Elementary Data Structures

Stacks, Queues, & Lists
Amortized analysis
Trees

The Stack ADT (§2.1.1)

- The Stack ADT stores arbitrary objects
- Insertions and deletions follow the last-in first-out scheme
- Think of a spring-loaded plate dispenser
- Main stack operations:
 - push(object): inserts an element
 - object pop(): removes and returns the last inserted element

- Auxiliary stack operations:
 - object top(): returns the last inserted element without removing it
 - integer size(): returns the number of elements stored
 - boolean isEmpty(): indicates whether no elements are stored

Applications of Stacks

- Direct applications
 - Page-visited history in a Web browser
 - Undo sequence in a text editor
 - Chain of method calls in the Java Virtual
 Machine or C++ runtime environment
- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures

Array-based Stack (§2.1.1)

- A simple way of implementing the Stack ADT uses an array
- We add elements from left to right
- A variable t keeps track of the index of the top element (size is t+1)

```
Algorithm pop():

if isEmpty() then

throw EmptyStackException

else

t \leftarrow t - 1

return S[t + 1]
```

```
Algorithm push(o)

if t = S.length - 1 then

throw FullStackException

else

t \leftarrow t + 1

S[t] \leftarrow o
```


Growable Array-based Stack (§1.5)

- In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one
- How large should the new array be?
 - incremental strategy:
 increase the size by a constant c
 - doubling strategy: double the size


```
Algorithm push(o)
  if t = S.length - 1 then
     A \leftarrow new array of
             size ...
     for i \leftarrow 0 to t do
        A[i] \leftarrow S[i]
        S \leftarrow A
  t \leftarrow t + 1
  S[t] \leftarrow o
```

Comparison of the Strategies

- * We compare the incremental strategy and the doubling strategy by analyzing the total time T(n) needed to perform a series of n push operations
- We assume that we start with an empty stack represented by an array of size 1
- We call **amortized time** of a push operation the average time taken by a push over the series of operations, i.e., T(n)/n

Analysis of the Incremental Strategy

- We replace the array k = n/c times
- The total time T(n) of a series of n push operations is proportional to

$$n + c + 2c + 3c + 4c + ... + kc =$$
 $n + c(1 + 2 + 3 + ... + k) =$
 $n + ck(k + 1)/2$

- Since c is a constant, T(n) is $O(n + k^2)$, i.e., $O(n^2)$
- lacktriangle The amortized time of a push operation is O(n)

Direct Analysis of the Doubling Strategy

- We replace the array $k = \log_2 n$ times
- The total time T(n) of a series of n push operations is proportional to

$$n + 1 + 2 + 4 + 8 + ... + 2^{k} =$$

 $n + 2^{k+1} - 1 = 2n - 1$

- \bullet T(n) is O(n)
- The amortized time of a push operation is O(1)

geometric series

Accounting Method Analysis of the Doubling Strategy

- The accounting method determines the amortized running time with a system of credits and debits
- We view a computer as a coin-operated device requiring
 1 cyber-dollar for a constant amount of computing.
 - We set up a scheme for charging operations. This is known as an amortization scheme.
 - The scheme must give us always enough money to pay for the actual cost of the operation.
 - The total cost of the series of operations is no more than the total amount charged.

Amortization Scheme for the Doubling Strategy

- Consider again the k phases, where each phase consisting of twice as many pushes as the one before.
- At the end of a phase we must have saved enough to pay for the array-growing push of the next phase.
- At the end of phase *i* we want to have saved *i* cyber-dollars, to pay for the array growth for the beginning of the next phase.

- We charge \$3 for a push. The \$2 saved for a regular push are "stored" in the second half of the array. Thus, we will have 2(i/2)=i cyber-dollars saved at then end of phase i.
- Therefore, each push runs in O(1) amortized time; n pushes run in O(n) time.

The Queue ADT (§2.1.2)

- The Queue ADT stores arbitrary Auxiliary queue objects
- Insertions and deletions follow the first-in first-out scheme
- Insertions are at the rear of the queue and removals are at the front of the queue
- Main queue operations:
 - enqueue(object): inserts an element at the end of the queue
 - object dequeue(): removes and returns the element at the front of the queue

operations:

- object front(): returns the element at the front without removing it
- integer size(): returns the number of elements stored
- boolean isEmpty(): indicates whether no elements are stored

Exceptions

 Attempting the execution of dequeue or front on an empty queue throws an **EmptyQueueException**

Applications of Queues

- Direct applications
 - Waiting lines
 - Access to shared resources (e.g., printer)
 - Multiprogramming
- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures

Singly Linked List

- A singly linked list is a concrete data structure consisting of a sequence of nodes
- Each node stores
 - element
 - link to the next node

Queue with a Singly Linked List

- We can implement a queue with a singly linked list
 - The front element is stored at the first node
 - The rear element is stored at the last node
- The space used is O(n) and each operation of the Queue ADT takes O(1) time

List ADT (§2.2.2)

- The List ADT models a sequence of positions storing arbitrary objects
- It allows for insertion and removal in the "middle"
- Query methods:
 - isFirst(p), isLast(p)

Accessor methods:

- first(), last()
- before(p), after(p)
- Update methods:
 - replaceElement(p, o), swapElements(p, q)
 - insertBefore(p, o), insertAfter(p, o),
 - insertFirst(o), insertLast(o)
 - remove(p)

Doubly Linked List

- A doubly linked list provides a natural implementation of the List ADT
- Nodes implement Position and store:
 - element
 - link to the previous node
 - link to the next node
- Special trailer and header nodes

Trees (§2.3)

In computer science, a tree is an abstract model of a hierarchical structure

 A tree consists of nodes with a parent-child relation

- Applications:
 - Organization charts
 - File systems
 - Programming environments

Tree ADT (§2.3.1)

- We use positions to abstract nodes
- Generic methods:
 - integer size()
 - boolean isEmpty()
 - objectIterator elements()
 - positionIterator positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - positionIterator children(p)

- boolean isInternal(p)
- boolean isExternal(p)
- boolean isRoot(p)
- Update methods:
 - swapElements(p, q)
 - object replaceElement(p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

Preorder Traversal (§2.3.2)

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm preOrder(v)

visit(v)

for each child w of v

preorder (w)

Postorder Traversal (§2.3.2)

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)

Amortized Analysis of Tree Traversal

- Time taken in preorder or postorder traversal of an n-node tree is proportional to the sum, taken over each node v in the tree, of the time needed for the recursive call for v.
 - The call for v costs $(c_v + 1)$, where c_v is the number of children of v
 - For the call for v, charge one cyber-dollar to v and charge one cyber-dollar to each child of v.
 - Each node (except the root) gets charged twice:
 once for its own call and once for its parent's call.
 - Therefore, traversal time is O(n).

Binary Trees (§2.3.3)

- A binary tree is a tree with the following properties:
 - Each internal node has two children
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- \bullet Example: arithmetic expression tree for the expression $(2 \times (a-1) + (3 \times b))$

Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision

Properties of Binary Trees

- Notation
 - *n* number of nodes
 - e number of external nodes
 - i number of internal nodes

h height

Properties:

$$e = i + 1$$

■
$$n = 2e - 1$$

■
$$h \leq i$$

■
$$h \le (n-1)/2$$

$$e \le 2^h$$

■
$$h \ge \log_2 e$$

$$\bullet h \ge \log_2(n+1) - 1$$

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v

• y(v) = depth of v

Algorithm in Order(v)

if isInternal (v)

inOrder (leftChild (v))

visit(v)

if *isInternal* (v)

inOrder (rightChild (v))

Euler Tour Traversal

- Generic traversal of a binary tree
- Includes a special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)

Printing Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree

Algorithm printExpression(v)

$$((2 \times (a - 1)) + (3 \times b))$$

Linked Data Structure for Representing Trees (§2.3.4)

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT

Linked Data Structure for Binary Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- Node objects implement the Position ADT

Array-Based Representation of Binary Trees

nodes are stored in an array

