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1 Introduction

Ad Hoc Wireless Networks Due to its potential applications in various
situations such as battlefield, emergency relief, and so on, wireless network-
ing has received significant attention over the last few years. There are no
wired infrastructures or cellular networks in ad hoc wireless network. Each
mobile node has a transmission range. Node v can receive the signal from
node w if node v is within the transmission range of the sender u. Oth-
erwise, two nodes communicate through multi-hop wireless links by using
intermediate nodes to relay the message. Consequently, each node in the
wireless network also acts as a router, forwarding data packets for other
nodes. In this survey, we consider that each wireless node has an omni-
directional antenna. This is attractive because a single transmission of a
node can be received by many nodes within its vicinity which, we assume,
is a disk centered at the node. In addition, we assume that each node has
a low-power Global Position System (GPS) receiver, which provides the po-
sition information of the node itself. If GPS is not available, the distance
between neighboring nodes can be estimated on the basis of incoming signal
strengths. Relative co-ordinates of neighboring nodes can be obtained by
exchanging such information between neighbors [1].

Wireless ad hoc networks can be subdivided into two classes: static and
mobile. In static networks, the position of a wireless node does not change
or changes very slowly once the node was deployed. Typical example of
such static networks includes sensor networks. In mobile networks, wireless
nodes move arbitrarily. Since mobile wireless networks change their topology
frequently and often without any regular pattern, topology maintenance and
routing in such networks are challenging tasks. For the sake of the simplicity,
we assume that the nodes are quasi-static during the short period of topology
reconstruction or route finding.

We consider a wireless ad hoc network consisting of a set V of n wire-
less nodes distributed in a two-dimensional plane. By a proper scaling, we
assume that all nodes have the maximum transmission range equal to one
unit. These wireless nodes define a unit disk graph UDG(V') in which there
is an edge between two nodes if and only if their Euclidean distance is at
most one.

Computational Geometry Computational geometry emerged from the
field of algorithms design and analysis in the late 70s. It studies various
problems [2, 3, 4] from computer graphics, geographic information sys-
tem, robotics, scientific computing, wireless networks recently, and others,



in which geometric algorithms could play some fundamental roles. Most
geometric algorithms are designed for studying the structural properties,
searching, inclusion or exclusion relations, of a set of points, a set of hyper-
planes, or both. For example, the structural properties include the convex
hull, intersections, hyperplane arrangement, triangulation (Delaunay, regu-
lar, and so on), Voronoi diagram, and so on. The query operations often
include point location, range searching (orthogonal, unbounded, or some
variations) and so on.

In this survey, we concentrate on how to apply some structural prop-
erties of a point set for wireless networks as we treat wireless devices as
two-dimensional points.

Networking and Routing It is common to separate the network design
problem from the management and control of the network in the commu-
nication network literature. The separation is very convenient and helps to
significantly simplify these two tasks, which are already very complex on its
own. Nevertheless, there is a price to be paid for this modularity as the
decisions made at the network design phase may strongly affect the network
management and control phase. In particular, if the issue of designing ef-
ficient routing schemes is not taken into account by the network designers,
then the constructed network might not be suited for supporting a good
routing scheme. Wireless ad hoc network needs some special treatment as it
intrinsically has its own special characteristics and some unavoidable limi-
tations compared with traditional wired networks. Wireless nodes are often
powered by batteries only and they often have limited memories. There-
fore, it is more challenging to design a network topology for wireless ad
hoc networks, which is suitable for designing an efficient routing scheme to
save energy and storage memory consumption, than the traditional wired
networks.

In technical terms, the question we deal with is therefore whether it is
possible (if possible, then how) to design a network, which is a subgraph of
the unit disk graph, such that it ensures both attractive network features
such as bounded node degree, low-stretch factor, and linear number of links,
and attractive routing schemes such as localized routing with guaranteed
performances.

Network Structures in Wireless Networks The size of the unit disk
graph could be as large as the square order of the number of network nodes.
So we want to construct a subgraph of the unit disk graph UDG(V'), which



is sparse, can be constructed locally in an efficient way, and is still relatively
good compared with the original unit disk graph for routes’ quality.

Unlike the wired networks that typically have fixed network topologies,
each node in a wireless network can potentially change the network topology
by adjusting its transmission range and/or selecting specific nodes to forward
its messages, thus, controlling its set of neighbors. The primary goal of
topology control in wireless networks is to maintain network connectivity,
optimize network lifetime and throughput, and make it possible to design
power-efficient routing. Not every connected subgraph of the unit disk graph
plays the same important role in network designing. One of the perceptible
requirements of topology control is to construct a subgraph such that the
shortest path connecting any two nodes in the subgraph is not much longer
than the shortest path connecting them in the original unit disk graph. This
aspect of path quality is captured by the stretch factor of the subgraph.
A subgraph with constant stretch factor is often called a spanner and a
spanner is called a sparse spanner if it has only a linear number of links.
In this survey, we review and study how to construct a spanner (a sparse
network topology) efficiently for a set of static wireless nodes.

The other imperative requirement for network topology control in wire-
less ad hoc networks is the fault tolerance. To guarantee a good fault toler-
ance, the underlying network structure must be at least bi-connected, i.e.,
there are at least two disjoint paths for any pair of wireless nodes. Here,
without doubt, we assume that the original unit disk graph is bi-connected.

Restricting the size of the network has been found to be extremely
important in reducing the amount of routing information. The notion of
establishing a subset of nodes which perform the routing has been proposed
in many routing algorithms [5, 6, 7, 8]. These methods often construct a
virtual backbone by using the connected dominating set [9, 10, 11], which
is often constructed from dominating set or maximal independent set.

Routing Many routing algorithms were proposed recently for wireless ad
hoc networks. The routing protocols proposed may be categorized as table-
driven protocols or demand-driven protocols. A good survey may be found
in [12].

Table-driven routing protocols maintain up-to-date routing information
between every pair of nodes. The changes to the topology are maintained by
propagating updates of the topology throughout the network. Destination-
sequenced Distance-Vector Routing (DSDV) [13] and Zone-Routing Protocol
(ZRP) [14, 15] are two of the table driven protocols proposed recently. The



mobility nature of the wireless networks prevent these table-driven routing
protocols from being widely used in large scale wireless ad hoc networks.
Thus, on-demand routing protocols are preferred.

Source-initiated on-demand routing creates routes only when desired by
the source node. The methodologies that have been proposed include the
Ad-Hoc On-Demand Distance Vector Routing (AODV) [16], the Dynamic
Source Routing (DSR) [17], and the Temporarily Ordered Routing Algo-
rithm (TORA) [18]. In addition, the Associativity Based Routing (ABR)
[19] and Signal Stability Routing (SSR) use various criteria for selecting
routes.

Introducing a hierarchical structure into routing has also been used in
many protocols such as the Clusterhead Gateway Switch Routing (CGSR)
[20], the Fisheye Routing [21, 22|, and the Hierarchical State Routing [23].
Dominating set based methods were also adopted by several researchers
[6, 7, 8]. To facilitate this, several methods [24, 9, 10, 25] were proposed
to approximate the minimum dominating set or the minimum connected
dominating set problems in centralized and/or distributed ways.

Route discovery can be very expensive in communication costs, thus
reducing the response time of the network. On the other hand, explicit
route maintenance can be even more costly in the explicit communication of
substantial routing information and the usage of memory scarcity of wire-
less network nodes. The geometric nature of the multi-hop ad-hoc wireless
networks allows a promising idea: localized routing protocols.

Localized routing does not require the nodes to maintain routing tables,
a distinct advantage given the scarce storage resources and the relatively
low computational power available to the wireless nodes. More importantly,
given the numerous changes in topology expected in ad-hoc networks, no
re-computation of the routing tables is needed and therefore we expect a
significant reduction in the overhead. Thus localized routing is scalable.
Localized routing is also uniform, in the sense that all the nodes execute the
same protocol when deciding to which other node to forward a packet.

But localized routing is challenging to design, as even guaranteeing the
successful arrival at the destination of the packet is a non-trivial task. This
task was successfully solved by Bose et al. [26] (see also [27]) thus opening
the way for a second stage of research, focusing on improving the efficiency
of localized routings. Localized routing also has no built-in mechanism to
avoid congestion by overloading nodes. Mauve et al. [28] conducted an
excellent survey of position-based localized routing protocols.



Organization The rest of the survey is organized as follows. In Section
2, we first review some definitions necessary for more detailed review of cur-
rent progress of applying computational geometry techniques to wireless ad
hoc networks. Specifically, we specify how the wireless network is modeled
in this survey, review some geometry structures, define the graph spanners,
and introduce the localized algorithm concept. In Section 3, we review in
detail the geometry structures that are suitable for the topology control in
wireless ad hoc networks, especially the structures with bounded stretch
factor, or with bounded node degree, or planar structures. We also review
the current status of controlling the transmission power so the total or the
maximum transmission power is minimized without sacrificing the network
connectivity. In Section 4, state of the art of constructing virtual backbone
for wireless networks is reviewed. As there are many heuristics proposed
in this area, we concentrate on the ones that have theoretic performance
guarantees or are popular. After reviewing the geometric structures, we
review the so called localized routing methods in Section 5. Many routing
algorithms were proposed in the literature. We concentrate on the localized
routing protocols as they utilize the geometry nature of the wireless ad hoc
networks. Location service protocols are also discussed. Section 6 reviews
the broadcasting protocols that apply the geometry nature to guarantee the
performance. In Section 7, we review the current status of applying stochas-
tic geometry to study the connectivity, capacity, etc, in wireless networks.
We conclude the survey in Section 8 by pointing out some possible future
research questions.

2 Preliminaries

2.1 Power-Attenuation Model

Energy conservation is a critical issue in ad hoc wireless network for the node
and network life, as the nodes are powered by batteries only. Each mobile
node typically has a portable set with transmission and reception processing
capabilities. To transmit a signal from a node to the other node, the power
consumed by these two nodes consists of the following three parts. First, the
source node needs to consume some power to prepare the signal. Second, in
the most common power-attenuation model, the power required to support
the transmission between two nodes is dependent on their distance. Finally,
when a node receives the signal, it needs consume some power to receive,
store and then process that signal. The power cost p(e) of a link e = uv is
then defined as the power consumed for transmitting signal from u to node



v.

In the most common power-attenuation model, the power needed to
support a link wv is ||Juv||?, where ||uv|| is the Euclidean distance between
u and v, B is a real constant between 2 and 5 dependent on the wireless
transmission environment. This power consumption is typically called path
loss. In this survey, we assume that the path loss is the major part of power
consumption to transmit signals.

Notice that, practically, there is some other overhead cost for each de-
vice to receive and then process the signal. For simplicity, this overhead cost
can be integrated into one cost, which is almost the same for all nodes. Thus,
we will use ¢ to denote such constant overhead. In most results surveyed
here, it is assumed that ¢ = 0.

2.2 Geometry Structures

Several geometrical structures have been studied recently both by compu-
tational geometry scientists and network engineers. Here we review the
definitions of some of them which could be used in the wireless networking
applications. Let G = (V, E) be a geometric graph defined on V.

The minimum spanning tree of G, denoted by MST(G), is the tree be-
long to E that connects all nodes and whose total edge length is minimized.
MST(G) is obviously one of the sparsest possible connected subgraph, but
its stretch factor can be as large as n — 1.

The relative neighborhood graph, denoted by RNG(G), is a geometric
concept proposed by Toussaint [29]. It consists of all edges uv € E such that
there is no point w € V with edges uw and wv in E satisfying ||uw| < ||luv||
and ||lwv| < ||uv||. Thus, an edge uv is included if the intersection of two
circles centered at u and v and with radius ||uv|| do not contain any vertex w
from the set V' such that edges uw and wv are in E. Notice if G is a directed
graph, then edges uw and wv also are directed in the above definition, i.e.,
we have ) and w0 instead of uw and wv.

Let disk(u,v) be the disk with diameter uwv. Then, the Gabriel graph
[30] GG(G) contains an edge uv from G if and only if disk(u,v) contains no
other vertex w € V such that there exist edges uw and wv from G satisfying
||luw| < ||uwv|| and ||wv|| < ||uv||. Same to the definition of RNG(G), if G
is a directed graph, then edges uw and wwv also are directed in the above
definition of GG(Q), i.e., we use uw and wd instead. GG(G) is a planar
graph (that is, no two edges cross each other) if G is the complete graph.
It is easy to show that RNG(G) is a subgraph of the Gabriel graph GG(G).
For an undirected and connected graph G, both GG(G) and RNG(G) are



connected and contain the minimum spanning tree of G.

The Yao graph with an integer parameter k > 6, denoted by ﬁk(G), is
defined as follows. At each node u, any k equally-separated rays originated
at u define k cones. In each cone, choose the shortest edge uv among all
edges from u, if there is any, and add a directed link wb. Ties are broken
arbitrarily. The resulting directed graph is called the Yao graph. See Figure
1 for an illustration. Let Y Gk (G) be the undirected graph by ignoring the
direction of each link in Y& (G). If we add the link o7 instead of the link
wb, the graph is denoted by %k(G), which is called the reverse of the Yao
graph. Some researchers used a similar construction named 6-graph [31], the
difference is that, in each cone, it chooses the edge which has the shortest
projection on the axis of the cone instead of the shortest edge. Here the axis
of a cone is the angular bisector of the cone. For more detail, please refer
to [31].

RNG GG Yao

Figure 1: The definitions of RNG, GG, and Yao on point set. Left: The
lune using uv is empty for RNG. Middle: The diametric circle using uv is
empty for GG. Right: The shortest edge in each cone is added as a neighbor
of u for Yao.

Notice all these definitions are exactly the conventional definitions [32,
33, 34, 35] when graph G is the completed Euclidean graph K (V). We will
use RNG(V), GG(V), and Yao(V) to denote the corresponding resulting
graph if G is the complete graph K (V). Gabriel graph was used as a planar
subgraph in the Face routing protocol [26, 36, 37] and the GPSR routing pro-
tocol [27] that guarantee the delivery of the packet. Relative neighborhood
graph RNG was used for efficient broadcasting (minimizing the number of
retransmissions) in one-to-one broadcasting model in [38].

We continue with the definition of Delaunay triangulation. Assume that
there are no four vertices of V' that are co-circular. A triangulation of V is a
Delaunay triangulation, denoted by Del(V'), if the circumcircle of each of its
triangles does not contain any other vertices of V in its interior. A triangle
is called the Delaunay triangle if its circumcircle is empty of vertices of V.



The Voronoi region, denoted by Vor(p), of a vertex p € V is a collection of
two dimensional points such that every point is closer to p than to any other
vertex of V. The Voronoi diagram for V is the union of all Voronoi regions
Vor(p), where p € V. The Delaunay triangulation Del(V) is also the dual
of the Voronoi diagram: two vertices p and g are connected in Del(V') if and
only if Vor(p) and Vor(q) share a common boundary. The shared boundary
of two Voronoi regions Vor(p) and Vor(g) is on the perpendicular bisector
line of segment pg. The boundary segment of a Voronoi region is called
the Voronoi edge. The intersection point of two Voronoi edge is called the
Voronoi verter. The Voronoi vertex is the circumcenter of some Delaunay
triangle.

Besides these geometric structures, some graph notations will also be
used in this survey. A subset S of V' is a dominating set if each node u in V
is either in S or is adjacent to some node v in S. Nodes from S are called
dominators, while nodes not is S are called dominatees. A subset C of V is
a connected dominating set (CDS) if C is a dominating set and C induces a
connected subgraph. Consequently, the nodes in C' can communicate with
each other without using nodes in V — C. A dominating set with minimum
cardinality is called minimum dominating set, denoted by MDS. A connected
dominating set with minimum cardinality is denoted by MCDS.

A subset of vertices in a graph G is an independent set if for any pair of
vertices, there is no edge between them. It is a mazimal independent set if
no more vertices can be added to it to generate a larger independent set. It
is a mazimum independent set (MIS) if no other independent set has more
vertices.

2.3 Spanners

Spanners have been studied intensively in recent years [39, 40, 41, 42, 43, 44,
45, 46, 34]. Let G = (V, E) be a n-vertex connected weighted graph. The
distance in G between two vertices u,v € V is the total weight (length) of
the shortest path between u and v and is denoted by dg(u,v). A subgraph
H = (V,E'), where E' C E, is a t-spanner of G if for every u,v € V,
dp(u,v) <t-dg(u,v). The value of t is called the stretch factor.

Spanners for Euclidean graphs is called geometric spanners or Fuclidean
spanners. It means the distance dg(u,v) in graph G between u and v is the
Euclidean distance between vertices v and v. Geometric spanners were first
introduced in computational geometry community by Chew [47]. Now they
have numerous applications in computer science, such as VLSI, robotics
motion planning, distributed systems, and communication networks. In this
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survey, we focus on their applications in wireless networks.

All previous algorithms that construct a t¢-spanner of the Euclidean
complete graph K (V') in computational geometry are centralized methods.
The rapid development of the wireless communication presents a new chal-
lenge for algorithm designing and analysis. Distributed algorithms are fa-
vored than the more traditional centralized algorithms.

Consider any unicast II(u,v) in G (could be directed) from anode u € V
to another node v € V:

I(u,v) = vovy - - - Vp_1Vp, Where u = vy, v = vp.

Here A is the number of hops of the path II. The total transmission power
p(II) consumed by this path II is defined as

h
p() = [vicyvi/?
i=1

Let pg(u,v) be the least energy consumed by all paths connecting nodes u
and v in G. The path in G connecting u, v and consuming the least energy
pa(u,v) is called the least-energy path in G for u and v. When G is the unit
disk graph UDG(V'), we will omit the subscript G in pg(u,v).

Let H be a subgraph of G. The power stretch factor of the graph H
with respect to G is then defined as

If G is a unit disk graph, we use py (V) instead of py(G). For any

positive integer n, let
pr(n) = sup pp(V).
[V]=n

Similarly, we define the length stretch factors £y (G) and £y (n). When the
graph H is clear from the context, it is dropped from notations.

It was proved in [48] that, for a constant d, pg(G) < ¢ iff for any link
v;v; in graph G but not in H, py (vi,v;) < §||v;vj||P. It is then sufficient to
analyze the power stretch factor of H for each link in G but not in H. It is
not difficult to show that, for any H C G with a length stretch factor 4, its
power stretch factor is at most 0% for any graph G. In particular, a graph
with a constant bounded length stretch factor must also have a constant
bounded power stretch factor, but the reverse is not true. Finally, the power
stretch factor has the following monotonic property: If Hy C Hy C G then
the power stretch factors of Hy and Hy satisfy pg, (G) > pu,(G).
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2.4 Localized Algorithm

Due to the limited resources of the wireless nodes, it is preferred that the
underlying network topology can be constructed in a localized manner. Here
a distributed algorithm constructing a graph G is a localized algorithm if
every node u can exactly decide all edges incident on u based only on the
information of all nodes within a constant hops of u (plus a constant number
of additional nodes’ information if necessary). It is easy to see that the Yao
graph YG(V'), the relative neighborhood graph RNG(V) and the Gabriel
graph GG(V') can be constructed locally. However, the Euclidean minimum
spanning tree EMST(V') and the Delaunay triangulation Del(V) can not be
constructed by any localized algorithm. In this survey, we are interested
in localized algorithms that construct sparse and power efficient network
topologies.

3 Topology Control

In this section, we study the power stretch factor of several new sparse
spanners for unit disk graph. A trade-off can be made between the sparseness
of the topology and the power efficiency. The power efficiency of any spanner
is measured by its power stretch factor, which is defined as the maximum
ratio of the minimum power needed to support the connection of two nodes
in this spanner to the least necessary in the unit disk graph.

3.1 RNG, GG, and Yao

Since the relative neighborhood graph has the length stretch factor as large
as n — 1, then obviously its power stretch factor is at most (n — 1)2. Li et
al. [48] showed that it is actually n — 1.

Theorem 3.1 [48] prng(n) =n — 1.

First prvg(n) is at most n — 1. Consider the path between u and v in
EMST(V). This path contains at most n — 1 edges and each edge has length
at most ||uv||. Thus, its total power consumption is at most (n — 1)]|uv]||?.
Notice EMST(V) C RNG(V) if UDG(V) is connected. Thus,

pRNg(n) <n-—1.

Then prng(n) > n — 1 — ¢ for any small positive € by constructing an
example illustrated in Figure 2.

12



Figure 2: The Euclidean minimum spanning tree has large stretch factor.

They considered two cases. First consider even n, say n = 2m. The
construction of the point set V' is shown in Figure 2 (1), which was used
in [42]. Let o = § + 26,6 = § — 6, where ¢ is a sufficiently small positive
number which will be fixed later. The m points with odd subscripts vy, vs,
Vs, **+, Vam—1 are collinear, so are the m points with even subscripts ve, vy,
Vg, * -, Uam. As proved in [42], RNG (V) is a path vy, vs, vs, -+, Vam—1,
Vam, **, Ug, V4, V2. As § —> 0, the length of each edge in RNG (V) tends

to ||vive|| from below, which implies I%%’v) — n — 1. So we can find

a sufficiently small § > 0 such that 1’1:‘;‘237%’”) > n — 1 — ¢, which implies
prng(n) >n—1—e.

When n is odd, the construction is shown in Figure 2 (2) and the
existence can be proved by a similar argument.

The Gabriel graph has length stretch factor between 4 and 4mv2n—4 "§”_4 [42].

Am\/2n—4 ) 2

Then its power stretch factor is at most ( 3

Theorem 3.2 [/8] The power stretch factor of any Gabriel graph is one.

The Yao graph Y Gy (V) has length stretch factor ﬁ Thus, its
k

power stretch factor is no more than ( Li et al. [48] proved a

1 ) B
1-2sinz/ -~
stronger result.

Theorem 3.3 [/8] The power stretch factor of the Yao graph Y Gr(V) is

1
at most T—@sn T)P "

See [48] for a detailed proof of this theorem. Li et al. [49] also proposed
to apply the Yao structure on top of the Gabriel graph structure (the result-
ing graph is denoted by YG@';C(V)), and apply the Gabriel graph structure

13



on top of the Yao structure (the resulting graph is denoted by mk(V))
These structures are sparser than the Yao structure and the Gabriel graph
structure and they still have a constant bounded power stretch factor. These
two structures are connected graphs if the UDG is connected, which can be
proved by showing that RNG is a subgraph of both structures.

We end this subsection by commenting a result by Wattenhofer et al.
[50]. Their two-phased approach consists of a variation of the Yao graph
followed by a variation of the Gabriel graph. They tried to prove that the
constructed spanner has a constant power stretch factor and the node degree
is bounded by a constant. Unfortunately, there are some bugs in their proof
of the constant power stretch factor and their result is erroneous, which was
discussed in detail in [48].

Li et al. [51] proposed a structure that is similar to the Yao structure
for topology control. Each node u finds a power p,, o, such that in every cone
of degree a surrounding u, there is some node that u can reach with power
Pu,o- Here, nevertheless, we assume that there is a node reachable from u by
the maximum power in that cone. Then the graph G contains all edges uv
such that u can communicate with v using power p,, o. It was proved in [51]
that, if a < %’r and the UDG is connected, then graph G, is a connected
graph. On the other hand, if o > %”, they showed that the connectivity of
G is not guaranteed by giving some counter-example [51].

3.2 Bounded Degree Spanners

Notice that although the directed graphs ﬁk(V), mk(V) and mk(V)
have a bounded power stretch factor and a bounded out-degree k for each
node, some nodes may have a very large in-degree. The nodes configuration
given in Figure 3 will result a very large in-degree for node u. Bounded out-
degree gives us advantages when apply several routing algorithms. However,
unbounded in-degree at node u will often cause large overhead at u. There-
fore it is often imperative to construct a sparse network topology such that
both the in-degree and the out-degree are bounded by a constant while it is
still power-efficient.

3.2.1 Sink Structure

Arya et al. [40] gave an ingenious technique to generate a bounded degree
graph with constant length stretch factor. In [48], Li et al. applied the same
technique to construct a sparse network topology with a bounded degree and
a bounded power stretch factor from YG(V). The technique is to replace

14



Figure 3: Node u has degree (or in-degree) n — 1.

the directed star consisting of all links toward a node u by a directed tree
T(u) of a bounded degree with u as the sink. Tree T'(u) is constructed
recursively. The algorithm is as follows.

Algorithm: Constructing-YG*

1. First, construct the graph ﬁk(V) Each node u will have a set of
in-coming nodes I(u) = {v | vl € YG(V)}.

2. For each node u, use the following Tree(u,(u)) to build tree T'(u).
Algorithm: Constructing-T'(u) Tree(u,I(u))

1. To partition the unit disk centered at w, choose k equal-sized cones
centered at u: Cy(u), Co(u), -+, Ck(u).

2. Node u finds the nearest node y; € I(u) in C;(u), for 1 < i < k, if there
is any. Link ;4 is added to T'(u) and y; is removed from I(u). For
each cone C;(u), if I(u) N C;(u) is not empty, call Tree(y;,I(u) NC;(u))
and add the created edges to T'(u).

Figure 4 (a) illustrates a directed star centered at u and Figure 4 (b)
shows the directed tree T'(u) constructed to replace the star with k& = 8.
The union of all trees T'(u) is called the sink structure ﬁ,’;(V)

Notice that, node u constructs the tree T'(u) and then broadcasts the
structure of T'(u) to all nodes in T'(u). Since the total number of edges in
the Yao structure is at most & - n, where k is the number of cones divided,
the total number of edges of T'(u) of all node  is also at most k - n. Thus,
the total communication cost of broadcasting the T'(u) to all its neighbors
is still at most k - n. Recall that k is a small constant.

The algorithm uses a directed tree T'(u) to replace the directed star for

each node u. Therefore, if nodes u and v are connected by a path in ﬁk,
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Figure 4: (a) Star formed by links toward to u. (b) Directed tree T'(u)
sinked at u.

they are also connected by a path in ﬁ,’; It is already known that ﬁk is
strongly connected if UDG(V) is connected, so does ﬁ};

Theorem 3.4 [/8] The power stretch factor of the graph Y%Z(V) is at

most (W)Q. The mazimum degree of the graph ﬁ,”;(V) is at most

(k+1)2 — 1. The mazimum out-degree is k.

Notice that the sink structure and the Yao graph structure do not have
to have the same number of cones, and the cones do not need to be aligned.
For setting up a power-efficient wireless networking, each node u finds all
its neighbors in Y'G(V'), which can be done in linear time proportional to
the number of nodes within its transmission range.

3.2.2 YaoYao Structure

In this section, we review another algorithm proposed by Li et al. [49] that
constructs a sparse and power efficient topology. Assume that each node
v; of V' has a unique identification number ID(v;) = i. The identity of a
directed link % is defined as ID(wt) = (||uv||, ID(u), ID(v)).

Node u chooses a node v from each cone, if there is any, so the directed
link % has the smallest ID(vt) among all directed links wd in YG(V)
in that cone. The union of all chosen directed links is the final network
topology, denoted by Y‘}’)k(V) If the directions of all links are ignored, the
graph is denoted as YYy (V).

Theorem 3.5 [49] Graph Y_Y)k(V) is strongly connected if UDG(V ) is con-
nected and k > 6.
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It was proved in [52] that Y_Y)k(V) is a spanner in civilized graph. Here
a unit disk graph is civilized graph if the distance between any two nodes
in this graph is larger than a positive constant A. In [53], they called the
civilized unit disk graph as the A-precision unit disk graph. Notice the
wireless devices in wireless networks can not be too close or overlapped.
Thus, it is reasonable to model the wireless ad hoc networks as a civilized
unit disk graph.

Theorem 3.6 [/9] The power stretch factor of the directed topology Y_Y)k(V)
is bounded by a constant p in civilized graph.

The experimental results by Li et al. [49] showed that this sparse topol-
ogy has a small power stretch factor in practice. They [49] conjectured that
YY (V) also has a constant bounded power stretch factor theoretically in
any unit disk graph. The proof of this conjecture or the construction of a
counter-example remain a future work.

3.2.3 Symmetric Yao Graph

In [49], Li et al. also considered another undirected structure, called sym-
metric Yao graph Y Sk (V'), which guarantees that the node degree is at most
k. Each node u divides the region into k& equal angular regions centered at
the node, and chooses the closest node in each region, if any. An edge uv
is selected to graph Y Si(V) if and only if both directed edges w6 and vt

are in the Yao graph Y Gg(V'). Then it is obvious that the maximum node
degree is k.

Theorem 3.7 [/8] The graph Y Sx(V') is strongly connected if UDG(V') is
connected and k > 6.

This was proved by showing that RNG is a subgraph of Y S,(V') if k > 6.
Notice that, Theorem 3.7 immediately implies the connectivity of the Yao
graph, sink structure, and the YaoYao graph as RNG is also the subgraph
of all these structures.

The experiment by Li et al. also showed that it has a small power stretch
factor in practice. However, it was shown in [54] recently that Y'Si(V) is
not a spanner theoretically. The basic idea of the counter example is similar
to the counter example for RNG proposed by Bose et al. [42]. For the
completeness of the presentation, we still review the counter example here.

Let nodes v1 and vg have distance half unit from each other. Assume
the ith cone of v; contains vy, and the 7'th cone of vy contains v;. Then
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draw two lines [1 = vivs and l2 = wova such that both the angles Zvzvivg
and Zvavgvy are § — o, where « is a very small positive number. Let’s first
consider even n, say n = 2m. Figure 5 illustrates the construction of the
point set V. The node vy; is placed on I3 in the ith cone of ve; 1 and it is
very close to the upper boundary of the sth cone of v9;_1. The node vg;1
is placed on [; in the i'th cone of vy; close to the upper boundary of that
cone. Using this method, place all nodes from vy to v, in order. Then it
is easy to show that the Y Si(V) does not contain any edge vojvz;4+1 and
v2j4+1v2j42 for 0 < 7 < m — 1. The nearest neighbor of vo; is v2;41, but for
v9;+1, the nearest neighbor is vg;19. So although in Y'Si(V') there is a path
from vy to g, its length is ||v1vom—1|| + ||v2m—1Vom|| + |[|vemv2||- So when « is
appropriately small, the length stretch factor of Y S (V') cannot be bounded
by a constant. Similarly, its power stretch factor cannot be bounded also.
When 7 is odd, the construction is similar.

Figure 5: An example that Y S (V) has a large stretch factor.

3.3 Planar Spanner

Given a set of nodes V, it is well-known that the Delaunay triangulation
Del(V) is a planar t-spanner of the completed graph K (V). This was first
proved by Dobkin, Friedman and Supowit with constant ¢ = 1+2—‘/g7r =~ 5.08.

Then Kevin and Gutwin improved the upper bound on ¢ to be 3C%7ST£ =
6
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%W =~ 2.42. However, it is not appropriate to require the construction

of the Delaunay triangulation in the wireless communication environment
because of the possible massive communications it requires. Given a set of
points V', let UDel(V) be the graph of removing all edges of Del(V) that
are longer than one unit, i.e., UDel(V) = Del(V) N UDG(V). Li et al. [35]
considered the unit Delaunay triangulation UDel(V') for planar spanner of
UDG, which is a subset of the Delaunay triangulation. It was proved in [35]
that UDel(V) is a t-spanner of the unit disk graph UDG(V).

Theorem 3.8 [35] For any two vertices u and v of V,
1++5

My pervy (u, v)|| < 2 7 ||Trpa) (u, v)]|

Notice that, Kevin and Gutwin [55] showed that the Delaunay triangu-
lation is a t-spanner for a constant ¢ ~ 2.42. This was proved by induction
on the order of the lengths of all pair of nodes (from the shortest to the
longest). It can be shown that the path connecting nodes u and v con-
structed by the method given in [55] also satisfies that all edges of that
path is shorter than ||uv||. Consequently, we know that the unit Delaunay

triangulation UDel(V) is a 4—fg/gw-spamnelr of the unit disk graph UDG(V).

3.3.1 Localized Delaunay triangulation

Li et al. [35] gave a localized algorithm that constructs a sequence graphs,
called localized Delaunay LDel®)(V), which are supergraphs of UDel(V).
We begin with some necessary definitions before presenting the algorithm.

Unit Gabriel graph It consists of all edges uv such that |uv|| < 1 and the
open disk using uv as diameter does not contain any vertex from V.
Such edge uv is called the Gabriel edge. We denote the unit Gabriel
graph by GG(V') hereafter.

k-localized Delaunay triangle Triangle Auvw is called a k-localized De-
launay triangle if the interior of the circumcircle of Auvw, denoted
by disk(u,v,w) hereafter, does not contain any vertex of V that is
a k-neighbor of u, v, or w; and all edges of the triangle Auvw have
length no more than one unit.

k-localized Delaunay graph The k-localized Delaunay graph over a ver-
tex set V, denoted by LDel(k)(V), has exactly all unit Gabriel edges
and edges of all k-localized Delaunay triangles.
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Figure 6: LDel: The circumcircle disk(u,v,w) is not necessarily covered
by unit disks centered at u and v. But it is empty of other vertices from
Nl(’U,) U Nl(’l)) U Nl(w)

When it is clear from the context, we will omit the integer k£ in our
notation of LDel®) (V). They originally conjectured that LDel™™ (V) is a
planar graph and thus a planar ¢-spanner of UDG(V) can be easily con-
structed by using localized approach. Unfortunately, as shown in [35], the
graph LDel™M (V) may contain some edges intersecting. On the other hand,
LDel® (V) is a planar graph.

Theorem 3.9 [35] LDel(k)(V) is a planar graph for any k > 2.

Theorem 3.10 Assume two triangles Auvw and Azyz of LDel®(V), k >
1, intersect, then either disk(u,v,w) contains at least one of the nodes of
{z, y, z} or disk(x,y,z) contains at least one of the nodes of {u, v, w}.

Notice that, although LDel™™ (V) is not a planar graph, the following
theorem proved in [35] guarantees that it is sparse.

Theorem 3.11 Graph LDel") (V) has thickness 2.

Although the graph UDel(V) is a t-spanner for UDG(V), it is unknown
how to construct it locally. We can construct LDel®)(V), which is guaran-
teed to be a planar spanner of UDel(V'), but a total communication cost of
this approach is O(m log n) bits, where m is the number of edges in UDG (V)
and could be as large as O(n?). This is more complicated than some other
non-planar ¢-spanners, such as the Yao structure [34] and the #-graph [55]
(although the lattes are not planar). In order to reduce the total communi-
cation cost to O(n logn) bits, they do not construct LDel? (V), and instead
they extract a planar graph PLDel(V) out of LDelV) (V). They provided
a novel algorithm to construct LDel!) (V') using linear communications and
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then make it planar in linear communication cost. The final graph still con-
tains UDel(V') as a subgraph. Thus, it is a t-spanner of the unit-disk graph
UDG(V).

In the following, the order of three nodes in a triangle is immaterial.

Algorithm 1 Localized Unit Delaunay Triangulation

1.

Each wireless node u broadcasts its identity and location and listens
to the messages from other nodes.

Assume that node u gathered the location information of Nj(u). It
computes the Delaunay triangulation Del(N;(u)) of its 1-neighbors
Ni(u), including wu itself.

. For each edge uv of Del(Ni(u)), let Auvw and Auvz be two triangles

incident on uv. Edge uv is a Gabriel edge if both angles Zuwv and
Zuzv are less than 7/2. Node u marks all Gabriel edges uv, which will
never be deleted.

. Each node u finds all triangles Auvw from Del(Ny(u)) such that all

three edges of Auvw have length at most one unit. If angle Zwuv > 7,
node u broadcasts a message proposal(u,v,w) to form a 1-localized
Delaunay triangle Auvw in LDel™) (V), and listens to the messages
from other nodes.

. When a node u receives a message proposal(u, v, w), u accepts the pro-

posal of constructing Auvw if Auvw belongs to the Delaunay triangu-
lation Del(N1(u)) by broadcasting message accept(u, v, w); otherwise,
it rejects the proposal by broadcasting message reject(u, v, w).

. A node u adds the edges uv and uw to its set of incident edges if the

triangle Auvw is in the Delaunay triangulation Del(N;(u)) and both
v and w have sent either accept(u, v, w) or proposal(u, v, w).

It was proved that the graph constructed by the above algorithm is

LDel(V). Indeed, for each triangle Auvw of LDel™(V), one of its in-
terior angle is at least /3 and Awvw is in Del(N1(u)), Del(Ni(v)) and
Del(Ny(w)). So one of the nodes amongst {u,v, w} will broadcast the mes-
sage proposal(u, v, w) to form a 1-localized Delaunay triangle Auvw.

s
3>

As Del(Ny(u)) is a planar graph, and a proposal is made only if Zwuv >

node u broadcasts at most 6 proposals. And each proposal is replied by at

most two nodes. Therefore, the total communication cost is O(nlogn) bits.
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The above algorithm also shows that LDel™ (V) has O(n) edges, which we
know from Theorem 3.11. Putting together the arguments above, we have:

Theorem 3.12 [85] Algorithm 1 constructs LDel™ (V) with total commu-
nication cost O(nlogn) bits.

We then review the algorithm to extract from LDel ) (V') a planar sub-
graph.

Algorithm 2 Planarize LDel(l)(V)

1. Each wireless node u broadcasts the Gabriel edges incident on u and
the triangles Auvw of LDelV)(V) and listens to the messages from
other nodes.

2. Assume node u gathered the Gabriel edge and 1-local Delaunay trian-
gles information of all nodes from Nj(u). For two intersected triangles
Auvw and Azyz known by u, node u removes the triangle Auvw if
its circumcircle contains a node from {z,y, z}.

3. Each wireless node u broadcasts all the triangles incident on u which it
has not removed in the previous step, and listens to the broadcasting
by other nodes.

4. Node u keeps the edge uv in its set of incident edges if it is a Gabriel
edge, or if there is a triangle Auvw such that w, v, and w have all
announced they have not removed the triangle Auvw in Step 2.

They denoted the graph extracted by the algorithm above by PLDel(V).
Note that any triangle of LDel(l)(V) not kept in the last step of the Pla-
narization Algorithm is not a triangle of LDel(?) (V'), and therefore PLDel(V')
is a supergraph of LDel® (V). Thus,

UDel(V) C LDel®® (V) C PLDel(V) C LDel™M (V)

Similar to the proof that LDel®® (V) is a planar graph, they showed
that the algorithm does generate a planar graph. The total communication
cost to construct the graph PLDel(V') is a O(logn) times the number of
edges of the graph LDelV (V), which by Theorem 3.11 is O(n). Putting
together all the arguments above and Theorem 3.8,

Theorem 3.13 PLDel(V) is planar 4—\9/§7r—spanner of UDG(V), and can be
constructed with total communication cost O(nlogn) bits.
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3.3.2 Partial Delaunay triangulation

Stojmenovic and Li [56] also proposed a geometry structure, namely the par-
tial Delaunay triangulation (PDT), that can be constructed in a localized
manner. Partial Delaunay triangulation contains Gabriel graph as its sub-
graph, and itself is a subgraph of the Delaunay triangulation, more precisely,
the subgraph of the unit Delaunay triangulation UDel(V'). The algorithm
for the construction of PDT goes as follows.

Let u and v be two neighboring nodes in the network. Edge uv belongs
to Del(V) if and only if there exists a disk with u and v on its boundary,
which does not contain any other point from the set V. First test whether
disk(u,v) contains any other node from the network. If it does not, the edge
belongs to GG and therefore to PDT'. If it does, check whether nodes exist
on both sides of line uv or on only one side. If both sides of line uv contain
nodes from the set inside disk(u,v) then uv does not belong to Del(V).

Suppose now that only one side of line uv contains nodes inside the circle
disk(u,v), and let w be one such point that maximizes the angle Zuwv. Let
a = Zuwv. Consider now the largest angle Zuzv on the other side of the
mentioned circle disk(u,v), where z is a node from the set S. If Zuwv +
Zuzv > 7, then edge uv is definitely not in the Delaunay triangulation
Del(V'). The search can be restricted to common neighbors of v and v, if
only one-hop neighbor information is available, or to neighbors of only one
of the nodes if 2-hop information (or exchange of the information for the
purpose of creating PDT is allowed) is available. Then whether edge uv is
added to PDT is based on the following procedure.

Assume only Np(u) is known to u, and there is one node w from Ny (u)
that is inside disk(u,v) with the largest angle Zuwv. Edge uv is added to
PDT if the following conditions hold: (1) there is no node from Ni(u) that
lies on the different side of uv with w and inside the circumcircle passing
through u, v, and w, (2) sina > %, where R is the transmission radius of
each wireless node, d is the diameter of the circumcircle disk(u,v,w), and
a = Zuwv (here a > 7).

Assume only 1-hop neighbors are known to u and v, and there is one
node w from Nj(u) U Ni(v) that is inside disk(u,v) with the largest angle
Zuwv. Edge uv is added to PDT if the following conditions hold: (1) there
is no node from Nj(u) U Nj(v) that lies on the different side of uv with w
and inside the circumcircle passing u, v, and w, (2) cos § > %, where R is
the transmission radius of each wireless node and a = Zuww.

Obviously, PDT is a subgraph of UDel(V). Thus, the spanning ratio
of the partial Delaunay triangulation could be very large.
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Figure 7: Left: Only one hop information is known to uw. Then it requires
disk(u,v,w) to be covered by the transmission range of u (denoted by the
shaded region) and is empty of neighbors of u. Right: Node u knows N7 (u)
and node v knows Nj(v). The circumcircle disk(u,v,w) is covered by the
union of the transmission ranges of 4 and v and is empty of other vertices.

3.3.3 Restricted Delaunay Graph

Gao et al. [57] also proposed another structure, called restricted Delaunay
graph RDG and showed that it has good spanning ratio properties and is
easy to maintain locally. A restricted Delaunay graph of a set of points in
the plane is a planar graph and contains all the Delaunay edges with length
at most one. In other other words, they call any planar graph containing
UDel(V) as a restricted Delaunay graph. They described a distributed
algorithm to maintain the RDG such that at the end of the algorithm, each
node u maintains a set of edges F(u) incident to u. Those edges E(u) satisfy
that (1) each edge in F(u) has length at most one unit; (2) the edges are
consistent, i.e., an edge uv € E(u) if and only if uv € E(v); (3) the graph
obtained is planar; (4) The graph UDel(V) is in the union of all edges E(u).

The algorithm works as follows. First, each node u acquires the po-
sition of its 1-hop neighbors Nj(u) and computes the Delaunay triangu-
lation Del(Ny(u)) on Ni(u), including u itself. In the second step, each
node u sends Del(Ny(u)) to all of its neighbors. Let E(u) = {uv | uwv €
Del(N;(u))}. For each edge uv € E(u), and for each w € Ny (u), if u and v
are in Ni(w) and uv ¢ Del(N1(u)), then node u deletes edge uv from E(u).

When the above steps are finished, the resulting edges F(u) satisfy the
four properties listed above. However, unlike the local Delaunay triangula-
tion, the computation cost and communication cost of each node needed to
obtain E(u) is not optimal within a small constant factor.

3.4 Bounded Degree Planar Spanner

The structures discussed so far either have bounded degree, or is planar, or
is spanner, but none of the structures has all these three properties together.
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We then review one recent result [60] that can construct a bounded degree
planar spanner in a localized manner (total communication cost is O(n)
messages).

3.4.1 Centralized Construction for UDG

Our algorithms borrow some idea from the algorithm by Bose et al. [58]
which constructs a bounded degree and planar spanner for a given points
set V. For completeness of presentation, we review the basic steps of their
algorithm.

First, it computes the Delaunay triangulation of V, Del(V), and a
degree-3 spanning subgraph BDS(V) of Del(V). Then, for each polygon P
in BDS(V), their algorithm first orders the nodes according to a geometry
based breadth-first search, and processes the nodes of P in increasing order.
It prunes this part of the Delaunay triangulation such that each node of P
has low degree. The resulting graph is a planar spanner for the nodes of
P. By combining all the spanners for each of the polygons, we get a planar
spanner of bounded degree. Finally, they run a greedy algorithm in [59]
on these structure to bound the total weight from a constant factor of the
weight of the Euclidean minimum spanning tree.

They show that the length stretch factor of the final graph is 27 (7 +
1)/((3cos m/6)(1 + €)) and node degree is at most 27. The running time of
their algorithm is O(nlogn). However, their method is impossible to have a
localized even distributed version, since they use BFS and many operations
on polygons (such as degree-3 partitions). Notice that breadth-first-search
may take O(n?) communications. In this section, we give a new method for
constructing a planar spanner with bounded node degree for UDG(V'), and
show that it can be converted to a localized method in Section 3.4.2. The
basic idea of our method is to combine (localized) Delaunay triangulation
and the ordered Yao structure [34].

Centralized Algorithm for UDG We first study how to construct bounded
degree planar spanner for UDG in a centralized approach.

Algorithm 3 Centralized Construction of Planar Spanner with Bounded De-
gree for UDG(V)

1. Compute the Delaunay triangulation Del(V') of V.

2. Remove edges longer than 1 in Del(V). Call the remaining graph unit
Delaunay triangulation U Del(V'). For every node u, we know its unit
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Delaunay neighbors Ny pe;(u) and its node degree d,, in UDel(V).

3. Then, find an order = of V' as follows: Let G; = UDel(V) and dg,,
is the node degree of u in graph G. Remove the node u with the
smallest degree dg;, (smaller ID breaks tie) from graph G;, and call
the remaining graph G, for 1 < ¢ < n. Let my = ¢. Let P, denote
the predecessors of v in 7, i.e.,, P, = {u € V : m, < m,}. Since Gj is
always a planar graph, the smallest value of dg, ,, is at most 5. Then,
in ordering 7, node u has at most 5 edges to its predecessors P, in

UDel(V).

4. Let E be the edge set of UDel(V), E' be the edge set of the desired
spanner. Initialize F’ to be empty set and all nodes in V are unpro-
cessed. Then, for each node u in V, following the increasing order T,
run the following steps to add some edges from E to E’ (only consider
the unit Delaunay neighbors Ny pe;(u) of u):

(a) For node u, let v1,v9,--- ,v; be the unprocessed neighbors of u
in UDel(V) (see Figure 8). Here k < 5. Then k open sectors
at node u are defined by rays emanated from u to the processed
nodes v; in UDel(V'). For each sector centered at u, we divide it
into a minimum number of open cones of degree at most «, where
a < /3 is a parameter.

(b) For each cone, let s1,s2, -+ ,8, be the geometrically ordered
neighbors of u in Nype(u). Notice, s1,892,---,Smn are unpro-
cessed nodes. First add the shortest edge us; in this cone to F’,
then add to E’ all the edges sjsj+1, 1 < j < m. Here edges sjs;j41
are not necessarily in UDel(V).

(¢c) Mark node u processed.

5. Repeat this procedure in the increasing order of 7, until all nodes are
processed. Let BPS1(UDG(V')) denote the final graph formed by edge
set F'.

Notice that in the algorithm we use open sectors, which means that we
do not consider adding the edges on the boundaries.For example, in Figure
8, the cones do not include any edges uv;. This guarantee the algorithm does
not add any edges to node v; after v; has been processed. This approach, as
we will show it later, bounds the node degree.
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Figure 8: Constructing Planar Spanner with Bounded Degree for UDG(V):
Process node wu.

Analysis of Centralized Algorithm for UDG

Theorem 3.14 The mazimum node degree of the graph BPS1(UDG(V))
is at most 19 + [22].

For example, when o = 7/3, then the maximum node degree is at most
20. Method in [58] does not work for UDG.

Theorem 3.15 BPS{(UDG(V)) is a planar graph.
Finally, we prove BPS;(UDG(V)) is a spanner.

Theorem 3.16 Graph BPS,(UDG(V)) is a t-spanner, where

t= ma.x{g,ﬂsing + 1} - Cgey-

For example, when a = /3, then the spanning ratio is at most (5 +1)-
1

Cier; when a = 2arcsin(; — %) ~ 20.9°, then the spanning ratio is at most
(3) - Cge- We expect to further improve the bound on the spanning ratio
by using the following property: all such Delaunay neighbors s; is inside the
circumcircle of the triangle uvv'. See [60] for the detail of the proof.

Notice that we can build Delaunay triangulation in O(nlogn), and do
ordering in time O(nlogn) (using heap for the ordering based on degrees),
and Yao structure in O(n) (each edge is processed at most a constant times
and there are O(n) edges to be processed). Consequently, the time com-
plexity of our centralized algorithm is O(n logn), same with the method by
Bose et al. [58]. However, our algorithm has smaller bounded node degree,
and (more importantly) our algorithm has potential to become a localized

version for wireless networks application as we will describe next.
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3.4.2 Localized Construction

In [63], Wang et al. showed that an algorithm presented in [40] does con-
struct a bounded degree spanner for UDG with O(n) messages (with unit
logn bits) under the broadcast communication model, Li et al. [35] pre-
sented the first algorithm that constructs a planar spanner using only O(n)
messages under the broadcast communication model. No localized method is
known before for constructing a planar spanner with bounded node degree.

In this section, we reviewed the method in [60] that extended the al-
gorithm presented in previous section to generate bounded degree planar
spanner for UDG in a localized manner. The algorithm is based on a planar
spanner LDel® (V) for UDG proposed by Li et al. [35]. They [35] can-
not construct LDel® in O(n) messages due to the difficulty of collecting
the 2-hop neighbors for every node in O(n) messages. Computing the 2-
hop neighborhood is not trivial, as the UDG can be dense. The broadcast
nature of the communication in ad hoc wireless networks is however very
useful when computing local information. The approach (using O(n) mes-
sages total) by Gruia [64] is based on the specific connected dominating set
introduced by Alzoubi, Wan, and Frieder [65]. This connected dominating
set is based on a maximal independent set (MIS). In the algorithm, each
node uses its adjacent node(s) in the MIS to broadcast over a larger area
relevant information. Listening to the information about other nodes broad-
cast by the MIS nodes enables a node to compute its 2-hop neighborhood.

Finally, the following lemma was proved in [60].

Lemma 3.1 An edge uv is in LDel(Q)(V) iff there is a disk passing through
u, and v, which does not contain node from Na(u) U Na(v) inside.

Bound the Degree Locally In the previous section, we described a local-
ized algorithm to construct a planar spanner LDel(?) using O(n) messages.
However, some node in LDel(? could have degree as large as O(n). We [60]
then gave an efficient method to bound the node degree.

Algorithm 4 Localized Construction of Planar Spanner with Bounded Degree
for UDG(V)

1. First, compute the planar localized Delaunay triangulation LDel &) V),
so that every node u knows its neighbors N; ;) (u) and its node de-
gree d,, in LDel® (V).

2. Build a local order 7 of V' as follows: (Every node u initializes 7, = 0,
i.e., unordered.)
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(a)

If node v has 7, = 0 and d,, < 5, then u queries ! each node v,
from its unordered neighbors, the current degree d,. If node u
has the smallest ID among all unordered neighbors v with d, < 5,
node u sets 7, = max{m, | v € Ny p. e (uw)} + 1, and broadcasts
my to its neighbors N, ;.2 (u).

If node u receives a message from its neighbor v saying that m, =
k, it updates its d,, = d,, — 1 and also updates the order m, stored
locally. So d, represents how many neighbors are not ordered so
far. If node u finds that d,, < 5 and 7, = 0, it goes to Step 2 (a).
When node v finds that d,, = 0 and 7, > 0, it can go to step 3.

3. Build structures based on local order 7 as follows: (All nodes unpro-
cessed initially.)

(a)

(b)

If a unprocessed node u has the highest local order in its unpro-
cessed neighbors in LDel® (V), let k be the number of processed
neighbors 2 of v in LDel® (V). Node u divides its transmission
range to k open sectors cut by the rays from u to these processed
neighbors. Then divide each sector into a minimum number of
open cones of degree at most o with @ < w/3. For each cone,

let s1,89, -+, 8, be the ordered unprocessed neighbors of u in
N per» (u). For this cone, node u first adds an edge us;, where
s; is the nearest neighbor of u in s1,$9,---,$y,- Node u then

tells s; to add the edges s; 1s;, s;8;41, 1 < 7 < m. Node u
marks itself processed, and tells all nodes in N ;) (%) that it
is processed.

If a unprocessed node v receives a message for adding edge vv’
from its neighbor u, it adds vv'.

4. When all nodes are processed, the final network topology is denoted
by BPSy;(UDG(V)).

Analysis of Localized Algorithm We first show that the algorithm does
process all nodes. First of all, the algorithm cannot stop at stage of ordering
nodes locally. This can be shown by contradiction. Assume that there
are some nodes are unordered. The graph formed by these unordered are

'1f all unordered neighbors with d, < 5 has larger ID, we call such query round a

failed round. Node u performs a new round of queries only if it finds that the unordered
neighbors have been reduced from previous failed round.

2There are at most 5 processed neighbors since LDel® (V) is planar.
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planar, and thus it contains some nodes with at most 5 unordered neighbors.
Among these nodes, the node with the smallest ID will perform step 2 (a),
and reduces the number of unordered nodes consequently.

Notice that the ordering computed by our method is not a total order-
ing. Some nodes may have the same order. However, no two neighboring
nodes in LDel? (V) receive the same order. Thus, after all nodes are or-
dered, the algorithm will process all nodes. Observe that the algorithm do
not process two neighboring nodes at the same time. Assume that there are
two nodes, say u and v are processed at the same time. Remember that
we process a node only if it has the highest ordering among its unprocessed
neighbors. Thus, nodes u and v must receive the same order, i.e., m, = my,
which is impossible in our ordering method.

Additionally, remember that our algorithm checks if d,, < 5 for com-
puting an ordering locally. Here number 5 can be replaced by any integer
larger than 5. Using larger integer may make the algorithm run faster, but
on the other hand, it worsens the theoretical bound on the node degree. It
is not difficult to show that the constructed final topology still has bounded
node degree.

Theorem 3.17 The mazimum node degree of the graph BPSy(UDG(V))
is at most 19 + [2X].

Notice that, the algorithms [58, 66] always add the edges in the Delau-
nay triangulation to construct a bounded degree planar spanner for a set of
points. Thus, the planarity of the final structure is straightforward. The
algorithm we proposed in Section 3.4.1 may add some edges (such as edges
sisi+1 added in step 4(b) of Algorithm 3) that do not belong to the U Del(V).
To prove the planarity of the structure BPS;(UDG(V)), we show that no
two added diagonal edges intersect. The property that edges, which possi-
bly intersect s;s;4+1 in the centralized algorithm, are all Delaunay edges is
crucial in the proof of Theorem 3.15. This property does not hold anymore
in the localized algorithm. We will show that BPSy(UDG(V)) is a planar
graph using a different approach.

Theorem 3.18 BPSy;(UDG(V)) is a planar graph.
Theorem 3.19 Graph BPSy,(UDG(V)) is a t-spanner, where

t= max{g,wsin% + 1} - Cyer-
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Theorem 3.20 Algorithm 4 uses at most O(n) messages, where each mes-
sage has O(logn) bits.

PRrROOF. Notice that it was shown in [64] that we can collect the 2-hop
neighbor information for all nodes using total O(n) messages. The com-
munication cost of building LDel® is O(n) since every node only has to
propose at most 6 triangles and each propose is replied by two nodes.

The second step (local ordering) takes O(n) messages, since every node
only query at most 5 rounds, and at the ith round of query the node sends
at most 6 — ¢ query messages. For each query, only the queried node replies.
After it was ordered, it broadcasts once to inform its neighbors.

The third step (bounded degree) also takes O(n) messages, because
every node only broadcasts twice: (1) tell its neighbors to add some edges,
and (2) claims that it is processed. The total messages of telling neighbors
to add some edges is O(n) since the total added edges is O(n) from the
planar property of the final topology. So the total communication cost is
bounded by O(n).

It is easy to show that the computation cost of each node is at most
O(dylogds), where dy is the number of its 2-hop neighbors in UDG. This
can be improved to O(d;logd; + d2), where d; is the number of its 1-hop
neighbors in UDG. The improvement is based on the fact that we only need
the triangles Awuwv in LDel® (V) that has angle Zwuv > /3. All such
triangles are definitely in LDel() (V). Thus, we can construct the Delau-
nay triangulation Del(N7(u)) instead. Then check each candidate triangle
Awuv from LDelM(V) to see if they contain any node from Ny(u) inside
its circumcircle. If it does not, then it belongs to Del(Na(u)).

Observe that, after each node u collects the 2-hop neighbors Ny (u), our
algorithms can be performed asynchronously. However, collecting Na(u)
need synchronized communication since otherwise, a node cannot determine
if it indeed already collected Na(u).

3.5 Examples of Geometry Structure

We then gave some concrete examples of the geometry structures introduced
in the previous subsections.

3.6 Transmission Power Control

In the previous sections, we have assumed that the transmission power of

every node is equal and is normalized to one unit. We relax this assumption
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for a moment in this subsection. In other words, we assume that each node
can adjust its transmission power according to its neighbors’ positions. A
natural question is then how to assign the transmission power for each node
such that the wireless network is connected with optimization criteria being
minimizing the maximum (or total) transmission power assigned.

A transmission power assignment on the vertices in V is a function
f from V into real numbers. The communication graph, denoted by Gy,
associated with a transmission power assignment f, is a directed graph with
V as its vertices and has a directed edge 171)5 if and only if ||v;v;||® < f(vs).
We call a transmission power assignment f complete if the communication
graph G is strongly connected. Recall that a directed graph is strongly
connected if, for any given pair of ordered nodes s and %, there is a directed
path from s to ¢.

The mazimum-cost of a transmission power assignment f is defined as

me(f) = max f(v;).

v, €V

And the total-cost of a transmission power assignment f is defined as

se(f) =Y f(w).

v, €V

The min-max assignment problem is then to find a complete transmission
power assignment f whose cost mc(f) is the least among all complete as-
signments. The min-total assignment problem is to find a complete transmis-
sion power assignment f whose cost sc(f) is the least among all complete
assignments.

Given a graph H, we say the power assignment f is induced by H if

_ B
) = max[ju]”,
where F is the set of edges of H. In other words, the power assigned to a
node v is the largest power needed to reach all neighbors of v in H.
Transmission power control has been well-studied by peer researchers in
the recent years. Monks et al. [67] conducted simulations which show that
implementing power control in a multiple access environment can improve
the throughput performance of the non-power controlled IEEE 802.11 by a
factor of 2. Therefore it provides a compelling reason for adopting the power
controlled MAC protocol in wireless network.
The min-max assignment problem was studied by several researchers
[68, 69]. Let EMST(V) be the Euclidean minimum spanning tree over
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a point set V. Both [68] and [69] use the power assignment induced by
EMST(V). The correctness of using minimum spanning tree is proved in
[68]. Both algorithms compute the minimum spanning tree from the fully
connected graph. Notice that Kruskal’s or Prim’s minimum spanning tree
algorithm has time complexity O(m + nlogn), where m is the number of
edges of the graph. Thus, the approach by [68] and [69] has time complexity
O(n?) in the worst case. In addition, different distributed implementation
of this algorithm is not feasible because of the information each node has to
store and process. In contrast, we can give a simple O(nlogn) time com-
plexity centralized algorithm which can also be implemented efficiently for
distributed computation.

For an optimum transmission power assignment f,,, call a link uv the
critical link if ||uv||® = mec(fopt). It was proved in [68] that the longest edge
of the Euclidean minimum spanning tree EMST(V) is always the critical
link.

The best distributed algorithm [70, 71, 72] can compute the minimum
spanning tree in O(n) rounds using O(m + nlogn) communications for a
general graph with m edges and n nodes. The relative neighborhood graph,
the Gabriel graph and the Yao graph all have O(n) edges and contain the
Euclidean minimum spanning tree. This implies the following theorem.

Theorem 3.21 The distributed min-max assignment problem can be solved
in O(n) rounds using O(nlogn) communications.

The min-total assignment problem was studied by Kiroustis et al. [73]
and by Clementi et al. [74, 75, 76]. Kiroustis et al. [73] first proved that
the min-total assignment problem is NP-hard when the mobile nodes are
deployed in a three-dimensional space. A simple 2-approximation algorithm
based on the Euclidean minimum spanning tree was also given in [73]. The
algorithm guarantees the same approximation ratio in any dimensions. Then
Clementi et al. [74, 75, 76] proved that the min-total assignment problem
is still NP-hard when the mobile nodes are deployed in a two dimensional
space.

Recently, Calinescu et al. gave a method that achieves better approx-
imation ratio than the approach by the minimum spanning tree by using
idea from the minimum Steiner tree.
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4 Clustering, Virtual Backbone

While all the structures discussed so far are flat structures, there are an-
other set of structures, called hierarchical structures, are used in wireless
networks. Instead of all nodes are involved in relaying packets for other
nodes, the hierarchical routing protocols pick a subset of nodes that server
as the routers, forwarding packets for other nodes. The structure used to
build this virtual backbone is usually the connected dominating set.

4.1 Centralized Methods

Guha and Khuller [77] studied the approximation of the connected dominat-
ing set problem for general graphs. They gave two different approaches, both
of them guarantee approximation ratio of ©(H(A)). As their approaches are
for general graphs and thus do not utilize the geometry structure if applied
to the wireless ad hoc networks.

One approach is to grow a spanning tree that includes all nodes. The
internal nodes of the spanning tree is selected as the final connected domi-
nating set. They first pick the node (marked with black) with the maximum
node degree and all of its neighbors as its children (marked with gray). They
give two rules for selecting nodes (either gray node or a gray node and a
white node adjacent to it) to grow the spanning tree: (1) the gray node
with the maximum number of white neighbors; (2) two adjacent nodes, one
is gray and one is white, with the maximum number of white neighbors.
This approach has approximation ratio 2(H(A) + 1), see [77] .

The other approach is first approximating the dominating set and then
connecting the dominating set to a connected dominating set. It runs in two
phases. At the start of the first phase all nodes are colored white. Each time
a vertex is included into the dominating set, we color it black. Dominators
are colored gray. In this first phase, the algorithm picks a node at each step
and colors it black and colors all its adjacent nodes gray (as dominators). A
piece is defined as a white node, or a black connected component. At each
step, pick a node to color black that gives the maximum non-zero reduction
in the number of pieces. In the second phase, recursively connect pairs of
black components by choosing a chain of vertices, until there is only one
black connected component. The final connected dominating set is the set
of black vertices. They [77] proved that this approach has approximation
ratio In A + 3.

One can also use the Steiner tree algorithm to connect the domina-
tors. This straightforward method gives approximation ratio ¢(H(A) + 1),
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where c is the approximation ratio for the unweighted Steiner tree problem.
Currently, the best ratio is 1 + h‘T?’ ~ 1.55, due to Robins and Zelikovsky
[78].

By definition, any algorithm generating a maximal independent set is
a clustering method. We first review the methods that approximates the
maximum independent set, the minimum dominating set, and the minimum
connected dominating set.

Hunt et al. [79] and Marathe et al. [80] also studied the approximation
of the maximum independent set and the minimum dominating set for unit
disk graphs. They gave the first PTASs for MDS in UDG. The method is
based on the following observations: a maximal independent set is always a
dominating set; given a square {2 with a fixed area, the size of any maximal
dominating set is bounded by a constant C. Assume that there are n nodes
in . Then, we can enumerate all sets with size at most C in time ©(n°).
Among these enumerated sets, the smallest dominating set is the minimum
dominating set. Then, using the shifting strategy proposed by Hochbaum
[81], they derived a PTAS for the minimum dominating set problem.

Since we have PTAS for minimum dominating set and the graph VirtG
connecting every pair of dominators within at most 3 hops is connected [11],
we have an approximation algorithm (constructing a minimum spanning
tree VirtG) for MCDS with approximation ratio 3+ ¢. Notice that, Berman
et al. [82] gave an 3 approximation method to connect a dominating set
and Robins et al. [78] gave an % approximation method to connect an
independent set. Thus, we can easily have an % approximation algorithm
for MCDS, which was reported in [83]. Recently, Cheng et al. [84] designed
a PTAS for MCDS in UDG. However, it is difficult to distributize their
method efficiently.

4.2 Distributed Methods

Many distributed clustering (or dominating set) algorithms have been pro-
posed in the literature [9, 85, 86, 87, 24, 88]. All algorithms assume that
the nodes have distinctive identities (denoted by ID hereafter).

In the rest of section, we will interchange the terms cluster-head and
dominator. The node that is not a cluster-head is also called dominatee. A
node is called white node if its status is yet to be decided by the clustering
algorithm. Initially, all nodes are white. The status of a node, after the
clustering method finishes, could be dominator with color black or domina-
tee with color gray. The rest of this section is devoted for the distributed
methods that approximates the minimum dominating set and the minimum
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connected dominating set for unit disk graph.

4.2.1 Clustering without Geometry Property

For general graphs, Jia et al. [89] described and analyzed some randomized
distributed algorithms for the minimum dominating set problem that run
in polylogarithmic time, independent of the diameter of the network, and
that return a dominating set of size within a logarithmic factor from the
optimum with high probability. Their best algorithm runs in O(logn log A)
rounds with high probability, and every pair of neighbors exchange a con-
stant number of messages in each round. The computed dominating set is
within O(log A) in expectation and within O(logn) with high probability.
Their algorithm works for weighted dominating set also.

The method proposed by Das et al. [6, 90] contains three stages: ap-
proximating the minimum dominating set, constructing a spanning forest of
stars, expanding the spanning forest to a spanning tree. Here the stars are
formed by connecting each dominatee node to one of its dominators. The
approximation method of MDS is essentially a distributed variation of the
the centralized Chvatal’s greedy algorithm [91] for set cover. Notice that
the dominating set problem is essentially the set cover problem which is
well-studied. It is then not surprise that the method by Das et al. [6, 90]
guarantees a H(A) for the MDS problem, where H is the harmonic function
and A is the maximum node degree.

While the algorithm proposed by Das et al. [6, 90] finds a dominating
set and then grows it to a connecting dominating set, the algorithm proposed
by Wu and Li [92, 7] takes an opposite approach. They first find a connecting
dominating set and then prune out certain redundant nodes from the CDS.
The initial CDS C contains all nodes that have at least two non-adjacent
neighbors. A node u is said to be locally redundant if it has either a neighbor
in C with larger ID which dominate all other neighbors of u, or two adjacent
neighbors with larger ID which together dominates all other neighbors of u.
Their algorithm then keeps removing all locally redundant nodes from C.
They showed that this algorithm works well in practice when the nodes are
distributed uniformly and randomly, although no any theoretical analysis is
given by them both for the worst case and for the average approximation
ratio. However, it was shown by Alzoubi et al. [9] that the approximation
ratio of this algorithm could be as large as 7.

Stojmenovic et al. [8] proposed several synchronized distributed con-
structions of connecting dominating set. In their algorithms, the connecting
dominating set consists of two types of nodes: clusterhead and border-nodes
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(also called gateway or connectors elsewhere). The clusterhead nodes are
just a maximal independent set, which is constructed as follows. At each
step, all white nodes which have the lowest rank among all white neighbors
are colored black, and the white neighbors are colored gray. The ranks of
the white nodes is updated if necessary. Here, the following rankings of a
node are used in various methods: the ID only [86, 85], the ordered pair of
degree and ID [93], and an ordered pair of degree and location [8]. After the
clusterhead nodes are selected, border-nodes are selected to connect them.
A node is a border-node if it is not a clusterhead and there are at least two
clusterheads within its 2-hop neighborhood. It was shown by [9] that the
worst case approximation ratio of this method is also %, although it works
well in practice.

In [94, 95], Basagni et al. studied how to maintain the clustering in
mobile wireless ad hoc networks. It uses a general weight as a criterion for
selecting the node as the clusterhead, where the weight could be any criteria
used before.

4.2.2 Clustering with Geometry Property

Notice that none of the above algorithm utilizes the geometry property of
the underlying unit disk graph. Recently, several algorithms were proposed
with a constant worst case approximation ratio by taking advantage of the
geometry properties of the underlying graph. These methods typically use
two messages similar to lamDominator and lamDominatee, and typically have
the following procedures: a white node claims itself to be a dominator if it
has the smallest ID among all of its white neighbors, if there is any, and
broadcasts lamDominator to its 1-hop neighbors. A white node receiving
lamDominator message marks itself as dominatee and broadcasts lamDomi-
natee to its 1-hop neighbors. The set of dominators generated by the above
method is actually a maximal independent set. Here, we assume that each
node knows the IDs of all its 1-hop neighbors, which can be achieved by
asking each node to broadcast its ID to its 1-hop neighbors initially. This
approach of constructing MIS is well-known. For example, Stojmenovic et
al. [8] also used this method to compute the MIS.

The second step of backbone formation is to find some connectors (also
called gateways) among all the dominatees to connect the dominators. Then
the connectors and the dominators form a connected dominating set. Re-
cently, Wan, et al. [10] proposed a communication efficient algorithm to
find connectors based on the fact that there are only a constant number of
dominators within k-hops of any node. The following observation is a basis

38



of several algorithms for CDS. After clustering, one dominator node can be
connected to many dominatees. However, it is well-known that a domina-
tee node can only be connected to at most five dominators in the unit disk
graph model.

Lemma 4.1 In UDG, for every dominatee node v, it can be connected to
at most 5 dominator nodes.

Generally, it was shown in [10, 11] that for each node (dominator or
dominatee), there are at most a constant number of dominators that are at
most k units away.

Lemma 4.2 For every node v, the number of dominators inside the disk
centered at v with radius k-units is bounded by a constant £, < (2k + 1)2.

Lemma 4.3 Given a dominating set S, let VirtG be the graph connecting
all pairs of dominators u and v if there is a path in UDG connecting them
with at most 3 hops. VirtG is connected.

It is natural to form a connected dominating set by finding connectors to
connect any pair of dominators u and v if they are connected in VirtG. This
strategy is also adopted by Wan, et al. [10]. Notice that, in the approach
by Stojmenovic et al. [8], they set any dominatee node as the connector if
there are two dominators within its 2-hop neighborhood. This approach is
very pessimistic and results in very large number of connectors in the worst
case [9]. Instead, Wan et al. suggested to find only one unique shortest path
to connect any two dominators that are at most three hops away.

We first briefly review their basic idea of forming a CDS in a distributed
manner. Let IIype(u,v) be the path connecting two nodes u and v in UDG
with the smallest number of hops. Let’s first consider how to connect two
dominators within 3 hops. If the path IIypg(u,v) has two hops, then u
finds the dominatee with the smallest ID to connect u and v. If the path
My pG(u,v) has three hops, then u finds the node, say w, with the smallest
ID such that w and v are two hops apart. Then node w selects the node
with the smallest ID to connect w and v.

Wang and Li [11] and Alzoubi et al. [10] discussed in detail some
approaches to optimize the communication cost and the memory cost. We
briefly review the approaches proposed in [65, 11]. Notice that, for example,
it is not obvious how node u can find such node w efficiently. In addition
that, using the smallest ID is not efficient because we may have to postpone
the selecting of connectors till the node collects the IDs of all its one-hop
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neighbors. Instead of using the intermediate node with the smallest ID, we
pick any node that comes first to the notice of the node that makes the
selection of connectors. Their method uses the following primitive messages
(some messages are used in forming clusters):

e lamDominator(u): w tells its 1-hop neighbors that u is a dominator;

e lamDominatee(u, v): node u tells its 1-hop neighbors that u is a dom-
inatee of node v;

e 2HopsPath(u,w,v): node wu tells its 1-hop neighbors that u has a 2-
hops path uwwv and w is the unique node selected by u among all
intermediate nodes that can connect u and v.

e 3HopsPath(z,u,w,v): node x tells its 1-hop neighbors that x has a
3-hops path zuwwv and u and w are the uniquely selected nodes among
all intermediate nodes. Node u is selected by node z and node w is
selected by node u.

The message lamDominator(u) is only broadcasted at most once by each
node; lamDominatee(u,v) is only broadcasted at most five times by each
node u for all possible dominators v from Lemma 4.1; from Lemma 4.2, we
know that 2HopsPath(u, w, v) and 3HopsPath(z, u, w, v) are also broadcasted
at most a constant times by each node for all possible dominator v.

To save the memory cost of each wireless node, they [11] also designed
the following link lists for each node w:

e Dominators: it stores all dominators of w if there is any. Notice that if
the node itself is a dominator, no value is assigned for Dominators.

e Connector2HopsPath: for each dominator v that are 2-hops apart from
u, node u stores (w,v), where the intermediate node w is selected by
4 to connect v and v.

e Connector3HopsPath: for each dominator v that are 3-hops apart from
u, node u stores (w,z,v) such that there is a path wwzv, and w is
selected by u and x is the node selected by w to connect v.

Notice that for each node, there are at most five dominators. So the size
of link list Dominators is at most five. Then from Lemma, 4.2, for each node wu,
there are at most £, number of dominators v that are k-hops apart from w.
Therefore, the sizes of link lists Connector2HopsPath, Connector3HopsPath

40



are bounded by /> and /3 respectively. Then we are in the position to
review the distributed algorithm proposed in [65, 11] to find the connectors
efficiently. Assume that a maximal independent set is already constructed
by a cluster algorithm.

Algorithm 5 Finding Connectors

1. Every dominatee node w broadcasts to its 1-hop neighbors a message
lamDominatee(w, v) for each dominator v stored at Dominators.

2. Assume node u receives a message lamDominatee(w,v) for the first
time. If u # v, v is not in Dominators list of u, and there is no pair (*, v)
in Connector2HopsPath, then u adds (w,v) to Connector2HopsPath.
Here * denotes any node ID. If u is a dominatee, then it broadcasts
message a 2HopsPath(u,w,v) to its 1-hop neighbors. If node u is a
dominator, node u already knows a path wwv to connect a 2-hops
apart dominator v.

Node u will discard any message lamDominatee(*,v) afterward.

3. When a node w (it must be a dominatee here) receives the message
2HopsPath(u, w,v), node w marks itself as a connector, if u is a dom-
inator.

4. Assume a dominator z receives the message 2HopsPath(u, w, v), where
x # w. If there is no triple (x,*,v) in Connector3HopsPath, then
z adds (u,w,v) to Connector3HopsPath and broadcasts the message
3HopsPath(z, u, w,v) to its 1-hop neighbors. Then node z already
knows a path zuwv to connect a 3-hops apart dominator v.

5. When a node u (it must be dominatee here) receives the message
3HopsPath(z, u, w,v), node u marks itself as a connector. Node u
sends a message to node w asking w to be a connector.

Notice that it is possible that, given any two nodes u and v, the path
found by node u to connect v is different from the path found by v to connect
u. This increases the robustness of the backbone. When only one connecting
path between any pair of dominators is needed, they suggested to add the
following restrictions: a dominator node u stores a 2-hops or 3-hops path
connecting it to another dominator node v if and only if node u has a smaller
ID. In other words, the decision to select the connectors is always made by
the node with smaller ID.
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The graph constructed by the above algorithm FindingConnectors
is called a CDS graph (or backbone of the network). If we also add all edges
that connect all dominatees to their dominators, the graph is called extended
CDS, denoted by CDS’.

Lemma 4.4 The number of connectors found is at most ¢3 times of the
minimum. The size of the connected dominating set found by the above
algorithm is within a small constant factor of the minimum.

Let opt be the size of the minimum connected dominating set. It was
shown [80] that the size of the computed maximal independent set has size at
most 4xopt+1. We already showed that the size of the connected dominating
set found by the above algorithm is at most £3k+ k&, where k is the size of the
maximal independent set found by the clustering algorithm. It implies that
the found connected dominating set has size at most 4(¢3 4 1) x opt + £3 + 1.
Consequently, the computed connected dominating set is at most 4(¢3 + 1)
factor of the optimum (with an additional constant /3 + 1).

4.2.3 The Properties of Backbone

It was shown in [65, 11] that the CDS’ graph is a sparse spanner in terms
of both hops and length, meanwhile CDS has a bounded node degree.

Lemma 4.5 The node degree of CDS is bounded by max(¢3,5 + £2).

The above lemma immediately implies that CDS is a sparse graph, i.e.,
the total number of edges is O(k), where k is the number of dominators.
Moreover, the graph CDS’ is also a sparse graph because the total number
of the links from dominatees to dominators is at most 5(n — k). Notice that
we have at most n — k dominatees, each of which is connected to at most
5 dominators. The node degree in CDS is bounded, however, the degree of
some dominator node in CDS’ may be arbitrarily large.

After we construct the backbone CDS and the induced graph CDS’, if
a node u wants to send a message to another node v, it follows the following
procedure. If v is within the transmission range of u, node u directly sends
message to v. Otherwise, node u asks its dominator to send this message
to v (or one of its dominators) through the backbone. They showed that
CDS’ (plus all implicit edges connecting dominatees that are no more than
one unit apart) is a good spanner in terms of both hops and length.

Lemma 4.6 The hops stretch factor of CDS’ is bounded by a constant 3
and the length stretch factor of CDS’ is bounded by a constant 6.
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Several routing algorithms require the underlying topology be planar.
Notice in the formation algorithm of CDS, we do not use any geometry
information. The resulting CDS maybe non-planar graph. Even using some
geometry information, the CDS still is not guaranteed to be a planar graph.
Then Li et al. [11] proposed a method to make the graph CDS planar
without losing the spanner property of the backbone. Their method applies
the localized Delaunay triangulation [35] on top of the induced graph from
CDS, denoted by ICDS. It was proved in [35] that LDel(G) is a spanner if
G is a unit disk graph. Notice that ICDS is a unit disk graph defined over
all dominators and connectors. Consequently, LDel(ICDS) is a spanner in
terms of length.

Lemma 4.7 [11] The hops and length stretch factors of LDel(ICDS) are
bounded by some constants.

5 Localized Routings

The geometric nature of the multi-hop ad-hoc wireless networks allows a
promising idea: localized routing protocols. A routing protocol is localized
if the decision to which node to forward a packet is based only on:

e The information in the header of the packet. This information includes
the source and the destination of the packet, but more data could be
included, provided that its total length is bounded.

e The local information gathered by the node from a small neighbor-
hood. This information includes the set of 1-hop neighbors of the
node, but a larger neighborhood set could be used provided it can be
collected efficiently.

Randomization is also used in designing the protocols. A routing is said to be
memory-less if the decision to which node to forward a packet is solely based
on the destination, current node and its neighbors within some constant
hops. Localized routing is sometimes called in the literature stateless [27],
online [96, 61], or distributed [97].

5.1 Location Service

In order to make the localized routing work, the source node has to learn the
current (or approximately current) location of the destination node. Notice
that, for sensor networks collecting data, the destination node is often fixed,
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thus, location service is not needed in these applications. However, the
help of a location service is needed in most application scenarios. Mobile
nodes register their locations to the location service. When a source node
does not know the position of the destination node, it queries the location
service to get that information. In cellular networks, there are dedicated
position severs. It will be difficult to implement the centralized approach of
location services in wireless ad-hoc networks. First, for centralized approach,
each node has to know the position of the node that provides the location
services, which is a chicken-and-egg problem. Second, the dynamic nature
of the wireless ad hoc networks makes it very unlikely that there is at least
one location server available for each node. Thus, we will concentrate on
distributed location services.

For the wireless ad hoc networks, the location service provided can be
classified into four categorizes: some-for-all, some-for-some, all-for-some,
all-for-all. Some-for-all service means that some wireless nodes provide
location services for all wireless nodes. Other categorizations are defined
similarly.

An example of all-for-all services is the location services provided in
the Distance Routing Effect Algorithm for Mobility (DREAM) by Basagni
et al. [98]. Each node stores a database of the position information for all
other nodes in the wireless networks. Each node will regularly flood packets
containing its position to all other nodes. A frequency of the flooding and
the range of the flooding is used as a control of the cost of updating and the
accuracy of the database.

Using the idea of guorum developed in the databases and distributed
systems, Hass and Liang [99], Stojmenovic [100] developed quorum based
location services for wireless ad-hoc networks. Given a set of wireless nodes
V, a quorum system is a set of subset (Q1, Q2, ---, Q) of nodes whose
union is V. These subsets could be mutually disjoint or often have equal
number of intersections. When one of the nodes requires the information
of the other, it suffices to query one node (called the representative node of
Q;) from each quorum @;. A virtual backbone is often constructed between
the representative nodes using a non-position-based methods such as [10, 9].
The updating information of a node v is sent to the representative node (or
the nearest if there are many) of the quorum containing v. The difficulty of
using quorum is that the mobility of the nodes requires the frequent updating
of the quorums. The quorum based location service is often some-for-some
type.

The other promising location service is based on the quadtree partition
of the two-dimensional space [101]. It divides the region containing the
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wireless network into hierarchy of squares. The partition of the space in [101]
is uniform. However, we notice that the partition could be non-uniform if the
density of the wireless nodes is not uniform for some applications. Each node
v will have the position information of all nodes within the same smallest
square containing v. This position information of v is also propagated to up-
layer squares by storing it in the node with the nearest identity to v in each
up-layer square containing v. Using the nearest identity over the smallest
identity can avoid the overload of some nodes. The query is conducted
accordingly. It is easy to show that it takes about O(logn) time to update
the location of v and to query another node’s position information.

5.2 Localized Routing Protocols

We summarize some localized routing protocols proposed in the networking
and computational geometry literature.

Compass Random Compass Greedy

Most Forwarding  Nearest Neighbor Farthest Neighbor

Figure 10: Various localized routing methods. Shaded area is empty and v
is next node.

The following routing algorithms on the graphs were proposed recently.

Compass Routing Let ¢ be the destination node. Current node u finds
the next relay node v such that the angle Zvut is the smallest among
all neighbors of u in a given topology. See[102].

Random Compass Routing Let u be the current node and ¢ be the des-
tination node. Let v; be the node on the above of line ut such that
Zvyut is the smallest among all such neighbors of w. Similarly, we
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define vg to be nodes below line ut that minimizes the angle Zvout.
Then node v randomly choose v; or vg to forward the packet. See[102].

Greedy Routing Let ¢ be the destination node. Current node u finds the
next relay node v such that the distance ||[vt|| is the smallest among
all neighbors of u in a given topology. See [26].

Most Forwarding Routing (MFR) Current node u finds the next relay
node v such that ||v't]| is the smallest among all neighbors of u in a
given topology, where v’ is the projection of v on segment ut. See [97].

Nearest Neighbor Routing (NN) Given a parameter angle «, node u
finds the nearest node v as forwarding node among all neighbors of u
in a given topology such that Zvut < a.

Farthest Neighbor Routing (FN) Given a parameter angle «, node u
finds the farthest node v as forwarding node among all neighbors of u
in a given topology such that Zvut < .

Greedy-Compass Current node u first finds the neighbors v; and v such
that v; forms the smallest counter-clockwise angle Ztuv; and vo forms
the smallest clockwise angle Ztuvy among all neighbors of u with the
segment ut. The packet is forwarded to the node of {v;,v2} with
minimum distance to ¢. See [61, 103]

Notice that it is shown in [26, 102] that the compass routing, random
compass routing and the greedy routing guarantee to deliver the packets
from the source to the destination if Delaunay triangulation is used as net-
work topology. They proved this by showing that the distance from the
selected forwarding node v to the destination node ¢ is less than the dis-
tance from current node u to t. However, the same proof cannot be carried
over when the network topology is Yao graph, Gabriel graph, relative neigh-
borhood graph, and the localized Delaunay triangulation. When the under-
lying network topology is a planar graph, the right hand rule is often used
to guarantee the packet delivery after simple localized routing heuristics fail
[26, 97, 27].

Theorem 5.1 [103] The greedy routing guarantees the delivery of the pack-
ets if the Delaunay triangulation is used as the underlying structure. The
compass routing guarantees the delivery of the packets if the regular trian-
gulation is used as the underlying structure. There are triangulations (not
Delaunay) that defeat these two schemes. The greedy-compass routing works
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for all triangulations, i.e., it guarantees the delivery of the packets as long
as there is a triangulation used as the underlying structure. Every oblivious
routing method is defeated by some convexr subdivisions.

Here a triangulation is regular triangulation if it is the projection of the
lower convex hull of some 3-dimensional polytopes P into the X-Y plane.
Delaunay triangulation is a special regular triangulation in which all the
vertices of P are on a paraboloid 22 = z? + 32. Another interesting trian-
gulation is greedy triangulation which is constructed by adding edges in the
increasing order of their lengths to avoid crossing edges. They [103] also
study the localized routing for greedy triangulation. As the greedy trian-
gulation can not be constructed locally or very efficiently in a distributed
manner. We omit that part in this survey. It is easy to see that there is no
memoryless routing method that works in the unit disk graph.

5.3 Quality Guaranteed Protocols

With respect to localized routing, there are several ways to measure the
quality of the protocol. Given the scarcity of the power resources in wireless
networks, minimizing the total power used is imperative. A stronger con-
dition is to minimize the total Fuclidean distance traversed by the packet.
Morin et al. [61, 103] also studied the performance ratio of previously studied
localized routing methods. They proved that none of the previous proposed
heuristics guarantees a constant ratio of the traveled distance of a packet
compared with the minimum. They gave the first localized routing algo-
rithm such that the traveled distance of a packet from u to v is at most
a constant factor of ||uv|| when the Delaunay triangulation is used as the
underlying structure.
Their algorithm is based on the proof of the spanner property of the
Delaunay triangulation [62]. Without loss of generality, let by = u, b1, bo,
-+, bm—1, by = v be the vertices corresponding to the sequence of Voronoi
regions traversed by walking from u to v along the segment uv. If a Voronoi
edge or a Voronoi vertex happens to lie on the segment wv, then choose
the Voronoi region lying above uv. See Figure 11. Given two nodes u and
v, tunnel(u,v) is defined as the collection of triangles that intersect the
segment uv. The sequence of nodes b;, 0 < i < m, defines a path from u to
v. In general, they [62] refer to the path constructed this way between some
nodes u and v as the direct DT path from u to v.
Assume that line uv is the z-axis. The path constructed by Dobkin et
al. uses the direct DT path as long as it is above the z-axis. Assume that
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Figure 11: There is a good approximation path using the edges of
tunnel(u,v).

the path constructed so far has brought us to some node b; such that b; is
above wv, and b; 11 is below uv. Let j be the least integer larger than ¢ such
that b; is above uv. Notice that here j exists because b, = v is on uv. Then
the path constructed by Dobkin et al. uses either the direct DT path to b;
or takes a shortcut. See [62] for more detail about the condition when to
choose the direct DT path from b; to b;, when to choose the shortcut path
from b; to bj, and how the short-cut path is defined.

Bose and Morin basically use sort of binary search method to find which
path is better. Refer [103] for more detail of finding the path. However,
their algorithm needs the Delaunay triangulation as the underlying structure
which is expensive to construct in wireless ad hoc networks. In [104], they
further extent their method to any triangulations satisfying the diamond
property. Here, a triangulation satisfying the diamond property if for every
edge wv in the triangulation, either Auvw; or Auvwsy is empty of other
vertices, where w; satisfying Zw;uv = Zw;vu = ¢, for i = 1,2.

Localized routing protocols support mobility by eliminating the com-
munication intensive task of updating the routing tables. But mobility can
affect the localized routing protocols, in both the performance and the guar-
antee of delivery. There is no work so far to design protocols with guaranteed
delivery when the network topology changes during the routing.

6 Broadcasting & Multicasting

Minimum-energy broadcast/multicast routing in a simple ad hoc networking
environment has been addressed by the pioneering work in [105, 106, 107,
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108]. To assess the complexities one at a time, the nodes in the network are
assumed to be randomly distributed in a two-dimensional plane and there
is no mobility. Nevertheless, as argued in [108], the impact of mobility can
be incorporated into this static model because the transmitting power can
be adjusted to accommodate the new locations of the nodes as necessary. In
other words, the capability to adjust the transmission power provides con-
siderable “elasticity” to the topological connectivity, and hence may reduce
the need for hand-offs and tracking. In addition, as assumed in [108], there
are sufficient bandwidth and transceiver resources. Under these assump-
tions, centralized (as opposed to distributed) algorithms were presented by
[108] for minimum-energy broadcast/multicast routing. These centralized
algorithms, in this simple networking environment, are expected to serve as
the basis for further studies on distributed algorithms in a more practical
network environment, with limited bandwidth and transceiver resources, as
well as the node mobility.

6.1 Broadcasting

Three greedy heuristics were proposed in [108] for the minimum-energy
broadcast routing problem: MST (minimum spanning tree), SPT (shortest-
path tree), and BIP (broadcasting incremental power). The MST heuristic
first applies the Prim’s algorithm to obtain a MST, and then orient it as
an arborescence rooted at the source node. The SPT heuristic applies the
Dijkstra’s algorithm to obtain a SPT rooted at the source node. The BIP
heuristic is the node version of Dijkstra’s algorithm for SPT. It maintains,
throughout its execution, a single arborescence rooted at the source node.
The arborescence starts from the source node, and new nodes are added to
the arborescence one at a time on the minimum incremental cost basis until
all nodes are included in the arborescence. The incremental cost of adding
a new node to the arborescence is the minimum additional power increased
by some node in the current arborescence to reach this new node. The im-
plementation of BIP is based on the standard Dijkstra’s algorithm, with one
fundamental difference on the operation whenever a new node g is added.
Whereas the Dijkstra’s algorithm updates the node weights (representing
the current knowing distances to the source node), BIP updates the cost
of each link (representing the incremental power to reach the head node of
the directed link). This update is performed by subtracting the cost of the
added link pg from the cost of every link gr that starts from ¢ to a node r
not in the new arborescence.

They have been evaluated through simulations in [108], but little is
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known about their analytical performances in terms of the approximation
ratio. Here, the approximation ratio of a heuristic is the maximum ratio
of the energy needed to broadcast a message based on the arborescence
generated by this heuristic to the least necessary energy by any arborescence
for any set of points. The analytical performance is very essential and more
convincing in evaluating these heuristics, because one may come up with
several seemingly reasonable greedy heuristics. But it is hard to tell from
simulation outputs which one is better or worse in the worst case scenario.

For a pure illustration purpose, another slight variation of BIP was dis-
cussed in detail in [109]. This greedy heuristic is similar to the Chvatal’s
algorithm [110] for the set cover problem and is a variation of BIP. Like BIP,
an arborescence, which starts with the source node, is maintained through-
out the execution of the algorithm. However, unlike BIP, many new nodes
can be added one at a time. Similar to the Chvatal’s algorithm [110], the
new nodes added are chosen to have the minimal average incremental cost,
which is defined as the ratio of the minimum additional power increased by
some node in the current arborescence to reach these new nodes to the num-
ber of these new nodes. They called this heuristic as the Broadcast Average
Incremental Power (BAIP). In contrast to the 1+ logm approximation ratio
of the Chvatal’s algorithm [110], where m is the largest set size in the Set
Cover Problem, they showed that the approximation ratio of BAIP is at

4in

least " — 0(1), where n is the number of receiving nodes.

Wan et al. [109, 111] showed that the approximation ratios of MST

and BIP are between 6 and 12 and between 13—3 and 12 respectively; on the

other hand, the approximation ratios of SPT and BAIP are at least 5 and
é—"n —0(1) respectively, where n is the number of nodes. We then discuss in
detail of their proof techniques.

Any broadcast routing is viewed as an arborescence (a directed tree)
T, rooted at the source node of the broadcasting, that spans all nodes. Let
fr (p) denote the transmission power of the node p required by 7T'. For any

leaf node p of T, fr (p) = 0. For any internal node p of T,
_ 8
fr(p) = max [[pql|”,

in other words, the §-th power of the longest distance between p and its
children in 7. The total energy required by T is >°,p fr (p). Thus the
minimum-energy broadcast routing problem is different from the conven-
tional link-based minimum spanning tree (MST) problem. Indeed, while
the MST can be solved in polynomial time by algorithms such as Prim’s
algorithm and Kruskal’s algorithm [112], it is still unknown whether the
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minimum-energy broadcast routing problem can be solved in polynomial
time. In its general graph version, the minimum-energy broadcast routing
can be shown to be NP-hard [113], and even worse, it can not be approxi-
mated within a factor of (1 — ¢)log A, unless NP C DTIME [nOUcglogn)],
where A is the maximal degree and € is any arbitrary small positive constant.
However, this intractability of its general graph version does not necessarily
imply the same hardness of its geometric version. In fact, as shown later in
the survey, its geometric version can be approximated within a constant fac-
tor. Nevertheless, this suggests that the minimum-energy broadcast routing
problem is considerably harder than the MST problem. Recently, Clementi
et al. [105] proved that the minimum-energy broadcast routing problem is
a NP-hard problem and obtained a parallel but weaker result to those of
109, 111].

Wan et al. [109, 111] gave some lower bounds on the approximation ra-
tios of MST and BIP by studying some special instances in [109, 111]. Their
deriving of the upper bounds relies extensively on the geometric structures
of Euclidean MSTs. They first observed that as long as the cost of a link is
an increasing function of the Euclidean length of the link, the set of MSTs
of any point set coincides with the set of Euclidean MSTs of the same point
set. In particular, for any spanning tree T of a finite point set P, parameter
Y et le||? achieves its minimum if and only if 7' is an Euclidean MST of P.
For any finite point set P, let mst (P) denote an arbitrary Euclidean MST
of P. The radius of a point set P is defined as

inf su ;
pEquegllpqll

Thus, a point set of radius one can be covered by a disk of radius one. A
key result in [109, 111] is an upper bound on the parameter }_ ... p) le||?
for any finite point set P of radius one. Note that the supreme of the total
edge lengths of mst (P), Y. (p) llell, over all point sets P of radius one

is infinity. However, the parameter Y ¢, (p) lle||? is bounded from above
by a constant for any point set P of radius one. They use ¢ to denote the
supreme of ¢, p) |le||? over all point sets P of radius one. The constant
c is at most 12; see [109, 111].

ecmst

Theorem 6.1 [109, 111]6 < ¢ < 12.

The proof of this theorem involves complicated geometric arguments;
see [109, 111] for more detail. Note that for any point set P of radius one,
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the length of each edge in mst (P) is at most one. Therefore, Theorem 6.1
implies that for any point set P of radius one and any real number g > 2,

2
Z le]l? < Z lle|l” < e < 12.

eemst(P) ecemst(P)

The next theorem proved in [109, 111] explores a relation between the
minimum energy required by a broadcasting and the energy required by the
Euclidean MST of the corresponding point set.

Lemma 6.1 [109, 111] For any point set P in the plane, the total energy
required by any broadcasting among P is at least %Zeémst(P) llell?.

PROOF. Let T be an arborescence for a broadcasting among P with the
minimum energy consumption. For any none-leaf node p in T, let T}, be
an Euclidean MST of the point set consisting p and all children of p in T'.
Suppose that the longest Euclidean distance between p and its children is
r. Then the transmission power of node p is 7?, and all children of p lie in
the disk centered at p with radius r. From the definition of ¢, we have

= (1) =

ecTyp

which implies that

1
> =3 el

ecTp

Let T™ denote the spanning tree obtained by superposing of all T}’s
for non-leaf nodes of 7. Then the total energy required by 7T is at least
S eer llel|?, which is further no less than %ZeEmst(P) le|®. This com-

pletes the proof.

Consider any point set P in a two-dimensional plane. Let 7" be an
arborescence oriented from some mst (P). Then the total energy required
by T is at most Y ez le||’. From Lemma 6.1, this total energy is at most
¢ times the optimum cost. Thus the approximation ratio of the link-based
MST heuristic is at most c¢. Together with Theorem 6.1, this observation
leads to the following theorem.

Theorem 6.2 [109, 111] The approzimation ratio of the link-based MST
heuristic is at most ¢, and therefore is at most 12.
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In addition, they derived an upper bound on the approximation ratio
of the BIP heuristic. Once again, the Euclidean MST plays an important
role.

Lemma 6.2 [109, 111] For any broadcasting among a point set P in a two-
dimensional plane, the total energy required by the arborescence generated
by the BIP algorithm is at most 3¢ o (p) llell?.

6.2 Approximate MST of UDG Locally

The best distributed algorithm [70, 71, 72] can compute the minimum span-
ning tree in O(n) rounds using O(m + n logn) communications for a general
graph with m edges and n nodes. The relative neighborhood graph, the
Gabriel graph and the Yao graph all have O(n) edges and contain the Eu-
clidean minimum spanning tree. This implies that we can construct the
minimum spanning tree in a distributed manner using O(n logn) messages.
Unfortunately, even for wireless network modeled by a ring, the O(nlogn)
number of messages is still necessary for constructing the minimum spanning
tree.

Given a graph G, let wy(G) = Y. |le]|’. We [114] recently presented
the first localized method to construct a bounded degree planar connected
structure whose total edge length is within a constant factor of that of the
minimum spanning tree. The total communication cost of our method is
O(n), and every node only uses its two-hop information to construct such
structure. 'We showed that the energy consumption using this structure
is within O(n~1) of the optimum, i.e., wg(H) = O(n’~1!) - wg(MST) for
any 8 > 1. This improves the previously known “lightest” structure RNG
by O(n) factor since in the worst case w(RNG) = O(n) - w(MST) and
wg(RNG) = O(n) - wg(MST).

Our low-weight structure is based on a modified relative neighborhood
graph. Notice that, traditionally, the relative neighborhood graph will al-
ways select an edge uv even if there is some node on the boundary of
lune(u,v). Thus, RNG may have unbounded node degree, e.g., consider-
ing n — 1 points equally distributed on the circle centered at the nth point
v, the degree of v is n — 1. Notice that for the sake of lowing the weight
of a structure, the structure should contain as less edges as possible with-
out breaking the connectivity. We then naturally extend the traditional
definition of RNG as follows.

The modified relative neighborhood graph consists of all edges uv such
that (1) the interior of lune(u,v) contains no point w € V and, (2) there
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is no point w € V with ID(w) < ID(v) on the boundary of lune(u,v)
and ||wv| < |Juv||, and (3) there is no point w € V with ID(w) < ID(u)
on the boundary of lune(u,v) and ||wu| < ||uv||, and (4) there is no point
w € V on the boundary of lune(u,v) with ID(w) < ID(u), ID(w) < ID(v),
and |lwu| = ||uv||. See Figure 12 for an illustration when an edge wv is
not included in the modified relative neighborhood graph. We denote such
structure by RNG’ hereafter. Obviously, RNG’ is a subgraph of traditional
RNG. We [114] proved that RNG’ has a maximum node degree 6 and still

contains a minimum spanning tree as a subgraph.

(1) (2) (3) (4)

Figure 12: Which edges are not in the modified RNG.

So far RNG’ is the previously best known connected structures that
can be constructed locally and has a small total edge weight. As shown in
[114], its total weight could still be as large as O(n) times of w(M ST).

We then give the first localized algorithm that constructs a low-weighted
structure using only some two hops information.

Algorithm 6 Construct Low Weight Structure

1. All nodes together construct the modified relative neighborhood graph
RNG’ in a localized manner.

2. Each node u locally broadcasts its incident edges in RNG’ to its one-
hop neighbors. Node u listens to the messages from its one-hop neigh-
bors.

3. If node u received a message informing existence of edge zy from its
neighbor z, for each edge uv in RNG’, if uv is the longest among =y,
uz, and vy, node u removes edge uv. Ties are broken by the label of
the edges. Here assume that uvyz is the convex hull of u, v, z, and y.

Let H be the final structure formed by all remaining edges in RNG’, and

we call it low weighted modified relative neighborhood graph. Obviously, if
an edge uv is kept by node u, then it is also kept by node v.
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Theorem 6.3 [114] The total edge weight of H is within a constant factor
of that of the minimum spanning tree.

This was proved by showing that the edges in H satisfies the isolation
property (defined in [115]). We [114] also showed that the final structure
contains EMST of UDG as a subgraph. It was also shown in [114] that
it is impossible to construct a low-weighted structure using only one hop
neighbor information.

6.3 Forwarding Neighbors

The simplest broadcasting mechanism is to let every node retransmit the
message to all its one-hop neighbors when receiving the first copy of the
message, which is called flooding in the literature. Despite its simplicity,
flooding is very inefficient and can result in high redundancy, contention,
and collision. One approach to reducing the redundancy is to let a node
only forward the message to a subset of one-hop neighbors who together can
cover the two-hop neighbors. In other words, when a node retransmits a
message to its neighbors, it explicitly ask a subset of its neighbors to relay
the message.

Calinescu et al. [116] gave two practical heuristics for this problem
(they called selecting forwarding neighbors). The first algorithm runs in
time O(nlogn) and returns a subset with size at most 6 times of the min-
imum. The second algorithm has an improved approximation ratio 3, but
with running time O(n?). Here n is the number of total two-hop neighbors
of a node. When all two-hop neighbors are in the same quadrant with re-
spect to the source node, they gave an exact solution in time O(n?) and a
solution with approximation factor 2 in time O(nlogn). Their algorithms
partition the region surrounding the source node into four quadrants, solve
each quadrants using an algorithm with approximation factor «, and then
combine these solutions. They proved that the combined solution is at most
3a times of the optimum solution.

Their approach assumes that every node u can collect its 2-hop neigh-
bors Ny (u) efficiently. Notice that, the 1-hop neighbors of every node u can
be collected efficiently by asking each node to broadcast its information to
its 1-hop neighbors. Thus all nodes get their 1-hop neighbors information
by using total O(n) messages. However, until recently, it is unknown how
to collect the 2-hop neighbors information with O(n) communications. The
simplest broadcasting of 1-hop neighbors N;(u) to all neighbors u does let
all nodes in N1 (u) to collect their corresponding 2-hop neighbors. However,
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the total communication cost of this approach is O(m), where m is the to-
tal number of links in UDG. Recently, Calinescu [64] proposed an efficient
approach to collect Na(u) using the connected dominating set [10, 11] as
forwarding nodes. Assume that the node position is known. He proved that
the approach takes total communications O(n), which is optimum within a
constant factor.

7 Stochastic Geometry

In wireless ad hoc networks, one of the critical issues is that, for every pair of
nodes, there is a path connecting them, i.e., the network is connected. With
this in mind, Gupta and Kumar [117] studied what is the critical power at
which each node has to transmit so as to guarantee the connectivity of the
network asymptotically.

7.1 Background

Given an event Y, let Pr(Y) be the probability of Y. Given a random
variable X, we denote the expected value of X by E[X], ie., E[X| =) x-
Pr (X = z) for discrete variables. As standard, we write log for base-2
logarithm and In for natural logarithm. We say a function f(n) — a if
limy, o0 f(n) = a.

A point set is said to a random point process, denoted by A;,, if it con-
sists of n independent points each of which is uniformly distributed over the
region. The standard probabilistic model of homogeneous Poisson process is
characterized by the property that the number of nodes in a region is a ran-
dom variable depending only on the area (or volume in higher dimensions)
of the region. In other words,

e The probability that there are exactly k nodes appearing in any region

U of area A is (Al’f!)k ce M,

e For any region ¥, the conditional distribution of nodes in ¥ given that
exactly k nodes in the region is joint uniform.

Here after, we let P,, be a homogeneous Poisson process of intensity n on
the unit cube C = [—0.5,0.5] x [—0.5,0.5].

7.2 Connectivity

Given a finite set of n points V' in a metric space and a positive real number
r, let the r-graph, denoted by G(V,r), be the graph with vertex set V

56



and with an edge connecting each pair of points separated by a distance
of at most r. Two paths in a graph are said to be verter independent if
the only common vertices are the end-vertex of both paths. A graph is
called k-vertex connected if, for each pair of vertices, there are k mutually
vertex independent paths connecting them. Two paths are said to be edge
independent if there is no common edge between them. Equivalently, a graph
is called k-edge connected if, for each pair of vertices, there are k mutually
edge independent paths connecting them. The vertez connectivity, denoted
by k(G), of a graph G is the maximum k such that G is k vertex connected.
The edge connectivity, denoted by £(G), of a graph G is the maximum £ such
that G is k edge connected. The minimum degree of a graph G is denoted
by §(G) and the maximum degree of a graph G is denoted by A(G). Clearly,
for any graph G,
R(G) < €(G) < 3(G) < AG).

A graph property is called monotone increasing if G has such property
then all graphs on the same vertex set containing G as a subgraph have
this property. Let Q be any monotone increasing property of graphs, for
example, the connectivity, the k-edge connectivity, the k-vertex connectivity,
the minimum node degree at least k, and so on. The hitting radius o(V, Q)
is the infimum of all r such that graph G(V, r) has property Q. For example,
o(V,k > k) is the minimum radius r such that G(V,r) is at least k vertex
connected; o(V, ¢ > k) is the minimum radius r at which the graph G(V,r)
has the minimum degree at least k. It is obvious that, for any V,

o(V,k > k) > o(V,8 > k).

Let Py (X,,7(n)) be the probability that a graph in G(AX,,, 7(n)) is k-connected.
It was proved by Penrose [118] that, given any metric [, with 2 < p < oo
and any positive integer k,

lim Pr (Q(Xna"; > k) = Q(Xn,5 > k)) =1

n—oo
This result says that, if n is large enough, then with high probability, if we
start with isolated n random points A, in C, and add the edges in order
of the increasing length to connect the points of A, the resulting graph
becomes k vertex connected at the moment when the minimum degree of
the graph becomes k. This result is analogous to the well-known results
in the graph theory [119] that graph becomes k vertex connected when it
achieves the minimum degree k if we add the edges randomly and uniformly
from (72’)' possibilities. Similarly, instead of considering A,,, Penrose also
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considered a homogeneous Poisson point process with intensity n on the
unit-cube C. Penrose gave loose upper and lower bound on the hitting
radius r,, = o(X,,d > k) as

]nn d
<n-re<d-2-1
2d+1_n T, < d nn

for homogeneous Poisson point process on a d-dimensional unit cube.

The connectivity of random graphs, especially the geometric graphs
and its variations, have been considered in the random graph theory litera-
ture [119] in the stochastic geometry literature [120, 121, 118, 122], and the
wireless ad hoc network literature [123, 117, 124, 125].

Let B(n,p(n)) be the set of graphs on n nodes in which each edge of the
completed graphs K, is chosen independently with probability p(n). Then it
has been shown that the probability that a graph in B(n,p(n)) is connected
goes to one if p(n) = W for any c¢(n) — oo. Notice that, although their
asymptotic expressions are the same with that by Gupta and Kumar [117],
but we can not apply this to the wireless model as, in wireless network, the
existences of two edges are not independent, and we do not choose edges
from the completed graph using Bernoulli model.

Bollobés and Thomason proved that, if ¢(n) — o0, ¢(n) < Inlnlnn and
p(n) = lnnﬂk*l);nln"*c("), then almost no graph from B(n,p(n)) contains
a non-trivial (k — 1)-separator. Notice that a graph with minimum degree k
is k-connected unless it contains a non-trivial (k — 1)-separator. Thus, this
result by Bollobs and Thomason implies that if p(n) = 2rt=1)Ininn—c(n)
then graphs from B(n,p(n)) almost surely have minimum degree k¥ — 1 and

thus almost surely are k-connected.

Another closely related question is the coverage problem: disks of radius
r are placed in a two-dimensional unit-area disk D with centers from a
Poisson point process with intensity n. A result shown by Hall [126] implies
that, if .72 = 2odnlnte) o1 ¢(n) — oo, then the probability that
there is a vacancy area in D is 0 as n goes infinity; if ¢(n) — —oo, then the

probability that there is a vacancy in D is at least %. Thus, for ¢(n) — +o0,

Inn+ Inlnn + ¢(n)
- .

7r-g(’P,/$)2 <4

Given n nodes V randomly and independently distributed in a unit-
area disk D, Gupta and Kumar [117] showed that the graph G(V,r(n)) is

Inn+4c¢(n)
n

connected almost surely if 7 - 72 > for any c¢(n) with ¢(n) — oo
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as n goes infinity. This bound is tight as they also proved that the graph
G(X,,r(n)) is asymptotically disconnected with positive probability if

7 or(n)? = Inn + ¢(n)

n
and lim sup, ¢(n) < +o00. Notice, they actually derived their results for a ho-
mogeneous Poisson process of points instead of the independent and uniform
point process. They showed that the difference between them is negligible.
This result is essentially the same as [120], which was developed earlier by
mathematicians, but not introduced to the computer science community.

8 Conclusion

Wireless ad hoc networks has attracted considerable attentions recently due
to its potential wide applications in various areas and the moreover, the
ubiquitous computing. Many excellent researches have been conducted to
study the electronic part of the wireless ad hoc networks, the networking
part of the wireless ad hoc networks. For networking, there are also many in-
teresting topics such as topology control, routing, energy conservation, QoS,
mobility management, and so on. In this survey, we present an overview of
the recent progress of applying computational geometry techniques to solve
some questions, such as topology construction and localized routing, in wire-
less ad hoc networks. Nevertheless, there are still many excellent results are
not covered in this survey due to space limit.
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