
Additive Spanners for k-Chordal Graphs

Victor D. Chepoi1, Feodor F. Dragan2, and Chenyu Yan2

1 Laboratoire d’Informatique Fondamentale, Université Aix-Marseille II, France.
chepoi@lim.univ-mrs.fr

2 Department of Computer Science, Kent State University, Kent, OH 44242, USA
dragan@cs.kent.edu, cyan1@kent.edu

Abstract. In this paper we show that every chordal graph with n ver-
tices andm edges admits an additive 4-spanner with at most 2n−2 edges
and an additive 3-spanner with at most O(n · logn) edges. This signifi-
cantly improves results of Peleg and Schäffer from [Graph Spanners, J.
Graph Theory, 13(1989), 99-116]. Our spanners are additive and easier
to construct. An additive 4-spanner can be constructed in linear time
while an additive 3-spanner is constructable in O(m · logn) time. Fur-
thermore, our method can be extended to graphs with largest induced
cycles of length k. Any such graph admits an additive (k + 1)-spanner
with at most 2n − 2 edges which is constructable in O(n · k +m) time.

Classification: Algorithms, Sparse Graph Spanners

1 Introduction

Let G = (V,E) be a connected graph with n vertices and m edges. The length of
a path from a vertex v to a vertex u in G is the number of edges in the path. The
distance dG(u, v) between vertices u and v is the length of a shortest (u, v)-path
of G. We say that a graph H = (V,E′) is an additive r-spanner (a multiplicative
t-spanner) of G, if E′ ⊆ E and dH(x, y) − dG(x, y) ≤ r (dH(x, y)/dG(x, y) ≤ t,
respectively) holds for any pair of vertices x, y ∈ V (here t ≥ 1 and r ≥ 0 are
real numbers). We refer to r (to t) as the additive (respectively, multiplicative)
stretch factor of H. Clearly, every additive r-spanner of G is a multiplicative
(r + 1)-spanner of G (but not vice versa).
There are many applications of spanners in various areas; especially, in dis-

tributed systems and communication networks. In [20], close relationships were
established between the quality of spanners (in terms of stretch factor and the
number of spanner edges |E′|), and the time and communication complexities
of any synchronizer for the network based on this spanner. Also sparse spanners
are very useful in message routing in communication networks; in order to main-
tain succinct routing tables, efficient routing schemes can use only the edges of
a sparse spanner [21]. Unfortunately, the problem of determining, for a given
graph G and two integers t,m ≥ 1, whether G has a t-spanner with m or fewer
edges, is NP-complete (see [19]).
The sparsest spanners are tree spanners. Tree spanners occur in biology [2],

and as it was shown in [18], they can be used as models for broadcast operations.

R. Petreschi et al. (Eds.): CIAC 2003, LNCS 2653, pp. 96–107, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Additive Spanners for k-Chordal Graphs 97

Multiplicative tree t-spanners were considered in [7]. It was shown that, for a
given graph G, the problem to decide whether G has a multiplicative tree t–
spanner is NP–complete for any fixed t ≥ 4 and is linearly solvable for t = 1, 2
(the status of the case t = 3 is open for general graphs). Also, in [10], NP–
completeness results were presented for tree spanners on planar graphs.
Many particular graph classes, such as cographs, complements of bipar-

tite graphs, split graphs, regular bipartite graphs, interval graphs, permuta-
tion graphs, convex bipartite graphs, distance–hereditary graphs, directed path
graphs, cocomparability graphs, AT-free graphs, strongly chordal graphs and
dually chordal graphs admit additive tree r-spanners and/or multiplicative tree
t-spanners for sufficiently small r and t (see [3,6,13,14,16,22,23]). We refer also to
[1,5,4,6,7,15,17,18,19,24] for more background information on tree and general
sparse spanners.
In this paper we are interested in finding sparse spanners with small additive

stretch factors in chordal graphs and their generalizations. A graph G is chordal
[12] if its largest induced (chordless) cycles are of length 3. A graph is k-chordal
if its largest induced cycles are of length at most k.
The class of chordal graphs does not admit good tree spanners. As it was

mentioned in [22,23], H.-O. Le and T.A. McKee have independently showed that
for every fixed integer t there is a chordal graph without tree t–spanners (additive
as well as multiplicative). Recently, Brandstädt et al. [4] have showed that, for
any t ≥ 4, the problem to decide whether a given chordal graph G admits a
multiplicative tree t-spanner is NP-complete even when G has the diameter at
most t + 1 (t is even), respectively, at most t + 2 (t is odd). Thus, the only
hope for chordal graphs is to get sparse (with O(n) edges) small stretch factor
spanners. Peleg and Schäffer have already showed in [19] that any chordal graph
admits a multiplicative 5-spanner with at most 2n−2 edges and a multiplicative
3-spanner with at most O(n · log n) edges. Both spanners can be constructed in
polynomial time.
In this paper we improve those results. We show that every chordal graph

admits an additive 4-spanner with at most 2n−2 edges and an additive 3-spanner
with at most O(n·log n) edges. Our spanners are not only additive but also easier
to construct. An additive 4-spanner can be constructed in linear time while an
additive 3-spanner is constructable in O(m·log n) time. Furthermore, our method
can be extended to all k-chordal graphs. Any such graph admits an additive
(k+1)-spanner with at most 2n− 2 edges which is constructable in O(n ·k+m)
time. Note that the method from [19] essentially uses the characteristic clique
trees of chordal graphs and therefore cannot be extended (at least directly) to
general k-chordal graphs for k ≥ 4. In obtaining our results we essentially relayed
on ideas developed in papers [3], [8], [9] and [19].

2 Preliminaries

All graphs occurring in this paper are connected, finite, undirected, loopless,
and without multiple edges. For each integer l ≥ 0, let Bl(u) denote the ball of

98 V.D. Chepoi, F.F. Dragan, and C. Yan

radius l centered at u: Bl(u) = {v ∈ V : dG(u, v) ≤ l}. Let Nl(u) denote the
sphere of radius l centered at u: Nl(u) = {v ∈ V : dG(u, v) = l}. Nl(u) is called
also the lth neighborhood of u. A layering of G with respect to some vertex u
is a partition of V into the spheres Nl(u), l = 0, 1, By N(u) we denote the
neighborhood of u, i.e., N(u) = N1(u). More generally, for a subset S ⊆ V let
N(S) =

⋃
u∈S N(u).

Let σ = [v1, v2, . . . , vn] be any ordering of the vertex set of a graph G. We will
write a < b whenever in a given ordering σ vertex a has a smaller number than
vertex b. Moreover, {a1, · · · , al} < {b1, · · · , bk} is an abbreviation for ai < bj
(i = 1, · · · , l; j = 1, · · · , k). In this paper, we will use two kind of orderings,
namely, BFS-orderings and LexBFS-orderings.
In a breadth-first search (BFS), started at vertex u, the vertices of a graph

G with n vertices are numbered from n to 1 in decreasing order. The vertex u is
numbered by n and put on an initially empty queue of vertices. Then a vertex
v at the head of the queue is repeatedly removed, and neighbors of v that are
still unnumbered are consequently numbered and placed onto the queue. Clearly,
BFS operates by proceeding vertices in layers: the vertices closest to the start
vertex are numbered first, and most distant vertices are numbered last. BFS
may be seen to generate a rooted tree T with vertex u as the root. We call T
the BFS-tree of G. A vertex v is the father in T of exactly those neighbors in G
which are inserted into the queue when v is removed. An ordering σ generated
by a BFS will be called a BFS-ordering of G. Denote by f(v) the father of a
vertex v with respect to σ. The following properties of a BFS-ordering will be
used in what follows.

(P1) If x ∈ Ni(u), y ∈ Nj(u) and i < j, then x > y in σ.

(P2) If v ∈ Nq(u)(q > 0) then f(v) ∈ Nq−1(u) and f(v) is the vertex from
N(v) with the largest number in σ.

(P3) If x > y, then either f(x) > f(y) or f(x) = f(y).

Lexicographic breadth-first search (LexBFS), started at a vertex u, orders
the vertices of a graph by assigning numbers from n to 1 in the following way.
The vertex u gets the number n. Then each next available number k is as-
signed to a vertex v (as yet unnumbered) which has lexically largest vector
(sn, sn−1, . . . , sk+1), where si = 1 if v is adjacent to the vertex numbered i, and
si = 0 otherwise. An ordering of the vertex set of a graph generated by LexBFS
we will call a LexBFS-ordering. Clearly any LexBFS-ordering is a BFS-ordering
(but not conversely). Note also that for a given graph G, both a BFS-ordering
and a LexBFS-ordering can be generated in linear time [12]. LexBFS-ordering
has all the properties of the BFS-ordering. In particular, we can associate a tree
T rooted at vn with every LexBFS-ordering σ = [v1, v2, . . . , vn] simply connect-
ing every vertex v (v
= vn) to its neighbor f(v) with the largest number in σ.
We call this tree a LexBFS-tree of G rooted at vn and vertex f(v) the father of
v in T .

Additive Spanners for k-Chordal Graphs 99

3 Spanners for Chordal Graphs

3.1 Additive 4-Spanners with O(n) Edges

For a chordal graph G = (V,E) and a vertex u ∈ V , consider a BFS of G started
at u and let q = max{dG(u, v) : v ∈ V }. For a given k, 0 ≤ k ≤ q, let Sk

1 ,
Sk
2 ,. . . , S

k
pk
be the connected components of a subgraph of G induced by the

kth neighborhood of u. In [3], there was defined a graph Γ whose vertices are
the connected components Sk

i , k = 0, 1, . . . , q and i = 1, . . . , pk. Two vertices
Sk

i , S
k−1
j are adjacent if and only if there is an edge of G with one end in Sk

i

and another end in Sk−1
j . Before we describe our construction of the additive

4-spanner H = (V,E′) for a chordal graph G, first we recall two important
lemmas.

Lemma 1. [3] Let G be a chordal graph. For any connected component S of
the subgraph of G induced by Nk(u), the set N(S)∩Nk−1(u) induces a complete
subgraph.

Lemma 2. [3] Γ is a tree.

Now, to construct H, we choose an arbitrary vertex u ∈ V and perform a
Breadth-First-Search in G started at u. Let σ = [v1, . . . , vn] be a BFS-ordering
of G. The construction of H is done according to the following algorithm (for
an illustration see Figure 1).

PROCEDURE 1. Additive 4-spanners for chordal graphs

Input: A chordal graph G = (V,E) with BFS-ordering σ, and connected com-
ponents Sk

1 , S
k
2 , . . . , S

k
pk
for any k, 0 ≤ k ≤ q, where q = max{dG(u, v) :

v ∈ V }.
Output: A spanner H = (V,E′) of G.

Method:
E′ = ∅;
for k = q downto 1 do
for j = 1 to pk do
M = ∅;
for each vertex v ∈ Sk

j add edge vf(v) to E
′ and vertex f(v) to M ;

pick vertex c ∈M with the minimum number in σ;
for every vertex x ∈M \ {c} add edge xc to E′;

return H = (V,E′).

Lemma 3. If G has n vertices, then H contains at most 2n− 2 edges.

Proof: The edge set of H consists of two sets E1 and E2, where E1 are those
edges connecting two vertices between two different layers (edges of type vf(v))
and E2 are those edges which have been used to build a star for a cliqueM inside
a layer (edges of type cf(v)). Obviously, E1 has exactly n − 1 edges; actually,

100 V.D. Chepoi, F.F. Dragan, and C. Yan

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

u
(a) (b)

(c) (d)

4 3 2 1

10
9 8 7 6 5

14

13

1112

16

17 15

18

4 3 2 1

10
9 8 7 6 5

14

13

11

17 15

18

16
12

Fig. 1. (a) A chordal graph G. (b) A BFS-ordering σ, BFS-tree T associated with σ
and a layering of G. (c) The tree Γ of G associated with that layering. (d) Additive
4-spanner (actually, additive 3-spanner) H of G constructed by PROCEDURE 1 (5
edges are added to the BFS-tree T).

they are the edges of the BFS-tree of G. For each connected component Sk
i of

size s, we have at most s vertices in M . Therefore, while proceeding component
Sk

i , at most s − 1 edges are added to E2. The total size of all the connected
components is at most n, so E2 contains at most n− 1 edges. Hence, the graph
H contains at most 2n− 2 edges. ��
Lemma 4. H is an additive 4-spanner for G.

Proof: Consider nodes Sk
i and S

l
j of the tree Γ (rooted at S

0
1 = {u}) and their

lowest common ancestor Sp
m in Γ . For any two vertices x ∈ Sk

i and y ∈ Sl
j of G,

we have dG(x, y) ≥ k − p+ l − p, since any path of G connecting x and y must
pass Sp

m.
From our construction of H (for every vertex v of G the edge vf(v) is

present in H), we can easily show that there exist vertices x′, y′ ∈ Sp
m such

that dH(x, x′) = k − p, dH(y, y′) = l − p. Hence we only need to show that
dH(x′, y′) ≤ 4. If x′ = y′ then we are done. If vertices x′ and y′ are dis-

Additive Spanners for k-Chordal Graphs 101

tinct, then by Lemma 1, N(Sp
m) ∩ Np−1(u) is a clique of G. According to the

Procedure 1, fathers of both vertices x′ and y′ are in M and they are con-
nected in H by a path of length at most 2 via vertex c of M . Therefore,
dH(x′, y′) ≤ dH(x′, f(x′)) + dH(f(x′), f(y′)) + dH(f(y′), y′) ≤ 1 + 2 + 1 = 4.
This concludes our proof. ��
We can easily show that the bounds given in Lemma 4 are tight. For a

chordal graph presented in Figure 2, we have dG(y, b) = 1. The spanner H of G
constructed by our method is shown in bold edges. In H we have dH(y, b) = 5.
Therefore, dH(y, b)− dG(y, b) = 4.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�����������

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

x y

a

a’ b’

b

z

c

c’

u 10

9 8

7

6

5 43

2 1

Fig. 2. A chordal graph with a BFS-ordering which shows that the bounds given in
Lemma 4 are tight. We have dH(y, b)− dG(y, b) = 4 and dH(y, b)/dG(y, b) = 5.

Lemma 5. H can be constructed in linear O(n+m) time.

Combining Lemmas 4-5 we get the following result.

Theorem 1. Every n-vertex chordal graph G = (V,E) admits an additive 4-
spanner with at most 2n− 2 edges. Moreover, such a sparse spanner of G can be
constructed in linear time.

Notice that any additive 4-spanner is a multiplicative 5-spanner. As we men-
tioned earlier the existence of multiplicative 5-spanners with at most 2n−2 edges
in chordal graphs was already shown in [19], but their method of constructing
such spanners is more complicated than ours and can take more than linear time.

3.2 Additive 3-Spanners with O(n · logn) Edges

To construct an additive 3-spanner for a chordal graph G = (V,E), first we get
a LexBFS-ordering σ of the vertices of G (see Figure 3). Then, we construct an
additive 4-spanner H = (V,E1

⋃
E2) for G using the algorithm from Section 3.1.

Finally, we update H by adding some more edges. In what follows, we will need
the following known result.

102 V.D. Chepoi, F.F. Dragan, and C. Yan

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
� ��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

u
15

14 13

12

11

7

6

5

4

10

9

321

8

(a) (b)

Fig. 3. (a) A chordal graph G. (b) A LexBFS-ordering σ, LexBFS-tree associated with
σ and a layering of G.

Theorem 2. [11] Every n-vertex chordal graph G contains a maximal clique C
such that if the vertices in C are deleted from G, every connected component in
the graph induced by any remaining vertices is of size at most n/2.

An O(n +m) algorithm for finding such a separating clique C is also given
in [11].
As before, for a given k, 0 ≤ k ≤ q, let Sk

1 , S
k
2 ,. . . , S

k
pk
be the connected

components of a subgraph of G induced by the kth neighborhood of u. For each
connected component Sk

i (which is obviously a chordal graph), we run the fol-
lowing algorithm which is similar to the algorithm in [19] (see also [18]), where
a method for construction of a multiplicative 3-spanner for a chordal graph is
described. The only difference is that we run that algorithm on every connected
component from each layer of G instead of on the whole graph G. For the purpose
of completeness, we present the algorithm here (for an example see Figure 4).

PROCEDURE 2. A balanced clique tree for a connected component Sk
i

Input: A subgraph Q of G induced by a connected component Sk
i .

Output: A balanced clique tree for Q.

Method:
find a maximum separating clique C of the graph Q
as prescribed in Theorem 2;

suppose C partitions the rest of Q into connected
components {Q1, . . . , Qr};

for each Qi, construct a balanced clique tree
T (Qi) recursively;

construct T (Q) by taking C to be the root and
connecting the root of each tree T (Qi) as a child of C.

Additive Spanners for k-Chordal Graphs 103

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

�
�
�

�
�
�

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
���������

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

12

11

10

9

8

7

6

5

4

(a)

abc

de fgh

i

(b)

6 11

10

(c)

8

4
7

5

9 12

dd

e

c

a

f

g

hi

f

g

h
i

c

b

a

b
e

Fig. 4. (a) A chordal graph induced by set S2
1 of the graph G presented in Figure 3,

(b) its balanced clique tree and (c) edges of E3(S2
1)

⋃
E4(S2

1).

The nodes of the final balanced tree for Sk
i (denote it by T (S

k
i)) represent a

certain collection of disjoint cliques {Ck
i (1), . . . C

k
i (s

k
i)} that cover entire set Sk

i

(see Figure 4 for an illustration). For each clique Ck
i (j) (1 ≤ j ≤ ski) we build

a star centered at its vertex with the minimum number in LexBFS-ordering σ.
We use E3(i, k) to denote this set of star edges. Evidently, |E3(i, k)| ≤ |Sk

i | − 1.
Consider a clique Ck

i (j) in S
k
i . For each vertex v of C

k
i (j) and each clique

Ck
i (j

′) on the path of balanced clique tree T (Sk
i) connecting node C

k
i (j) with the

root, if v has a neighbor in Ck
i (j

′), then select one such neighbor w and put the
edge vw in set E4(i, k) (initially E4(i, k) is empty). We do this for every clique
Ck

i (j), j ∈ {1, . . . , ski }. Since the depth of the tree T (Sk
i) is at most log2|Sk

i |+1
(see [19], [18]), any vertex v from Sk

i may contribute at most log2|Sk
i | edges to

E4(i, k). Therefore, |E4(i, k)| ≤ |Sk
i | · log2|Sk

i |.
Define now two sets of edges in G, namely,

E3 =
q⋃

k=1

pk⋃

i=1

E3(i, k), E4 =
q⋃

k=1

pk⋃

i=1

E4(i, k),

and consider a spanning subgraph H∗ = (V,E1
⋃
E2

⋃
E3

⋃
E4) of G (see Fig-

ure 5). Recall that E1
⋃
E2 is the set of edges of an additive 4-spanner H con-

structed for G by PROCEDURE 1 (see Section 3.1).
From what has been established above one can easily deduce that |E3| ≤ n−1

and E4| ≤ n · log2 n, thus yielding the following result.
Lemma 6. If G has n vertices, then H∗ has at most O(n · log n) edges.
To prove that H∗ is an additive 3-spanner for G, we will need the following

auxiliary lemmas.

Lemma 7. [12] Let G be a chordal graph and σ be a LexBFS-ordering of G.
Then, σ is a perfect elimination ordering of G, i.e., for any vertices a, b, c of G
such that a < {b, c} and ab, ac ∈ E(G), vertices b and c must be adjacent.

104 V.D. Chepoi, F.F. Dragan, and C. Yan

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

12

11

10

9

8

7

14 13

15

5

4

321

6

u

Fig. 5. An additive 3-spanner H∗ of graph G presented in Figure 3

Lemma 8. [9] Let G be an arbitrary graph and T (G) be a BFS-tree of G with the
root u. Let also v be a vertex of G and w (w
= v) be an ancestor of v in T (G)
from layer Ni(u). Then, for any vertex x ∈ Ni(u) with dG(v, w) = dG(v, x),
inequality x ≤ w holds.

Lemma 9. H∗ is an additive 3-spanner for G.

Lemma 10. If a chordal graph G has n vertices and m edges, then its additive
3-spanner H∗ can be constructed in O(m · log n) time.

The main result of this subsection is the following.

Theorem 3. Every chordal graph G = (V,E) with n vertices and m edges ad-
mits an additive 3-spanner with at most O(n · log n) edges. Moreover, such a
sparse spanner of G can be constructed in O(m · log n) time.

In [19], it was shown that any chordal graph admits a multiplicative 3-spanner
H ′ with at most O(n · log n) edges which is constructable in O(m · log n) time.
It is worth to note that the spanner H ′ gives a better than H∗ approximation of
distances only for adjacent in G vertices. For pairs x, y ∈ V at distance at least
2 in G, the stretch factor t(x, y) = dH∗(x, y)/dG(x, y) given by H∗ for x, y is at
most 2.5 which is better than the stretch factor of 3 given by H ′.

4 Spanners for k-Chordal Graphs

For each l ≥ 0 define a graph Ql with the lth sphere Nl(u) as a vertex set.
Two vertices x, y ∈ Nl(u) (l ≥ 1) are adjacent in Ql if and only if they can

Additive Spanners for k-Chordal Graphs 105

be connected by a path outside the ball Bl−1(u). Let Ql
1, . . . , Q

l
pl
be all the

connected components of Ql.
Similar to chordal graphs and as shown in [8] we define a graph Γ whose

vertex-set is the collection of all connected components of the graphs Ql, l =
0, 1, . . ., and two vertices are adjacent in Γ if and only if there is an edge of G
between the corresponding components. The following lemma holds.

Lemma 11. [8] Γ is a tree.

Let u be an arbitrary vertex of a k-chordal graph G = (V,E), σ be a BFS-
ordering of G and T be the BFS-tree associated with σ. To construct our spanner
H for G, we use the following procedure (for an example see Figure 6).

PROCEDURE 3. Additive (k + 1)-spanners for k-chordal graphs

Input: A k-chordal graph G = (V,E) with a BFS-ordering σ, and connected
components Ql

1, Q
l
2, . . . , Q

l
pl
for any l, 0 ≤ l ≤ q, where q = max{dG(u, v) :

v ∈ V }.
Output: A spanner H = (V,E′) of G.

Method:
E′ = ∅;
for l = q downto 1 do
for j = 1 to pl do
for each vertex v ∈ Ql

j add vf(v) to E
′;

pick vertex c in Ql
j with the minimum number in σ;

for each v ∈ Ql
j \ {c} do

connected = FALSE;
while connected = FALSE do
/* this while loop works at most �k/2� times for each v */
if vc ∈ E(G) then
add vc to E′;
connected = TRUE;

else if vf(c) ∈ E(G) then
add vf(c) to E′;
connected = TRUE;

else v = f(v), c = f(c)
return H = (V,E′).

Clearly, H contains all edges of BFS-tree T because for each v ∈ V the edge
vf(v) is in H. For a vertex v of G, let Pv be the path of T connecting v with
the root u. We call it the maximum neighbor path of v in G (evidently, Pv is
a shortest path of G). Additionally to the edges of T , H contains also some
bridging edges connecting vertices from different maximum neighbor paths.

Lemma 12. Let c be vertex of Ql
i with the minimum number in σ (l ∈ {1, ..., q},

i ∈ {1, . . . , pl}). Then, for any a ∈ Ql
i, there is a (a, c)-path in H of length at

most k consisting of a subpath (a, . . . , x) of path Pa, edge xy and a subpath
(y, . . . , c) of path Pc. In particular, dH(a, c) ≤ k. Moreover, 0 ≤ dG(c, y) −
dG(a, x) ≤ 1.

106 V.D. Chepoi, F.F. Dragan, and C. Yan

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

11

12

10

9
8 7

4
6 5 3

2 1

u u 12

1011

8
9 7

4
6 5 3

2 1

(a) (b) (c) (d)

Fig. 6. (a) A 4-chordal graph G. (b) A BFS-ordering σ, BFS-tree associated with σ
and a layering of G. (c) The tree Γ of G associated with that layering. (d) Additive
5-spanner (actually, additive 2-spanner) H of G constructed by PROCEDURE 3.

For any n-vertex k-chordal graph G = (V,E) the following lemma holds.

Lemma 13. H is an additive (k + 1)-spanner of G.

Lemma 14. If G has n vertices, then H has at most 2n− 2 edges.

Lemma 15. If G is a k-chordal graph with n vertices and m edges, then H can
be constructed in O(n · k +m) time.

Summarizing, we have the following final result.

Theorem 4. Every k-chordal graph G = (V,E) with n vertices and m edges
admits an additive (k+ 1)-spanner with at most 2n− 2 edges. Moreover, such a
sparse spanner of G can be constructed in O(n · k +m) time.

References

1. I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse span-
ners of weighted graphs, Discrete Comput. Geom., 9 (1993), 81–100.

2. H.-J. Bandelt, A. Dress, Reconstructing the shape of a tree from observed
dissimilarity data, Adv. Appl. Math. 7 (1986) 309-343.

3. A. Brandstädt, V. Chepoi and F. Dragan. Distance Approximating Trees for
Chordal and Dually Chordal Graphs, Journal of Algorithms, 30 (1999), 166-184.

4. A. Brandstädt, F.F. Dragan, H.-O. Le, and V.B. Le, Tree Spanners on
Chordal Graphs: Complexity, Algorithms, Open Problems, to appear in the Pro-
ceedings of ISAAC 2002.

5. U. Brandes and D. Handke, NP–Completeness Results for Minimum Planar
Spanners, Preprint University of Konstanz, Konstanzer Schriften in Mathematik
und Informatik, Nr. 16, Oktober 1996.

6. L. Cai, Tree spanners: Spanning trees that approximate the distances, Ph.D.
thesis, University of Toronto, 1992.

Additive Spanners for k-Chordal Graphs 107

7. L. Cai and D.G. Corneil, Tree spanners, SIAM J. Disc. Math., 8 (1995), 359–
387.

8. V. Chepoi and F. Dragan, A Note on Distance Approximating Trees in Graphs,
Europ. J. Combinatorics, 21 (2000) 761-766.

9. F.F. Dragan, Estimating All Pairs Shortest Paths in Restricted Graph Fami-
lies: A Unified Approach (extended abstract), Proc. 27th International Workshop
“Graph-Theoretic Concepts in Computer Science”(WG’01), June 2001, Springer,
Lecture Notes in Computer Science 2204, pp. 103-116.

10. S.P. Fekete, J. Kremer, Tree spanners in planar graphs, Discrete Appl. Math.
108 (2001) 85-103.

11. J.R. Gilbert, D.J. Rose, and A. Edenbrandt, A separator theorem for chordal
graphs, SIAM J. Alg. Discrete Math., 5 (1984) 306-313.

12. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

13. H.-O. Le, Effiziente Algorithmen für Baumspanner in chordalen Graphen,
Diploma thesis, Dept. of mathematics, technical university of Berlin, 1994.

14. H.-O. Le, V.B. Le, Optimal tree 3-spanners in directed path graphs, Networks
34 (1999) 81-87.

15. A.L. Liestman and T. Shermer, Additive graph spanners, Networks, 23 (1993),
343–364.

16. M.S. Madanlal, G. Venkatesan and C.Pandu Rangan, Tree 3–spanners on
interval, permutation and regular bipartite graphs, Information Processing Let-
ters, 59 (1996), 97–102.

17. I.E. Papoutsakis, On the union of two tree spanners of a graph, Preprint, 2001.
18. D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM Mono-

graphs on Discrete Math. Appl., (SIAM, Philadelphia, 2000).
19. D. Peleg and A. A. Schäffer, Graph Spanners, Journal of Graph Theory, 13

(1989), 99-116.
20. D. Peleg and J.D. Ullman, An optimal synchronizer for the hypercube, in

Proc. 6th ACM Symposium on Principles of Distributed Computing, Vancouver,
1987, 77–85.

21. D.Peleg and E.Upfal, A tradeoff between space and efficiency for routing tables.
20th ACM Symposium on the Theory of Computing, Chicago (1988), 43-52.

22. E. Prisner, Distance approximating spanning trees, in Proc. of STACS’97, Lec-
ture Notes in Computer Science 1200, (R. Reischuk and M. Morvan, eds.),
Springer–Verlag, Berlin, New York, 1997, 499–510.

23. E. Prisner, H.-O. Le, H. Müller and D. Wagner, Additive tree spanners, to
appear in SIAM Journal on Discrete Mathematics.

24. J. Soares, Graph spanners: A survey, Congressus Numer. 89 (1992) 225-238.

	1 Introduction
	2 Preliminaries
	3 Spanners for Chordal Graphs
	3.1 Additive 4-Spanners with O(n) Edges
	3.2 Additive 3-Spanners with O(n \cdot log n) Edges

	4 Spanners for k-Chordal Graphs
	References

