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D O M I N A T I O N  IN Q U A D R A N G L E - F R E E  H E L L Y  GRAPHS* 

F. F. Dragan UDC 519.176 

INTRODUCTION 

Let G = (V, E) be an ordinary connected graph endowed with the standard metric d(x, y), which is equal to the number 

of edges in the shortest chain joining the vertices x, y. On the vertex set V define a nonnegative integer-valued function r: V--, 
N t3 {0}. We say that the vertex x is dominated by the vertex y if d(x, y) <_ r(x). The set M c_ V is called r-dominating if 
every vertex x E V is dominated by some vertex from M. The problem of finding the least r-dominating set of the graph G 

is called the r-domination problem. 
The r-domination problem is a natural model for many location problems, which require locating the least number of 

service facilities at the vertices of a graph so that each vertex (consumption site) is within a distance r(x) from some service 

facility. 
Various versions of this problem are rapidly developing in the recent period, especially the problem with r(x) = 1 for 

all x E V, i.e., the ordinary problem of finding the dominating (externally stable) set of a graph. For arbitrary graphs, this 
problem is NP-complete. Moreover, the dominating set problem remains NP-complete even for regular planar graphs of degree 

4 [1], bipartite planar graphs of maximum degree 3 [2], bipartite chordal graphs [3], triangulated graphs and tree chain 
intersection graphs [4], split Helly graphs [5], and 2-CUB graphs [6]. The complexity of the dominating set problem on so- 

called monogenic classes of graphs is considered in [2]. 
Effective solution of the dominating set problem for arbitrary graphs thus involves considerable difficulties, and the 

main focus has accordingly shifted to identification of narrow, yet sufficiently meaningful classes of graphs on which this 

problem is solvable in polynomial time. In particular, polynomial-time algorithms have been constructed for trees [7], degrees 

of trees [8], intersection graphs of directed chains in a tree [4], sequential-parallel graphs [9], k-trees [6], permutation graphs 
[10], cacti [11], 1-CUB graphs [6], circular-arc intersection graphs [12], cographs [2, 13], and strongly chordal graphs [14], 

including interval graphs. 
A graph is called chordal (or triangulated) if every cycle of length greater than 3 has a chord, i.e., an edge joining two 

nonconsecutive vertices of the cycle. A k-sun S k is a graph whose vertex set can be partitioned into two subsets X = {x 1 ..... Xk} 

and Y = {Yl ..... Yk} so that the set X generates a complete subgraph and the set Y an empty subgraph, and for every x i, yj the 
vertex x i is adjacent to yj if and only if i = j or i = j + 1 (mod k). Chordal graphs that do not contain k-suns (k _> 3) as 

induced subgraphs are called strongly chordal graphs [15]. 
For the k-domination problem (r(x) = k for all x E V, k is a natural number) polynomial-time algorithms are available 

on strongly chordal graphs [16] and chordal graphs without induced subgraphs of the form S 3 and S 3 (the complement of $3) 

[17]. 
The graph G k whose vertex set is identical with the vertex set of the graph G and the vertices x, y are adjacent if and 

only if 1 _< d(x, y) <_ k in the graph G is called the k-th degree of the graph G. The k-domination problem on strongly chordal 

graphs and chordal graphs without induced subgraphs S 3 and S 3 has been reduced in [16, 17] to the covering problem of the 
graph G 2k by a minimum number of cliques. It has been shown that for a strongly chordal graph G the graph G 2~ is triangulated 

and for an S 3- and S3-free chordal graph G 2k is weakly triangulated. A graph is called weakly triangulated if it is without 

induced cycles of length _> 5 and their complements [18]. The clique covering problem is effectively solvable on these graphs 
[18, 19]. 
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Fig. 1 

A more general reduction of the r-domination problem to the clique covering problem for a special graph has been 

developed in [20]. We will need some definitions and notation for further discussion. 

Thus, B(x, r) = {z E V: d(x, z) <- r} denotes a ball of radius r (r E N U {0}) of the graph G centered at the vertex 
x, and ~/ = {B(x, r): x E V, r E N U {0}}, ~t 1 = {B(x, 1): x E V} is the family of all balls and the family of unit balls 
of the graph G. 

The graph G is called a Helly graph [27] if the family of its balls ~ has the Helly property, i.e., every subfamily 
of pairwise intersecting balls from ~ has a nonempty intersection. The intersection graph L(~rt) of the family of sets ~ = 

{M 1 ..... Mk} is defined as follows: the vertices of the graph L(~r/) are the elements of ~ ,  and the vertices corresponding to 
the sets Mi, A~ are adjacent if and only if M i ('1 Mj ;~ ~ .  Clearly, L ( ~  l ) = G 2. 

There is a one-to-one correspondence between r-dominating sets of the Helly graph G and the clique coverings of the 

generated subgraphs of the graph L(ff/) constructed from G [20]. Thus, for effective solution of the r-domination problem 
on Helly graphs it suffices to be able to solve effectively the problem of least covering of the graph L(~2) by complete 
subgraphs. In general Helly graphs (even split Helly graphs) the dominating set problem is NP-complete, as we have mentioned 

above. But if the graph L(!F/) is special, e.g., perfect, then the r-domination problem is solvable in polynomial time [21]. 
Triangulated Helly graphs in which the graphs L(~)  are triangulated, weakly triangulated, or free from odd induced 

cycles of length _> 5 and their complements have been completely described in [22, 23] in terms of prohibited structures. As 

a particular case, we have established polynomial-time solvability of r-domination problems on strongly chordal graphs and 

graphs without generated subgraphs S 3 and S 3. Note that a polynomial-time algorithm for the r-domination problem on strongly 
chordal graphs has been independently derived in [24]. 

All Helly graphs with triangulated L(~2) are characterized in [5]. Here these graphs are called HT-graphs, HT-graphs 
are characterized in terms of dismantling by extremal vertices, whence it follows that strongly chordal graphs are precisely 
those graphs in which every generated subgraph is an HT-graph. 

The subgraph H of the graph G is called isometric if the distance between any two vertices in H is equal to the distance 
between these vertices in G. A natural generalization of chordal graphs, i.e., graphs without induced cycles of length _> 4, are 
bridged graphs, i.e., graphs without isometric cycles of length >4 [25]. 

In this paper, the r-domination problem is considered on Helly graphs without quadrangles, i.e., without induced cycles 
of length 4. Alongside other results, we demonstrate polynomial-time solvability of the r-domination problem on bridged graphs 
without isometric k-suns S k (k > 3) and bridged graphs without induced subgraphs $3,33. Recall [5] that even the dominating 
set problem is NP-complete on all quadrangle-free Helly graphs (Fig. i). 

CHARACTERIZATION 

The graph G is called pseudomodular if for any vertices x, y, z of the graph G that satisfy the conditions 1 < d(x, y) < 

2, d(x, z) = d(y, z) = k _> 2 there exists a vertex v E V such that d(x, v) = d(y, v) = 1, d(z, v) = k -- 1 [26]. 

LEMMA 1 [27, 28]. G is a Helly graph if and only if G is a pseudomodular graph and the family ~l I of the graph 
G has the Helly property. 

The subgraph Z k (k _> 3) of the graph G is called a flower of size k if ks vertex set can be partitioned into two subsets 
X = {x t ..... xk} and Y = {Yl ..... Yk} so that the set X generates a complete subgraph in G and the set Y generates an empty 
subgraph, and for every x i, yj the vertex x i is adjacent to yj if and only if i ;e j .  

A subgraph of the graph G is called suspended in G if there exists a vertex v E V which is adjacent to every vertex 
of this subgraph. 
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For the triangle (cycle of  length 3) A = {x, y, z} of the graph G we denote by F(A) the set of  vertices from V that 

are adjacent to at least two vertices of  the triangle. 

L E M M A  2 [28]. For a quadrangle-free graph G the following conditions are equivalent: 

1) for any triangle A of the graph G there exists a vertex v E V such that B(v, 1) ~ F(A); 

2) every flower in G is suspended. 
The set M ~ V of vertices of  the graph G is called d-convex if ~ogether with any two vertices x, y E M it contains 

the d-segment (x, y) = {z E V: d(x, z) + d(z, y) = d(x, y)} with endpoints at these vertices. 

L E M M A  3 [20]. The balls of  the graph g are d-convex if and only if for any vertices x, y, z of the graph G such that 

d(x, y) <__ 3, z E (x, y),  d(x, v) = d(y, v), we have d(v, z) <- d(v, x). 
In what follows, C/c and C~ (k _> 4) are an induced cycle of length k and its complement. 

C4-free Helly graphs can be characterized by the following theorem. 

T H E O R E M  1. For the graph G conditions 1)-3) are equivalent: 

1) G is a C4-free Helly graph; 

2) for any vertices x, y, z, v of  the graph G such that z E (x, v), v E (z, y), d(z, v) -- 1, we have d(x, y) >_ d(x, z) + 

d(v, y), and every subgraph of the form C 5 and Z/~ (k _> 3) is suspended in G; 

3) every ball of the graph G is d-convex, and every subgraph of the form C 5 and Z k (k _> 3) is suspended in G. 

Proof .  1) = 2). Since unit balls centered at the vertices of the cycle C 5 are pairwise intersecting, the total intersection 

of these balls is nonempty. We similarly prove that subgraphs of the form Z k (k >_ 3) are suspended. 

Now let the vertices x, y, z, v be such that z E (x, v), v E (z, y), d(z, v) -- 1, but d(x, y) <_ d(x, z) + d(v, y) - -  1. 

In the graph G consider four pairwise intersecting balls B(z, 2), B(v, 1), B(x, d(x, z)), B(y, d(v, y) - -  1). By the Helly property, 

there exists a vertex w E (v, y) adjacent to v such that d(z, w) = 2 and d(z, x) = d(w, x). Again by pairwise intersection of 

the balls B(z, 1), B(w,  1), and B(x, d(z, x) - -  1) we obtain the existence of a vertex u E (z, w) such that d(u, x) -- d(z, x) - -  

1. But then the vertices z, v, w, u form a cycle C 4 in G. The contradiction completes the proof  of  the implication. 

2) ~ 3). It suffices to prove that the graph G satisfies the condition of Lemma 3. Let d(x, y) <_ 3, v E ( x, y), and 

d(z, x) -- d(z, y) < d(z, v) for the vertices x, y, z, v E V. Without loss of  generality we may assume that v, x are adjacent 

vertices. Then by the condition x E (z, v) we should have the inequality d(z, y) >- d(y, v) + d(z, x). But this is impossible 

because d(z, y) = d(x, z) and 1 _< d(y, v) _< 2. The relationship d(z, v) <_ d(z, x) thus holds for all vertices v E ( x, y). 

3) ~ 1). We first prove that the graph G is pseudomodular. 

a) Let x, y, z E V, d(x, y) = 1, d(z, y) = d(z, x). Consider the vertices v, w that are respectively adjacent to x, y and 

are at a distance d(z, x) - -  1 from z. By d-convexity of the ball B(z, d(z, x) - -  t) we have d(v, w) _< 2 and d(z, t) <_ d(z, v) 

for all t E Iv, w). Now assume that there does not exist a vertex u adjacent to x, y and such that d(u, z) = d(z, x) - -  1. Since 

a graph with d-convex balls is C4-free, we conclude that d(v, w) = 2 and the vertices x, y, v, w together with t E (v, w)\{v, 

w} form a cycle C 5. The vertex on which this cycle is suspended is adjacent to x, y and is contained in the d-segment (v, w). 

It is therefore at a distance d(z, x) - -  1 from the vertex z - -  a contradiction. Thus there exists a vertex u adjacent to x, y for 

which d(z, u) -- d(z, x) - -  1. 
b) Now let x, y, z E V, d(x, y) = 2, d(z, x) = d(z, y). Assume again that there does not exist a vertex u E (x, y)\{x, 

y} for which d(u, z) -- d(x, z) - -  1. Then by d-convexity of the ball B(z, d(x, z)) the vertex v E (x, y)\{x,  y} satisfies d(v, z) = 

d(z, x) = d(z, y). By the above there exist vertices u 1, u 2 such that u 1 is adjacent to x, v, u 2 is adjacent to y, v, and d(z, u 1) -- 

d(z, u 2) -- d(z, x) - -  1. These vertices are adjacent to one another, as otherwise we would have a contradiction with d- 

convexity of  the ball B(z, d(x, z) - -  1). Again there exists a vertex w adjacent to u 1, u 2 and located at a distance d(z, x) - -  2 

from z. It is easy to see that the vertices x, v, y, u 1, u 2, w generate in G a subgraph of the form Z 3, which by assumption is 

not suspended - -  a contradiction. 

Thus, the graph G is pseudomodular. To complete the proof, we show that the family fll of  the graph G has the Helly 

property. Let ~ t  = {B(y 1, 1), B(y 2, 1) . . . . .  B(y m, 1)} be a family of  m _> 3 balls every m - -  1 of  which intersect and x i E 

{B(yj, 1): j = 1,2 . . . . .  rn, i ~ j}. 

Consider the triple of  vertices x 1, x 2, x 3. Without loss of generality, w e  may assume that these are distinct vertices. 

If  the vertices x 1 , x 2, x 3 are pairwise not adjacent, then they are at a distance 2 from one another. By pseudomodularity of  the 

graph, there exists a vertex v adjacent to x 1, x 2, x 3 simultaneously. Since the balls of  the graph are d-convex, the vertex v is 

contained in all balls of  the family ~ ,  and thus the total intersection of these balls is nonempty. 

Now let x 1, x 2 be adjacent vertices. If  the vertex x 3 is not equally distant from the vertices x 1, x 2, then it is adjacent 

to one of them, and this vertex, being adjacent to the other two vertices, is contained in all the balls simultaneously (by d-con- 
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vexity of  the balls). I f  d(Xl, x3) = d ( x 2 ,  x3) --  2, then by pseudomodularity of  the graph there exists a vertex v which is ad- 

jacent to x 1, x 2, x 3 and is therefore contained in all the balls that contain the vertex x 3. Hence, it suffices to consider the case 
when the vertices x 1, x 2, x 3 are pairwise adjacent, i.e., form the triangle A. 

Since the balls are d-convex, 

x I , x 2 E 71 {B(yi, 1) : i = 3, 4 . . . . .  rn}, 

x 3, x 2 E 71 {B(Yi, 1) : i = 1,4 . . . . .  m}, 

x 1 ,x  3 E ('1 {B(Yi, 1) : i =  2,4 . . . . .  m}, 

for the triangle A = {Xl, x2, x3} we have P(A) ~ {Yl,Y2 .. . . .  Ym}, and since every subgraph of the form Z k (k _> 3) is 

suspended in G and G is C4-free, by Lemma 2 there exists a vertex v E V such that B(v, 1) z P(A) D {Yl,Y2 .. . . .  Ym}" Thus 

in this case also the total intersection of the balls in ~Tt is nonempty. Q.E.D.  

C O R O L L A R Y  1. A bridged graph without isometric subgraphs S 3 is a HeUy graph. 

To prove the corollary, it suffices to note that bridged graphs are C5-free, their balls are d-convex [25], and every 

flower Z k (k _> 3) contains an isometric subgraph S 3. 

3. SUBCLASSES OF HT-GRAPHS 

A graph whose family of balls ~ has the Helly property and whose graph L ( f t )  is triangulated is called an HT-graph 

[51. 

L E M M A  4. Let G be a Helly graph without isometric subgraphs of the form C 4 and S~ (k _> 4). Then the graph G 2 

is triangulated. 

Proof .  The proof  is by induction on the number of vertices. Since G is a Helly graph, there exist a pair of  vertices 

x, y E V such that B(x, 1) ___ B(y, 1) (see [27, 28]). It is easy to see that G is also a Helly graph without isometric subgraphs 

of the form C 4 and S k (k > 4). By the induction hypothesis, the graph (G - -  X) 2 is Ck-free (k _> 4). Assume that the graph 

G 2 contains a cycle C k (k >__ 4) generated by the vertices x 1,x 2 .. . . .  x k. Among all these cycles take the one with the least k. 

Without loss of generality, assume that x 1 = x. In the graph (G - -  x) 2 the vertices y ,x  2 . . . . .  x k form a simple cycle of length 

k. Since (G - -  x) 2 is free from subgraphs of the form C k (k >_ 4), this cycle is divided by chords into triangles. Note that the 

vertex y is one of the endpoints of  all these chords. 

We thus have d(x i, y) = d(x i, x) - -  1 = 2 for all i = 3 .. . . .  k --1;  d(x i, xj) < 2 if and only i f j  = i + 1 (mod k); d(x 2, 

y) <_ 2, d(xk, y) <_ 2. 

By the Helly property, for every triple y, x i, xi+ 1, i = 2,3 ... .  k - -  1, there exists a vertex v i which is adjacent only 

with y, xi, xi+ 1. Since the graph G is C4-free, each cycle (y, v i, x i+l ,  Vi+l, y) contains the chord (v i, Vi+l). Similarly for the 

4-tuple x, y,x 2, v 2 there exists a vertex v 1 E B(x, 1) N B(y, 1) ,q B(x2, 1) ('1 B(v2, 1). Without loss of  generality, we assume 

that v 1 is neither x 2 nor y. Among all such combinations M = {Vl,V 2 .. . . .  v/c_1} choose the one in which the subgraph generated 

by these vertices has the maximum number of  edges. 

We will show that the vertices in M are pairwise adjacent. Indeed, let v i be the vertex with the least index for which 

a vertex vj exists such that v i, vj are not adjacent a n d j  < i. Since d(v i, x) = d(v i, Xi_l)  = 2, in  the graph G 2 the vertices 

X,X  2 . . . . .  X i _ I , V  i generate a simple cycle of length i < k. By minimality of  the initial cycle, this cycle' is not an induced cycle. 

Hence, d(v i, xj) = 2 for a l l j  = 1,2 .. . . .  i - -  1, and the vertices of  the se tA = {B(vj, 1) ¢q M} U {v i, xj, x j+l}  are pairwise 

adjacent at distance _< 2. By the Helly property, there exists a vertex v adjacent to all vertices from A, but then the set  (M{vj}) 

U {v} is better than M, which contradicts the choice of the vertices in M, 

Thus, the vertices Vl,V 2 . . . . .  vk_ I are pairwise adjacent. Now, pairwise intersection of balls centered at the vertices from 

M U {x, xk} implies existence of the vertex v k. It remains to note that the set {x 1,x 2 . . . . .  xk} U {Vl,V 2, .. . .  vk} forms a subgraph 

of the form S k. Since G is C4-free, it is isometric. The contradiction proves the lemma. 

Denote by g(G) the length of the maximum induced cycle of  the graph G. 

L E M M A  5 [5]. For the graph G, ~(L(Tt)) = ¢(L(T/1 )). 

T H E O R E M  2. For the graph G conditions 1)-2) are equivalent: 

1) G is a C4-free HT-graph; 
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2) G is a Helly graph without isometric subgraphs of the form C 4 and S k (k > 4). 

The proof follows from Lemmas 4 and 5. 
COROLLARY 2. The r-domination problem on Helly graphs without isometric subgraphs of the form C 4 and Sk (k _> 

4) is solvable in polynomial time. 

LEMMA 6 [20]. G is a bridged Helly graph if and only if G is a C 4- and Cs-free Helly graph. 

THEOREM 3. For the graph G conditions 1)-4) are equivalent: 

1) G is an HT-graph without induced subgraphs of the form S 3, C 4, C5; 

2) G is a Helly graph without isometric subgraphs of the form C 4, C 5, S k (k >_ 3); 

3) G is a bridged graph without isometric subgraphs of the form S k (k >_ 3); 

4) every isometric subgraph of the graph G is an HT-graph. 
The proof follows from Theorem 2, Lemma 6, and Corollary 1. 
COROLLARY 3. The r-domination problem on bridged graphs without isometric subgraphs of the form S k (k _> 3) 

is solvable in polynomial time. 

4. WEAK TRIANGULATION OF THE BALL-INTERSECTION GRAPH 

LEMMA 7 [20]. Assume that the graph G satisfies the following conditions: 
1) the family ~ has the Helly property; 

2) the graph L(~)  is Cs-free; 

3) the graph L(~21) is C7-free. 
Then G is a Helly graph. 
LEMMA 8. Assume that for the graph G the graph L(~)  is Cs-free and the graph L ( ~  ) is Ck-free (k > 5). Then 

the graph L(~)  is also Ck-free (k _> 5). 

Proof. We will show by induction on k (k _> 5) that the graph L(~) is without subgraphs of the form Ck- For k = 

5 the assertion is true because C 5 = C 5. Assume that it is true for all k (k _> 5) and prove it for k + 1. Suppose that the balls 

B(x 1, rl), B(x 2, r 2) ..... B(xk+ 1, rk+l) form in the graph L(~)  (the complement of L(~))  an induced cycle of length k + 
1 with a minimum sum ~ = r I + ... + rk+ 1, and B(x i, ri) N B(xj,/).) = ~ if and only if i = j ___ 1 (mod(k + 1)). We will 

show that these balls are of unit radius. Assume that this is not so, i.e., r 1 _> 2, say. For all vertices y E (x 1, x 3) and x E 

(x 1, x4) adjacent to x 1 consider the balls B(y, r 1 -- 1), B(z, r 1 - -  1), B(x 3, r3), B(x 4, r4), B(Xk+ 1, rk+l) that form a cycle of 
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length 5 in L ( ~ )  . Since the cycle is not an induced cycle and B(x 1, r I) tq B(Xk+l, r k + l )  ----- ~ ,  we have B(y, r 1 - -  1) f)  B(x4, 
r4) ;~ ~ or B(Z, r 1 - -  1) O B(x3, r3) ~ ~ .  Hence, at least one of the balls B(y, r 1 - -  1) intersects with each of the balls B(x4, 

r 4) and B(x  3, r3). We will show that it also intersects with all the balls B(x  i, ri), i = 5,6 . . . . .  k. Let m (5 < m < k) be the least 

index for which the balls B(y, r I - -  1) and B(x  m, rm) are nonintersecting. Then the balls B(y, r 1 - -  1),B(x 2, r2) . . . . .  B(x  m, rm) 

form in L ( ~ )  an induced cycle of length m < k. This contradicts the induction hypothesis. 

Thus, the ball B(y, r 1 - -  1) intersects with all the balls B(x  i, ri), i = 3,4 . . . . .  k, and does not intersect with B(x  2, r2), 

B(xk+ 1 , r/~+l). Hence we obtain that the balls B(y, r 1 - -  1),B(x 2, r2) .. . . .  B(x~, rk),B(Xk+ 1 , rk+l) form in L(Tt) an induced cycle 
of length k + 1 with sum of radii less than 6. Thus, all the radii of the original balls are unit radii, and therefore the graph 

L(T/1 ) contains a cycle Ck+ 1 (k _> 5). This contradicts the ass_umption of the lemma. Q.E.D. 

Recall that a graph G without subgraphs of the form C k, C k (k >__ 5) is called weakly triangulated. Lemma 8 combined 

with Lemmas 5 and 7 directly leads to Theorem 4. 

T H E O R E M  4. For the graph G the following conditions are equivalent: 

1) the family T/l of the graph G has the Helly property and the graph G 2 is weakly triangulated; 

2) the family ~ of the graph G has the Helly property and the graph L(T/) is weakly triangulated. 

In particular, since weakly triangulated graphs are perfect [18], the r-domination problem on Helly graphs with a 

weakly triangulated square is solvable in polynomial time. 

T H E O R E M  5. If in a C4-free Helly graph G every induced subgraph of the form $3 is suspended, then the graph G ~ 

is without subgraphs C~ (k >_ 5) and induced houses D (Fig. 2). 

Before proving the theorem, we will prove two auxiliary lemmas. In these lemmas, G is a C4-free Helly graph. 

L E M M A  9. If the vertices Yl,Y2,Y3,Y4 of the graph G form a cycle C 4 in G 2, then in G they form together with some 

vertices xi,  x 2, x 3, x 4 an isometric subgraph S 4 (Fig. 3). 

Proof.  We will first show that if the vertices Yl, Y2, Y3, Y4 of the graph G satisfy the conditions d(y 1, Y3) = d(Y2, Y4) = 

3, d(y 1, Y4) -< 2, d(y 1, Y2) - 2, d(y 2, Y3) -< 2, d(Y3, Y4) -< 2, then these vertices together with some vertices x 1, x 2, x 3, x 4 

form in G an isometric subgraph S 4. To this end, consider the family (B(y 1, 2), B(y 2, 2), B(Y3, 2), B(Y4, 2)) of pairwise 

intersecting balls. By the Helly property there exists a vertex x 3 adjacent to Y3, Y4 for which d(y 1, x3) = d(y 2, x3) = 2. By 

pairwise intersection of the balls B(YÂ, 1), B(y 2, I), B(x3, 1) there also exists a vertex x 1 adjacent to Yl, Y2, Y3. For the same 

reason there exists a vertex x 2 adjacent to Y2, Xl, x3, Y3 and a vertex x 4 adjacent to x 2, x 1, x 3, Yl ,  Y4. Since G is C4-free, we 

have d(y l, Y4) = d(Yl, Y2) = d(Y2, Y3) = d(Y3, Y4) = 2. It now remains to note that the vertices Yl, Y2, Y3, Y4 together with 

x 1, x 2, x 3, x 4 form an isometric subgraph S 4. 

Now assume that the graph G 2 contains the cycle C 4 = (Yl, Y2, Y3, Y4, Yl). Then for the vertices Yl, Y2, Y3, Y4 of the 

graph G we have d(y 1, Y3) > 3, d(y 2, Y4) -> 3, d(Yl, Y4) -< 2, d(yl, Y2) -< 2, d(y 2, Y3) ~ 2, d(Y3, Y4) --- 2. We will show 

that d(Ya, Y3) = d(Y2, Y4) = 3, which by the above will complete the sought proof. Let, for instance, d(y 1, Y3) = 4. Then d(y i, 

Yi+Â) = 2 for all i = 1, 2, 3, 4 (summation is modulo 4). Consider the family (B(y 1, 2), B(z 1, 1), B(z 2, 1)) of pairwise 

intersecting balls, where Zl E B(y 2, 1) A B(y 3, 1), z 2 E B(Y4, 1) N B(Y3, 1). By the Helly property, there exists a vertex 

v adjacent to Zl, z2 which is at a distance 2 from Yl. Using the Helly property, we can also easily establish the existence of 

a vertex z 3 adjacent to YI, Y2, v and a vertex z 4 adjacent to Yl, Y4, v. The cycles (Y2, Zl, v, z 3, Y2) and (Y4, z4, v, z 2, Y4) should 

contain the chords (Y2, v), (Y4, v), because G is C4-free and d0' l ,  Y3) = 4. But then d(y 2, Y4) = 2, which contradicts the 

assumption of the lemma. Thus, d(Yl, Y3) = 3. We similarly prove the equality d(Y2, Y4) = 3. 

L E M M A  10. If in the graph G every generated subgraph of the form $3 is suspended, then the graph G 2 does not 

contain induced houses. 

Proof.  Assume that G 2 contains an induced house formed by the vertices Yl, Y2, Y3, Y4, Y5, and that in G 2 the vertices 

Yl, Y2, Y3, Y4 generate the cycle C 4 and the vertex Y5 is adjacent to Yl and Y2. By Lemma 9, the vertices Yl, Y2, Y3, Y4 in the 

graph G form together with some vertices xl, x 2, x3, x 4 an isometric subgraph S 4. Also in G we have the relationships d(y 5, 

YI) -< 2, d(y 5, Y2) -< 2, d(y 5, Y3) -> 3, d(Y5, Y4) -> 3. In what follows, the argument is conducted for the graph G. If the 

vertices Y5 and x 1 are adjacent, then the set (Ys, Xl, Y3, x2, Y4, x4) generates a subgraph S 3 in G. Since d(y 5, Y3) = d(Ys, Y4) = 
3, this subgraph is not a suspended subgraph. Now assmne that the vertices Y5 and x 1 are not adjacent. By pairwise intersection 

of the balls B(y I, 1), B(y 2, 1), B(y 5, 1) there exists a vertex z adjacent to Yl ,  Y2, Y5. Since G is C4-free, the vertex z is also 

adjacent to x 1, and so if z is also adjacent to at least one of the vertices x 2, x 4, then it is adjacent to the other one as well 

(otherwise a cycle C 4 would be obtained). Therefore the vertices Ys, z, Y3, x2, Y4, x4 generate in G a subgraph $3, which is 

again not a suspended subgraph. If z is adjacent to neither x 2 nor x 4, then the vertices z, x 1, Y3, x2, Y4, x4 induce in G a 

subgraph $3" Every vertex v on which $3 is suspended forms together with z, Yl, x4 a cycle C 4. 
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Thus, having assumed that the graph G 2 contains an induced house, we obtain that G contains either a nonsuspended 

subgraph 73 or a cycle C 4. The contradictions prove the lemma. Q.E.D. 
Proof of Theorem 5. It remains to show that G 2 is without cycles C k (k _> 5). The proof is by induction on the 

number of vertices in the graph. Since G is a Helly graph, there exist a pair of vertices x, y E V such that B(x,  1) c B(y, 1). 

It is easy to show that the graph G - -  x is also without cycles C 4, and any subgraph 7 4 is suspended in G - -  x. By the induction 

hypothesis, the graph (G - -  x) 2 is Ck-free (k _> 5). 

Assume that the graph G 2 contains a cycle C k (k >_ 5) generated by the vertices x 1,x 2 . . . . .  x k. Without loss of generality, 

let x 1 = x. In the graph (G - -  x) 2 the vertices y , x  2 . . . . .  x k form a simple cycle of length k. Since (G - -  x) 2 is Ck-free (k > 5), 

this cycle is divided by chords into triangles and quadrangles. Note that one of the endpoints of these chords is the vertex y. 

The following two cases are possible: 
a) all subcycles into which the original cycle is divided by these chords are triangles; 

b) at least one of the subcycles is a quadrangle. 

Let us consider each case separately. 

If k > 6, then the vertices x 3, x 4, x 5 of the cycle Cg are at a distance 2 from y and 3 from x in the graph G, and they 

satisfy in G the conditions d(x3, x4) _< 2, d(x 4, x5) _< 2, d(x 3, x5) > 3. By pairwise intersection of the balls B(x3, 1), B(x4, 

1), B(y, 1) in the graph G, there exists a vertex v adjacent to x 3, x 4, y. We similarly prove the existence of a vertex w adjacent 

to x 5, x 4, y. Since G is C4-free, the vertices v, w are adjacent to one another. But then the set {x, y, x 3, v, x 5, w} generates 

in G a subgraph 73, which is not suspended because d(x, x3) = d(x, x 5) = 3. 

Now let k = 5. In the graph G we have d(x 3, y) = d(x 4, y)  -- 2, d(x2, y) <_ 2, d(x5, y) <_ 2, 0 ;~ d(x i, Xj) ~< 2 (i, 

j = E {1 ..... 3}). if and only i f j  = i + 1 (mod 5). Since d(x 2, x 5) _> 3, the vertices x 2, x 5 cannot both be adjacent to y. Thus 

assume that x 2 is not adjacent to y. The balls B(x  3, 1), B(x 4, 1), B(y, 1) of the graph G are pairwise intersecting. By the Helly 

property, there exists a vertex v adjacent to y, x 3, x 4. Similarly there exists a vertex v adjacent to y, x 2, x 3. Since G is C4-free, 

the vertices u and v are adjacent to one another. For the same reason the vertices x 2 and x are nonadjacent. Then the set {x, 

y, x 2, v, x 4, u} generates in G a subgraph $3, which is not suspended because d(x 2, x 4) = d(x, x4) = 3. 

b) All the chords of the cycle (y, x 2 . . . . .  xk,y)  in (G - -  x) 2, as noted above, originate from the vertex y, and therefore 

the quadrangle, being a subcycle of this cycle, has the form (y, x i, xi+ l,  xi+ 2, y).  If i = 2 (or i + 2 = k), then the vertices 

x, y, xi+ 1, xi+ 2 generate a house in G 2, a contradiction with Lemma 10. Assume that i ~ 2 and i + 2 ~ k. Then d(x, x i) >_ 

3 and d(x, Xi+2) ~ 3. By Lemma 9, the vertices x i, y ,  Xi+l, Xi+ 2 together with some vertices Zl, z2, z3, z4 form an isometric 

subgraph S 4. Let z I E (y, xi), z 2 E (y, Xi+2). It is easy to note that the vertices x, y, x i, z 1 , xi+ 2, z 2 generate in G a subgraph 

73, and since d(x, x i) = d(x, xi+2) = d(x i, xi+2) = 3 the subgraph $3 is not suspended in G. 

The contradictions prove the theorem. Q.E.D. 

Since every graph C k (k >_ 6) contains a house as an induced subgraph, Theorems 4 and 5 lead to the following 

corollary. 

COROLLARY 4. The r-domination problem on C4-free Helly graphs in which every generated subgraph $3 is 

suspended is solvable in polynomial time. 

COROLLARY 5. The r-dominati0n problem on bridged graphs without induced subgraphs of the form S 3 and $3 is 

solvable in polynomial time. 
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