
Additive Spanners for Circle Graphs and Polygonal Graphs?

Derek G. Corneil1, Feodor F. Dragan2, Ekkehard Köhler3 and Yang Xiang2

1 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
dgc@cs.toronto.edu

2 Algorithmic Research Laboratory, Department of Computer Science,
Kent State University, Kent, OH 44242, USA

dragan@cs.kent.edu, yxiang@cs.kent.edu
3 Mathematisches Institut, Brandenburgische Technische Universität Cottbus,

D-03013 Cottbus, Germany
ekoehler@math.TU-Cottbus.DE

Abstract. A graph G = (V, E) is said to admit a system of µ collective additive tree r-spanners
if there is a system T (G) of at most µ spanning trees of G such that for any two vertices u, v
of G a spanning tree T ∈ T (G) exists such that the distance in T between u and v is at most
r plus their distance in G. In this paper, we examine the problem of finding “small” systems of
collective additive tree r-spanners for small values of r on circle graphs and on polygonal graphs.
Among other results, we show that every n-vertex circle graph admits a system of at most 2 log 3

2
n

collective additive tree 2-spanners and every n-vertex k-polygonal graph admits a system of at
most 2 log 3

2
k + 7 collective additive tree 2-spanners. Moreover, we show that every n-vertex k-

polygonal graph admits an additive (k + 6)-spanner with at most 6n− 6 edges and every n-vertex
3-polygonal graph admits a system of at most 3 collective additive tree 2-spanners and an additive
tree 6-spanner. All our collective tree spanners as well as all sparse spanners are constructible in
polynomial time.

1 Introduction

A spanning subgraph H of G is called a spanner of G if H provides a “good” approximation of
the distances in G. More formally, for r ≥ 0, H is called an additive r-spanner of G if for any
pair of vertices u and v their distance in H is at most r plus their distance in G [18]. If H is
a tree then it is called an additive tree r-spanner of G [23]. (A similar definition can be given
for multiplicative t-spanners [9, 21, 22] and for multiplicative tree t-spanners [6].) In this paper,
we continue the approach taken in [10–13, 17] of studying collective tree spanners. We say that
a graph G = (V,E) admits a system of µ collective additive tree r-spanners if there is a system
T (G) of at most µ spanning trees of G such that for any two vertices u, v of G a spanning tree
T ∈ T (G) exists such that the distance in T between u and v is at most r plus their distance
in G (see [13]). We say that system T (G) collectively c-spans the graph G. Clearly, if G admits
a system of µ collective additive tree r-spanners, then G admits an additive r-spanner with at
most µ× (n−1) edges (take the union of all those trees), and if µ = 1 then G admits an additive
tree r-spanner.

Collective tree spanners were investigated for a number of particular graph classes, including
planar graphs, bounded chordality graphs, bounded genus graphs, bounded treewidth graphs,
AT-free graphs and others (see [10–13, 17]). Some families of graphs admit a constant number
and some admit a logarithmic number of collective additive tree r-spanners, for small values of
r.
? This work was supported by the European Regional Development Fund (ERDF) and by NSERC.

One of the motivations to introduce this concept stems from the problems of designing
compact and efficient distance and routing labeling schemes in graphs. A distance labeling
scheme for trees is described in [20] that assigns each vertex of an n-vertex tree an O(log2 n)-bit
label such that, given the labels of two vertices x and y, it is possible to compute in constant
time, based solely on these two labels, the distance in the tree between x and y. A shortest
path routing labeling scheme for trees is described in [26] that assigns each vertex of an n-vertex
tree an O(log2 n/ log log n)-bit label such that, given the label of a source vertex and the label
of a destination, it is possible to compute in constant time, based solely on these two labels,
the neighbor of the source that heads in the direction of the destination. Hence, if an n-vertex
graph G admits a system of µ collective additive tree r-spanners, then G admits an additive
r-approximate distance labeling scheme with the labels of size O(µ log2 n) bits per vertex and an
O(µ) time distance decoder. Furthermore, G admits an additive r-approximate routing labeling
scheme with the labels of size O(µ log2 n/ log log n) bits per vertex. Once computed by the
sender in O(µ) time (by choosing for a given destination an appropriate tree from the collection
to perform routing), headers of messages never change, and the routing decision is made in
constant time per vertex (see [12, 13]).

Other motivations stem from the generic problems of efficient representation of the distances
in “complicated” graphs by the tree distances and of algorithmic use of these representations
[1, 2, 5, 15]. Approximating a graph distance dG by simpler distances (in particular, by tree–
distances dT) is useful in many areas such as communication networks, data analysis, motion
planning, image processing, network design, and phylogenetic analysis (see [3, 4, 6, 9, 18, 19, 21,
22, 24, 25]). An arbitrary metric space (in particular a finite metric defined by a graph) might
not have enough structure to exploit algorithmically.

In this paper, we examine the problem of finding “small” systems of collective additive tree
r-spanners for small values of r on circle graphs and on polygonal graphs. Circle graphs are
known as the intersection graphs of chords in a circle [16]. For any fixed integer k ≥ 2, the
class of k-polygon graphs can be defined as the intersection graphs of chords inside a convex k-
polygon, where the endpoints of each chord lie on two different sides [14]. Note that permutation
graphs are exactly 2-polygonal graphs and any n-vertex circle graph is a k-polygonal graph for
some k ≤ n. Our results are the following.

– For any constant c, there are circle graphs that cannot be collectively +c spanned by any
constant number of spanning trees.

– Every n-vertex circle graph G admits a system of at most 2 log 3
2
n collective additive tree

2-spanners, constructible in polynomial time.
– There are circle graphs on n vertices for which any system of collective additive tree 1-

spanners will require Ω(n) spanning trees.
– Every n-vertex circle graph admits an additive 2-spanner with at most O(n log n) edges.
– Every n-vertex k-polygonal graph admits a system of at most 2 log 3

2
k +7 collective additive

tree 2-spanners, constructible in polynomial time.
– Every n-vertex k-polygonal graph admits an additive (k+6)-spanner with at most 6n−6 edges

and an additive (k/2 + 8)-spanner with at most 10n− 10 edges, constructible in polynomial
time.

– Every n-vertex 4-polygonal graph admits a system of at most 5 collective additive tree 2-
spanners, constructible in linear time.

– Every n-vertex 3-polygonal graph admits a system of at most 3 collective additive tree 2-
spanners and an additive tree 6-spanner, constructible in linear time.

2

2 Preliminaries

All graphs occurring in this paper are connected, finite, undirected, loopless and without multiple
edges. In a graph G = (V,E) the length of a path from a vertex v to a vertex u is the number
of edges in the path. The distance dG(u, v) between vertices u and v is the length of a shortest
path connecting u and v. For a vertex v of G, the sets NG(v) and NG[v] = NG(v) ∪ {v} are
called the open neighborhood and the closed neighborhood of v, respectively. For a set S ⊆ V ,
by NG[S] =

⋃
v∈S NG[v] we denote the closed neighborhood of S and by G(S) the subgraph

of G induced by vertices of S. Let also G \ S be the graph G(V \ S) (which is not necessarily
connected).

An graph G is called a circle graph if it is the intersection graph of a finite collection of chords
of a circle [16] (see Fig. 1 for an illustration). Without loss of generality, we may assume that
no two chords share a common endpoint. For any fixed integer k ≥ 3, the class of k-polygon (or
k-gon) graphs is defined as the intersection graphs of chords inside a convex k-polygon, where the
endpoints of each chord lie on two different sides [14] (see Fig. 2 for an illustration). Permutation
graphs can be considered as 2-gon graphs as they are the intersection graphs of chords between
two sides (or sides of a degenerate 2-polygon). Again, without loss of generality, we may assume
that no two chords share a common endpoint. Clearly, if a graph G is a k-gon graph, it is also
a k′-gon graph with k′ > k, but the reverse is not necessarily true.

Let G = (V, E) be a permutation graph with a given permutation model Π. Let L′ and L′′

be the two sides of Π. A vertex s of G is called extreme if at least one endpoint of the chord
of Π, corresponding to s, is the leftmost or the rightmost endpoint either on L′ or on L′′. The
following result was presented in [12]:

Lemma 1. [12] Let G be a permutation graph and let s be an extreme vertex of G in some
permutation model. Then, there exists a BFS(s)-tree of G, constructible in linear time, which
is an additive tree 2-spanner of G.

Since an induced cycle on 4 vertices is a permutation graph, permutation graphs cannot have
any additive tree r-spanner for r < 2. Clearly, since Ts is a BFS(s)-tree of G, dTs(x, s) = dG(x, s)
holds for any x ∈ V .

3 Additive spanners for circle graphs

In this section, we show that every n-vertex circle graph G admits a system of at most 2 log 3
2
n

collective additive tree 2-spanners. This upper bound result is complemented also with two lower
bound results.

We start with the main lemma of this section which is also of independent interest.

Lemma 2. Every n-vertex (n ≥ 2) circle graph G = (V,E) has two vertices a and b such that
S = NG[a, b] is a balanced separator of G, i.e. each connected component of G \ S has at most
2
3n vertices.

Proof. Consider an intersection model φ(G) of G and let C be the circle in that model. Let
also P := (p1, p2, . . . , p2n) be the sequence in clockwise order of the 2n endpoints of the chords
representing the vertices of G in φ(G). We divide the circle C into three circular arcs B (bottom),
L (left) and R (right) each containing at most d2

3ne consecutive endpoints (see Fig. 1 for an

3

illustration). We say that a chord of φ(G) is an XY -chord if its endpoints lie on arcs X and Y
(X,Y ∈ {B,L, R}) of C. If v is an XY -chord then let vX and vY be its endpoints on X and Y ,
respectively.

Fig. 1. A circle graph with an intersection model and two special chords a and b. A balanced
separator S = NG[a, b] and the connected components of G \ S are also shown.

Let X be an arc from the set of arcs {B, L, R}. Since G is a connected graph, for any X, there
must exist a chord in φ(G) with one endpoint in X and the other endpoint not in X. Moreover,
since we have three arcs (B, L, R), there must exist an arc X in {B, L,R} which has both types
of chords: between X and Y ∈ {B,L, R} \ {X} and between X and Z ∈ {B, L, R} \ {X, Y }.
Assume, without loss of generality, that X = B. Let p be the point of C separating arcs L and
R (see Fig. 1). Now choose a BL-chord a in φ(G) with endpoint aL closest to p and choose a
BR-chord b in φ(G) with endpoint bR closest to p. By a, b we also denote the vertices of G which
correspond to chords a and b.

Points aB, aL, bR and bB of C divide C into four arcs. We name these four arcs AU , AR, AD

and AL. The arc AU := (aL, bR) is formed by all points of C from aL to bR in clockwise order.
If chords a and b intersect, then we set AR := (bR, aB), AD := (aB, bB), and AL := (bB, aL) (all
arcs begin at the left arc-endpoint and go clockwise to the right arc-endpoint). If chords a and
b do not intersect, then set AR := (bR, bB), AD := (bB, aB), and AL := (aB, aL). We consider
these arcs as open arcs, i.e., the points aB, aL, bR and bB do not belong to them.

By our choices of a and b, we guarantee that φ(G) has no chords with one endpoint in AU

and the other one in AD (regardless of the adjacency of a and b). Denote by VY all chords from
φ(G) (vertices of G) whose both endpoints are in AY , where Y is either U , or R, or D, or L.
Then, it is easy to see that in G, the set S := NG[a, b] separates vertices of VY from vertices
of VY ′ , where Y, Y ′ ∈ {U,R,D, L}, Y 6= Y ′. Now, since AL is a sub-arc of arc B ∪ L, AU is a
sub-arc of arc L ∪ R, AR is a sub-arc of arc R ∪ B, AD is a sub-arc of arc B, and arcs AU ,
AR, AD and AL do not contain points aB, aL, bR and bB, we conclude that |AL ∩ P| ≤ 4

3n,
|AU ∩ P| ≤ 4

3n, |AR ∩ P| ≤ 4
3n and |AD ∩ P| ≤ 2

3n. Hence, the number of arcs in φ(G) whose
both endpoints are in AL (respectively, in AU , AR, AD), and therefore the number of vertices
in VL ((respectively, in VU , VR, VD), is at most 2

3n. ut

4

In [11], a large class of graphs, called (α, γ, r)-decomposable graphs, was defined, and it was
proven that any (α, γ, r)-decomposable graph G with n vertices admits a system of at most
γ log1/α n collective additive tree 2r-spanners. Let α be a positive real number smaller than 1,
γ be a positive integer and r be a non-negative integer. We say that an n-vertex graph G is
(α, γ, r)–decomposable if n ≤ γ or there is a separator S ⊆ V in G, such that the following three
conditions hold:
- the removal of S from G leaves no connected component with more than αn vertices;
- there exists a subset D ⊆ V such that |D| ≤ γ and for any vertex u ∈ S, dG(u,D) ≤ r;
- each connected component of G \ S is an (α, γ, r)–decomposable graph, too.

Since, any subgraph of a circle graph is also a circle graph, and, by Lemma 2, each n-vertex
circle graph G = (V, E) admits a separator S = NG[D] (where D = {a, b}, a, b ∈ V), such that
no connected component of G \ S has more than 2

3n vertices, we immediately conclude.

Corollary 1. Every circle graph is (2
3 , 2, 1)−decomposable.

Theorem 1. Every n-vertex circle graph G admits a system T (G) of at most 2 log 3
2
n collective

additive tree 2-spanners.

Note that such a system of spanning trees T (G) for a n-vertex m-edge circle graph G,
given together with an intersection model φ(G), can be constructed in O(m log n) time, since a
balanced separator S = NG[a, b] of G can be found in linear O(m) time (see [11] for details of
the construction).

Taking the union of all these spanning trees in T (G), we also obtain a sparse additive 2-
spanner for a circle graph G.

Corollary 2. Every n-vertex circle graph G admits an additive 2-spanner with at most 2(n −
1) log 3

2
n edges.

We complement our upper bound result with the following lower bounds.

Proposition 1. There are circle graphs on n vertices for which any system of collective additive
tree 1-spanners will require Ω(n) spanning trees.

Proof. Since complete bipartite graphs are circle graphs, we can use the lower bound shown in
[13] for complete bipartite graphs. It says that any system of collective additive tree 1-spanners
will need to have Ω(n) spanning trees for each complete bipartite graph on n vertices. ut
Proposition 2. For any constant c, there are circle graphs that cannot be collectively +c spanned
by any constant number of spanning trees.

In [7] the authors show that a similar proposition holds for weakly chordal graphs. In fact,
the same proof works for circle graphs.

4 Additive spanners for k-gon graphs

In this section, among other results, we show that every n-vertex k-gon graph G admits a system
of at most 2 log 3

2
k + 7 collective additive tree 2-spanners, an additive (k + 6)-spanner with at

most 6n − 6 edges, and an additive (k/2 + 8)-spanner with at most 10n − 10 edges. We will
assume, in what follows, that our k-gon graph G is given together with its intersection model.

5

Lemma 3. Every n-vertex (n ≥ 2) k-gon graph G = (V, E) has two vertices a and b such that
S = NG[a, b] is a separator of G and each connected component of G \ S is a k′-gon graph with
k′ ≤ 2d1

3ke, when k > 5, and k′ = k − 1 when k = 3, 4, 5.

Proof. Consider an intersection model ρ(G) of G and let P be the closed polygonal chain (the
boundary) of the k-polygon in that model. The vertices of the k-polygon, in what follows, are
called the corners. Let C := [c1, c2, . . . , ck] be the sequence in the clockwise order of the corners
of P. The proof of this lemma is similar to the proof of Lemma 2, but here we operate with the
corners rather than with the endpoints of the chords. We divide the closed polygonal chain P
into three polygonal sub-chains B := (c1, . . . , ck1), L := (ck1 , . . . , ck2) and R := (ck2 , . . . , ck, c1)
each containing at most d1

3ke+1 consecutive corners (see Fig. 2 for an illustration). We say that
a chord of ρ(G) is an XY -chord if its endpoints lie on poly-chains X and Y (X,Y ∈ {B, L,R})
of P. If v is an XY -chord then let vX and vY be its endpoints on X and Y , respectively.

Fig. 2. A 6-gon graph with an intersection model and two special chords a and b. A balanced
separator S = NG[a, b] and the connected components of G \ S are also shown.

As in the proof of Lemma 2, we may assume, without loss of generality, that there are both
BL- and BR-chords in ρ(G). Choose BL-chord a in ρ(G) with endpoint aL closest to the corner
c := ck2 . Choose BR-chord b in ρ(G) with endpoint bR closest to the corner c (see Fig. 2).
By a, b we denote also the vertices of G which correspond to chords a and b. Using the same
arguments as in the proof of Lemma 2, we can see that the removal of chords a and b and all
the chords intersecting them, divides the remaining chords of ρ(G) into four pairwise disjoint
groups VD, VL, VU and VR; no chord of one group intersects any chord of another group. Hence,
each connected component of the graph G \NG[a, b] has its vertices entirely in either VD or VL

or VU or VR. Since all chords of VL are between no more that 2d1
3ke consecutive sides of P, the

induced subgraph G(VL) of G is a k′-gon graph for k′ ≤ 2d1
3ke (and k′ = k−1 when k = 3, 4, 5).

The same is true for the induced subgraphs G(VU), G(VR) and G(VD) of G. ut

Consider the following procedure which constructs for any k-gon graph G a hierarchy of
subgraphs of G and a system of local shortest path trees.

6

Procedure 1. Construct for a k-gon graph G a system of local shortest path trees and a system of
r-gon subgraphs (r < k).

Input: A k-gon graph G with an intersection model ρ(G) and a positive integer r ≥ 2.
Output: A system of local shortest path trees and a system of r-gon subgraphs of G.
Method:

set i := 0; Gi := {G}; T := ∅; F := ∅;
while Gi 6= ∅ do

set Gi+1 := ∅; T ′i := ∅; T ′′i := ∅; Fi := ∅;
for each G′ ∈ Gi do

if G′ is an r-gon subgraph of G (i.e., all chords of ρ(G′) are between at most r sides of ρ(G))
then add G′ into Fi;
else

find special vertices a and b in G′ as described in the proof of Lemma 3;
construct a shortest path tree of G′ rooted at a and put it in T ′i ;
construct a shortest path tree of G′ rooted at b and put it in T ′′i ;
put all the connected components of G′ \NG′ [a, b] into Gi+1;

set T := T ∪ T ′i ∪ T ′′i and F := F ∪ Fi;
set i := i + 1;

return T , F , and T ′i , T ′′i and Fi for each i.

The following lemma follows from Procedure 1.

Lemma 4. For any two vertices x, y ∈ V (G), there exists a local shortest path tree T ∈ T such
that dT (x, y) ≤ dG(x, y) + 2 or an r-gon subgraph F ∈ F of G such that dF (x, y) = dG(x, y).

Proof. Let G :=
⋃

i{Gi} be the family of all subgraphs of G generated by Procedure 1. Let G′ be
the smallest (by the number of vertices in it) subgraph from G, containing both vertices x and y
together with a shortest path of G connecting them. Denote this shortest path by PG(x, y). By
the choice of G′, we know that dG′(x, y) = dG(x, y). If G′ belongs to F , then it is an r-gon graph
and therefore we are done. If G′ does not belong to F , then any subgraph G′′ ∈ G, properly
contained in G′ either does not contain both vertices x and y or dG′′(x, y) > dG(x, y).

Consider special vertices a and b of a k′-gon graph G′ (see Lemma 3) and let S := NG′ [a, b]
and T ′, T ′′ ∈ T be the two shortest path trees of G′ rooted at a and b, respectively. From the
choice of G′, we have PG(x, y)∩S 6= ∅. Let w be a vertex from PG(x, y)∩S and assume, without
loss of generality, that w belongs to NG′ [a]. Since T ′ is a shortest path tree of G′ rooted at a, we
have dT ′(x, a) = dG′(x, a) ≤ dG′(x,w) + 1 and dT ′(y, a) = dG′(y, a) ≤ dG′(y, w) + 1. Combining
these inequalities with dG′(x, y) = dG′(x,w) + dG′(y, w) and dT ′(x, y) ≤ dT ′(x, a) + dT ′(y, a), we
obtain dT ′(x, y) ≤ dG′(x, y)+2. Since dG(x, y) = dG′(x, y), we conclude dT ′(x, y) ≤ dG(x, y)+2.

ut

Now we are ready to show how to construct a system of at most 2 log3/2 k + 7 collective
additive tree 2-spanners for a k-gon graph G. Let Gi := {G1

i , G
2
i , . . . , G

pi
i } be the connected

graphs of the ith iteration of the while loop (i = 0, 1, 2, . . .). We run Procedure 1 with parameter
r = 2. Since, in the start iteration, a k-gon graph G is reduced to a set of k1-gon graphs with
k1 ≤ 2d1

3ke ≤ 2
3k + 4

3 , and generally, at iteration i − 1, any ki−1-gon graph is reduced to a set
of ki-gon graphs with ki ≤ 2

3ki−1 + 4
3 , we conclude that all graphs of Gi are ki-gon graphs for

ki ≤ (2
3)ik + 2((2

3)i + (2
3)i−1 + · · · + 2

3) = (2
3)ik + 4(1 − (2

3)i). Hence, after at most log2/3 k + 1
iterations, the input k-gon graph G will be reduced to a set of k′-gon graphs with k′ ≤ 4, and all
graphs at the beginning of iteration log2/3 k + 4 will be 2-gon graphs (i.e., permutation graphs).

7

We use T ′ji , T
′′j
i to denote the two local shortest path trees constructed for a graph Gj

i /∈ Fi,
1 ≤ j ≤ pi, by Procedure 1. For a permutation graph Gj

i ∈ Fi, let T j
i be an additive tree

2-spanner of Gj
i , which exists by Lemma 1, and let T ′ji := T ′′ji := T j

i . Clearly, for any j, j′ ∈
{1, · · · , pi}, j 6= j′, we have Gj

i ∩ Gj′
i = ∅. Therefore, T ′ji ∩ T ′j

′
i = ∅ and T ′′ji ∩ T ′′j

′
i = ∅ hold.

We can extend in linear O(|E|) time the forest T ′1i , T ′
2
i , . . . , T

′pi
i of G to a single spanning tree

T ′i of G (using, for example, a variant of the Kruskal’s Spanning Tree Algorithm). Similarly, we
can extend the forest T ′′1i , T ′′

2
i , . . . , T

′′pi
i to another single spanning tree T ′′i of G. We call these

trees T ′i , T
′′
i the spanning trees of G corresponding to the ith iteration of the while loop. For the

last iteration, it is sufficient to consider only one spanning tree Tlast (an extension of the forest
T 1

last, T
2
last, . . . , T

plast
last). Since the while loop has at most log3/2 k+4 iterations, in this way we will

construct at most 2 log3/2 k + 7 spanning trees for G, two for each iteration of the while loop,
except for the last iteration, where we have only one spanning tree. Denote the collection of these
spanning trees by ST (G). By Lemma 4, it is rather straightforward to show that for any two
vertices x and y of G, there exists a spanning tree T ∈ ST (G) such that dT (x, y) ≤ dG(x, y)+2.
Thus, we have

Theorem 2. Every n-vertex m-edge k-gon graph G admits a system of at most 2 log 3
2
k + 7

collective additive tree 2-spanners, constructable in O(m log k) time. Moreover, every 3-gon graph
admits a system of no more than 3 collective additive tree 2-spanners, and every 4-gon graph
admits a system of no more than 5 collective additive tree 2-spanners.

Similar to Corollary 2, we have

Corollary 3. Every n-vertex k-gon graph G admits an additive 2-spanner with at most (2 log 3
2
k+

7)(n−1) edges. Moreover, every 3-gon graph admits an additive 2-spanner with at most 3(n−1)
edges, and every 4-gon graph admits an additive 2-spanner with at most 5(n− 1) edges.

We can state also the following result.

Theorem 3. Every n-vertex m-edge k-gon graph G admits an additive (2((2
3)`k+4(1− (2

3)`))+
1)-spanner with at most 2(` + 1)(n − 1) edges, for each 0 ≤ ` ≤ log3/2 k + 3. Moreover, such a
sparse spanner is constructable in O(m log k) time.

Proof. We run Procedure 1 with parameter r := k` = (2
3)`k + 4(1 − (2

3)`). In this case, we will
have only `+1 iterations of the while loop of Procedure 1. We use also the fact that in any k′-gon
graph the length of a largest induced cycle is at most 2k′ (see [14]). In [8], it was shown that if the
length of largest induced cycle of a graph G′ is c, then G′ admits an additive (c+1)-spanner with
at most 2|V (G′)| − 2 edges, and such a sparse spanner for G′ can be constructed in O(|E(G′)|)
time. Using this, for each k`-gon graph Gj

i ∈ F we can construct an additive (2k` + 1)-spanner
Hj

i with at most 2|V (Gj
i)| − 2 edges.

Now, a spanning subgraph H = (V, F) of G = (V, E) can be defined as follows. The edge-set
F of H is empty initially. For each iteration i (0 ≤ i ≤ `), if Gj

i ∈ Gi belongs to Fi, then add all
edges E(Hj

i) into F , else add into F all edges of local shortest path trees T ′ji and T ′′ji . Since for
each iteration we add into F at most 2n− 2 edges of G, the final edge-set F will have no more
that (2n− 2)(` + 1) edges. Using Lemma 4, it is easy to see also that for any two vertices x and
y of G, dH(x, y) ≤ dG(x, y) + 2k` + 1 holds. ut

Choosing ` equal to 0, 1, 2, 3 or 4 in Theorem 3, we obtain.

8

Corollary 4. Every n-vertex k-gon graph G admits an additive (2k + 1)-spanner with at most
2n − 2 edges, an additive (4

3k + 4)-spanner with at most 4n − 4 edges, an additive (8
9k + 6)-

spanner with at most 6n− 6 edges, an additive (16
27k +7)-spanner with at most 8n− 8 edges, and

an additive (32
81k + 8)-spanner with at most 10n− 10 edges.

5 Additive tree spanners for 3-gon graphs

In this section, we show that any connected 3-gon graph G admits an additive tree 6-spanner
constructible in linear time. Note that, since an induced cycle on 6 vertices is a 3-gon graph,
3-gon graphs cannot have any additive tree r-spanner for r < 4. The algorithm will identify
permutation graphs in each of the 3 corners of the 3-gon and use the algorithm presented in
Lemma 1 to construct effective tree spanners of each of these subgraphs. These 3 tree spanners
are incorporated into a tree spanner for the entire graph by analyzing the structure in the
“center” of the given 3-gon graph.

Fig. 3. A 3-gon intersection model ∆ with special chords a, b, αu and βu.

Let G = (V, E) be a connected 3-gon graph. We may assume that G is not a permutation
graph. Consider a 3-gon intersection model ∆ of G and fix an orientation of ∆. Denote by L
(left), R (right) and B (bottom) the corresponding sides of the 3-gon ∆, and by CL, CR and CU

the left, right and upper corners of ∆. We say that a chord of ∆ is an XY -chord if its endpoints
lie on sides X and Y of ∆. If v is an XY -chord then let vX and vY be its endpoints on X and
Y , respectively. Since G is not a permutation graph, we must have all three types of chords in
∆: LR-chords, LB-chords and RB-chords. Let a be the LB-chord of G whose endpoint on L is
closest to the upper corner CU of ∆. Let b be the RB-chord of G whose endpoint on R is closest
to the upper corner of ∆ (see the left 3-gon in Fig. 3 for an illustration). Note that a and b may
or may not cross. By a, b we also denote the corresponding vertices of G.

Let VU be the subset of LR-chords of ∆ (of vertices of G) with endpoints in segments
(aL, CU) and (bR, CU). We will add at most two more LR-chords to VU to form a permutation
graph named GU . Choose (if it exists) an LR-chord αu in ∆ such that αu

L belongs to segment
(CL, aL) of L, αu

R belongs to segment (CU , bR) of R and αu
R is closest to the corner CU . Clearly,

if αu exists then it must intersect a (but not b). Analogously, choose (if it exists) an LR-chord
βu in ∆ such that βu

R belongs to segment (CR, bR) of R, βu
L belongs to segment (CU , aL) of L

and βu
L is closest to the corner CU . Again, if βu exists then it must intersect b (but not a). Note

9

that, if VU 6= ∅, then at least one of {αu, βu} must exist (since otherwise, G is not connected),
and if both chords exist then they must intersect each other. See the right picture in Fig. 3. Now,
we define our permutation graph GU to be the subgraph of G induced by vertices VU ∪{αu, βu},
assuming that VU 6= ∅ (see Fig. 4 for an illustration). If VU = ∅, then we set GU to be an empty
graph.

Fig. 4. Permutation graph GU extracted from G.

The following two propositions hold for GU .

Proposition 3. For every x, y ∈ VU ∪ {αu, βu}, dGU
(x, y) = dG(x, y).

Proof. Clearly if both αu and βu exist, then dG(αu, βu) = dGU
(αu, βu) = 1. Let PG(x, y) be a

shortest path in G between x, y ∈ VU . If PG(x, y) has no vertices outside VU , then this path
is in GU , too, and therefore dGU

(x, y) = dG(x, y). Assume now that PG(x, y) contains vertices
from V \ VU . Consider such a vertex x′ closest to x and such a vertex y′ closest to y. Let x′′ be
the neighbor of x′ on PG(x, y) closer to x, and y′′ be the neighbor of y′ on PG(x, y) closer to y.
Necessarily, x′′, y′′ ∈ VU , x′, y′ belong to NG[a, b] and because of the maximality of aL and bR, the
corresponding chords x′, y′ are between (CL, aL) and (CU , bR) or between (CR, bR) and (CU , aL).
If x′ 6= y′, then a simple geometric consideration shows that x′′ must be adjacent to y′ or y′′ must
be adjacent to x′ or x′′, y′′ are adjacent. Since that is impossible in a shortest path PG(x, y), we
conclude x′ = y′. Assume, without loss of generality, that the chord x′ = y′ is between (CL, aL)
and (CU , bR). In PG(x, y), by replacing vertex x′ with vertex αu (note that chord αu crosses
both x′′ and y′′), one can obtain a shortest (x, y)-path of G completely contained in GU .

Now let PG(x, αu) be a shortest path in G between x ∈ VU and αu. If PG(x, αu) has no
vertices outside VU ∪ {αu}, then this path is in GU , too, and therefore dGU

(x, αu) = dG(x, αu).
Assume that PG(x, αu) contains vertices from V \ (VU ∪{αu}). Consider such a vertex x′ closest
to x and let x′′ be the neighbor of x′ on PG(x, αu) closer to x. Since βu and αu are adjacent,
x′′ 6= βu. Necessarily, x′′ ∈ VU , x′ belongs to NG[a, b] and the corresponding chord x′ is between
(CL, aL) and (CU , bR) or between (CR, bR) and (CU , aL). A simple geometric consideration shows
that x′′ must be adjacent to βu. In PG(x, αu), replacing vertex x′ with vertex βu (note that chord
βu crosses both x′′ and αu), one can obtain a shortest (x, αu)-path of G completely contained in
GU , i.e., dG(x, αu) = dGU

(x, αu) . Similarly, we can show that dG(x, βu) = dGU
(x, βu) for every

x ∈ VU . ut

10

Define su to be a vertex from {αu, βu} as follows: if both αu and βu exist, then if αu has a
neighbor in VU which is not a neighbor of βu, set su := αu; otherwise, set su := βu.

Proposition 4. There is a linear time constructable BFS(su)-tree TU of GU such that dG(x, y) ≤
dTU

(x, y) ≤ dG(x, y) + 2 and dTU
(x, su) = dG(x, su) for any x, y in VU ∪ {αu, βu}.

Proof. Since GU is a permutation graph and su is extreme, by Lemma 1, there is in GU a
linear time constructable BFS(su)-tree TU such that dTU

(x, y) ≤ dGU
(x, y)+2 and dTU

(x, su) =
dGU

(x, su) for any x, y in VU ∪ {αu, βu}. Moreover, since TU is a subgraph of G, dG(x, y) ≤
dTU

(x, y) for all x, y ∈ VU ∪ {αu, βu}. Hence, by Proposition 3, we are done. ut

Let VL be the subset of all chords of ∆ (of vertices of G) with endpoints in segments (CL, aL)
and (CL, aB) ∩ (CL, bB). We will add at most two more chords to VL to form a permutation
graph named GL. Choose (if it exists) a chord α` in ∆ such that one endpoint of α` belongs to
segment (CL, aL) of L, the other endpoint belongs to R ∪ (aB, CR) ∪ (bB, CR) and α`

L is closest
to the corner CL. Equivalently, among all chords of ∆ intersecting a or b, α` is chosen to be
the chord with an endpoint α`

L in (CL, aL) closest to CL. Note that α` may or may not cross b.
Also, choose (if it exists) an RB-chord β` in ∆ such that β`

R belongs to segment (CR, bR) of R,
β`

B belongs to segment (CL, aB) ∩ (CL, bB) of B and β`
B is closest to the corner CL. Notice, if

β` exists then it must intersect both a and b. Furthermore, if VL 6= ∅, then at least one chord
from {α`, β`} must exist (since, otherwise, G is not connected). Now, we define our permutation
graph GL. If VL = ∅, then set GL to be an empty graph. Otherwise, GL is set to be the subgraph
of G induced by vertices VL ∪ {α`, β`} with one extra edge (α`, β`) added if it was not already
an edge of G (see Fig. 5 for an illustration).

Fig. 5. Permutation graph GL obtained from G.

The following three propositions hold for GL.

Proposition 5. Let both α` and β` exist. Then, there is no shortest path in GL between any
x, y ∈ VL, which uses the edge (α`, β`). Moreover, for any vertex x ∈ VL and s ∈ {α`, β`},
there is a shortest path PGL

(x, s) of GL which does not use the edge (α`, β`), whenever (NG(s) \
NG({α`, β`} \ {s})) ∩ VL 6= ∅.

11

Proof. Let PGL
(x, y) be a shortest path of GL between x and y (x, y ∈ VL) using the edge

(α`, β`). Consider the neighbors f and t (f, t ∈ VL) in PGL
(x, y) of α` and β`, respectively. Since

f ∈ NG(α`)\NG(β`), t ∈ NG(β`)\NG(α`) and f, t ∈ VL, a simple geometric consideration shows
that f and t must be adjacent in G (and hence in GL), thereby contradicting PGL

(x, y) being a
shortest (x, y)-path in GL.

Now let PGL
(x, s) be a shortest path of GL between x ∈ VL and s ∈ {α`, β`} using the edge

(α`, β`), and assume that s has a neighbor f in VL which is not adjacent to g := {α`, β`} \ {s}.
Consider the neighbor t ∈ VL in PGL

(x, s) of g. Since t ∈ NG(g) \NG(s), f ∈ NG(s)\NG(g) and
f, t ∈ VL, a simple geometric consideration shows that f and t must be adjacent in G (and hence
in GL). Replacing vertex g in PGL

(x, s) with vertex f , we obtain a new shortest (x, s)-path in
GL, which does not use the edge (α`, β`). ut

Note that, since GL may have edge (α`, β`) which may not be an edge of G, some distances
in GL can be smaller than in G.

Proposition 6. For every x, y ∈ VL, dGL
(x, y) = dG(x, y). Moreover, for each s ∈ {α`, β`},

dGL
(x, s) ≤ dG(x, s) holds for all x ∈ VL, and if dGL

(x, s) < dG(x, s) for some x ∈ VL, then
dGL

(x, s) = dG(x, s)− 1 and every neighbor of s in VL is a neighbor of g := {α`, β`} \ {s}.

Proof. Let PG(x, y) be a shortest path in G between x, y ∈ VL. If PG(x, y) has no vertices outside
VL, then this path is in GL, too, and therefore dGL

(x, y) ≤ dG(x, y). Hence, by Proposition 5,
dGL

(x, y) = dG(x, y). Assume now that PG(x, y) contains vertices from V \ VL. Consider such a
vertex x′ closest to x and such a vertex y′ closest to y. Let x′′ be the neighbor of x′ on PG(x, y)
closer to x, and y′′ be the neighbor of y′ on PG(x, y) closer to y. Necessarily, x′′, y′′ ∈ VL,
x′, y′ belong to NG[a, b] and the corresponding chords x′, y′ are between (CL, aB)∩ (CL, bB) and
(CR, bR) or between (CL, aL) and R ∪ (aB, CR) ∪ (bB, CR). If x′ 6= y′, then a simple geometric
consideration shows that x′′ must be adjacent to y′ or y′′ must be adjacent to x′ or x′′, y′′ are
adjacent. Since that is impossible in a shortest path PG(x, y), we conclude x′ = y′. If the chord
x′ = y′ is between (CL, aB) ∩ (CL, bB) and (CR, bR), then in PG(x, y) we can replace vertex x′

with vertex β` (since chord β` crosses both x′′ and y′′). If the chord x′ = y′ is between (CL, aL)
and R ∪ (aB, CR) ∪ (bB, CR), then in PG(x, y) we can replace vertex x′ with vertex α` (since
chord α` crosses both x′′ and y′′). In both cases, we obtain a shortest (x, y)-path of G completely
contained in GL. Hence, dGL

(x, y) ≤ dG(x, y), implying dGL
(x, y) = dG(x, y), by Proposition 5.

Consider now a shortest path PG(x, α`) in G between x ∈ VL and α`. If PG(x, α`) has no
vertices outside VL, except α` itself, then this path is in GL, too, and therefore dGL

(x, α`) ≤
dG(x, α`). We will have dGL

(x, α`) < dG(x, α`) only if there is a path P in GL shorter than
PG(x, α`) where P uses the edge (α`, β`) ∈ E(GL) \ E(G). But then, by Proposition 5, any
neighbor of α` in VL is a neighbor of β`, too, thereby contradicting the existence of P . Assume
now that PG(x, α`) contains vertices from V \ (VL ∪ {α`}). Consider such a vertex x′ closest to
x and let x′′ be the neighbor of x′ on PG(x, α`) closer to x. Necessarily, x′′ ∈ VL, x′ belongs to
NG[a, b] and the corresponding chord x′ is between (CL, aB)∩ (CL, bB) and (CR, bR) or between
(CL, aL) and R ∪ (aB, CR) ∪ (bB, CR). A simple geometric consideration shows that x′′ is either
adjacent to α` (which contradicts PG(x, α`) being a shortest path) or to β`. Since β` is adjacent
in GL to α` as well, we get a (x, α`)-path completely contained in GL and of length at most
the length of PG(x, α`). Hence, dG(x, α`) ≥ dGL

(x, α`). Again, dGL
(x, α`) < dG(x, α`) can hold

only if there is no shortest path between x and α` in GL not using the edge (α`, β`). But then,
by Proposition 5, any neighbor of α` in VL is a neighbor of β`, too. Similarly, we can show that

12

dGL
(x, β`) ≤ dG(x, β`) holds for all x ∈ VL, and if dGL

(x, β`) < dG(x, β`) for some x ∈ VL, then
every neighbor of β` in VL is a neighbor of α`.

To show that dGL
(x, α`) < dG(x, α`) implies dGL

(x, α`) = dG(x, α`)−1, first note that vertex
a is adjacent in G to both α` and β`, and that dG(x, β`) = dGL

(x, β`), since β` is adjacent to x′′

in VL. Hence, dG(x, α`) ≤ dG(x, β`)+2 = dGL
(x, β`)+2. On the other hand, we have dG(x, α`) ≥

dGL
(x, α`) + 1 = dGL

(x, β`) + 2. From these two inequalities, dGL
(x, α`) = dG(x, α`)− 1 follows.

Similarly, one can show that dGL
(x, β`) < dG(x, β`) implies dGL

(x, β`) = dG(x, β`)− 1. ut

Define s` to be a vertex from {α`, β`} as follows: if both α` and β` exist, then if α` has a
neighbor in VL which is not a neighbor of β`, then set s` := α`; otherwise, set s` := β`.

Corollary 5. dGL
(x, s`) = dG(x, s`) for every x ∈ VL.

Proof. If s` = α`, i.e., there is a neighbor of α` in VL which is not a neighbor of β`, then, by
Proposition 6, dGL

(x, α`) = dG(x, α`). Assume now that s` = β`. If there is a neighbor of β` in
VL which is not a neighbor of α`, then again, by Proposition 6, dGL

(x, β`) = dG(x, β`). Hence,
we may assume that α` and β` have the same neighborhood in VL. In this case, dGL

(x, α`) =
dG(x, α`) = dGL

(x, β`) = dG(x, β`), since edge (α`, β`) is not part of any shortest path of GL

between x ∈ VL and v ∈ {α`, β`}. ut

Proposition 7. There is a linear time constructable BFS(s`)-tree TL of GL such that dG(x, y)−
1 ≤ dTL

(x, y) ≤ dG(x, y) + 2, for any x, y in VL ∪ {α`, β`}, and dTL
(x, s`) = dG(x, s`), for all

x ∈ VL. Moreover, dG(x, y) ≤ dTL
(x, y) for all x, y ∈ VL.

Proof. Since GL is a permutation graph, by Lemma 1, there is in GL a linear time constructable
BFS(s`)-tree TL such that dGL

(x, y) ≤ dTL
(x, y) ≤ dGL

(x, y) + 2 and dTL
(x, s`) = dGL

(x, s`)
for any x, y in VL ∪ {α`, β`}. Hence, dTL

(x, s`) = dG(x, s`) for every x ∈ VL, by Corollary 5, and
dG(x, y)− 1 ≤ dTL

(x, y) ≤ dG(x, y) + 2 for every x, y ∈ VL ∪ {α`, β`} (with dG(x, y) ≤ dTL
(x, y)

for all x, y ∈ VL), by Proposition 6. Clearly, dG(α`, β`) ≤ 2 (since a is adjacent to both α`, β`)
and dTL

(α`, β`) = dGL
(α`, β`) = 1. ut

Taking symmetry into account, similar to α`, β` and GL, we can define for the corner CR of
∆ two specific chords αr, βr and a permutation graph GR. We will have βr adjacent to both a
and b, and αr adjacent to a or b. Define sr to be a vertex from {αr, βr}, and if both αr and βr

exist, then if αr has a neighbor in VR which is not a neighbor of βr, then set sr := αr; otherwise,
set sr := βr. We can state.

Proposition 8. There is a linear time constructable BFS(sr)-tree TR of GR such that dG(x, y)−
1 ≤ dTR

(x, y) ≤ dG(x, y) + 2, for any x, y in VR ∪ {αr, βr}, and dTR
(x, sr) = dG(x, sr), for all

x ∈ VR. Moreover, dG(x, y) ≤ dTR
(x, y) for all x, y ∈ VR.

We will need also the following straightforward facts.

Proposition 9. We have dG(x, s`) ≤ dG(x, {α`, β`}) + 1 for every x ∈ VL, and dG(x, sr) ≤
dG(x, {αr, βr}) + 1 for every x ∈ VR.

Proof. We will prove only the first part. The proof of the second part is similar. Let g :=
{α`, β`})\{s`}, and assume dG(x, g) ≤ dG(x, s`)−2 for some vertex x ∈ VL. Consider a shortest
path PG(x, g) in G between x and g and the neighbor g′ of g in PG(x, g). Since a is adjacent to

13

both α` and β`, dG(x, g) = dG(x, s`)− 2 thereby implying that s` has no neighbors in PG(x, g)
and a has only g as a neighbor in PG(x, g). Then, necessarily, g′ belongs to VL and, by the choice
of s`, there must exist a neighbor f of s` in VL which is not adjacent to g. A simple geometric
consideration then shows that f and g′ have to be adjacent in G. The latter is impossible since
dG(x, s`) = dG(x, g) + 2. ut
Proposition 10. We have V = VU ∪ VL ∪ VR ∪ NG[a, b] and VU , VL, VR, NG[a, b] are disjoint
sets. Moreover, NG[a, b] separates vertices of VX from vertices of VY for every X,Y ∈ {L,R, U},
X 6= Y .

Proposition 11. We have dG(a, b) ≤ 3.

Proof. If βr or β` exist (say, without loss of generality, that βr exists), then dG(a, b) ≤ 2, since
βr crosses both a and b. Assume now that neither βr nor β` exists. Then both αr and α` must
exist. If dG(a, b) > 2 and both αu and βu exist, then (a, αu), (αu, βu), (βu, b) ∈ E(G) and hence
dG(a, b) = 3. Assume now that dG(a, b) > 2 and, without loss of generality, αu exists and βu

does not exist. Choose a BR-chord x such that xR belongs to segment (CR, bR), xB belongs to
segment (aB, bB) and xB is closest to CL. Analogously, choose a BL-chord y such that yL belongs
to segment (CL, aL), yB belongs to segment (aB, bB) and yB is closest to CR. Since βu does not
exist, but there must be a connection in G between vertices of VL and vertices of VR, the chords x
and y must exist and have to cross each other. Hence, dG(a, b) = dG(a, y)+dG(y, x)+dG(x, b) = 3.

ut
Now we are ready to state the main result of this section.

Theorem 4. Any connected 3-gon graph G admits an additive tree 6-spanner constructible in
linear time.

Proof. We will create a spanning tree T of G from the trees TU , TL and TR described in Propo-
sition 4, Proposition 7 and Proposition 8 as follows. Initially, T is just the union of TU , TL and
TR. We know that {β`, βr, αu} ⊆ NG(a) and {β`, βr, βu} ⊆ NG(b). Make vertex a adjacent to
αu and vertex b adjacent to βu in T . Denote M := {α`, β`, αr, βr}. If M ⊆ NG(a), then make
vertex a adjacent in T to each vertex in M . If M \ NG(a) 6= ∅ but M ⊆ NG(b), then make
vertex b adjacent in T to each vertex in M . If neither M ⊆ NG(a) nor M ⊆ NG(b), then make
vertices α`, β` adjacent in T to a common neighbor in {a, b} and vertices αr, βr adjacent in T to
a common neighbor in {a, b}. Remove from T the edge (α`, β`) (it was a part of tree TL if both
α` and β` existed) and the edge (αr, βr) (it was a part of tree TR if both αr and βr existed).

If a and b are adjacent in G, then add edge (a, b) to T . If a is not adjacent to b in G but
dG(a, b) = 2, then choose a common neighbor z of a and b in NG[a, b] and add edges (a, z) and
(b, z) to T . In these cases, i.e., when dG(a, b) ≤ 2, remove the possible edge (αu, βu) from T
(it was a part of the tree TU if both αu and βu existed). If dG(a, b) > 2 then, by the proof of
Proposition 11, dG(a, b) = 3, chords β`, βr do not exist and the edge (αu, βu) from TU goes to T if
both chords αu and βu exist. If one of these chords does not exist, then there must be two vertices
x, y that are adjacent in G, with x ∈ NG(b) and y ∈ NG(a) (see the proof of Proposition 11), and
we put the edge (x, y) into T . Finally, make all vertices from NG(a) \ {α`, β`, αu, βu, αr, βr, b, z}
adjacent to a in T and all remaining vertices from NG(b) (i.e., those that are not adjacent to a
in T) adjacent to b; see Fig. 6 for an illustration. It is possible that α` = αu, α` = βr, αr = βu,
αr = β` and α` = αr, but our assignment of vertices α`, β`, αu, βu, αr, βr to a and b in T agrees

14

with that since vertices of each pair are assigned to the same vertex from {a, b}. Clearly, T
constructed this way is a spanning tree of G. In what follows we show that T is an additive tree
6-spanner of G.

Fig. 6. Trees TL, TR and TU connected via NG[a, b] to form a tree spanner of G.

Consider any vertices x, y ∈ VL. We have dT (x, y) ≤ dTL
(x, y) + 1, by construction of T , and

dTL
(x, y) ≤ dG(x, y) + 2, by Proposition 7. Hence, dT (x, y) ≤ dG(x, y) + 3. The same inequality

holds for x, y ∈ VR.
Consider any vertices x, y ∈ VU . We have dT (x, y) ≤ dTU

(x, y)+3, by construction of T , and
dTU

(x, y) ≤ dG(x, y) + 2, by Proposition 4. Hence, dT (x, y) ≤ dG(x, y) + 5.
For any two vertices x, y ∈ NG(a, b), clearly dT (x, y) ≤ 1+dT (a, b)+1 ≤ 5 by Proposition 11

and thus dT (x, y) ≤ dG(x, y) + 4.
Now consider arbitrary vertices x ∈ VL and y ∈ VR. It is easy to see that dG(x,NG[a, b])

= dG(x, {α`, β`}) and, hence, dG(x, a) = dG(x, {α`, β`})+1. Assuming without loss of generality,
that α` and β` are attached in T to a we know, by the construction of T , that dT (x, a) is equal
either to dTL

(x, s`) or to dTL
(x, s`)+1. Hence, by Propositions 7 and 9, dT (x, a) ≤ dTL

(x, s`)+1 =
dG(x, s`)+1 ≤ dG(x, {α`, β`})+2 = dG(x,NG[a, b])+2. Moreover, dT (x, a) = dG(x,NG[a, b])+2
only if both α` and β` exist (i.e., dG(a, b) ≤ 2). Similarly, assuming without loss of generality,
that αr and βr are attached in T to b, we see that dT (y, b) ≤ dTR

(y, sr) + 1 = dG(y, sr) + 1 ≤
dG(y, {αr, βr}) + 2 = dG(y,NG[a, b]) + 2. Now, dT (x, y) ≤ dT (x, a) + dT (a, b) + dT (y, b) ≤
dG(x,NG[a, b]) + 2 + dT (a, b) + dG(y,NG[a, b]) + 2 ≤ dG(x, y) + 6, since NG[a, b] separates VL

from VR and dT (a, b) ≤ 2 if dT (x, a) = dG(x,NG[a, b]) + 2.
For vertices x ∈ VL and y ∈ NG[a, b], dT (x, y) ≤ dT (x, a) + dT (a, y) ≤ dG(x,NG[a, b]) +

2 + dT (a, y) ≤ dG(x, y) + 5, since dG(x, y) ≥ dG(x,NG[a, b]) and dT (a, y) ≤ 3 when dT (x, a) =
dG(x,NG[a, b]) + 2 (i.e., when both α` and β` exist and hence dG(a, b) ≤ 2 holds). Similarly, for
vertices x ∈ VR and y ∈ NG[a, b], we have dT (x, y) ≤ dG(x, y) + 5.

Finally, consider arbitrary vertices x ∈ VL and y ∈ VU (the case when x ∈ VR and y ∈ VU

is similar). We know that dT (x, a) ≤ dG(x,NG[a, b]) + 2. Let w be a vertex from {αu, βu} such
that dTU

(y, w) = dTU
(y, {αu, βu}). We have, dT (y, w) = dTU

(y, w) ≤ dTU
(y, su) = dG(y, su),

by Proposition 4. Since vertices αu and βu, if both exist, are adjacent in G, we also have

15

dG(y, su) ≤ dG(y, {αu, βu}) + 1 = dG(y, NG[x, y]) + 1. Now, dT (x, y) ≤ dT (x, a) + dT (a,w) +
dT (y, w) ≤ dG(x,NG[a, b]) + 2 + dT (a,w) + dG(y, NG[a, b]) + 1 ≤ dG(x, y) + 6, since NG[a, b]
separates VL from VU and dT (a,w) ≤ 3.

For vertices x ∈ NG[a, b] and y ∈ VU , using w as defined above, we see that dT (x, y) ≤
dT (y, w)+dT (w, x) ≤ dG(y,NG[a, b])+1+dT (w, x) ≤ dG(x, y)+5, since dG(x, y) ≥ dG(y,NG[a, b])
and dT (w, x) ≤ 4. ut

References

1. Y. Bartal, Probabilistic approximations of metric spaces and its algorithmic applications, In IEEE Symposium
on Foundations of Computer Science, pp. 184–193, 1996.

2. Y. Bartal, On approximating arbitrary metrices by tree metrics, Proceedings of the 13th Annual ACM Sym-
posium on Theory of Computing, pp. 161-168, 1998.

3. J.-P. Barthélemy and A. Guénoche, Trees and Proximity Representations, Wiley, New York, 1991.
4. S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg, Optimal simulations of tree machines, In 27th IEEE

Foundations of Computer Science, Toronto, 1986, 274–282.
5. M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin, Approximating a Finite Metric by a Small

Number of Tree Metrics, Proceedings of the 39th Annual Symposium on Foundations of Computer Science,
pp. 379–388, 1998.

6. L. Cai and D.G. Corneil, Tree spanners, SIAM J. Discrete. Math. 8 (1995) 359–387.
7. D.G. Corneil, F.F. Dragan, E. Köhler and Y. Xiang, Lower Bounds for Collective Additive Tree Spanners, In

preparation.
8. V.D. Chepoi, F.F. Dragan and C. Yan, Additive Sparse Spanners for Graphs with Bounded Length of Largest

Induced Cycle, Theoretical Computer Science 347 (2005), 54–75.
9. L.P. Chew, There are planar graphs almost as good as the complete graph, J. of Computer and System

Sciences, 39 (1989), 205–219.
10. D.G. Corneil, F.F. Dragan, E. Köhler and C. Yan, Collective tree 1-spanners for interval graphs, In Proceedings

of 31st International Workshop ”Graph-Theoretic Concepts in Computer Science” (WG ’05), June 23-25, 2005,
Metz, France, Springer, Lecture Notes in Computer Science 3787, pp. 151–162.

11. F.F. Dragan and C. Yan, Collective Tree Spanners in Graphs with Bounded Genus, Chordality, Tree-width, or
Clique-width, In Proceedings of the 16th Annual International Symposium on Algorithms and Computation
(ISAAC 2005), Lecture Notes in Computer Science 3827, 2005, Hainan, China, pp. 583–592.

12. F.F. Dragan, C. Yan and D.G. Corneil, Collective Tree Spanners and Routing in AT-free Related Graphs,
Journal of Graph Algorithms and Applications, 10 (2006), 97–122.

13. F.F. Dragan, C. Yan and I. Lomonosov, Collective tree spanners of graphs, SIAM J. Discrete Math, 20 (2006),
241–260.

14. E.S. Elmallah and L. Stewart, Polygon Graph Recognition, Journal of Algorithms, 26 (1998) 101–140.
15. J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary metrics by tree metrics,

Proceedings of the 35th ACM Symposium on Theory of Computing, pp. 448 - 455, 2003.
16. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Second Edition, Elsevier, 2004.
17. A. Gupta, A. Kumar and R. Rastogi, Traveling with a Pez Dispenser (or, Routing Issues in MPLS), SIAM

J. Comput., 34 (2005), pp. 453-474.
18. A.L. Liestman and T. Shermer, Additive graph spanners, Networks, 23 (1993), 343-364.
19. D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM Monographs on Discrete Math.

Appl., SIAM, Philadelphia, 2000.
20. D. Peleg, Proximity-Preserving Labeling Schemes and Their Applications, J. of Graph Theory, 33 (2000),

167–176.
21. D. Peleg and A.A. Schäffer, Graph Spanners, J. Graph Theory, 13 (1989), 99-116.
22. D. Peleg and J.D. Ullman, An optimal synchronizer for the hypercube, in Proc. 6th ACM Symposium on

Principles of Distributed Computing, Vancouver, 1987, 77-85.
23. E. Prisner, Distance approximating spanning trees, In Proc. STACS’97, Lecture Notes in Computer Science

1200, Springer, Berlin, 1997, 499–510.
24. P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy, W.H. Freeman, San Francisco, California, 1973.
25. D.L. Swofford and G.J. Olsen, Phylogeny reconstruction, In Molecular Systematics (D.M. Hillis and C. Moritz,

editors), Sinauer Associates Inc., Sunderland, MA., 1990, 411–501.
26. M. Thorup and U. Zwick, Compact routing schemes, In Proc. 13th Ann. ACM Symp. on Par. Alg. and Arch.

(SPAA 2001), ACM 2001, pp. 1–10.

16

