Analysis of Algorithms

An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.
Running Time (§1.1)

Most algorithms transform input objects into output objects.

The running time of an algorithm typically grows with the input size.

Average case time is often difficult to determine.

We focus on the worst case running time.

- Easier to analyze
- Crucial to applications such as games, finance and robotics
Experimental Studies (§ 1.6)

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like `System.currentTimeMillis()` to get an accurate measure of the actual running time
- Plot the results
Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult.
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation.
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs.
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment.
Pseudocode (§1.1)

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

```
Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do
    if A[i] > currentMax then
        currentMax ← A[i]
return currentMax
```

Example: find max element of an array
Pseudocode Details

Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces

Method declaration
Algorithm method (arg [, arg ...])
Input ...
Output ...

Method call
var.method (arg [, arg ...])

Return value
return expression

Expressions
\(\leftarrow \) Assignment
(like = in Java)
= Equality testing
(like == in Java)
\(n^2 \) Superscripts and other mathematical formatting allowed
The Random Access Machine (RAM) Model

- A CPU

- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character

- Memory cells are numbered and accessing any cell in memory takes unit time.
Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
Counting Primitive Operations (§1.1)

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

Algorithm arrayMax(A, n)

```plaintext
currentMax ← A[0]
for i ← 1 to n − 1 do
    if A[i] > currentMax then
        currentMax ← A[i]
        { increment counter i }
return currentMax
```

operations

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 + n</td>
<td>2(n − 1)</td>
</tr>
<tr>
<td>2(n − 1)</td>
<td>2(n − 1)</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>7n − 1</td>
<td></td>
</tr>
</tbody>
</table>
Estimating Running Time

- Algorithm *arrayMax* executes $7n - 1$ primitive operations in the worst case. Define:
 - $a = \text{Time taken by the fastest primitive operation}$
 - $b = \text{Time taken by the slowest primitive operation}$

Let $T(n)$ be worst-case time of *arrayMax*. Then

$$a(7n - 1) \leq T(n) \leq b(7n - 1)$$

Hence, the running time $T(n)$ is bounded by two linear functions.
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects $T(n)$ by a constant factor, but
 - Does not alter the growth rate of $T(n)$

- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm `arrayMax`
Growth Rates

- Growth rates of functions:
 - Linear \(\approx n \)
 - Quadratic \(\approx n^2 \)
 - Cubic \(\approx n^3 \)

- In a log-log chart, the slope of the line corresponds to the growth rate of the function.
Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms

Examples
- $10^2n + 10^5$ is a linear function
- $10^5n^2 + 10^8n$ is a quadratic function
Big-Oh Notation (§1.2)

Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$.

Example: $2n + 10$ is $O(n)$

- $2n + 10 \leq cn$
- $(c - 2) n \geq 10$
- $n \geq 10/(c - 2)$
- Pick $c = 3$ and $n_0 = 10$
Big-Oh Example

Example: the function n^2 is not $O(n)$

- $n^2 \leq cn$
- $n \leq c$
- The above inequality cannot be satisfied since c must be a constant
More Big-Oh Examples

- **7n-2**

 7n-2 is O(n)

 Need c > 0 and $n_0 \geq 1$ such that $7n-2 \leq c \cdot n$ for $n \geq n_0$

 This is true for $c = 7$ and $n_0 = 1$

- **$3n^3 + 20n^2 + 5$**

 $3n^3 + 20n^2 + 5$ is O(n^3)

 Need c > 0 and $n_0 \geq 1$ such that $3n^3 + 20n^2 + 5 \leq c \cdot n^3$ for $n \geq n_0$

 This is true for $c = 4$ and $n_0 = 21$

- **$3 \log n + \log \log n$**

 $3 \log n + \log \log n$ is O($\log n$)

 Need c > 0 and $n_0 \geq 1$ such that $3 \log n + \log \log n \leq c \cdot \log n$ for $n \geq n_0$

 This is true for $c = 4$ and $n_0 = 2$
Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function.
- The statement “$f(n)$ is $O(g(n))$” means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$.
- We can use the big-Oh notation to rank functions according to their growth rate.

<table>
<thead>
<tr>
<th></th>
<th>$f(n)$ is $O(g(n))$</th>
<th>$g(n)$ is $O(f(n))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(n)$ grows more</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$f(n)$ grows more</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Same growth</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Big-Oh Rules

If is \(f(n) \) a polynomial of degree \(d \), then \(f(n) \) is \(O(n^d) \), i.e.,

1. Drop lower-order terms
2. Drop constant factors

Use the smallest possible class of functions

- Say “\(2n \) is \(O(n) \)” instead of “\(2n \) is \(O(n^2) \)”

Use the simplest expression of the class

- Say “\(3n + 5 \) is \(O(n) \)” instead of “\(3n + 5 \) is \(O(3n) \)”
Asymptotic Algorithm Analysis

The asymptotic analysis of an algorithm determines the running time in big-Oh notation.

To perform the asymptotic analysis:
- We find the worst-case number of primitive operations executed as a function of the input size.
- We express this function with big-Oh notation.

Example:
- We determine that algorithm `arrayMax` executes at most $7n - 1$ primitive operations.
- We say that algorithm `arrayMax` "runs in $O(n)$ time".

Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations.
We further illustrate asymptotic analysis with two algorithms for prefix averages.

The i-th prefix average of an array X is average of the first $(i + 1)$ elements of X:

$$A[i] = \frac{X[0] + X[1] + \ldots + X[i]}{i+1}$$

Computing the array A of prefix averages of another array X has applications to financial analysis.
The following algorithm computes prefix averages in quadratic time by applying the definition:

Algorithm *prefixAverages* \(_1 (X, n)\)

Input array \(X\) of \(n\) integers

Output array \(A\) of prefix averages of \(X\)

\(A \leftarrow \text{new array of } n\) integers

for \(i \leftarrow 0\) to \(n - 1\) do

\(s \leftarrow X[0]\)

for \(j \leftarrow 1\) to \(i\) do

\(s \leftarrow s + X[j]\)

\(A[i] \leftarrow s / (i + 1)\)

return \(A\)
Arithmetic Progression

- The running time of *prefixAverages1* is $O(1 + 2 + \ldots + n)$
- The sum of the first n integers is $n(n + 1) / 2$
 - There is a simple visual proof of this fact
- Thus, algorithm *prefixAverages1* runs in $O(n^2)$ time
Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum:

Algorithm \textit{prefixAverages2}(X, n)

\textbf{Input} array X of n integers

\textbf{Output} array A of prefix averages of X

$A \leftarrow$ new array of n integers
$s \leftarrow 0$

\textbf{for} $i \leftarrow 0$ \textbf{to} $n - 1$ \textbf{do}

$s \leftarrow s + X[i]$

$A[i] \leftarrow s / (i + 1)$

\textbf{return} A

Algorithm \textit{prefixAverages2} runs in $O(n)$ time
Math you need to Review

- Summations (Sec. 1.3.1)
- Logarithms and Exponents (Sec. 1.3.2)

Properties of Logarithms:
\[
\begin{align*}
\log_b(xy) &= \log_b x + \log_b y \\
\log_b \left(\frac{x}{y}\right) &= \log_b x - \log_b y \\
\log_b x^a &= a \log_b x \\
\log_b a &= \log_x a / \log_x b
\end{align*}
\]

Properties of Exponentials:
\[
\begin{align*}
ab^{(b+c)} &= a^b b^c \\
ab^{bc} &= (a^b)^c \\
ab^b / a^c &= a^{(b-c)} \\
b &= a^{\log_a b} \\
b^c &= a^{c \cdot \log_a b}
\end{align*}
\]

- Proof techniques (Sec. 1.3.3)
- Basic probability (Sec. 1.3.4)
Relatives of Big-Oh

big-Omega
- $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

big-Theta
- $f(n)$ is $\Theta(g(n))$ if there are constants $c' > 0$ and $c'' > 0$ and an integer constant $n_0 \geq 1$ such that $c' g(n) \leq f(n) \leq c'' g(n)$ for $n \geq n_0$

little-o
- $f(n)$ is $o(g(n))$ if, for any constant $c > 0$, there is an integer constant $n_0 \geq 0$ such that $f(n) \leq c \cdot g(n)$ for $n \geq n_0$

little-omega
- $f(n)$ is $\omega(g(n))$ if, for any constant $c > 0$, there is an integer constant $n_0 \geq 0$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0
Intuition for Asymptotic Notation

Big-Oh
- \(f(n) \) is \(O(g(n)) \) if \(f(n) \) is asymptotically \textbf{less than or equal} to \(g(n) \)

big-Omega
- \(f(n) \) is \(\Omega(g(n)) \) if \(f(n) \) is asymptotically \textbf{greater than or equal} to \(g(n) \)

big-Theta
- \(f(n) \) is \(\Theta(g(n)) \) if \(f(n) \) is asymptotically \textbf{equal} to \(g(n) \)

little-oh
- \(f(n) \) is \(o(g(n)) \) if \(f(n) \) is asymptotically \textbf{strictly less} than \(g(n) \)

little-omega
- \(f(n) \) is \(\omega(g(n)) \) if \(f(n) \) is asymptotically \textbf{strictly greater} than \(g(n) \)
Example Uses of the Relatives of Big-Oh

- **5n^2 is \(\Omega(n^2) \)**

 \[f(n) = \Omega(g(n)) \] if there is a constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(f(n) \geq c \cdot g(n) \) for \(n \geq n_0 \)

 let \(c = 5 \) and \(n_0 = 1 \)

- **5n^2 is \(\Omega(n) \)**

 \[f(n) = \Omega(g(n)) \] if there is a constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(f(n) \geq c \cdot g(n) \) for \(n \geq n_0 \)

 let \(c = 1 \) and \(n_0 = 1 \)

- **5n^2 is \(\omega(n) \)**

 \[f(n) = \omega(g(n)) \] if, for any constant \(c > 0 \), there is an integer constant \(n_0 \geq 0 \) such that \(f(n) \geq c \cdot g(n) \) for \(n \geq n_0 \)

 need \(5n_0^2 \geq c \cdot n_0 \) \(\rightarrow \) given \(c \), the \(n_0 \) that satisfies this is \(n_0 \geq c/5 \geq 0 \)