
Elementary Data
Structures

Stacks, Queues, & Lists

Amortized analysis

Trees

Elementary Data Structures 2

The Stack ADT (§2.1.1)

The Stack ADT stores
arbitrary objects

Insertions and deletions
follow the last-in first-out
scheme

Think of a spring-loaded
plate dispenser

Main stack operations:
 push(object): inserts an

element

 object pop(): removes and
returns the last inserted
element

Auxiliary stack
operations:

 object top(): returns the
last inserted element
without removing it

 integer size(): returns the
number of elements
stored

 boolean isEmpty():
indicates whether no
elements are stored

Elementary Data Structures 3

Applications of Stacks

Direct applications
 Page-visited history in a Web browser

 Undo sequence in a text editor

 Chain of method calls in the Java Virtual
Machine or C++ runtime environment

Indirect applications
 Auxiliary data structure for algorithms

 Component of other data structures

Elementary Data Structures 4

Array-based Stack (§2.1.1)

A simple way of
implementing the
Stack ADT uses an
array

We add elements
from left to right

A variable t keeps
track of the index of
the top element
(size is t+1)

S

0 1 2 t

…

Algorithm pop():

if isEmpty() then

throw EmptyStackException

else

t  t  1

return S[t + 1]

Algorithm push(o)

if t = S.length  1 then

throw FullStackException

else

t  t + 1

S[t]  o

Elementary Data Structures 5

Growable Array-based
Stack (§1.5)

In a push operation, when
the array is full, instead of
throwing an exception, we
can replace the array with
a larger one

How large should the new
array be?
 incremental strategy:

increase the size by a
constant c

 doubling strategy: double
the size

Algorithm push(o)

if t = S.length  1 then

A  new array of

size …

for i  0 to t do

A[i]  S[i]

S  A

t  t + 1

S[t]  o

Elementary Data Structures 6

Comparison of the
Strategies

We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n

push operations

We assume that we start with an empty
stack represented by an array of size 1

We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

Elementary Data Structures 7

Analysis of the
Incremental Strategy

We replace the array k = n/c times

The total time T(n) of a series of n push
operations is proportional to

n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

Since c is a constant, T(n) is O(n + k2), i.e.,
O(n2)

The amortized time of a push operation is O(n)

Elementary Data Structures 8

Direct Analysis of the
Doubling Strategy

We replace the array k = log2 n
times

The total time T(n) of a series
of n push operations is
proportional to

n + 1 + 2 + 4 + 8 + …+ 2k =

n + 2k + 1 1 = 2n 1

T(n) is O(n)

The amortized time of a push
operation is O(1)

geometric series

1

2

1
4

8

Elementary Data Structures 9

The accounting method determines the amortized
running time with a system of credits and debits

We view a computer as a coin-operated device requiring
1 cyber-dollar for a constant amount of computing.

Accounting Method Analysis
of the Doubling Strategy

 We set up a scheme for charging operations. This is
known as an amortization scheme.

 The scheme must give us always enough money to
pay for the actual cost of the operation.

 The total cost of the series of operations is no more
than the total amount charged.

(amortized time)  (total $ charged) / (# operations)

Elementary Data Structures 10

Amortization Scheme for
the Doubling Strategy

Consider again the k phases, where each phase consisting of twice
as many pushes as the one before.

At the end of a phase we must have saved enough to pay for the
array-growing push of the next phase.

At the end of phase i we want to have saved i cyber-dollars, to pay
for the array growth for the beginning of the next phase.

0 2 4 5 6 731

$ $ $ $

$ $ $ $

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$

$

• We charge $3 for a push. The $2 saved for a regular push are
“stored” in the second half of the array. Thus, we will have
2(i/2)=i cyber-dollars saved at then end of phase i.
• Therefore, each push runs in O(1) amortized time; n pushes run
in O(n) time.

Elementary Data Structures 11

The Queue ADT (§2.1.2)
The Queue ADT stores arbitrary
objects

Insertions and deletions follow
the first-in first-out scheme

Insertions are at the rear of the
queue and removals are at the
front of the queue

Main queue operations:

 enqueue(object): inserts an
element at the end of the
queue

 object dequeue(): removes and
returns the element at the front
of the queue

Auxiliary queue
operations:
 object front(): returns the

element at the front without
removing it

 integer size(): returns the
number of elements stored

 boolean isEmpty(): indicates
whether no elements are
stored

Exceptions
 Attempting the execution of

dequeue or front on an
empty queue throws an
EmptyQueueException

Elementary Data Structures 12

Applications of Queues

Direct applications

 Waiting lines

 Access to shared resources (e.g., printer)

 Multiprogramming

Indirect applications

 Auxiliary data structure for algorithms

 Component of other data structures

Elementary Data Structures 13

Singly Linked List

A singly linked list is a
concrete data structure
consisting of a sequence
of nodes

Each node stores
 element

 link to the next node

next

elem node

A B C D



Elementary Data Structures 14

Queue with a Singly Linked List

We can implement a queue with a singly linked list

 The front element is stored at the first node

 The rear element is stored at the last node

The space used is O(n) and each operation of the
Queue ADT takes O(1) time

f

r



nodes

elements

Elementary Data Structures 15

List ADT (§2.2.2)

The List ADT models a
sequence of positions
storing arbitrary objects

It allows for insertion
and removal in the
“middle”

Query methods:

 isFirst(p), isLast(p)

Accessor methods:

 first(), last()

 before(p), after(p)

Update methods:

 replaceElement(p, o),
swapElements(p, q)

 insertBefore(p, o),
insertAfter(p, o),

 insertFirst(o),
insertLast(o)

 remove(p)

Elementary Data Structures 16

Doubly Linked List
A doubly linked list provides a natural
implementation of the List ADT

Nodes implement Position and store:

 element

 link to the previous node

 link to the next node

Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node

Elementary Data Structures 17

Trees (§2.3)

In computer science, a
tree is an abstract model
of a hierarchical
structure

A tree consists of nodes
with a parent-child
relation

Applications:

 Organization charts

 File systems

 Programming
environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

Elementary Data Structures 18

Tree ADT (§2.3.1)
We use positions to abstract
nodes

Generic methods:

 integer size()

 boolean isEmpty()

 objectIterator elements()

 positionIterator positions()

Accessor methods:

 position root()

 position parent(p)

 positionIterator children(p)

Query methods:

 boolean isInternal(p)

 boolean isExternal(p)

 boolean isRoot(p)

Update methods:

 swapElements(p, q)

 object replaceElement(p, o)

Additional update methods
may be defined by data
structures implementing the
Tree ADT

Elementary Data Structures 19

Preorder Traversal (§2.3.2)
A traversal visits the nodes of a
tree in a systematic manner

In a preorder traversal, a node is
visited before its descendants

Application: print a structured
document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4
6 7 8

9

Algorithm preOrder(v)

visit(v)

for each child w of v

preorder (w)

Elementary Data Structures 20

Postorder Traversal (§2.3.2)
In a postorder traversal, a
node is visited after its
descendants

Application: compute space
used by files in a directory and
its subdirectories

Algorithm postOrder(v)

for each child w of v

postOrder (w)

visit(v)

cs16/

homeworks/
todo.txt

1K
programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

Elementary Data Structures 21

Amortized Analysis of
Tree Traversal

Time taken in preorder or postorder traversal
of an n-node tree is proportional to the sum,
taken over each node v in the tree, of the
time needed for the recursive call for v.

 The call for v costs $(cv + 1), where cv is the
number of children of v

 For the call for v, charge one cyber-dollar to v and
charge one cyber-dollar to each child of v.

 Each node (except the root) gets charged twice:
once for its own call and once for its parent’s call.

 Therefore, traversal time is O(n).

Elementary Data Structures 22

Binary Trees (§2.3.3)

A binary tree is a tree with the
following properties:
 Each internal node has two

children

 The children of a node are an
ordered pair

We call the children of an internal
node left child and right child

Alternative recursive definition: a
binary tree is either
 a tree consisting of a single node,

or

 a tree whose root has an ordered
pair of children, each of which is a
binary tree

Applications:
 arithmetic expressions

 decision processes

 searching

A

B C

F GD E

H I

Elementary Data Structures 23

Arithmetic Expression Tree

Binary tree associated with an arithmetic expression
 internal nodes: operators

 external nodes: operands

Example: arithmetic expression tree for the
expression (2  (a  1) + (3  b))

+



2

a 1

3 b

Elementary Data Structures 24

Decision Tree

Binary tree associated with a decision process

 internal nodes: questions with yes/no answer

 external nodes: decisions

Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks In ‘N Out Antoine's Denny’s

Yes No

Yes No Yes No

Elementary Data Structures 25

Properties of Binary Trees

Notation

n number of nodes

e number of

external nodes

i number of internal

nodes

h height

Properties:

 e = i + 1

 n = 2e  1

 h  i

 h  (n  1)/2

 e  2h

 h  log2 e

 h  log2 (n + 1)  1

Elementary Data Structures 26

Inorder Traversal
In an inorder traversal a
node is visited after its left
subtree and before its right
subtree

Application: draw a binary
tree
 x(v) = inorder rank of v

 y(v) = depth of v

Algorithm inOrder(v)

if isInternal (v)

inOrder (leftChild (v))

visit(v)

if isInternal (v)

inOrder (rightChild (v))

3

1

2

5

6

7 9

8

4

Elementary Data Structures 27

Euler Tour Traversal
Generic traversal of a binary tree

Includes a special cases the preorder, postorder and inorder traversals

Walk around the tree and visit each node three times:

 on the left (preorder)

 from below (inorder)

 on the right (postorder)

+



2

5 1

3 2

L

B

R

Elementary Data Structures 28

Printing Arithmetic Expressions
Specialization of an inorder
traversal
 print operand or operator

when visiting node

 print “(“ before traversing left
subtree

 print “)“ after traversing right
subtree

Algorithm printExpression(v)

if isInternal (v)
print(“(’’)

inOrder (leftChild (v))

print(v.element ())

if isInternal (v)

inOrder (rightChild (v))

print (“)’’)

+



2

a 1

3 b
((2  (a  1)) + (3  b))

Elementary Data Structures 29



Linked Data Structure for
Representing Trees (§2.3.4)

A node is represented by
an object storing
 Element

 Parent node

 Sequence of children
nodes

Node objects implement
the Position ADT

B

DA

C E

F

B

 

A D F



C



E

Elementary Data Structures 30

Linked Data Structure for
Binary Trees

A node is represented by
an object storing

 Element

 Parent node

 Left child node

 Right child node

Node objects implement
the Position ADT

B

DA

C E

 

   

B

A D

C E



Elementary Data Structures 31

Array-Based Representation of
Binary Trees

nodes are stored in an array

…

 let rank(node) be defined as follows:

 rank(root) = 1

 if node is the left child of parent(node),

rank(node) = 2*rank(parent(node))

 if node is the right child of parent(node),

rank(node) = 2*rank(parent(node))+1

1

2 3

6 74 5

10 11

A

HG

FE

D

C

B

J

