Computational Geometry: Homework 1

Problem 1.

a) If a line L does not intersect a diagonal of a convex polygon \boldsymbol{P} then \boldsymbol{L} can intersect only one of the two subpolygons defined by that diagonal. Proof this.
b) Suggest an $\mathbf{O}(1)$ time method for recognizing which of the two subpolygons may intersect L. Your method should detect also a trivial case when the line L cannot intersect any of the subpolygons. Hint: Consider the distances between L and three vertices of the polygon: closest to L end-vertex of the diagonal and two neighbors of this vertex on \boldsymbol{P}. The distance between a point $\left(\mathbf{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ and line $\boldsymbol{A x + B y}+\boldsymbol{C}=\mathbf{O}$ is proportional to $\left|A x^{\prime}+B y^{\prime}+C\right|$.
c) Design an algorithm which finds the intersection of a line L with a convex polygon P in $O(l o g n)$ time. Hint: Use a), b) and binary search.

Problem 2.

Design an O(logn) time algorithm which finds the leftmost and rightmost vertices of a convex polygon. Hint: Use binary search.

Problem 3.

Problem 5 in the textbook Preparata \& Shamos (p.94).
Apply the locus approach to solve the following problem (fixed-radius circular range search): given \boldsymbol{N} points in the plane and a constant $\mathbf{d > O}$, report (possibly, with logarithmictime overhead) the points that are at most at distance d from a given query point q.

