Breadth-First Search

3/10/2020 5:02 PM

Outline and Reading

Breadth-first search (§6.3.3)

- Algorithm
- Example
- Properties
- Analysis
- Applications
- DFS vs. BFS (§6.3.3)
 - Comparison of applications
 - Comparison of edge labels

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- BFS on a graph with nvertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

BFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm **BFS(G)**

Input graph G Output labeling of the edges and partition of the vertices of G for all $u \in G.vertices()$ setLabel(u, UNEXPLORED) for all $e \in G.edges()$ setLabel(e, UNEXPLORED) for all $v \in G.vertices()$ if getLabel(v) = UNEXPLOREDBFS(G, v) Algorithm **BFS**(**G**, **s**) $L_0 \leftarrow$ new empty sequence L_0 .insertLast(s) setLabel(s, VISITED) $i \leftarrow 0$ while $\neg L_i$ is Empty() $L_{i+1} \leftarrow$ new empty sequence for all $v \in L_i$.elements() for all $e \in G.incidentEdges(v)$ if getLabel(e) = UNEXPLORED $w \leftarrow opposite(v,e)$ **if** *getLabel*(*w*) = *UNEXPLORED* setLabel(e, DISCOVERY) setLabel(w, VISITED) L_{i+1} .insertLast(w) else setLabel(e, CROSS) $i \leftarrow i + 1$

3/10/2020 5:02 PM

3/10/2020 5:02 PM

Properties

Notation G_s : connected component of s Property 1 BFS(G, s) visits all the vertices and edges of G_s Property 2 The discovery edges labeled by BFS(G, s) form a spanning tree T_s of $G_{\rm s}$ **Property 3** \boldsymbol{L}_1 For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

3/10/2020 5:02 PM

Analysis

• Setting/getting a vertex/edge label takes O(1) time Each vertex is labeled twice once as UNEXPLORED once as VISITED Each edge is labeled twice once as UNEXPLORED once as DISCOVERY or CROSS \bullet Each vertex is inserted once into a sequence L_i Method incidentEdges is called once for each vertex • BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure • Recall that $\sum_{v} \deg(v) = 2m$

Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

3/10/2020 5:02 PM

DFS vs. BFS (cont.)

Back edge (v,w)

 w is an ancestor of v in the tree of discovery edges

Cross edge (v,w)

w is in the same level as
v or in the next level in
the tree of discovery
edges

BFS

3/10/2020 5:02 PM