Computational Geometry: Homework 2

Problem 1 (Edge-List \rightarrow DCEL).
Frequently, a planar graph $G=(V, E)$ is represented in the edgelist form, which for each vertex $v_{i} \in V$ contains the list of its incident edges, arranged in the order in which they appear as one proceeds counterclockwise around v_{i}. Show that the edge-list representation of G can be transformed to the DCEL (Doubly-Connected-Edge-List) representation in time O(|V|).

Problem 2 (Simple Polygon).

Problem 1 in the textbook Preparata \& Shamos (p.148).
Given N points in the plane, construct a simple polygon having them as its vertices.

1. Show that $\Omega(N \log N)$ is a lower bound to running time.
2. Design an algorithm to solve this problem. (Hint: Modify Graham's scan.)

Problem 3. (Classify Vertices)

Problem 3 in the textbook Preparata \& Shamos (p.148).
Given a point p and a vertex v of a convex polygon P in the plane, give an algorithm to classify in constant time vertex v with respect to $\overline{p v}$ (as concave or supporting or reflex).

Problem 4. (Keil-Kirkpatrick)

Problem 6 in the textbook Preparata \& Shamos (p.148).
Let S be a set of N points in the plane with integer coordinates between 1 and N^{d}, where d is a constant. Show that the convex hull of S can be found in linear time.

