Breadth-First Search
Outline and Reading

Breadth-first search (§6.3.3)
- Algorithm
- Example
- Properties
- Analysis
- Applications

DFS vs. BFS (§6.3.3)
- Comparison of applications
- Comparison of edge labels
Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph.
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- BFS on a graph with n vertices and m edges takes $O(n + m)$ time.

- BFS can be further extended to solve other graph problems:
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one.
BFS Algorithm

The algorithm uses a mechanism for setting and getting “labels” of vertices and edges.

Algorithm $BFS(G)$

Input graph G

Output labeling of the edges and partition of the vertices of G

for all $u \in G.\text{vertices}()$

setLabel(u, UNEXPLORED)

for all $e \in G.\text{edges}()$

setLabel(e, UNEXPLORED)

for all $v \in G.\text{vertices}()$

if $\text{getLabel}(v) = \text{UNEXPLORED}$

$BFS(G, v)$

Algorithm $BFS(G, s)$

$L_0 \leftarrow$ new empty sequence

$L_0.\text{insertLast}(s)$

setLabel(s, VISITED)

$i \leftarrow 0$

while $\neg L_i.\text{isEmpty}()$

$L_{i+1} \leftarrow$ new empty sequence

for all $v \in L_i.\text{elements}()$

for all $e \in G.\text{incidentEdges}(v)$

if $\text{getLabel}(e) = \text{UNEXPLORED}$

$w \leftarrow \text{opposite}(v, e)$

if $\text{getLabel}(w) = \text{UNEXPLORED}$

setLabel(e, DISCOVERY)

setLabel(w, VISITED)

$L_{i+1}.\text{insertLast}(w)$

else

setLabel(e, CROSS)

$i \leftarrow i + 1$
Example

- unexplored vertex
- visited vertex
- unexplored edge
- discovery edge
- cross edge

Breadth-First Search

3/10/2020 5:02 PM
Example (cont.)
Example (cont.)

Breadth-First Search
Properties

Notation

G_s: connected component of s

Property 1

$BFS(G, s)$ visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by $BFS(G, s)$ form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges
Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \deg(v) = 2m$
Applications

Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time:

- Compute the connected components of G
- Compute a spanning forest of G
- Find a simple cycle in G, or report that G is a forest
- Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

Applications:
- DFS: Spanning forest, connected components, paths, cycles.
- BFS: Spanning forest, connected components, paths, cycles.

DFS and BFS diagrams:
- DFS: A → B → C → D → E → F
- BFS: A → B → C → D → E → F
DFS vs. BFS (cont.)

Back edge \((v, w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v, w)\)
- \(w\) is in the same level as \(v\) or in the next level in the tree of discovery edges