Biconnectivity

Outline and Reading

- Definitions (§6.3.2)
- Separation vertices and edges
- Biconnected graph
- Biconnected components
- Equivalence classes
- Linked edges and link components
- Algorithms (§6.3.2)
- Auxiliary graph
- Proxy graph

Separation Edges and Vertices

- Definitions
- Let \boldsymbol{G} be a connected graph
- A separation edge of \boldsymbol{G} is an edge whose removal disconnects \boldsymbol{G}
- A separation vertex of \boldsymbol{G} is a vertex whose removal disconnects \boldsymbol{G}
- Applications
- Separation edges and vertices represent single points of failure in a network and are critical to the operation of the network
- Example
- DFW, LGA and LAX are separation vertices
- (DFW,LAX) is a separation edge

Biconnected Graph

- Equivalent definitions of a biconnected graph G
- Graph G has no separation edges and no separation vertices
- For any two vertices \boldsymbol{u} and \boldsymbol{v} of \boldsymbol{G}, there are two disjoint simple paths between u and v (i.e., two simple paths between u and v that share no other vertices or edges)
- For any two vertices \boldsymbol{u} and \boldsymbol{v} of \boldsymbol{G}, there is a simple cycle containing u and v
- Example

Biconnected Components

- Biconnected component of a graph \boldsymbol{G}
- A maximal biconnected subgraph of G, or
- A subgraph consisting of a separation edge of G and its end vertices
- Interaction of biconnected components
- An edge belongs to exactly one biconnected component
- A nonseparation vertex belongs to exactly one biconnected component
- A separation vertex belongs to two or more biconnected components
- Example of a graph with four biconnected components

Equivalence Classes

- Given a set S, a relation R on S is a set of ordered pairs of elements of S, i.e., R is a subset of $S \times S$
- An equivalence relation \boldsymbol{R} on S satisfies the following properties

Reflexive: $(\boldsymbol{x}, \boldsymbol{x}) \in \boldsymbol{R}$
Symmetric: $(x, y) \in \boldsymbol{R} \Rightarrow(y, x) \in \boldsymbol{R}$
Transitive: $(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R$

- An equivalence relation R on S induces a partition of the elements of S into equivalence classes
- Example (connectivity relation among the vertices of a graph):
- Let \boldsymbol{V} be the set of vertices of a graph \boldsymbol{G}
- Define the relation
$C=\{(\boldsymbol{v}, \boldsymbol{w}) \in V \times V$ such that G has a path from v to $w\}$
- Relation C is an equivalence relation
- The equivalence classes of relation C are the vertices in each connected component of graph \boldsymbol{G}

Link Relation

- Edges e and f of connected graph G are linked if
- $e=f$, or
- G has a simple cycle containing e and f
Theorem:
The link relation on the edges of a graph is an equivalence relation
Proof Sketch:
- The reflexive and symmetric properties follow from the definition
- For the transitive property, consider two simple cycles sharing an edge

Link Components

- The link components of a connected graph G are the equivalence classes of edges with respect to the link relation
- A biconnected component of G is the subgraph of G induced by an equivalence class of linked edges
A separation edge is a single-element equivalence class of linked edges
- A separation vertex has incident edges in at least two distinct equivalence classes of linked edge

Auxiliary Graph

- Auxiliary graph \boldsymbol{B} for a connected graph G
- Associated with a DFS traversal of G
- The vertices of \boldsymbol{B} are the edges of G
- For each back edge \boldsymbol{e} of $\boldsymbol{G}, \boldsymbol{B}$ has edges $\left(e . f_{1}\right),\left(e . f_{2}\right), \ldots,\left(e, f_{k}\right)$, where $f_{1}, f_{2}, \ldots, f_{k}$ are the discovery edges of \boldsymbol{G} that form a simple cycle with e
- Its connected components correspond to the the link components of \boldsymbol{G}

DFS on graph \boldsymbol{G}

Auxiliary graph B

Auxiliary Graph (cont.)

- In the worst case, the number of edges of the auxiliary graph is proportional to nm

DFS on graph \boldsymbol{G}

Auxiliary graph B

Proxy Graph

```
Algorithm proxyGraph(G)
    Input connected graph \(\boldsymbol{G}\)
    Output proxy graph \(\boldsymbol{F}\) for \(\boldsymbol{G}\)
    \(F \leftarrow\) empty graph
    \(\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{s})\{\boldsymbol{s}\) is any vertex of \(\boldsymbol{G}\}\)
    for all discovery edges \(\boldsymbol{e}\) of \(\boldsymbol{G}\)
        F.insertVertex(e)
        setLabel(e, UNLINKED)
    for all vertices \(\boldsymbol{v}\) of \(\boldsymbol{G}\) in DFS visit order
    for all back edges \(\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})\)
        F.insertVertex (e)
        repeat
            \(f \leftarrow\) discovery edge with dest. \(\boldsymbol{u}\)
        F.insertEdge (e,f,Ø)
        if \(f\) getLabel \((f)=\) UNLINKED
                setLabel(f, LINKED)
                \(u \leftarrow\) origin of edge \(f\)
        else
            \(u \leftarrow v\{\) ends the loop \}
        until \(u=v\)
    return \(F\)
for all discovery edges \(\boldsymbol{e}\) of \(\boldsymbol{G}\)
F.insertVertex(e)
setLabel(e, UNLINKED)
for all vertices \(\boldsymbol{v}\) of \(\boldsymbol{G}\) in DFS visit order
for all back edges \(\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})\)
f.insert Vertex(e)
repeat
\(f \leftarrow\) discovery edge with dest. \(\boldsymbol{u}\) F.insertEdge (e,f,Ø) if \(f \operatorname{getLabel}(f)=\) UNLINKED setLabel(f, LINKED) \(u \leftarrow\) origin of edge \(f\)
else
\(u \leftarrow v\{\) ends the loop \(\}\)
until \(u=v\)
return \(F\)
```


Proxy graph \boldsymbol{F}

Proxy Graph (cont.)

- Proxy graph \boldsymbol{F} for a connected graph \boldsymbol{G}
- Spanning forest of the auxiliary graph \boldsymbol{B}
- Has \boldsymbol{m} vertices and $\boldsymbol{O}(\boldsymbol{m})$ edges
- Can be constructed in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Its connected components (trees) correspond to the the link components of G
- Given a graph G with n vertices and m edges, we can compute the following in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- The biconnected components of G
- The separation vertices of \boldsymbol{G}
- The separation edges of G

