Analysis of Algorithms

An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.

Running Time (§1.1)

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
- Easier to analyze

- Crucial to applications such as games, finance and robotics

Experimental Studies (§ 1.6)

Write a program implementing the algorithm

- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
-Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
*Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode (§1.1)

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm $\operatorname{arrayMax}(A, n)$
Input array \boldsymbol{A} of \boldsymbol{n} integers
Output maximum element of A
currentMax $\leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do
if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$
return currentMax

Pseudocode Details

- Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...])
Input ...
Output ...

- Method call
var.method (arg [, arg...])
* Return value
return expression
$*$ Expressions
\leftarrow Assignment (like = in Java)
= Equality testing (like == in Java)
n^{2} Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

* A CPU

\bullet An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character

- Memory cells are numbered and accessing any cell in memory takes unit time.

Primitive Operations

* Basic computations performed by an algorithm
- Identifiable in pseudocode
* Largely independent from the programming language
- Exact definition not important (we will see why later)
* Assumed to take a constant amount of time in the RAM model

Counting Primitive Operations (§1.1)

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax \((A, n)\)
    currentMax \(\leftarrow A\) [0]
    for \(i \leftarrow 1\) to \(n-1\) do
        if \(A[i]>\) currentMax then
        currentMax \(\leftarrow A[i]\)
    \(\{\) increment counter \(\boldsymbol{i}\) \}
    return currentMax
```

\# operations

$$
2(n-1)
$$

$$
2(n-1)
$$

$$
1
$$

Total $7 \boldsymbol{n}-1$

Estimating Running Time

- Algorithm arrayMax executes $7 n-1$ primitive operations in the worst case. Define: $a=$ Time taken by the fastest primitive operation
$b=$ Time taken by the slowest primitive operation
\diamond Let $T(n)$ be worst-case time of arrayMax. Then

$$
\boldsymbol{a}(7 \boldsymbol{n}-1) \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{b}(7 \boldsymbol{n}-1)
$$

\leqslant Hence, the running time $T(n)$ is bounded by two linear functions

Growth Rate of Running Time

*Changing the hardware/ software environment

- Affects $T(n)$ by a constant factor, but - Does not alter the growth rate of $\boldsymbol{T}(\boldsymbol{n})$
*The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm arrayMax

Growth Rates

- Growth rates of functions:
- Linear $\approx n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$

Constant Factors

- The growth rate is not affected by
- constant factors or
- lower-order terms

Examples

- $10^{2} \boldsymbol{n}+10^{5}$ is a linear function
- $10^{5} \boldsymbol{n}^{2}+10^{8} \boldsymbol{n}$ is a quadratic function

Big-Oh Notation (§1.2)

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$) if there are positive constants c and n_{0} such that $f(n) \leq \boldsymbol{c g}(n)$ for $n \geq \boldsymbol{n}_{\mathbf{0}}$
- Example: $2 \boldsymbol{n}+10$ is $\boldsymbol{O}(\boldsymbol{n})$
- $2 \boldsymbol{n}+10 \leq c n$
- $(c-2) n \geq 10$
- $n \geq 10 /(c-2)$

- Pick $\boldsymbol{c}=3$ and $\boldsymbol{n}_{0}=10$

Big-Oh Example

- Example: the function n^{2} is not $\boldsymbol{O}(\boldsymbol{n})$
- $\boldsymbol{n}^{2} \leq \boldsymbol{c} \boldsymbol{n}$
- $\boldsymbol{n} \leq \boldsymbol{c}$
- The above inequality cannot be satisfied since \boldsymbol{c} must be a constant

More Big-Oh Examples

-7n-2
$7 n-2$ is $O(n)$
need $c>0$ and $n_{0} \geq 1$ such that $7 n-2 \leq c \bullet n$ for $n \geq n_{0}$
this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$

- $3 n^{3}+20 n^{2}+5$
$3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
need $c>0$ and $n_{0} \geq 1$ such that $3 n^{3}+20 n^{2}+5 \leq c \bullet n^{3}$ for $n \geq n_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$
- $3 \log n+\log \log n$
$3 \log n+\log \log n$ is $O(\log n)$
need $c>0$ and $n_{0} \geq 1$ such that $3 \log n+\log \log n \leq c \bullet l o g n$ for $n \geq n_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement " $f(n)$ is $O(g(n))$ " means that the growth rate of $f(\boldsymbol{n})$ is no more than the growth rate of $g(\boldsymbol{n})$
- We can use the big-Oh notation to rank functions according to their growth rate

	$f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows more	Yes	No
$\boldsymbol{f (n)}$ grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

* Use the smallest possible class of functions
- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)^{\prime}$
\diamond Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 n)$ "

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation
* Example:
- We determine that algorithm arrayMax executes at most $7 \boldsymbol{n}-1$ primitive operations
- We say that algorithm arrayMax "runs in $\boldsymbol{O}(n)$ time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The i-th prefix average of an array X is average of the first $(i+1)$ elements of X :
$A[i]=(X[0]+X[1]+\ldots+X[i]) /(i+1)$
- Computing the array A of prefix averages of another array X has applications to financial analysis

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Prefix Averages (Quadratic)

- The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm prefixAverages 1 (X, n)
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of \boldsymbol{X} \#operations $A \leftarrow$ new array of n integers
for $i \leftarrow 0$ to $n-1$ do

$$
s \leftarrow X[0]
$$

for $j \leftarrow 1$ to i do

$$
s \leftarrow s+X[j]
$$

$$
A[i] \leftarrow s /(i+1)
$$

return A
n n

$$
n
$$

$$
1+2+\ldots+(n-1)
$$

$$
1+2+\ldots+(n-1)
$$

$$
n
$$

Arithmetic Progression

- The running time of prefixAverages 1 is $\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})$
- The sum of the first n integers is $\boldsymbol{n}(\boldsymbol{n}+1) / 2$
- There is a simple visual proof of this fact
- Thus, algorithm prefixAverages 1 runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Prefix Averages (Linear)

*The following algorithm computes prefix averages in linear time by keeping a running sum
$\operatorname{Algorithm}$ prefixAverages2(X,n)
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of $\boldsymbol{X} \quad$ \#operations
$A \leftarrow$ new array of \boldsymbol{n} integers $\quad \boldsymbol{n}$
$s \leftarrow 0 \quad 1$
for $i \leftarrow 0$ to $n-1$ do n
$s \leftarrow s+X[i] \quad n$
$A[i] \leftarrow s /(i+1) \quad n$
return $A<1$

- Algorithm prefixAverages 2 runs in $\boldsymbol{O}(\boldsymbol{n})$ time

Math you need to Review

- Summations (Sec. 1.3.1)
- Logarithms and Exponents (Sec. 1.3.2)

- properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x a=a \log _{b} x \\
& \log _{b} a=\log _{x} a / \log _{x} b
\end{aligned}
$$

- properties of exponentials:

$$
a^{(b+c)}=a^{b} a^{c}
$$

$$
a^{b c}=\left(a^{b}\right)^{c}
$$

$$
a^{b} / a^{c}=a^{(b-c)}
$$

$$
b=a \log _{a} b
$$

- Basic probability (Sec. 1.3.4)
$b^{c}=a^{c * \log _{a} b}$

Relatives of Big-Oh

- big-Omega

- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_{0}$
- big-Theta
- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c^{\prime \prime}>0$ and an integer constant $n_{0} \geq 1$ such that $c^{\prime} \cdot g(n) \leq f(n) \leq c^{\prime \prime} \bullet g(n)$ for $n \geq n_{0}$
- little-oh
- $f(n)$ is $o(g(n))$ if, for any constant $c>0$, there is an integer constant $\mathrm{n}_{0} \geq 0$ such that $\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
- little-omega
- $f(n)$ is $\omega(g(n))$ if, for any constant $c>0$, there is an integer constant $\mathrm{n}_{0} \geq 0$ such that $\mathrm{f}(\mathrm{n}) \geq \operatorname{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$

Intuition for Asymptotic Notation

Big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$ big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$ big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
little-oh
- $f(n)$ is $o(g(n))$ if $f(n)$ is asymptotically strictly less than $g(n)$
little-omega
- $\mathrm{f}(\mathrm{n})$ is $\omega(\mathrm{g}(\mathrm{n}))$ if is asymptotically strictly greater than $\mathrm{g}(\mathrm{n})$

Example Uses of the Relatives of Big-Oh

- $5 \mathrm{n}^{2}$ is $\Omega\left(\mathbf{n}^{2}\right)$

$\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
let $\mathrm{c}=5$ and $\mathrm{n}_{0}=1$
- $\mathbf{5 n}^{\mathbf{2}}$ is $\Omega(\mathrm{n})$
$\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
let $\mathrm{c}=1$ and $\mathrm{n}_{0}=1$
- $\mathbf{5 n}^{2}$ is $\omega(\mathrm{n})$
$\mathrm{f}(\mathrm{n})$ is $\omega(\mathrm{g}(\mathrm{n}))$ if, for any constant $\mathrm{c}>0$, there is an integer constant $\mathrm{n}_{0} \geq$
0 such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
need $5 n_{0}{ }^{2} \geq \mathrm{c} \bullet \mathrm{n}_{0} \rightarrow$ given c , the n_{0} that satifies this is $\mathrm{n}_{0} \geq \mathrm{c} / 5 \geq 0$

