Distance Approximating Trees: Complexity and Algorithms

Feodor F. Dragan and Chenyu Yan

Kent State University Kent, Ohio, USA

‘old’ Tree t-Spanner Problem

Given: Unweighted undirected graph $G=(V, E)$ and integers t, r.
Question: Does G admit a spanning tree $T=\left(V, E^{\prime}\right)$ (where E^{\prime} is a subset of $E)$ such that

$$
\begin{aligned}
& \forall u, v \in V, \quad d_{T}(u, v) \leq t \times d_{G}(u, v) \\
& \forall u, v \in V, d_{T}(u, v)-d_{G}(u, v) \leq r
\end{aligned}
$$

G
(a multiplicative tree t-spanner of G) or (an additive tree r-spanner of G)?

multiplicative tree 4- and additive tree

Chordal Graphs

- G is chordal if it has no chordless cycles of length >3
- There is no constant t [McKee, H.-O.Le]

no tree 3-spanner
- From far away they look like trees
- there is a tree $T=(V, U)$ (not necessarily spanning) such that

$$
\forall u, v \in V,\left|\operatorname{dist}_{T}(v, u)-\operatorname{dist}_{G}(v, u)\right| \leq 2 \quad\left[\mathrm{BCD}^{\prime} 99\right]
$$

'New' Additive Distance Approximating Trees

Given: Unweighted undirected graph $G=(\boldsymbol{V}, \boldsymbol{E})$ and integers r.
Question: Does G admit an additive distance approximating tree $T=\left(V, E^{\prime}\right)$, i.e., T such that

$$
\forall u, v \in V,-r \leq d_{T}(u, v)-d_{G}(u, v) \leq r
$$

G

additive distance 1-approximating tree

- Note: E ' does not need to be a subset of E

‘New’ Multiplicative Distance Approximating Trees

Given: Unweighted undirected graph $G=(\boldsymbol{V}, \boldsymbol{E})$ and integers \boldsymbol{t}.
Question: Does G admit a multiplicative distance approximating tree $T=\left(V, E^{\prime}\right)$, i.e, T such that

$$
\forall u, v \in V, \frac{1}{t} \times d_{G}(u, v) \leq d_{T}(u, v) \leq t \times d_{G}(u, v)
$$

multiplicative distance 2-approximating tree

- Note: E ' does not need to be a subset of E

Why Distance Approximating Trees

Approximate solution to some problems in the original graph.
$>$ appr. distance matrix $D(G)$ of a G [BCD'99]
$>k$-center problem [CD'00]
$>$ bandwidth reduction [Gupta'01]
$>$ embeddings with small r-dimensional volume distortion [KLM’01]
> phylogeny reconstruction

Tree t-spanner is hard to find even for some special graphs
$>$ chordal graphs [BDLL'02]

- $t \geq 4$ is NP-complete. ($t=3$ is open.)
$>$ Chordal graphs admit good distance approximating trees [BCD'99]
$>$ k-Chordal graphs admit good distance approximating trees [CD’00]

Approximation for the Bandwidth Problem

- Bandwidth reduction[Gupta2001]
$>$ Given: an undirected n-vertex graph $G=(V, E)$ and an integer b
$>$ Question: Find a one-one mapping of the vertices $f: V \rightarrow$
$\{1,2, \ldots, n\}$ such that
$\operatorname{Bandwidth}(G, f)=\max _{(u, v \in E(G)}|f(u)-f(v)| \leq b$

- The Bandwidth of the above graph is 2

Gupta's Approach

- The following algorithm is by Gupta [Gupta2001] for (chordal) graphs
$>$ Construct a distance approximating tree T for G

Gupta's Approach

- The following algorithm is by Gupta [Gupta2001]
$>$ Construct a distance approximating tree T for G
$>$ Run the Gupta's approximation algorithms to get f for T
> O(polylog n)-approximation

Gupta's Approach

- The following algorithm is by Gupta [Gupta2001]
$>$ Construct a distance approximating tree T for G
$>$ Run the Gupta's approximation algorithms to get f for T
> O(polylog n)-approximation
$>$ Output f as an approximate solution for G

$\begin{array}{lllllllll}f(u) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Our New Results

- Theorem 1: It is possible, for a given connected graph $G=(V$, $E)$, to check in polynomial time whether G has an additive distance 1-approximating tree and, if such a tree exists, construct one in polynomial time.
- Theorem 2: Given a connected graph $G=(V, E)$ and an integer $\Delta \geq 5$. It is NP-hard to decide whether G admits a multiplicative distance Δ-approximating tree.

In what follows,

- we will give some details of the first result,
- by a distance 1-approximating tree we will mean additive distance 1approximating tree.

Distance 1- approximating trees

(3-connected graphs)

- Lemma 1: For a 3-connected graph G, the following statements are equivalent.
$>G$ has a distance 1-approximating tree.
$>G$ has a distance 1-approximating tree which is a star.
$>\operatorname{diam}(G) \leq 3$ and $\operatorname{rad}(G) \leq 2$.

Distance 1- approximating trees

(3-connected graphs)

- Lemma 1: For a 3-connected graph G, the following statements are equivalent.
$>G$ has a distance 1-approximating tree.
$>G$ has a distance 1-approximating tree which is a star.
$>\operatorname{diam}(G) \leq 3$ and $\operatorname{rad}(G) \leq 2$.

Distance 1- approximating trees

(2-connected graphs)

- Let G be a graph with 2-cut $\{a, b\}$ and $A_{1}, A_{2} \ldots, A_{\mathrm{k}}$ be the connected components of the graph $G-a-b$. For a given 2-cut $\{a, b\}$ of G, a graph $H_{a, b}$ is defined as follows
$>V\left(H_{a, b}\right)=\left\{a, b, a_{1}, \ldots, a_{\mathrm{k}}\right\}$
$>a a_{i}$ is in $E\left(H_{a, b}\right)$ if and only if for each x, y in $V\left(A_{j}\right) \cup\{b\}, d_{G}(x, y) \leq 3$ and $d_{G}(x, a) \leq 2$
$>b a_{i}$ is in $E\left(H_{a, b}\right)$ if and only if for each x, y in $V\left(A_{j}\right) \cup\{a\}, d_{G}(x, y) \leq 3$ and $d_{G}(x, b) \leq 2$
$>a_{i} a_{j}$ is in $E\left(H_{a, b}\right)$ if and only if for each x in $V\left(A_{j}\right)$ and y in $V\left(A_{j}\right), d_{G}(x, y) \leq 3$ holds
$>$ No other edges exist in $H_{a, b}$

Distance 1- approximating trees

(2-connected graphs)

- Lemma 2: For a 2-connected graph G, the following statements are equivalent.
$>G$ has a distance 1-approximating tree.
$>G$ has a distance 1-approximating tree which is a star or a bistar.
$>\operatorname{diam}(G) \leq 3$ and $\operatorname{rad}(G) \leq 2$ or $\operatorname{diam}(G) \leq 4$ and there exits a 2 -cut $\{a, b\}$ in G such that the graph $\overline{H_{a, b}}$ is bipartite.

Distance 1- approximating trees

(connected graphs)

- Theorem: If T is a distance 1 -approximating tree of G with minimum $|E(T)| E(G) \mid$, then $T(V(A))$ is a star or a bistar for any 2-connected component A of G.

Distance 1- approximating trees

(connected graphs)

- Lemma: If T is a distance 1 -approximating tree of G with minimum $|E(T) \backslash E(G)|$, then there is at most one 2-connected component A in G such that $T(V(A))$ is a bistar.

Distance 1- approximating trees

(connected graphs)

- Lemma: Let T be a distance 1-approximating tree of G with minimum $|E(T) \backslash E(G)|$ and A be a 2-connected compnoent of G such that $T(V(A))$ is a bistar. Then, for any other 2 -connected component B of $G, T(V(B))$ is a star centered at a 1 -cut of G which is closest to A (among all 1-cuts of G

Distance 1- approximating trees

(connected graphs)

- Lemma: Let T be a distance 1-approximating tree of G with minimum $|E(T)| E(G) \mid$ and A be a 2-connected component of G such that $T(V(A))$ is a star. If the center of this star $T(V(A))$ is not a 1 -cut of G, then for any other 2-connected component B of $G, T(V(B)$) is a star centered at a 1 -cut of G which is closest to A (among all 1-cuts of G located in B).

Distance 1- approximating trees

(connected graphs)

- Lemma: Let T be a distance 1-approximating tree of G with minimum $|E(T)| E(G) \mid$. If for every 2-connected component A of $G, T(V(A))$ is a star centered at a 1-cut of G, then there exists a 1-cut v in G such that
$>$ for any 2-connected component A of G containing $v, T(V(A))$ is a star centered at v.
$>$ for any 2-connected component B of G not containing $v, T(V(B))$ is a star centered at a 1-cut of G which is closest to v.

Distance 1- approximating trees

(connected graphs)

- Theorem: It is possible, for a given connected graph $G=(V, E)$, to check in $O\left(|V|^{4}\right)$ time whether G has a distance 1 -approximating tree and, if such a tree exists, construct one within the same time bound.

Future work

- Find the complexity of determining whether a graph G admits a multiplicative distance 2-, 3-, 4-approximating tree.
- Design a good approximation algorithm for constructing a multiplicative distance approximating tree for a graph G, which admits a multiplicative distance Δ - approximating tree, where $\Delta \geq 5$.
- More applications...

