Breadth-First Search

Outline and Reading

- Breadth-first search (§6.3.3)
- Algorithm
- Example
- Properties
- Analysis
- Applications
* DFS vs. BFS (§6.3.3)
- Comparison of applications
- Comparison of edge labels

Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- BFS on a graph with n vertices and m edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
BFS can be further extended to solve other graph problems
- Find and report a path with the minimum number of edges between two given vertices
- Find a simple cycle, if there is one

BFS Algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)

Input graph G
Output labeling of the edges
and partition of the
vertices of \boldsymbol{G}
for all $u \in G$.vertices()
setLabel(u, UNEXPLORED)
for all $e \in$ G.edges()
setLabel(e, UNEXPLORED)
for all $v \in$ G.vertices()
if $\operatorname{getLabel}(v)=$ UNEXPLORED BFS (G, v)

```
Algorithm \(\operatorname{BFS}(G, s)\)
    \(L_{0} \leftarrow\) new empty sequence
    \(L_{0}\) insertLast(s)
    setLabel(s, VISITED)
    \(i \leftarrow 0\)
    while \(\neg L_{i}\) isEmpty ()
        \(L_{i+1} \leftarrow\) new empty sequence
        for all \(v \in L_{i}\). elements()
            for all \(e \in\) G.incidentEdges(v)
            if \(\operatorname{getLabel}(e)=\) UNEXPLORED
            \(w \leftarrow\) opposite ( \(v, e\) )
            if \(\operatorname{getLabel}(w)=\) UNEXPLORED
                setLabel(e, DISCOVERY)
                setLabel(w, VISITED)
                \(L_{i+1}\).insertLast(w)
            else
                                setLabel(e, CROSS)
        \(i \leftarrow i+1\)
```


Example

(A) unexplored vertex
(A) visited vertex

- unexplored edge
\longrightarrow discovery edge
- - -- cross edge

Example (cont.)

Example (cont.)

Properties

Notation
G_{s} : connected component of s
Property 1
$\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ visits all the vertices and edges of \boldsymbol{G}_{s}
Property 2

The discovery edges labeled by
$\boldsymbol{B F S}(\boldsymbol{G}, s)$ form a spanning tree \boldsymbol{T}_{s} of G_{s}
Property 3
For each vertex v in L_{i}

- The path of T_{s} from s to v has i edges
- Every path from s to v in \boldsymbol{G}_{s} has at least i edges

Analysis

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_{i}
- Method incidentEdges is called once for each vertex
- BFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

Applications

* Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Compute the connected components of \boldsymbol{G}
- Compute a spanning forest of G
- Find a simple cycle in \boldsymbol{G}, or report that \boldsymbol{G} is a forest
- Given two vertices of \boldsymbol{G}, find a path in \boldsymbol{G} between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

DFS vs. BFS (cont.)

Back edge ($\boldsymbol{v}, \boldsymbol{w}$)

- w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

- w is in the same level as v or in the next level in the tree of discovery edges

BFS

