press, Princeton, NJ, 1957.
H. Raynaud, Sur l'enveloppe convexe des nuages des points aléatoires dans R", I, J.

Appl. Prob. 7, 35-48 (1970).
E. M. Reingold, On the optimality of some set algorithms, Journal of the ACM 19,

649-659 (1972).
E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and

Practice, Prentice-Hall, Englewood Cliffs, NJ, 1977.
A. Rényi and R. Sulanke, Ueber die konvexe Hulle von n zufallig gewahlten Punkten,

I, Z. Wahrschein. 2, 75-84 (1963).
R. Riesenfeld, Applications of b-spline approximation to geometric problems of

computer-aided design, Technical Report UTEC-CSc-73-126. Department of
Computer Science, University of Utah, 1973.

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ 1970.
C. A. Rogers, Packing and Covering, Cambridge University Press, Cambridge, Eng-

land, 1964.
A. Rosenfeld, Picture Processing by Computers, Academic Press, New York, 1969.

References
	

383

D. J. Rosenkrantz, R. E. Stearns and P. M. Lewis, Approximate algorithms for the
traveling salesperson problem, Fifteenth Annual IEEE Symposium on Switching
and Automata Theory, pp. 33-42 (May 1974).

T. L. Saaty, Optimization in Integers and Related Extremal Problems, McGraw-Hill,
New York, 1970.

L. A. Santalô, Integral Geometry and Geometric Probability, Encyclopedia of Math-
ematics and Its Applications, Vol. 1. Addison-Wesley, Reading, Mass., 1976.

J. B. Saxe, On the number of range queries in k-space, Discrete Applied Mathematics 1,
217-225 (1979).

J. B. Saxe and J. L. Bentley, Transforming static data structures into dynamic struc-
tures, Proc. 20th IEEE Annual Symp. on Foundations of Comput. Sci., pp. 148-168
(1979).

A. M. SchSnhage, M. Paterson and N. Pippenger, Finding the median, J. Comput. and
Syst. Sci. 13, 184-199 (1976).

J. T. Schwartz, Finding the minimum distance between two convex polygons, Info.
Proc. Lett. 13(4), 168-170 (1981).

D. H. Schwartzmann and J. J. Vidal, An algorithm for determining the topological
dimensionality of point clusters, IEEE Trans. Comp. C-24(12), 1175-1182 (Dec.
1975).

R. Seidel, A convex hull algorithm optimal for points in even dimensions, M.S. thesis,
Tech. Rep. 81-14, Dept. of Comput. Sci., Univ. of British Columbia, Vancouver,
Canada, 1981.

R. Seidel, The complexity of Voronoi diagrams in higher dimensions, Proc. 20th
Allerton Conference on Comm., Control and Comput., pp. 94-95 (1982). See also
Tech. Rep. No. F94, Technische Universitât Graz, Austria, 1982.

M. I. Shamos, Problems in computational geometry, unpublished manuscript, 1975a.
M. I. Shamos, Geometric Complexity, Seventh ACM Annual Symp. on Theory of

Comput., pp. 224-233 (May 1975b).
M. I. Shamos, Geometry and statistics: Problems at the interface, in Recent Results and

New Directions in Algorithms and Complexity. Edited by J. F. Traub. Academic
Press (1976).

M. I. Shamos, Computational geometry, Ph.D. thesis, Dept. of Comput. Sci., Yale
Univ., 1978.

M. I. Shamos and D. Hoey, Closest-point problems, Sixteenth Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 151-162 (Oct. 1975).

M. I. Shamos and D. Hoey, Geometric intersection problems, Seventeenth Annual
IEEE Symposium on Foundations of Computer Science , pp. 208-215 (Oct. 1976).

H. W. Six and D. Wood, The rectangle intersection problem revisited, BIT 20, 426-433
(1980).

H. W. Six and D. Wood, Counting and reporting intersections of d-ranges, IEEE
Trans. Comput. C-31, 181-187 (1982).

J. Sklansky, Measuring concavity on a rectangular mosaic, IEEE Trans. Comp. C-21,
1355-1364 (1972).

E. Soisalon-Soininen and D. Wood, An optimal algorithm for testing for safety and
detecting deadlock in locked transaction systems, Proc. of ACM Symposium on
Principles of Data Bases, Los Angeles, March 1982; pp. 108-116.

J. M. Steele and A. C. Yao, Lower bounds for algebraic decision trees, J. Algorithms 3,
1-8 (1982).

J. Stoer and C. Witzgall, Convexity and Optimization in Finite Dimensions I, Springer-
Verlag, New York, 1970.

G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall,
Englewood Cliffs, NJ, 1973.

K. J. Supowit, The relative neighborhood graph with an application to minimum
spanning trees, J. ACM 30(3), 428-447 (July 1983).

384 	 References

I. E. Sutherland, Computer graphics: ten unsolved problems, Datamation 12(5), 22-27
(May 1966).

J. J. Sylvester, On Poncelet's approximate linear valuation of surd forms, Phil. Mag.
Ser. 4, 20, 203-222 (1860).

R. E. Tarjan and C. J. Van Wyk, An O(n log log n)-time algorithm for triangulating a
simple polygon, SIAM J Comput 17, 143-178 (1988).

R. Thom, Sur l'homologie des variétés algébraïques réelles, Differential and Com-
binatorial Topology. Edited by S. S. Cairns. Princeton Univ. Press, Princeton, NJ,
1965.

C. Toregas, R. Swain, C. Revelle and L. Bergman, The location of emergency service
facilities, Operations Research 19, 1363-1373 (1971).

G. T. Toussaint, Pattern recognition and geometrical complexity, Proc. 5th Intl
Conference on Pattern Recognition, pp. 1324-1347 (Dec. 1980a).

G. T. Toussaint, The relative neighborhood graph of a finite planar set, Pattern
Recognition 12(4), 261-268 (1980b).

G. T. Toussaint, An optimal algorithm for computing the minimum vertex distance
between two crossing convex polygons, Proc. 21st Allerton Conference on
Comm.,Control and Comput., pp. 457-458 (1983a).

G. T. Toussaint, Computing largest empty circles with location constraints, Intl J.
Computer and Info. Sci. 12(5), 347-358 (1983b).

V. Vaishnavi, Computing point enclosures, Pattern Recog. 15, 22-29 (1982).
V. Vaishnavi and D. Wood, Data structures for the rectangle containment and

enclosure problems, Computer Graphics and Image Processing 13, 372-384 (1980).
V. Vaishnavi and D. Wood, Rectilinear line segment intersection, layered segment

trees, and dynamization, J. Algorithms 3, 160-176 (1982).
F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1964.
G. Voronoi, Nouvelles applications des parametres continus à la theorie des formes

quadratiques. Deuxième Mémorie: Recherches sur les paralléloèdres primitifs, J.
reine an yew. Math. 134, 198-287 (1908).

J. E. Warnock, A hidden-surface algorithm for computer generated halftone pictures,
Technical Report TR 4-15. Computer Science Department, University of Utah,
1969.

G. S. Watkins, A real-time visible surface algorithm, Technical Report UTECH-CSc-
70-101. Computer Science Department, University of Utah, June 1970.

D. E. Willard, Predicate-oriented database search algorithms, Harvard University,
Cambridge, MA, Aiken Computation Laboratory, Ph.D. Thesis, Report TR-20-
78, 1978.

D. E. Willard, Polygon retrieval, SIAM J. Comput. 11, 149-165 (1982).
N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, Englewood

Cliffs, NJ, 1976.
I. M. Yaglom and V. G. Boltyanskii, Convex Figures, Holt, Rinehart and Winston,

New York, 1961.
A. C. Yao, An O(E log log V) algorithm for finding minimum spanning trees, Info.

Proc. Lett 4, 21-23 (1975).
A. C. Yao, A lower bound to finding convex hulls, J. ACM 28, 780-787 (1981).
A. C. Yao, On contructing minimum spanning trees in k-dimensional space and

related problems, SIAM J. Comput. 11(4), 721-736 (1982).
M. Z. Yannakakis, C. H. Papadimitriou and H. T. Kung, Locking policies: safety and

freedom for deadlock, Proceedings 20th Annual Symposium on Foundations of
Computer Science, pp. 286-297 (1979).

C. T. Zahn, Graph-theoretical methods for detecting and describing gestalt clusters,
IEEE Trans. Comp. C-20(1), 68-86 (Jan. 1971).

S. I. Zhukhovitsky and L. I. Avdeyeva, Linear and Convex Programming, Saunders,
Philadelphia, 1966.

Author Index

Abel, H., 2
Aggarwal, A., 223
Aho, A. V., 6, 7, 10, 11, 12, 115, 121,

125, 236
Akers, S. B., 270
Akl, S. G., 95, 109, 1 l 1
Andrew, A. M., 109, 125
Andrews, H. C., 171, 268
Archimedes, 2
Asano. T., 84, 92
Atallah, M. J., 223
Avdeyeva, L. I., 256
Avis, D., 101, 167, 255, 322

Baird, H. S., 324
Barlow, R. E., 174, 175
Bartholomew, D. J., 174
Ben-Or, M., 31, 33, 35, 101, 102, 260,

280, 321, 333
Benson, R. V., 106
Bentley, J. L., 13, 39, 40, 73, 75, 79, 80,

81, 83, 92, 93, 151, 152, 154,
160, 165, 190, 195, 201, 262, 284,
285, 321, 334, 336, 360

Bézier, P., 5

Bhattacharya, B. K., 131, 147, 255
Bilardi, G., 63, 69, 358
Birkhoff, G., 20, 24, 25, 328
Blum, M., 77, 297
Bollobâs, B., 19, 213
Boltyanskii, V. G., 178, 299
Bremner, J. M., 174
Brown, K. W., 176, 244, 254, 315
Brunk, H. D., 174
Burkhard, W. A., 190
Bykat, A., 112

Cavendish, J. C., 189
Cayley, A., 189
Chand, D. R., 112, 131, 147
Chandrasekaran, R., 256
Chazelle, B. M., 71, 73, 88, 92, 93, 174,

263, 285, 320, 321, 372
Chen, I. M., 322
Cheriton, D., 189, 228
Chien, C. B., 273, 307
Chin, F., 223
Christofides, N., 231, 233, 234
Chvâtal, V., 45
Cole, R., 71, 88, 93, 263

386
	

Author Index

Conway, L., 324
Coolidge, J. L., 3

Dasarathy, B., 257
Davis, P. J., 191
Debrunner, H., 104
Delaunay, B., 209
Deo, N., 6, 11, 121, 129
Desens, R. B., 267
Dijkstra, E. W., 189
Dobkin, D. P., 30, 32, 45, 92, 176, 192,

280, 320, 321
Duda, R. 0., 95, 190, 262, 268
Drysdale, R. L., III, 262
Düppe, R. D., 235
Dyer, M. E., 147, 292, 297, 311, 312

Edahiro, M. E., 63, 92
Eddy, W., 112
Edelsbrunner, H., 48, 56, 60, 88, 93,

223, 246, 251, 285, 321, 322, 331,
353, 360, 364, 372

Edmonds, J., 233
Efron, B., 106, 152
Eisenstat, S., 100
ElGindy, H., 322
Elzinga, J., 256
Erdüs, P., 182, 183
Eswaran, K. P., 326
Euclid, 1
Even, S., 51
Evés, H., 4
Ewald, G., 328

Fâry, I., 15
Faust, G. M., 154
Finkel, R. A., 190, 336
Fix, G., 189
Floyd, R. W., 112, 297
Forrest, A. R., 5
Francis, R. L., 257
Fredman, M. L., 70, 74, 332
Freeman, H., 95, 157, 267
Friedman, J. H., 192

Gabriel, K. R., 263
Galimberti, R., 267
Galois, E., 4
Garey, M. R., 189, 191, 231, 237, 239,

270
Gass, S. I., 290
Gastwirth, J., 171
Gauss, K. F., 2
George, J. A., 190
Gilbert, P. N., 234, 235
Gonzalez, T., 261
Gottschalk, H. J., 235
Gower, J. C., 188
Graham, R. L., 106, 107, 125, 167, 188,

231
Gray, J. N., 326
Green, P. J., 112
Grünbaum, B., 95, 98, 136, 182, 223
Guibas, L. J., 48, 56, 60, 88, 92, 93,

223, 372
Güting, R. H., 348

Hadwiger, H., 104
Hanan, M., 270
Hart, P. E., 95, 190, 262, 268
Hartigan, J. A., 176
Hearn, D. W., 256
Heath, T. L., 4
Hertel, S., 307, 321
Hilbert, D., 3, 20
Hoare, C. A. R., 112
Hocking, J, G., 177
Hodder, I., 211
Hoel, P. G., 171
Hoey, D., 204, 216, 242, 272, 281, 287,

307
Hong, S. J., 117, 141, 308
Hoperoft, J. E., 6, 7, 10, 11, 12, 115,

121, 125, 236
Huber, P. J., 172
Hwang, F. K., 222

Imai, T., 88
Incerpi, J., 372

Gabow, H., 233
	

Jaromczyk, J. W., 321

Author Index
	

387

Jarvis, R. A., 111, 147, 150
Johnson, D. S., 188, 191, 231, 237, 239,

270
Johnson, S. C., 188

Kalley, M., 137, 147
Kapur, S. S., 112, 131, 147
Karp, R. M., 231
Keil, J. M., 148, 263
Keller, R. M., 190
Kendall, M. G., 151
Kirkpatrick, D. G., 56, 147, 148, 234,

262, 321
Klee, V., 95, 98, 254, 332
Klein, F., 4, 21
Knuth, D. E., 6, 9, 37, 70, 79, 108, 147,

190, 343, 371
Kokubo, I., 92
Kolars, J. F., 187
Kruskal, J. B., 189
Kung, H. T., 151, 158, 159, 164, 165,

325, 326, 328, 349, 371
Kurtzberg, J. M., 270

Lauther, V., 70, 324
Lawson, C. L., 235, 256
Lee, D. T., 48, 60, 86, 93, 167, 183, 216,

219, 222, 223, 224, 235, 251, 253,
260, 262, 264, 265, 300, 305, 322,
366, 373

Lemoine, E., 3
Lewis, P. M., 231
Lin, P. P., 188
Lipski, W., Jr., 328, 341, 347, 349, 356,

372
Lipton, R., 30, 32, 45, 56, 92, 192, 280
Liu, C. L., 39
Lloyd, E. E., 234
Loberman, H., 188
Loftsgaarden, D. 0., 70
Lorie, R. A., 326
Loutrel, P. P., 267
Luccio, F., 159, 164, 371
Lueker, G. S., 60, 73, 86, 88, 94

MacLane, S., 20, 24, 25, 328

Mairson, H. G., 285, 320
Manber, U., 260
Mantyld, M., 307, 321
Matsushita, Y., 267
Matula, D. W., 263
Maurer, H. A., 73, 80, 81, 93, 262, 372
McCallum, D., 167
McCreight, E. M., 331, 360, 372
McMullen, P., 95, 97, 137
Mead, C. A., 324
Megiddo, N., 147, 258, 292, 297
Mehlhorn, K., 307, 321
Meisel, W. S., 268
Melzak, Z. A., 188
Milnor, J., 33
Minsky, M. E., 5
Mohr, G., 3
Montanari, U., 267
Moon, J. W., 189
Moran, P. A. P., 151
Muller, D. E., 15, 307, 311, 315, 316
Munro, I., 176

Naddor, D., 273, 307
Nair, K. P. K., 256
Newman, W. M., 267
Nievergelt, J., 6, 11, 121, 129, 307, 320,

321
Nijenhuis, A., 189
Nystuen, J. D., 187

Olson, T., 273, 307
O'Rourke, J., 273, 275, 307
Orton, C., 211
Osteen, R. E., 188
Ottmann, T. A., 284, 285, 321, 353
Overmars, M. H., 93, 125, 127, 173,

322, 366, 372

Papadimitriou, C. H., 231, 325, 326,
328, 349, 372

Papert, S., 5
Paterson, M., 297
Pielou, E., 187, 212
Pippenger, N., 297
Pratt, V., 297

388
	

Author Index

Preparata, F. P., 15, 48, 60, 63, 69, 71,
86, 93, 117, 119, 141, 155, 159,
164, 223, 237, 238, 239, 253, 258,
263, 300, 305, 307, 308, 311, 315,
316, 320, 341, 347, 356, 358, 366,
371

Prim, R. C., 189, 227

Queensberry, C. P., 70

Rabin, M. D., 30
Rademacher, H., 256
Raynaud, H., 161
Reingold, E. M., 6, 11, 30, 121, 129
Rényi, A., 151
Riesenfeld, R., 5
Rivest, R. L., 297
Rockafellar, R. T., 95, 312
Rogers, C. A., 204
Rosenfeld, A., 95
Rosenkrantz, D. J., 231
Ross, G. J. S., 188

Saaty, T. L., 186
Sack, J. R., 263
Santalô, L. A., 151
Saxe, J. B., 72, 92, 223
Schachter, B., 223
Schkolnick, M., 151, 158, 165
Schônhage, A. M., 297
Schwartz, J. T., 223
Schwartzmann, D. H., 188
Seidel, R., 93, 147, 148, 246, 251, 255,

264, 265
Shamos, M. I., 6, 39, 40, 48, 83, 100,

116, 119, 152, 166, 171, 173, 195,
201, 216, 227, 242, 253, 272, 281,
287, 291, 307

Shapira, R., 95
Shephard, G. C., 95, 97, 138
Shor, P. W., 223
Silverman, B. W., 112
Six, H. W., 360, 372
Sklansky, J., 95, 166
Soisalon-Soininen, E., 328, 348, 349
Sokal, R. R., 263

Sproull, R. F., 267
Stanat, D. F., 79
Stearns, R. E., 231
Steele, J. M., 31, 33, 101
Steiglitz, K., 231
Stockmeyer, L., 270
Stoer, J., 106, 269
Stolfi, J., 48, 56, 60, 88
Strang, G., 189
Strong, H. R., 198
Sulanke, R., 151
Supowit, K. J., 238, 263
Sutherland, I. E., 267
Sylvester, J. J., 256

Tarjan, R. E., 56, 189, 228, 237, 239,
263, 297

Thom, R., 33
Thompson, C. D., 151, 158, 165
Toeplitz, 0., 256
Tompa, M., 260
Toregas, C., 256
Toussaint, G. T., 95, 108, 223, 259,

263, 322
Traiger, I. L., 326

Ullman, J. D., 6, 7, 10, 11, 12, 115, 121,
125, 236

Vaishnavi, V., 88, 364, 372
Valentine, F. A., 105
van Leeuwen, J., 93, 125, 127, 173, 334,

336, 337, 353
Van Wyk, C. J., 263
Vidal, J. J., 188
Voronoi, G., 204

Wang, C. A., 223
Warnock, J. E., 267
Watkins, G. S., 267
Weide, B., 332
Weinberger, A., 188
Welzl. E., 93
White, L. J., 257
Wilf, H. S., 189

Author Index
	

389

Willard, D. E., 60, 86, 88, 93, 94
Wirth, N., 6
Witzgall, C., 110, 269
Wong, C. K., 222
Wood, D., 88, 93, 322, 328, 334, 336,

337
Wu, Y. F., 260

Yaglom, I. M., 178, 299

Yannakakis, M. Z., 325, 326, 328, 349
Yao, A. C., 31, 33, 101, 183, 189, 262
Yao, F. F., 167
Yap, C. K., 71, 93, 167, 263
Young, G. S., 177

Zahn, C. T., 188
Zhukhovitsky, S. I., 256

Subject Index*

Adjacency map, 357
Affine

combination, 96
geometry, 21
group, 21
hull, 96
independence, 96
mapping, 21
set, 96

Algebraic decision tree (see Decision
tree)

Algorithm (see Procedure; Function)
Algorithm for,

antipodal pairs of convex polygon, 180
approximate hull, 154-157
closest pair, 196, 198, 200
contour of union of rectangles, 335
convex hull of simple polygon, 170
DCEL vertex traversal, 16
3-dimensional convex hull, 141
dominance relation, 367
Euclidean minimum spanning tree, 229

*Page numbers in italics refer to formal
definitions.

Euclidean traveling saleman tour, 233
hull of union of convex polygons, 116
intersection of half-planes, 288
intersection of half-spaces, 319
intersection of line segments (report),

284
intersection of line segments (test), 286
intersection of two convex polygons,

272, 275
intersection of two convey polyhedra,

310
kernel of polygon, 301
maxima of vectors, 160, 162-164
maximum gap, 260-262
measure of union of intervals, 332
measure of union of rectangles, 335
multi-dimensional convex hull

(beneath-beyond), 136-140
multi-dimensional convex hull (gift-

wrapping), 134
perimeter of union of rectangles, 339
planar convex hull (Graham's scan),

108
planar convex hull (Jarvis's march),

110-112
planar convex hull (Mergehull), 115

Subject Index 	 391

planar convex hull (Quickhull), 114
planar hull maintenance, 130
point inclusion in convex polygon, 43
point location (trapezoid method), 65
point location (triangulation refine-

ment method), 58
preprocessing for planar point

location, 48
PSLG regularization, 53
range searching (with k-D tree), 76
real-time convex hull, 123
segment-tree deletion, 15
segment-tree insertion, 14
single-shot point inclusion in polygon,

42
triangulating a monotone polygon, 239
2-variable linear programming, 295
Voronoi diagram construction, 213,

215
Voronoi diagram dividing chain, 219
weight balancing in PSLG, 51

Alias (interpretation of linear trans-
formation), 20

Alibi (interpretation of linear trans-
formation), 20

All nearest-neighbors problem, 186,
194, 220

for convex polygon, 223
All-intersecting pairs problem, 365
Allocation nodes (of segment tree), 15
a-trimmed mean, 171
Angle

convex, 121
reflex, 108

Angles, comparison of, 106
Antipodal pair of points, 179
Applications of computational geometry

to
archaeology, 211
architecture, 266
clustering, 188, 263
computer graphics, 141, 234, 266, 322
design automation, 70, 141, 266,

269-270,324-325
ecology, 211
geography, 70
image processing, 95
information retrieval, 190
numerical analysis, 188

operations research, 141, 157, 256
pattern recognition, 95, 141, 188,

263, 268
robotics, 321
statistics, 70, 157, 171-182
surface interpolation, 234
voting theory, 171

Approximation algorithms
for convex hull, 154-157
for traveling salesman tour 231-234

Approximate hull (see Convex hull)
Archaeology (application to), 211
Architecture (application to), 266
Assignment statement, 7
Asymptotic analysis, 10
Average-case analysis, 9, 92, 165
Average-case complexity (see

Complexity)
Average-case performance

of convex hull algorithms, 152-154
of maxima algorithm, 165-166

AVL tree (see Height balanced tree)

Balancing, 10, 115
Beneath-beyond method, 137-140
Beneath/beyond relations, 131
Best-match retrieval, 190
Betti numbers, 33
Ben-Or Theorem, 35
Bisection (binary searching), 45, 74
Bounded-distance search (see Range

search)
Bridging, 60-62, 87-88 (see also Frac-

tional cascading)

Centroid, 106
Chain, 48

monotone, 49, 213-214
monotone complete set of, 50

Chain method (for point location), 48-56
Circle

largest empty, 256, 258-259
smallest enclosing, 255, 256-258,

297-299
Circles, intersection of, 287
Circular range search (see Range search)
Classification, 190, 268

392
	

Subject Index

Closest pair problem, 186, 220
Closest pair between sets problem, 223
Close-type Voronoi vertex, 249
Closure, 328
Closure of union of rectangles (see

Union of rectangles)
Clustering, 176, 188, 263
Coherence (section-to-section), 336
Comparsion tree, 159
Complexity

average-case, 9
worst-case, 9

Computational prototypes, 191, 333
element uniqueness, 191
c-closeness, 333
uniform gap, 260

Computation model (see Model of
computation)

Computation problem, 27
Computation tree (see Decision tree)
Computer graphics (applications to),

141, 234, 266, 322
Concatenable queue, 12, 121, 126
Concave vertex, 120, 140
Conditional statement, 8
Conjugate points (in plane), 348
Constrained triangulation (see

Triangulation)
Contour of union of rectangles (see

Union of rectangles)
Convex analysis, 312
Convex angle (see Angle)
Convex combination, 12, 97
Convex hull, 18, 97, 158, 207, 216, 221

approximate, 155-157
lower (L-hull), 109, 125, 173, 175
ordered, 100
probabilistic analysis, 150-153
upper (U-hull), 109, 125, 167, 173

Convex hull algorithms
average-case analysis, 152-154
dynamic, 117-131
higher-dimensional, 131-146, 254
lower bound, 99-104
on-line, 118-119
real-time, 119-124
of simple polygon, 166-171
three-dimensional, 141-146
two-dimensional, 104-124

Convex hull maintenance (algorithm
for), 124-131, 173

Convex hull problem, 99
Convex hull of simple polygon (see

Convex hull algorithms)
Convex layers, 172, 174
Convex polygon (see also Polygon)

diameter of, 178
Voronoi diagram of (see Voronoi

diagram)
Convex polygon inclusion problem, 41
Convex polygons

intersection of, 271
Voronoi diagram of, 223

Convex programming, 258
Convex set, 18, 97

dimension of, 97
Count-mode (census) query, 70, 74,

321, 372
Cover, 255
Covering, 263 (see also Decomposition

problems)
Cumulative sum diagram, 175

Database, 325-328
Data structures, 11-17
DCEL (doubly-connected-edge-list), 15-

17, 55, 142, 146, 310
Deadlock (see Database)
Decision problem, 28
Decision tree (computation tree), 30-35,

73-74, 154, 193, 260
algebraic, 30, 102, 177, 192, 212, 260,

280, 333, 363
linear, 32, 101, 159, 260, 332

Decomposable searching problems, 92
Decomposition of polygon, 44-45, 263
Decomposition problem, 263
Delaunay triangulation, 209-210, 221,

223, 227, 234, 264
Depth of a set problem, 172
Design automation (application to), 70,

141, 266, 269-270, 324-325
Diameter

of convex polygon, 178-181
of 2-dimensional set, 176-182
of 3-dimensional set, 183
of simple polygon, 182

Subject Index
	

393

Diametral pair of points, 182
Dictionary, 12, 282
Direct-access range search, 79-83

multistage, 83
Dirichlet region (see Voronoi)
Discrimination of point against chain, 48
Distance

Euclidean, 22, 222
Hausdorff, 223
L 1 (Manhattan), 222, 264
Minkowski, 222

Divide-and-conquer, 10
Divide-and-conquer (instances of)

for closest pair, 195-204
for convex hull, 114-117, 152-154
for furthest-point Voronoi diagram,

253
for intersection of half-planes, 288
for maxima of vectors, 161-165
for Voronoi diagram, 212-213

Dividing chain (of Voronoi diagram),
214, 216-220

Dominance (relation on vectors), 38,
158, 364

depth, 184
Dominance merge problem, 365, 373
Dominance problem, 366, 375
Doubly-connected-edge-list (see DCEL)
Duality (see Polarity)
Dualization (see Polarity)
Dynamic data structures and algorithms,

71, 93, 117-131, 330

Ecology (applications to), 211
Element uniqueness problem, 192, 280,

333, 353, 363
Embedding test problem, 287
Enclosure

of rectangles, 366-371
of squares, 373

c-closeness problem, 333
Euclidean geometry, 17
Euclidean group (see Rigid motions)
Euclidean metric, 222
Euclidean minimum spanning tree prob-

lem, 187, 221, 226-230, 260, 262
Euclidean space, 17, 20
Euclidean traveling salesman problem,

230-234

Euler formula, 19, 56, 99, 131, 211
Event-point schedule, 11 (see also Plane

sweep)
External contour of union of rectangles

(see Union of rectangles)
Extreme points problem, 99

Face (of polytope), 97
Facet (of polytope), 97
Facial graph (of polytope), 98
Facilities location problem, 256
Farthest-point diagram (see Voronoi

diagram)
Far-type Voronoi vertex, 249
Feasible region (of linear inequalities),

287, 316
Filtering search, 73, 93, 263
Finite-element method, 189
Fixed radius nearest-neighbor report in

sparse set problem, 200
Flat, 96
Floating-currency problem, 156
Floor function, 154, 261, 280
4-d dominance (see Dominance)
Fractional cascading, 88-92
Function (in Pidgin Algol), 8

Gabriel graph, 263, 265
Gap, 255
Gastwirth estimators, 171
Generalized rectangle, 78
Generalized Voronoi diagram (see

Voronoi diagram)
Geography (applications to), 70
Geometrography, 3
Geometry

Euclidean (see Euclidean geometry)
inversive (see Inversive geometry)

Gift-wrapping method, 112, 131-137,
140, 144

Graham's scan, 106-110, 152
Greedy triangulation (see Triangulation)

Half-planar search (see Range search)
Half-plane intersection (see Intersection)
Half-space intersection (see Intersection)

394 	 Subject Index

Hasse diagram, 24, 98
Hausdorff distance (see Distance)
Height-balanced tree, 12, 121, 129, 369
Hidden-line problem, 267
Hidden-surface problem, 267
Homogeneous coordinates, 23, 246, 328
Homotopic curves, 326, 349
Hull (see Convex hull)
Hull maintenance problem, 125
Hull tree, 129
Hyperrectargular domain, 71
Hyperrectangular-range query, 71

Image processing (applications to), 95
Incidence, 21, 25
Inclusion

in convex polygon, 41, 165
in polygon, 41
among rectangles, 359
in star-shaped polygon, 44

Information retrieval (applications to),
190

Intersection
construction of, 268
of convex polygons, 271-277, 290
of convex polyhedra, 306-315
of half-planes, 287-290
of half-spaces, 270, 315-320
of line segments, 278-287, 320-321
pairwise, 320
of polygons, 267
of rectangles, 359-365, 372
of star-shaped polygons, 277
test for, 269 (see also Test for)

Interval tree, 331, 360-363
Invariant (under transformation), 19-24
Inverse range searching problem, 372
Inversion, 243
Inversive geometry, 243-244
Iso-oriented quadrilaterals (see Isothetic

quadrilaterals)
Isothetic quadrilaterals, 329
Isotonic regression, 174-176
Iterated search (see Fractional

cascading)

Jarvis's march, 110-112, 152, 173
Jordan curve theorem, 18, 41, 105, 207

k-D tree (see Multidimensional search
tree)

Kernel (of polygon), 18, 44, 299-306,
321

k-nearest neighbors problem, 191, 252
k-th nearest neighbor diagram, 264

Laguerre diagram, 265
Largest empty circle, 256, 258-259 (see

also Gap)
Layering, 87-88 (see also Bridging,

Fractional cascading)
Least squares, 172
Left turn, 43, 108
L-hull (see Convex hull)
Line, 18
Linear combination, 12
Linear computation-tree (see Decision

tree)
Linear decision tree (see Decision tree)
Linear inequalities (set of), hyperbolic,

elliptic, parabolic, 319
Linear programming, 147, 270, 299

2-dimensional, 290-297
3-dimensional, 292, 298

Linear separability, 213, 223, 269, 299
Linear set (see Linear variety)
Linear transformations, 19-24, 328

alias, 20
alibi, 20

Linear variety, 18, 96
Line of support (see Supporting line)
Line segment, 12
Line-segment intersection (see

Intersection)
List, 12
L 1 -metric (see Distance)
Location, (see Point location)
Loci of proximity problem, 204
Locking (see Database)
Locus method, 38, 204
Loop (in Pidgin Algol), 7
Lower bound for

all nearest neighbors, 193-194
closest pair, 193-194
closure of union of rectangles, 353
contour of union of rectangles, 347
convex hull, 99-100

Subject Index
	

395

depth of set, 172
element uniqueness, 192
c-closeness, 333
Euclidean minimum spanning tree,

193-194
extreme points, 101-104
intersection of half-planes, 289
intersection of line segments (report),

280
intersection of line segments (test),

287
interestion of rectangles, 363
interval overlap, 280
largest empty circle, 258-262
maxima of vectors, 159
measure of union of rectangles, 333
nearest neighbor, 192-193
on-line vector hull, 119
set diameter, 176
t riangulation, 193-194
Voronoi diagram, 212

Lower bound techniques, 29-35
Lower hull (L-hull) (see Convex hull)

Manhattan distance (see Distance)
Map (see Planar subdivision)
Matching, 232
Maxima problem, 157-166
Maxima of vectors, 158
Maximin criterion, 256
Maximum gap problem, 260-262
Measure of union of rectangles (see

Union of rectangles)
Medial axis, 262
Median-finding algorithm (applications

of), 66, 77, 216, 297
Membership problem, 31
Mergeable heap, 12
Mergehull, 115
Metric, 4, 185, 222 (see also Distance)
Milnor-Thom Theorem, 33
Minimax criterion, 256
Minimum Euclidean matching, 232
Minimum spanning circle (see Smallest

enclosing circle)
Minimum spanning tree (see Euclidean

minimum spanning tree problem)
Minimum weighted matching, 232, 264

Minimum-weight triangulation (see
Triangulation)

Minkowski metric (see Distance)
Model of computation, 26-35
Monotone chain (see Chain)
Monotone polygon (see Polygon)
Motions (see Rigid motions)
Multidimensional search tree (k-D tree),

71, 74-79
Multikey searching, 71

Nearest-neighbor relation, 186
Nearest-neighbor search problem, 190,

204
NE-closure (see Closure)
NESW-closure (see Closure)
Nontrivial circuit, 354
Nontrivial contour of union of rect-

angles (see Union of rectangles)
NP-complete or -hard, 188, 231, 270
Numerical analysis (applications to), 234

Off-line algorithms, 118
On-line algorithms, 118
On-line convex hull problems, 118
Operations research (applications to),

141, 157, 256
Order-k Voronoi diagram (see Voronoi

diagram)
Orthogonal intersection searching, 372
Orthogonal quadrilaterals (see Isothetic

quadrilaterals)
Orthogonal query (see Hyperrectangular-

range query)
Orthogonal segment intersection

searching problem, 372

Partition (see also Decomposition of
polygon)

Pattern recognition (applications to),
95, 141, 188, 263, 268

Peeling, 174 (see also Convex layers)
Perimeter of union of rectangles (see

Union of rectangles)
Pidgin Algol, 7-8
Planar graph, 19, 99, 253

396
	

Subject Index

Planar-separator method (for point
location), 56

Planar straight-line graph (see PSLG)
Planar subdivision, 19, 41, 320
Plane, 18
Plane-sweep technique (space sweep,

dimension sweep), 10-11, 47, 53,
69, 159, 282, 320, 321, 331, 336,
340, 350, 359

Point, 17
Point inclusion (see Point location)
Point location, 40, 41-70, 236
Polarity, 24-26, 246, 291, 307, 320

with respect to unit circle, 25-26, 147
Polygon, 18

convex, 18
monotone, 56, 237
simple 18
star-shaped, 18, 44, 45, 49, 321

Polygonal line (see Chain)
Polygon inclusion problem, 41
Polygon intersected edges problem, 321
Polygon intersection test, 278, 287
Polygon-range search (see Range

search)
Polyhedral set, 97
Polyhedron, 19

convex, 19
simple, 19

Polytope, 97
simple, 98, 266
simplicial, 98, 132, 255

Power diagram, 265
Prairie fire (see Medial axis)
Preparata-Hong algorithm, 141-146

153, 157
Preprocessing time, 37, 72
Primitive operations, 27
Priority queue, 12, 283
Problem types, 27
Procedure (in Pidgin Algol), 7
Projection

central, 23
stereographic, 244, 246

Proximity problems, 185
Pruning (of linear-programming

constraints), 295-296
PSLG (Planar straight-line graph), 45
regular, 50

Quad-tree, 336
Query, 36, 70
Query time, 37, 72
Queue, 12, 134
Quickhull, 112-114
Quicksort, 112

RAM (Random-access machine), 28
real, 28

Random-access machine (see RAM)
Range query, 70
Range search, 40

bounded distance, 71
circular, 71, 93, 262
half-planar, 93
Polygon, 93
va ri able disk, 93

Range tree, 85
method of, 83-88
layered, 86-88

Real-time algorithms, 118
Real-time convex hull construction,

119-124
Reciprocal pair, 187
Rectangle enclosure problem, 366
Rectilinear quadrilaterals (see Isothetic

quadrilaterals)
Reducibility (see Transformation of

problems)
Reduction (see Transformation of

problems)
Re flex angle (see Angle)
Reflex vertex, 121, 140
Regression function, 174
Regular graph, 206
Regularization (of PSLG vertex),

52-54, 69, 238
Regular PSLG (see PSLG)
Regular vertex, 50
Relative neighborhood graph, 263
Repetitive-mode query (see Searching)
Repetitive-mode searching (see

Searching)
Report-mode query, 40, 70, 72, 73, 320,

372
Retrieval activity (in searching applica-

tions), 72-73
Right turn, 43, 108

Subject Index 	 397

Rigid motions, 22, 186
Robotics (applications to), 321
Robust estimation, 171-174
Route-in-a-maze problem, 373

Safeness (see Database)
Schedule (see Database)
Search activity (in searching applica-

tions), 72
Searching

repetitive-mode, 37, 190, 320
single-shot, 37, 190

Segment tree, 13-15, 83, 236, 321, 331,
335, 343

Separability (see Linear separability)
Separating plane, 315
Set diameter problem, 176
Set disjointness problem, 176
Shelling (see Peeling)
Signed area of triangle, 43, 101, 180
Similarity group, 24
Simple polygon (see Polygon)

skeleton of, (see Medial axis)
Simple Polygonal path, 148
Simple polytope (see Polytope)
Simplex, 104
Simplex algorithm, 290
Simplicial polytope (see Polytope)
Simplicity test (of polygon), 266, 279
Single-shot query (see Searching)
Single-shot searching (see Searching)
Skeleton of simple polygon (see Medial

axis)
Slab method (for point location), 45-48,

63
Smallest bomb problem, 265
Smallest enclosing circle, 255, 256-258,

297-299
Sorting, 146-147

transformation from, 100, 159, 172,
212, 289

Space sweep, 307, 321
Spanning edges (of trapezoid), 64
Spanning tree, minimum (see Euclidean

minimum spanning tree problem)
Sparsity, 199, 200-204
Stack, 12, 167, 239, 344
Star-shaped polygon (see Polygon)

Static data structures and algorithms,
71, 330

Statistics (applications to), 70, 157,
171-182

Steiner tree, 190
Steinitz' Theorem, 99
Stereographic projection (see Projection)
Storage, 37, 72
Subset selection problem, 27
Supporting cone, 137, 138
Supporting line, 117, 119, 178
Supporting vertex, 121, 140
Surface interpolation (applications to),

234
SW-closure (see Closure)
Sweep-line status, 11 (see also Plane

sweep)
Symmetric group, 192, 333

Test for
inclusion in convex polygon, 41
inclusion in polygon, 41
intersection of circles, 287
intersection of line segments, 278
intersection of polygons, 278, 287
intersection of polyhedral sets, 320
maximum (of vectors), 165, 184
planar embedding of planar graph, 287
simplicity (of polygon), 279, 287, 321

Thiessen polygon (see Voronoi)
Threaded binary tree, 74, 123
Threaded list, 161, 368, 370
3-d dominance (see Dominance)
Transaction (see Database)
Transformation of problems (reduction),

28-30, 191, 193-194, 212, 220-
222, 260, 279-280, 289, 290, 299,
333, 347, 353, 363

Transformations (group of)
equiaffine, 22
linear, 22, 185
orthogonal, 22
projective, 24

Translation, 21, 96
Trapezoid, 46, 63
Trapezoid method (for point location),

63-70, 358
Traveling salesman problem, 188

398
	

Subject Index

Triangulation, 19, 189, 209, 234-241
constrained, 237-241, 263
Delaunay, 209-210, 221, 223, 227,

234
greedy, 234, 235-237, 264
minimum-weight, 234, 264
of monotone polygon, 239-241
of simple polygon, 263

Triangulation refinement method (for
point location), 56-60, 70

Trimmed mean (see a-trimmed mean)
Trivial circuit, 354
Two-colorable map, 213
2-3 tree (see Height-balanced tree)
2-variable linear programming (see

Linear programming)

U-hull (see Convex hull)
Uniform gap problem, 260
Uniform selection rule, 228
Unimodal function, 313
Union of rectangles

closure of, 348-353
contour of, 340-348
external contour of, 353
measure of, 332-337
nontrivial contour of, 353
perimeter of, 337-340

Update time, 37
Upperbound, 29
Upper hull (see Convex hull)

Vaszonyi conjecture, 182
Vector dominance (see Dominance)
Visibility, 321
Visibility polygon, 322
Voronoi

edge, 205
generalized polygon, 242
polygon, 204
vertex, 205

Voronoi diagram, 185, 205
of convex polygon, 223
farthest-point, 252, 253-255
generalizations of, 241-255, 262
inverse, 224
order-k (higher order), 243, 249-253
on the sphere, 224

Voronoi diagram of convex polygon
(see Voronoi diagram)

Voting theory (applications to), 171

Wigner-Seitz cell (see Voronoi polygon)
Worst-case complexity (see Complexity)

	COMPUTATIONAL GEOMETRY: AN INTRODUCTION
	Title Page
	Copyright Page
	Dedication
	Preface to the Second Printing
	Preface
	Contents
	Chapter 1. Introduction
	1.1 Historical Perspective
	1.1.1 Complexity notions in classical geometry
	1.1.2 The theory of convex sets, metric and combinatorial geometry
	1.1.3 Prior related work
	1.1.4 Toward computational geometry

	1.2 Algorithmic Background
	1.2.1 Algorithms: Their expression and performance evaluation
	1.2.2 Some considerations on general algorithmic techniques
	1.2.3 Data structures
	1.2.3.1 The segment tree
	1.2.3.2 The doubly-connected-edge-list (DCEL)

	1.3 Geometric Preliminaries
	1.3.1 General definitions and notations
	1.3.2 Invariants under groups of linear transformations
	1.3.3 Geometric duality. Polarity

	1.4 Models of Computation

	Chapter 2. Geometric Searching
	2.1 Introduction to Geometric Searching
	2.2 Point-Location Problems
	2.2.1 General considerations. Simple cases
	2.2.2 Location of a point in a planar subdivision
	2.2.2.1 The slab method
	2.2.2.2 The chain method
	2.2.2.3 Optimal techniques: the planar-separator method, the triangulation refinement method, and the bridged chain method
	2.2.2.4. The trapezoid method

	2.3 Range-Searching Problems
	2.3.1 General considerations
	2.3.2 The method of the multidimensional binary tree (k-D tree)
	2.3.3 A direct access method and its variants
	2.3.4 The range-tree method and its variants

	2.4 Iterated Search and Fractional Cascading
	2.5 Notes and Comments
	2.6 Exercises

	Chapter 3. Convex Hulls: Basic Algorithms
	3.1 Preliminaries
	3.2 Problem Statement and Lower Bounds
	3.3 Convex Hull Algorithms in the Plane
	3.3.1 Early development of a convex hull algorithm
	3.3.2 Graham's scan
	3.3.3 Jarvis's march
	3.3.4 QUICKHULL techniques
	3.3.5 Divide-and-conquer algorithms
	3.3.6 Dynamic convex hull algorithms
	3.3.7 A generalization: dynamic convex hull maintenance

	3.4 Convex Hulls in More Than Two Dimensions
	3.4.1 The gift-wrapping method
	3.4.2 The beneath-beyond method
	3.4.3 Convex hulls in three dimensions

	3.5 Notes and Comments
	3.6 Exercises

	Chapter 4. Convex Hulls: Extensions and Applications
	4.1 Extensions and Variants
	4.1.1 Average-case analysis
	4.1.2 Approximation algorithms for convex hull
	4.1.3 The problem of the maxima of a point set
	4.1.4 Convex hull of a simple polygon

	4.2 Applications to Statistics
	4.2.1 Robust estimation
	4.2.2 Isotonic regression
	4.2.3 Clustering (diameter of a point set)

	4.3 Notes and Comments
	4.4 Exercises

	Chapter 5. Proximity: Fundamental Algorithms
	5.1 A Collection of Problems
	5.2 A Computational Prototype: Element Uniqueness
	5.3 Lower Bounds
	5.4 The Closest Pair Problem: A Divide-and-Conquer Approach
	5.5 The Locus Approach to Proximity Problems: The Voronoi Diagram
	5.5.1 A catalog of Voronoi properties
	5.5.2 Constructing the Voronoi diagram
	5.5.2.1 Constructing the dividing chain

	5.6 Proximity Problems Solved by the Voronoi Diagram
	5.7 Notes and Comments
	5.8 Exercises

	Chapter 6. Proximity: Variants and Generalizations
	6.1 Euclidean Minimum Spanning Trees
	6.1.1 Euclidean traveling salesman

	6.2 Planar Triangulations
	6.2.1 The greedy triangulation
	6.2.2 Constrained triangulations
	6.2.2.1 Triangulating a monotone polygon

	6.3 Generalizations of the Voronoi Diagram
	6.3.1 Higher-order Voronoi diagrams (in the plane)
	6.3.1.1 Elements of inversive geometry
	6.3.1.2 The structure of higher-order Voronoi diagrams
	6.3.1.3 Construction of the higher-order Voronoi diagrams

	6.3.2 Multidimensional closest-point and farthest-point Voronoi diagrams

	6.4 Gaps and Covers
	6.5 Notes and Comments
	6.6 Exercises

	Chapter 7. Intersections
	7.1 A Sample of Applications
	7.1.1 The hidden-line and hidden-surface problems
	7.1.2 Pattern recognition
	7.1.3 Wire and component layout
	7.1.4 Linear programming and common intersection of half-spaces

	7.2 Planar Applications
	7.2.1 Intersection of convex polygons
	7.2.2 Intersection of star-shaped polygons
	7.2.3 Intersection of line segments
	7.2.3.1 Applications
	7.2.3.2 Segment intersection algorithms

	7.2.4 Intersection of half-planes
	7.2.5 Two-variable linear programming
	7.2.6 Kernel of a plane polygon

	7.3 Three-Dimensional Applications
	7.3.1 Intersection of convex polyhedra
	7.3.2 Intersection of half-spaces

	7.4 Notes and Comments
	7.5 Exercises

	Chapter 8. The Geometry of Rectangles
	8.1 Some Applications of the Geometry of Rectangles
	8.1.1 Aids for VLSI design
	8.1.2 Concurrency controls in databases

	8.2 Domain of Validity of the Results
	8.3 General Considerations on Static-Mode Algorithms
	8.4 Measure and Perimeter of a Union of Rectangles
	8.5 The Contour of a Union of Rectangles
	8.6 The Closure of a Union of Rectangles
	8.7 The External Contour of a Union of Rectangles
	8.8 Intersections of Rectangles and Related Problems
	8.8.1 Intersections of rectangles
	8.8.2 The rectangle intersection problem revisited
	8.8.3 Enclosure of rectangles

	8.9 Notes and Comments
	8.10 Exercises

	References
	Author Index
	Subject Index

