
Distance Approximating Trees:  
Complexity and Algorithms

Feodor F. Dragan and Chenyu Yan

Kent State University
Kent, Ohio, USA



August 14, 2009 2

‘Old’ Tree t-Spanner Problem

G multiplicative tree 4- and  additive tree 

3-spanner of G

Given: Unweighted undirected graph G=(V,E) and integers t,r.
Question: Does G admit a spanning tree T =(V,E’) (where E’ is a subset of 

E) such that

r)v,u(d)v,u(d,Vv,u GT 

(a multiplicative tree t-spanner of G) or
(an additive tree r-spanner of G)?

 )v,u(dt)v,u(d,Vv,u GT 
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Chordal Graphs
• G is chordal if it has no chordless cycles of length >3 
• There is no constant t [McKee, H.-O.Le]

• From far away they look like trees

• there is a tree T=(V,U) (not necessarily spanning) such that 

[BCD’99]2|),(),(|,,  uvdistuvdistVvu GT
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‘New’ Additive Distance Approximating 
Trees

Given: Unweighted undirected graph G=(V,E) and integers r.
Question: Does G admit an additive distance approximating tree T =(V,E’), i.e., T such 

that

• Note: E’ does not need to be a subset of E

G additive distance 1-approximating tree

 r)v,u(d)v,u(dr,Vv,u GT 
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‘New’ Multiplicative Distance Approximating 
Trees

Given: Unweighted undirected graph G=(V,E) and integers t.
Question: Does G admit a multiplicative distance approximating tree T =(V, E’), i.e, T 

such that

• Note: E’ does not need to be a subset of E

G multiplicative distance 2-approximating tree

 1 )v,u(dt)v,u(d)v,u(d
t

,Vv,u GTG 
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Why Distance Approximating Trees

Approximate solution to some problems in the original graph.


 

appr. distance matrix D(G) of a G [BCD’99]


 

k-center problem [CD’00]


 

bandwidth reduction [Gupta’01]


 

embeddings with small r-dimensional volume distortion [KLM’01]


 

phylogeny reconstruction

Tree t-spanner is hard to find even for some special graphs


 

chordal graphs [BDLL’02]
• t  4 is NP-complete. (t=3 is open.)



 

Chordal graphs admit good distance approximating trees [BCD’99]


 

k-Chordal graphs admit good distance approximating trees [CD’00]
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• Bandwidth reduction[Gupta2001]


 

Given: an undirected n-vertex graph G=(V, E) and an integer b


 

Question: Find a one-one mapping of the vertices f: V→
{1, 2, …, n} such that

Approximation for the Bandwidth Problem

b|)v(f)u(f|)f,G )G(E)v,u(  maxBandwidth(

a

b

c

d

a b cd

f(u)         1             2            3            4

• The Bandwidth of the above graph is 2
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• The following algorithm is by Gupta [Gupta2001] for 
(chordal) graphs



 

Construct a distance approximating tree T for G

Gupta’s Approach
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• The following algorithm is by Gupta [Gupta2001]



 

Construct a distance approximating tree T for G



 

Run the Gupta’s approximation algorithms to get f for T
O(polylog n)-approximation

Gupta’s Approach

edc g hfa b

f(u)     1       2       3       4      5       6       7       8
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• The following algorithm is by Gupta [Gupta2001]



 

Construct a distance approximating tree T for G



 

Run the Gupta’s approximation algorithms to get f for T
O(polylog n)-approximation



 

Output f as an approximate solution for G

Gupta’s Approach
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• Theorem 1: It is possible, for a given connected graph G=(V, 
E), to check in polynomial time whether G has an additive 
distance 1-approximating tree and, if such a tree exists, 
construct one in polynomial time.

Our New Results

• Theorem 2: Given a connected graph G=(V, E) and an 
integerΔ≥5. It is NP-hard to decide whether G admits a 
multiplicative distance Δ-approximating tree.

In what follows, 

• we will give some details of the first result, 

• by a distance 1-approximating tree we will mean additive distance 1- 
approximating tree. 
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• Lemma 1: For a 3-connected graph G, the following statements are 
equivalent.


 

G has a distance 1-approximating tree.


 

G has a distance 1-approximating tree which is a star.


 

diam(G)≤3 and rad(G) ≤2.

Distance 1- approximating trees
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• Lemma 1: For a 3-connected graph G, the following statements are 
equivalent.


 

G has a distance 1-approximating tree.


 

G has a distance 1-approximating tree which is a star.


 

diam(G)≤3 and rad(G) ≤2.

Distance 1- approximating trees
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• Let G be a graph with 2-cut {a, b} and A1 , A2 ..., Ak be the connected components 
of the graph G-a-b. For a given 2-cut {a, b} of G, a graph Ha, b is defined as 
follows


 

V(Ha, b )={a, b, a1 ,…, ak }



 

aai is in  E (Ha, b ) if and only if for each x, y in V(Ai )U{b}, dG (x, y)≤3 and dG (x, a)≤2



 

bai is in  E (Ha, b ) if and only if for each x, y in V(Ai )U{a}, dG (x, y)≤3 and dG (x, b)≤2



 

ai aj is in  E (Ha, b ) if and only if for each x in V(Ai ) and y in V(Aj ), dG (x, y)≤3 holds



 

No other edges exist in Ha, b

Distance 1- approximating trees
(2-connected graphs)
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Distance 1- approximating trees
(2-connected graphs)

• Lemma 2: For a 2-connected graph G, the following statements are 
equivalent.


 

G has a distance 1-approximating tree.


 

G has a distance 1-approximating tree which is a star or a bistar.


 

diam(G)≤3 and rad(G) ≤2 or diam(G)≤4 and there exits a 2-cut {a, b} in G 
such that the graph       is bipartite.b,aH
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Distance 1- approximating trees
(connected graphs)

• Theorem: If T is a distance 1-approximating tree of G with minimum 
|E(T)\E(G)|, then T(V(A)) is a star or a bistar for any 2-connected 
component A of G.
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Distance 1- approximating trees
(connected graphs)

• Lemma: If T is a distance 1-approximating tree of G with minimum 
|E(T)\E(G)|, then there is at most one 2-connected component A in G such 
that T(V(A)) is a bistar.
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Distance 1- approximating trees
(connected graphs)

• Lemma: Let T be a distance 1-approximating tree of G with minimum 
|E(T)\E(G)| and A be a 2-connected compnoent of G such that T(V(A)) is a 
bistar. Then, for any other 2-connected component B of G, T(V(B)) is a 
star centered at a 1-cut of G which is closest to A (among all 1-cuts of G 
located in B). 
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Distance 1- approximating trees
(connected graphs)

• Lemma: Let T be a distance 1-approximating tree of G with minimum 
|E(T)\E(G)| and A be a 2-connected component of G such that T(V(A)) is a 
star. If the center of this star T(V(A)) is not a 1-cut of G, then for any other  
2-connected component B of G, T(V(B)) is a star centered at a 1-cut of G 
which is closest to A (among all 1-cuts of G located in B). 
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Distance 1- approximating trees
(connected graphs)

• Lemma: Let T be a distance 1-approximating tree of G with minimum |E(T)\E(G)|. 
If for every 2-connected component A of G, T(V(A)) is a star centered at a 1-cut of 
G, then there exists a 1-cut v in G such that


 

for any 2-connected component A of G containing v, T(V(A)) is a star centered at v.


 

for any 2-connected component B of G not containing v, T(V(B)) is a star centered at a 
1-cut of G which is closest to v.
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Distance 1- approximating trees
(connected graphs)

• Theorem: It is possible, for a given connected graph G=(V, E), to check in O(|V|4) 
time whether G has a distance 1-approximating tree and, if such a tree exists, 
construct one within the same time bound. 
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Future work

• Find the complexity of determining whether a graph G admits 
a multiplicative distance 2-, 3-, 4-approximating tree.

• Design a good approximation algorithm for constructing a 
multiplicative distance approximating tree for a graph G, 
which admits a multiplicative distance Δ- approximating tree,  
where Δ≥5.

• More applications…
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Questions!
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