Distance Approximating Trees: Complexity and Algorithms

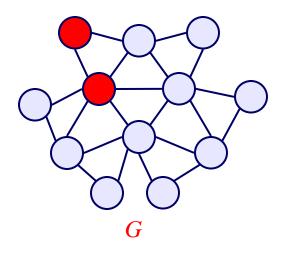
Feodor F. Dragan and Chenyu Yan

Kent State University Kent, Ohio, USA

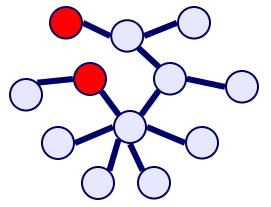
'Old' Tree t-Spanner Problem

Given: Unweighted undirected graph G=(V,E) and integers t,r.
Question: Does G admit a spanning tree T =(V,E') (where E' is a subset of E) such that

 $\forall u, v \in V, \ d_T(u, v) \le t \times d_G(u, v)$ $\forall u, v \in V, \ d_T(u, v) - d_G(u, v) \le r$



(a *multiplicative* tree *t-spanner* of *G*) or (an *additive* tree *r-spanner* of *G*)?

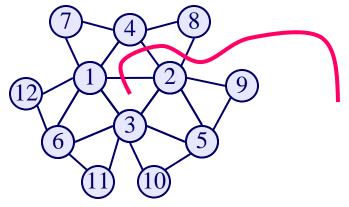


multiplicative tree 4- and additive tree

3-spanner of *G*

Chordal Graphs

- G is chordal if it has no chordless cycles of length >3
- There is no constant *t* [McKee, H.-O.Le]



no tree 3-spanner

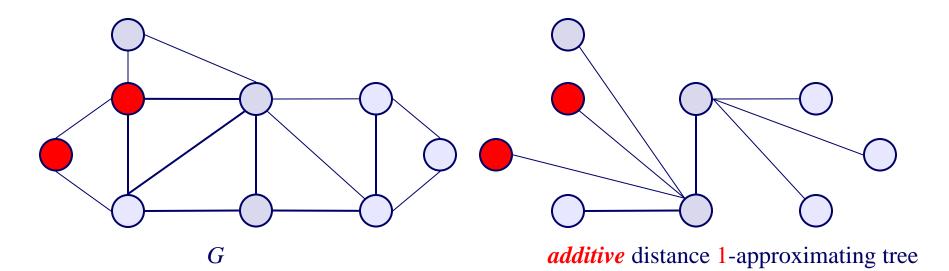
- From far away they look like trees
 - there is a tree T=(V,U) (not necessarily spanning) such that

 $\forall u, v \in V, |dist_T(v, u) - dist_G(v, u)| \le 2$ [BCD'99]

'New' Additive Distance Approximating Trees

Given: Unweighted undirected graph G=(V,E) and integers *r*. Question: Does *G* admit an *additive* distance approximating tree T = (V,E'), i.e., *T* such that

$$\forall u, v \in V, \quad -r \leq d_T(u, v) - d_G(u, v) \leq r$$

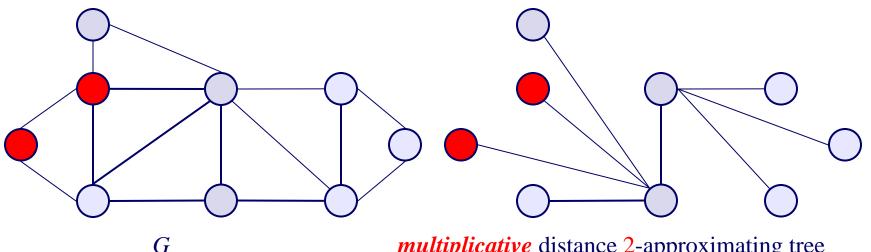


• Note: *E*' does not need to be a subset of *E*

'New' Multiplicative Distance Approximating **Trees**

Given: Unweighted undirected graph G=(V,E) and integers t. Question: Does G admit a *multiplicative* distance approximating tree T = (V, E'), *i.e.*, T such that

$$\forall u, v \in V, \quad \frac{1}{t} \times d_G(u, v) \le d_T(u, v) \le t \times d_G(u, v)$$



multiplicative distance 2-approximating tree

Note: E' does not need to be a subset of E •

Why Distance Approximating Trees

Approximate solution to some problems in the original graph.

- \blacktriangleright appr. distance matrix D(G) of a G [BCD'99]
- ➤ k-center problem [CD'00]
- bandwidth reduction [Gupta'01]
- > embeddings with small r-dimensional volume distortion [KLM'01]
- phylogeny reconstruction

Tree *t-spanner* is hard to find even for some special graphs

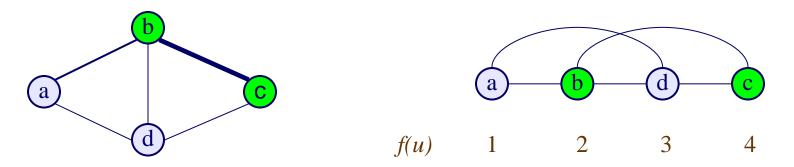
- ➤ chordal graphs [BDLL'02]
 - $t \ge 4$ is NP-complete. (t=3 is open.)
- Chordal graphs admit good distance approximating trees [BCD'99]
- ➤ k-Chordal graphs admit good distance approximating trees [CD'00]

Approximation for the Bandwidth Problem

- Bandwidth reduction[Gupta2001]
 - **Given:** an undirected *n*-vertex graph G = (V, E) and an integer *b*
 - ▶ Question: Find a one-one mapping of the vertices $f: V \rightarrow V$

 $\{1, 2, ..., n\}$ such that

Bandwidth(G, f) = $\max_{(u,v) \in E(G)} / f(u) - f(v) \leq b$

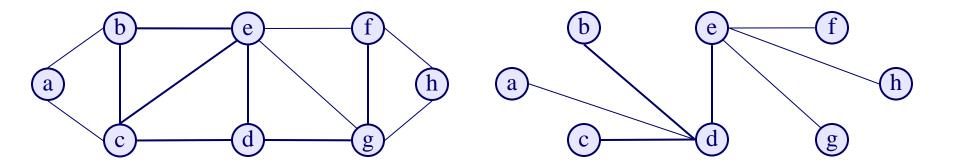


• The **Bandwidth** of the above graph is 2

Gupta's Approach

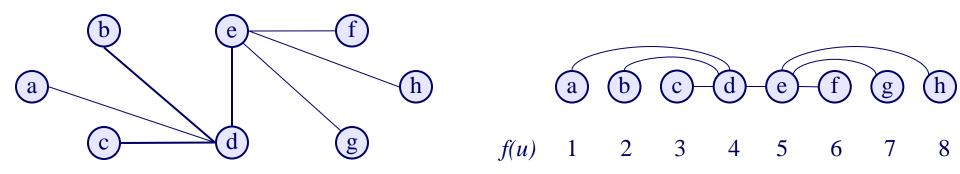
• The following algorithm is by Gupta [Gupta2001] for (chordal) graphs

 \succ Construct a distance approximating tree *T* for *G*



Gupta's Approach

- The following algorithm is by Gupta [Gupta2001]
 - \succ Construct a distance approximating tree *T* for *G*
 - Run the Gupta's approximation algorithms to get *f* for *T O(polylog n)-approximation*

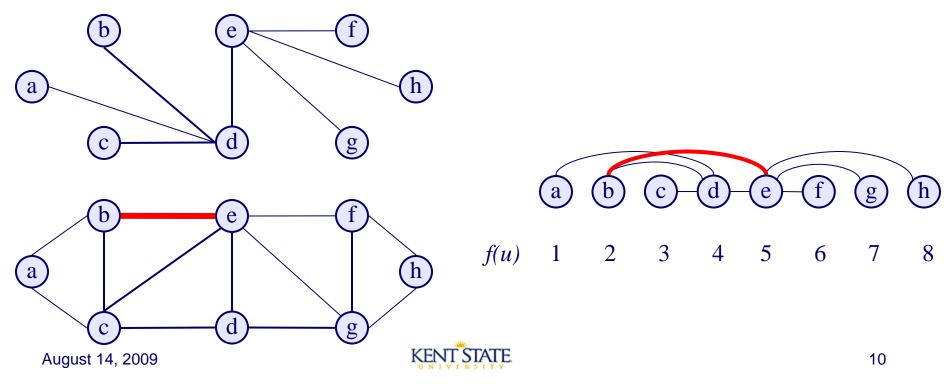


Gupta's Approach

• The following algorithm is by Gupta [Gupta2001]

 \triangleright Construct a distance approximating tree *T* for *G*

- Run the Gupta's approximation algorithms to get *f* for *T O(polylog n)-approximation*
- \succ Output *f* as an approximate solution for *G*



Our New Results

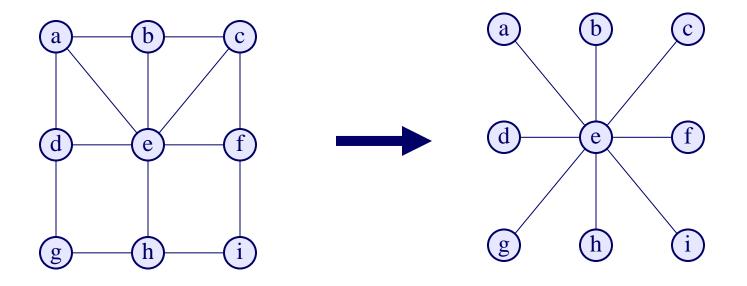
- **Theorem 1:** It is possible, for a given connected graph *G*=(*V*, *E*), to check in polynomial time whether *G* has an additive distance 1-approximating tree and, if such a tree exists, construct one in polynomial time.
- Theorem 2: Given a connected graph G=(V, E) and an integer∆≥5. It is NP-hard to decide whether G admits a multiplicative distance ∆-approximating tree.

In what follows,

- we will give some details of the first result,
- by a distance 1-approximating tree we will mean additive distance 1approximating tree.

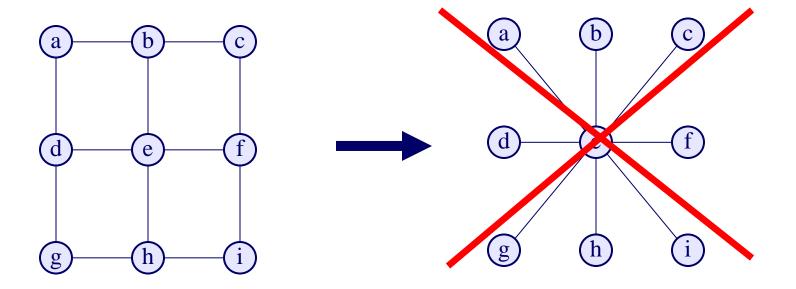
(3-connected graphs)

- Lemma 1: For a 3-connected graph G, the following statements are equivalent.
 - \succ *G* has a distance 1-approximating tree.
 - \succ G has a distance 1-approximating tree which is a star.
 - → $diam(G) \le 3$ and $rad(G) \le 2$.



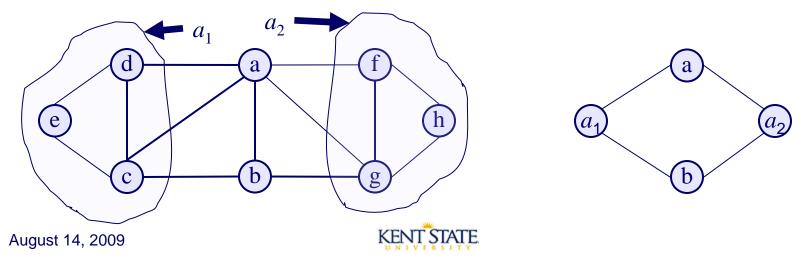
(3-connected graphs)

- Lemma 1: For a 3-connected graph G, the following statements are equivalent.
 - \succ *G* has a distance 1-approximating tree.
 - \succ G has a distance 1-approximating tree which is a star.
 - → $diam(G) \le 3$ and $rad(G) \le 2$.



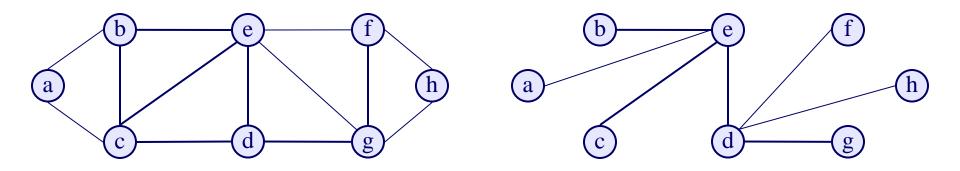
(2-connected graphs)

- Let G be a graph with 2-cut $\{a, b\}$ and A_1, A_2, \dots, A_k be the connected components of the graph G-a-b. For a given 2-cut $\{a, b\}$ of G, a graph $H_{a, b}$ is defined as follows
 - → $V(H_{a, b}) = \{a, b, a_1, ..., a_k\}$
 - ➤ aa_i is in $E(H_{a,b})$ if and only if for each x, y in $V(A_i)U\{b\}$, $d_G(x, y) \le 3$ and $d_G(x, a) \le 2$
 - ► ba_i is in $E(H_{a,b})$ if and only if for each x, y in $V(A_i)U\{a\}, d_G(x, y) \le 3$ and $d_G(x, b) \le 2$
 - → $a_i a_j$ is in $E(H_{a,b})$ if and only if for each x in $V(A_i)$ and y in $V(A_j)$, $d_G(x, y) \le 3$ holds
 - > No other edges exist in $H_{a, b}$



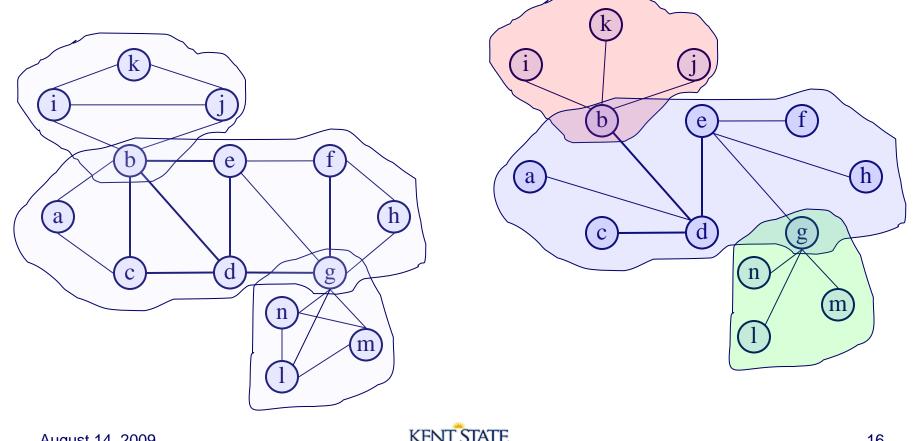
(2-connected graphs)

- Lemma 2: For a 2-connected graph G, the following statements are equivalent.
 - \succ G has a distance 1-approximating tree.
 - \succ G has a distance 1-approximating tree which is a star or a bistar.
 - Aiam(G)≤3 and rad(G) ≤2 or diam(G)≤4 and there exits a 2-cut {a, b} in G
 such that the graph $\overline{H_{a,b}}$ is bipartite.



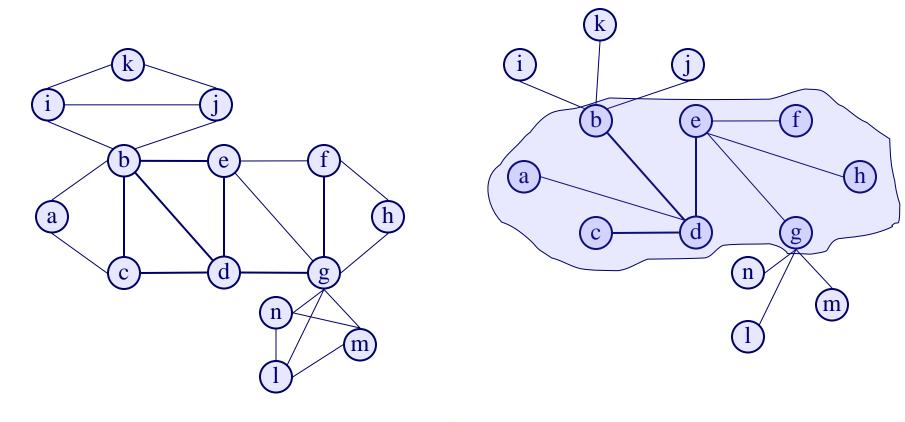
(connected graphs)

Theorem: If *T* is a distance 1-approximating tree of *G* with minimum ۲ $|E(T)\setminus E(G)|$, then T(V(A)) is a star or a bistar for any 2-connected component A of G.



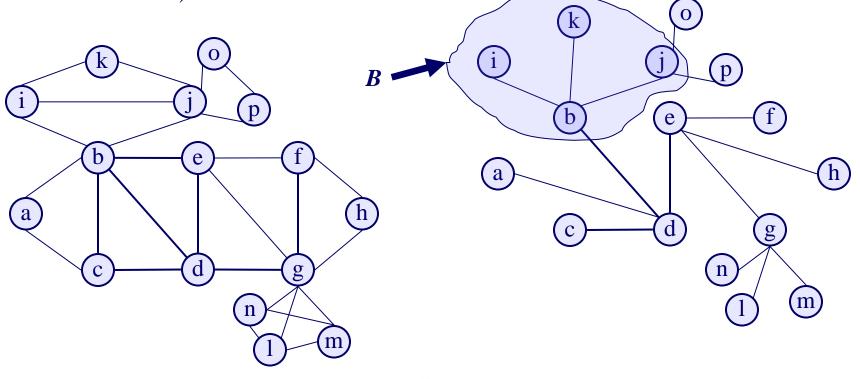
(connected graphs)

• Lemma: If *T* is a distance 1-approximating tree of *G* with minimum $|E(T)\setminus E(G)|$, then there is at most one 2-connected component *A* in *G* such that T(V(A)) is a bistar.



(connected graphs)

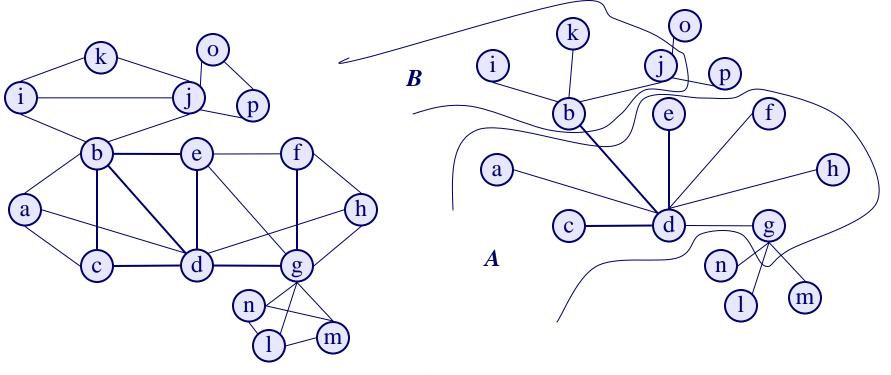
• Lemma: Let *T* be a distance 1-approximating tree of *G* with minimum $|E(T)\setminus E(G)|$ and *A* be a 2-connected component of *G* such that T(V(A)) is a bistar. Then, for any other 2-connected component *B* of *G*, T(V(B)) is a star centered at a 1-cut of *G* which is closest to *A* (among all 1-cuts of *G* located in *B*).



KENT STATE

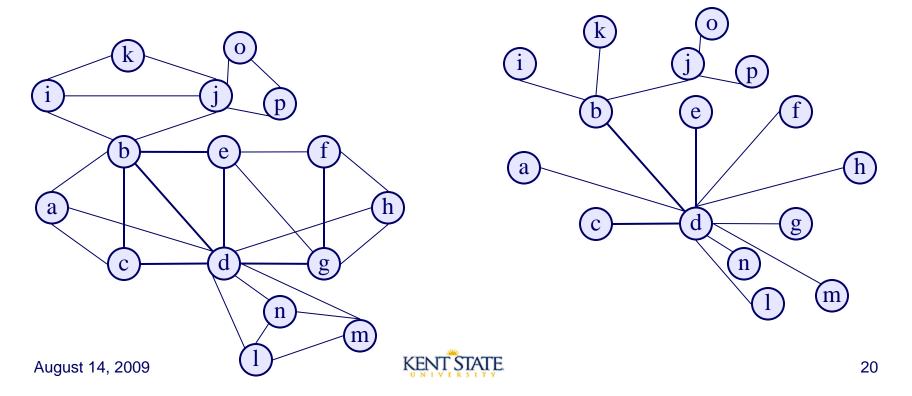
(connected graphs)

• **Lemma:** Let *T* be a distance 1-approximating tree of *G* with minimum $|E(T)\setminus E(G)|$ and *A* be a 2-connected component of *G* such that T(V(A)) is a star. If the center of this star T(V(A)) is not a 1-cut of *G*, then for any other 2-connected component *B* of *G*, T(V(B)) is a star centered at a 1-cut of *G* which is closest to *A* (among all 1-cuts of *G* located in *B*).



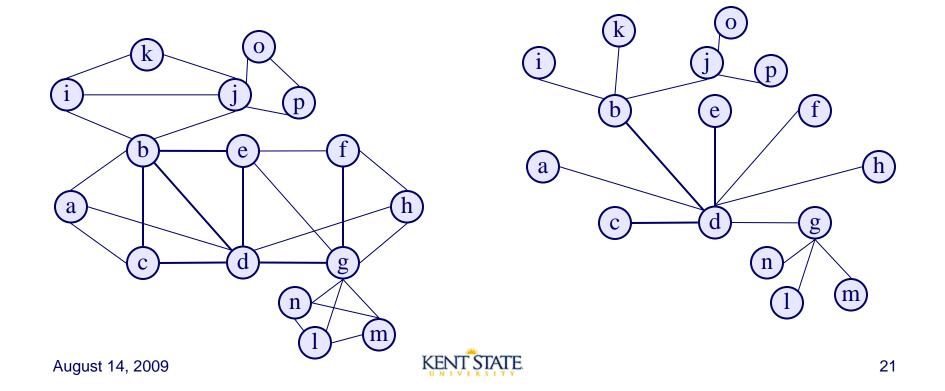
(connected graphs)

- Lemma: Let *T* be a distance 1-approximating tree of *G* with minimum |*E*(*T*)*E*(*G*)|. If for every 2-connected component *A* of *G*, *T*(*V*(*A*)) is a star centered at a 1-cut of *G*, then there exists a 1-cut *v* in *G* such that
 - For any 2-connected component A of G containing v, T(V(A)) is a star centered at v.
 - ➢ for any 2-connected component B of G not containing v, T(V(B)) is a star centered at a 1-cut of G which is closest to v.



(connected graphs)

• **Theorem:** It is possible, for a given connected graph G=(V, E), to check in $O(/V/^4)$ time whether G has a distance 1-approximating tree and, if such a tree exists, construct one within the same time bound.



Future work

- Find the complexity of determining whether a graph *G* admits *a multiplicative* distance 2-, 3-, 4-approximating tree.
- Design a good approximation algorithm for constructing a multiplicative distance approximating tree for a graph *G*, which admits a multiplicative distance Δ approximating tree, where $\Delta \ge 5$.
- More applications...

