Binary Search Trees
Ordered Dictionaries

Keys are assumed to come from a total order.

New operations:

- closestKeyBefore(k)
- closestElemBefore(k)
- closestKeyAfter(k)
- closestElemAfter(k)
Binary Search (§3.1.1)

Binary search performs operation `findElement(k)` on a dictionary implemented by means of an array-based sequence, sorted by key

- similar to the high-low game
- at each step, the number of candidate items is halved
- terminates after $O(\log n)$ steps

Example: `findElement(7)`
A lookup table is a dictionary implemented by means of a sorted sequence
- We store the items of the dictionary in an array-based sequence, sorted by key
- We use an external comparator for the keys

Performance:
- `findElement` takes $O(\log n)$ time, using binary search
- `insertItem` takes $O(n)$ time since in the worst case we have to shift $n/2$ items to make room for the new item
- `removeElement` take $O(n)$ time since in the worst case we have to shift $n/2$ items to compact the items after the removal

The lookup table is effective only for dictionaries of small size or for dictionaries on which searches are the most common operations, while insertions and removals are rarely performed (e.g., credit card authorizations)
Binary Search Tree (§3.1.2)

A binary search tree is a binary tree storing keys (or key-element pairs) at its internal nodes and satisfying the following property:

- Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. We have $\text{key}(u) \leq \text{key}(v) \leq \text{key}(w)$

External nodes do not store items

An inorder traversal of a binary search trees visits the keys in increasing order
Search (§3.1.3)

- To search for a key k, we trace a downward path starting at the root.
- The next node visited depends on the outcome of the comparison of k with the key of the current node.
- If we reach a leaf, the key is not found and we return NO_SUCH_KEY.
- Example: `findElement(4)`

```
Algorithm findElement(k, v)
    if T.isExternal(v)
        return NO_SUCH_KEY
    if k < key(v)
        return findElement(k, T.leftChild(v))
    else if k = key(v)
        return element(v)
    else {
        k > key(v) 
    }
    return findElement(k, T.rightChild(v))
```

Binary Search Trees

6
Insertion (§3.1.4)

To perform operation insertItem(k, o), we search for key k.
Assume k is not already in the tree, and let let w be the leaf reached by the search.
We insert k at node w and expand w into an internal node.
Example: insert 5
Deletion (§3.1.5)

- To perform operation `removeElement(k)`, we search for key `k`.
- Assume key `k` is in the tree, and let let `v` be the node storing `k`.
- If node `v` has a leaf child `w`, we remove `v` and `w` from the tree with operation `removeAboveExternal(w)`.
- Example: remove 4.
Deletion (cont.)

We consider the case where the key k to be removed is stored at a node v whose children are both internal

- we find the internal node w that follows v in an inorder traversal
- we copy $\text{key}(w)$ into node v
- we remove node w and its left child z (which must be a leaf) by means of operation $\text{removeAboveExternal}(z)$

Example: remove 3
Consider a dictionary with n items implemented by means of a binary search tree of height h

- the space used is $O(n)$
- methods `findElement`, `insertItem` and `removeElement` take $O(h)$ time

The height h is $O(n)$ in the worst case and $O(\log n)$ in the best case