Elementary Data Structures

Stacks, Queues, \& Lists Amortized analysis Trees

The Stack ADT (§2.1.1)

- The Stack ADT stores arbitrary objects
- Insertions and deletions follow the last-in first-out scheme
- Think of a spring-loaded plate dispenser
- Main stack operations:
- push(object): inserts an element
- object pop(): removes and returns the last inserted element
- Auxiliary stack operations:
- object top(): returns the last inserted element without removing it
- integer size(): returns the number of elements stored
- boolean isEmpty(): indicates whether no elements are stored

Applications of Stacks

- Direct applications

- Page-visited history in a Web browser
- Undo sequence in a text editor
- Chain of method calls in the Java Virtual Machine or C++ runtime environment
- Indirect applications
- Auxiliary data structure for algorithms
- Component of other data structures

Array-based Stack (§2.1.1)

Algorithm pop():
if isEmpty() then
throw EmptyStackException else
$t \leftarrow t-1$
return $S[t+1]$
Algorithm push(o)
if $t=$ S.length -1 then
throw FullStackException
else
$t \leftarrow t+1$
$S[t] \leftarrow o$
S

Growable Array-based Stack (§1.5)

* In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one
* How large should the new array be?
- incremental strategy: increase the size by a constant c
- doubling strategy: double the size

Comparison of the Strategies

\diamond We compare the incremental strategy and the doubling strategy by analyzing the total time $\boldsymbol{T}(\boldsymbol{n})$ needed to perform a series of n push operations

* We assume that we start with an empty stack represented by an array of size 1
\star We call amortized time of a push operation the average time taken by a push over the series of operations, i.e., $T(n) / n$

Analysis of the Incremental Strategy

\diamond We replace the array $k=n / c$ times

- The total time $T(n)$ of a series of n push operations is proportional to

$$
\begin{gathered}
n+c+2 \boldsymbol{c}+3 \boldsymbol{c}+4 \boldsymbol{c}+\ldots+\boldsymbol{k} \boldsymbol{c}= \\
\boldsymbol{n}+\boldsymbol{c}(1+2+3+\ldots+\boldsymbol{k})= \\
\boldsymbol{n}+\boldsymbol{c k}(\boldsymbol{k}+1) / 2
\end{gathered}
$$

\diamond Since c is a constant, $\boldsymbol{T}(\boldsymbol{n})$ is $\boldsymbol{O}\left(\boldsymbol{n}+\boldsymbol{k}^{2}\right)$, i.e., $\boldsymbol{O}\left(n^{2}\right)$
$*$ The amortized time of a push operation is $\boldsymbol{O}(\boldsymbol{n})$

Direct Analysis of the Doubling Strategy

$*$ We replace the array $k=\log _{2} n$ times
\diamond The total time $\boldsymbol{T}(\boldsymbol{n})$ of a series of n push operations is proportional to

$$
\begin{gathered}
\boldsymbol{n}+1+2+4+8+\ldots+2^{k}= \\
\boldsymbol{n}+2^{k+1}-1=2 \boldsymbol{n}-1
\end{gathered}
$$

$\forall T(n)$ is $O(n)$
\diamond The amortized time of a push operation is $\boldsymbol{O}(1)$

Accounting Method Analysis of the Doubling Strategy

- The accounting method determines the amortized running time with a system of credits and debits
- We view a computer as a coin-operated device requiring 1 cyber-dollar for a constant amount of computing.
- We set up a scheme for charging operations. This is known as an amortization scheme.
- The scheme must give us always enough money to pay for the actual cost of the operation.
- The total cost of the series of operations is no more than the total amount charged.
- (amortized time) \leq (total \$ charged) / (\# operations)

Amortization Scheme for the Doubling Strategy

- Consider again the k phases, where each phase consisting of twice as many pushes as the one before.
- At the end of a phase we must have saved enough to pay for the array-growing push of the next phase.
- At the end of phase i we want to have saved icyber-dollars, to pay for the array growth for the beginning of the next phase.

- We charge \$3 for a push. The \$2 saved for a regular push are "stored" in the second half of the array. Thus, we will have $2(i / 2)=i$ cyber-dollars saved at then end of phase i.
- Therefore, each push runs in $O(1)$ amortized time; n pushes run in $O(n)$ time.

The Queue ADT (§2.1.2)

*The Queue ADT stores arbitrary \geqslant Auxiliary queue objects

- Insertions and deletions follow the first-in first-out scheme
- Insertions are at the rear of the queue and removals are at the front of the queue
- Main queue operations:
- enqueue(object): inserts an element at the end of the queue
- object dequeue(): removes and returns the element at the front of the queue
operations:

- object front(): returns the element at the front without removing it
- integer size(): returns the number of elements stored
- boolean isEmpty(): indicates whether no elements are stored
\diamond Exceptions
- Attempting the execution of dequeue or front on an empty queue throws an EmptyQueueException

Applications of Queues

- Direct applications
- Waiting lines
- Access to shared resources (e.g., printer)
- Multiprogramming
- Indirect applications
- Auxiliary data structure for algorithms
- Component of other data structures

Singly Linked List

- A singly linked list is a concrete data structure consisting of a sequence of nodes
- Each node stores
- element
- link to the next node

elem
node

Queue with a Singly Linked List

- We can implement a queue with a singly linked list
- The front element is stored at the first node
- The rear element is stored at the last node
- The space used is $\boldsymbol{O}(\boldsymbol{n})$ and each operation of the Queue ADT takes $\boldsymbol{O}(1)$ time

List ADT (§2.2.2)

- The List ADT models a sequence of positions storing arbitrary objects
- It allows for insertion and removal in the "middle"
- Query methods:
- isFirst(p), isLast(p)

Accessor methods:

- first(), last()
- before(p), after(p)
- Update methods:
- replaceElement(p, o), swapElements(p, q)
- insertBefore(p, o), insertAfter(p, o),
- insertFirst(o), insertLast(o)
- remove(p)

Doubly Linked List

- A doubly linked list provides a natural implementation of the List ADT
- Nodes implement Position and store:
- element
- link to the previous node
- link to the next node

elem node
- Special trailer and header nodes

Elementary Data Structures

Trees (§2.3)

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relation
- Applications:

- Programming environments

Tree ADT (§2.3.1)

- We use positions to abstract nodes
- Generic methods:
- integer size()
- boolean isEmpty()
- objectIterator elements()
- positionIterator positions()
- Accessor methods:
- position root()
- position parent(p)
- positionIterator children(p)
- Query methods:
- boolean isInternal(p)
- boolean isExternal(p)
- boolean isRoot(p)
- Update methods:
- swapElements(p, q)
- object replaceElement(p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

Preorder Traversal (§2.3.2)

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured

Algorithm preOrder(v)

visit(v)

for each child \boldsymbol{w} of \boldsymbol{v}
preorder (w) document

Postorder Traversal (§2.3.2)

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and

Algorithm postOrder(v) for each child \boldsymbol{w} of \boldsymbol{v} postOrder (w)
visit(v) its subdirectories

Amortized Analysis of Tree Traversal

- Time taken in preorder or postorder traversal of an n-node tree is proportional to the sum, taken over each node v in the tree, of the time needed for the recursive call for v.
- The call for v costs $\$\left(c_{v}+1\right)$, where c_{v} is the number of children of v
- For the call for v , charge one cyber-dollar to v and charge one cyber-dollar to each child of v.
- Each node (except the root) gets charged twice: once for its own call and once for its parent's call.
- Therefore, traversal time is $\mathbf{O}(\mathbf{n})$.

Binary Trees (§2.3.3)

- A binary tree is a tree with the following properties:
- Each internal node has two children
- The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
- a tree consisting of a single node, or
- a tree whose root has an ordered pair of children, each of which is a binary tree
- Applications:
- arithmetic expressions
- decision processes
- searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
- internal nodes: operators
- external nodes: operands
- Example: arithmetic expression tree for the expression $(2 \times(a-1)+(3 \times b))$

Decision Tree

- Binary tree associated with a decision process
- internal nodes: questions with yes/no answer
- external nodes: decisions
- Example: dining decision

Properties of Binary Trees

- Notation
n number of nodes
e number of external nodes
i number of internal nodes
h height

* Properties:
- $\boldsymbol{e}=\boldsymbol{i}+1$
- $n=2 e-1$
- $h \leq i$
- $\boldsymbol{h} \leq(\boldsymbol{n}-1) / 2$
- $e \leq 2^{h}$
- $\boldsymbol{h} \geq \log _{2} \boldsymbol{e}$
- $\boldsymbol{h} \geq \log _{2}(\boldsymbol{n}+1)-1$

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
- $x(v)=$ inorder rank of v
- $y(v)=$ depth of v

Algorithm inOrder(v)
if isInternal (v) inOrder (leftChild (v))
visit(v)
if isInternal (v)
inOrder (rightChild (v))

Euler Tour Traversal

- Generic traversal of a binary tree
- Includes a special cases the preorder, postorder and inorder traversals

Walk around the tree and visit each node three times:

- on the left (preorder)
- from below (inorder)
- on the right (postorder)

Printing Arithmetic Expressions

- Specialization of an inorder traversal
- print operand or operator when visiting node
- print "(" before traversing left subtree
- print ")" after traversing right subtree

Algorithm printExpression(v)
if isInternal (v) print("(")
inOrder (leftChild (v)) print(v.element ())
if isInternal (v)
inOrder (rightChild (v)) print (")")

$$
((2 \times(a-1))+(3 \times b))
$$

Linked Data Structure for Representing Trees (§2.3.4)

- A node is represented by an object storing
- Element
- Parent node
- Sequence of children nodes
- Node objects implement the Position ADT

Linked Data Structure for Binary Trees

- A node is represented by an object storing
- Element
- Parent node
- Left child node
- Right child node
- Node objects implement the Position ADT

Array-Based Representation of Binary Trees

* nodes are stored in an array

- let rank(node) be defined as follows:

■ $\operatorname{rank}($ root $)=1$

- if node is the left child of parent(node), $\operatorname{rank}($ node $)=2{ }^{*} \operatorname{rank}($ parent(node) $)$
- if node is the right child of parent(node), $\operatorname{rank}($ node $)=2{ }^{*} \operatorname{rank}($ parent(node) $)+1$

