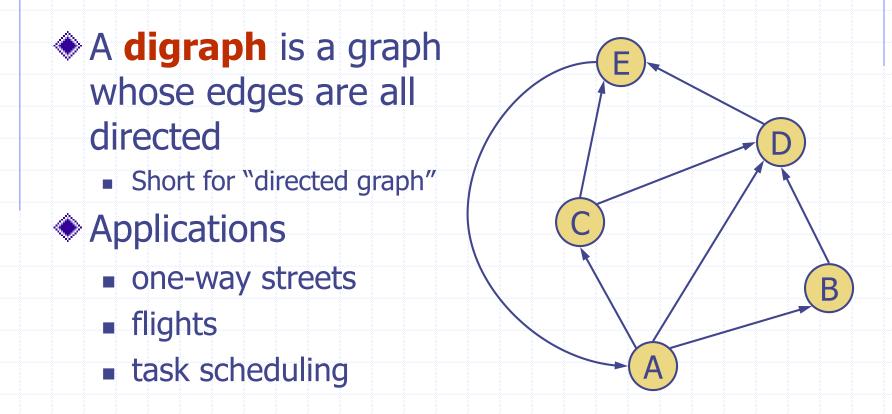


Outline and Reading (§6.4)

- Reachability (§6.4.1)
 - Directed DFS
 - Strong connectivity
- Transitive closure (§6.4.2)
 - The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAG's) (§6.4.4)
 Topological Sorting

Digraphs



Digraph Properties

A graph G=(V,E) such that

Each edge goes in one direction:

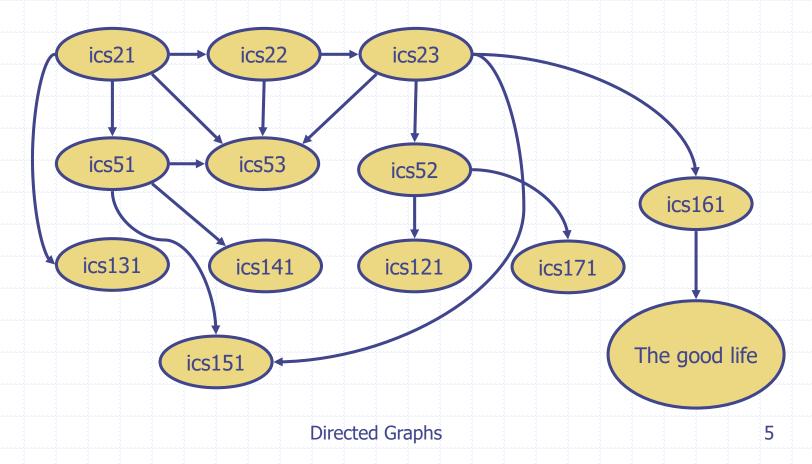
Edge (a,b) goes from a to b, but not b to a.

• If G is simple, $m \leq n(n-1)$.

If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of of the sets of in-edges and out-edges in time proportional to their size.

Digraph Application

Scheduling: edge (a,b) means task a must be completed before b can be started

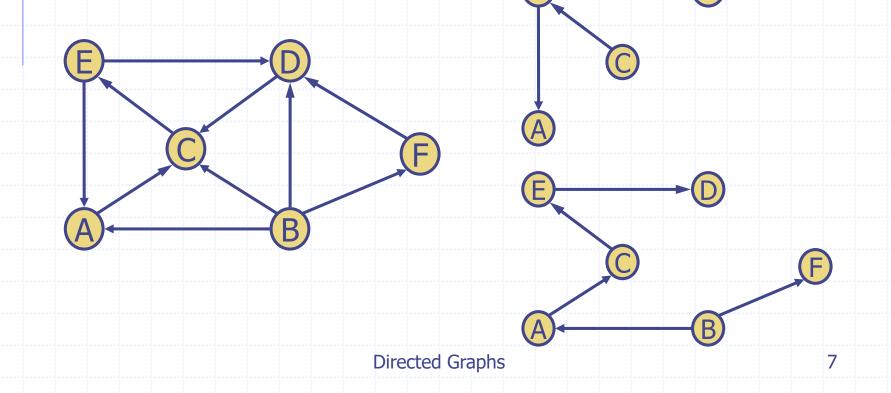


Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s

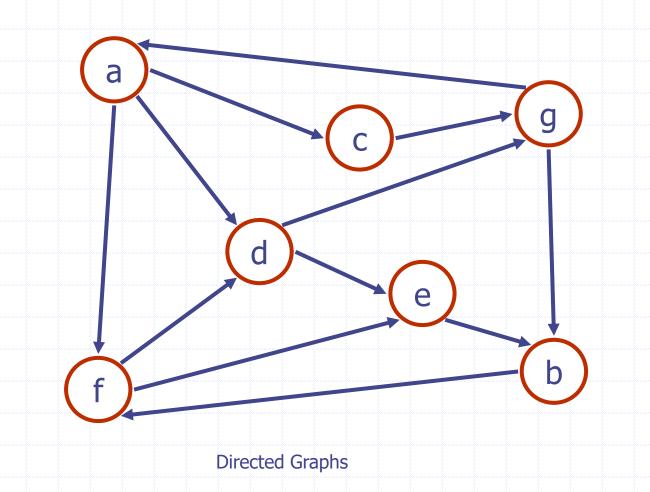
Reachability

DFS tree rooted at v: vertices reachable from v via directed paths



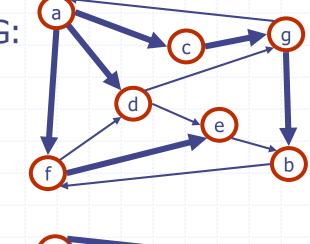
Strong Connectivity

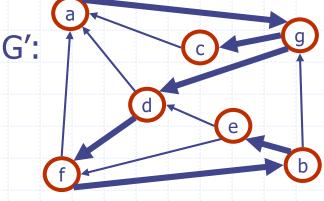
Each vertex can reach all other vertices



Strong Connectivity Algorithm

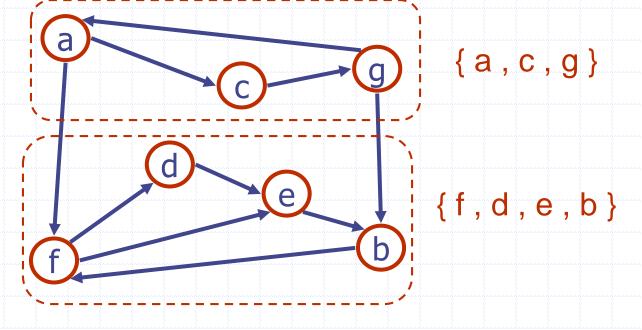
Pick a vertex v in G.
Perform a DFS from v in G.
If there's a w not visited, print "no".
Let G' be G with edges reversed.
Perform a DFS from v in G'.
If there's a w not visited, print "no".
Else, print "yes".





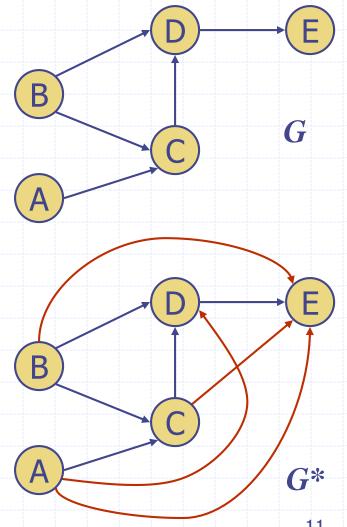
Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).



Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G* such that
 - G* has the same vertices as G
 - if G has a directed path from u to v (u ≠v), G* has a directed edge from u to v
- The transitive closure provides reachability information about a digraph



Computing the Transitive Closure

We can perform
 DFS starting at
 each vertex
 O(n(n+m)) ²/₄

If there's a way to get from A to B and from B to C, then there's a way to get from A to C.

Alternatively ... Use
 dynamic programming:
 the Floyd-Warshall
 Algorithm

IWW.GENIUS

Floyd-Warshall Transitive Closure

n.

Idea #1: Number the vertices 1, 2, ..., n.
 Idea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as intermediate vertices:

Uses only vertices numbered 1,...,k (add this edge if it's not already in)

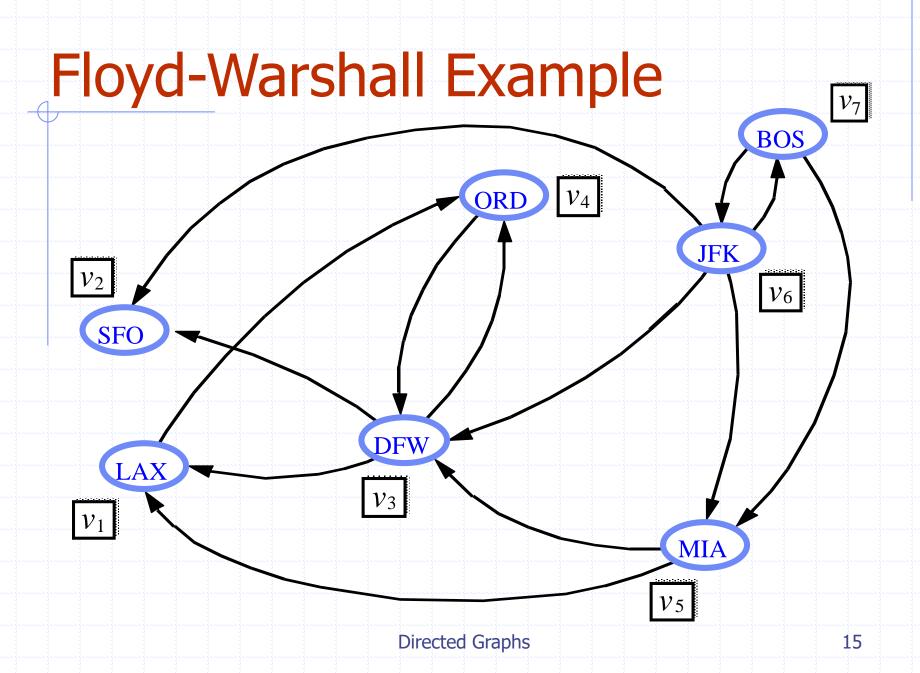
Uses only vertices numbered 1,...,k-1

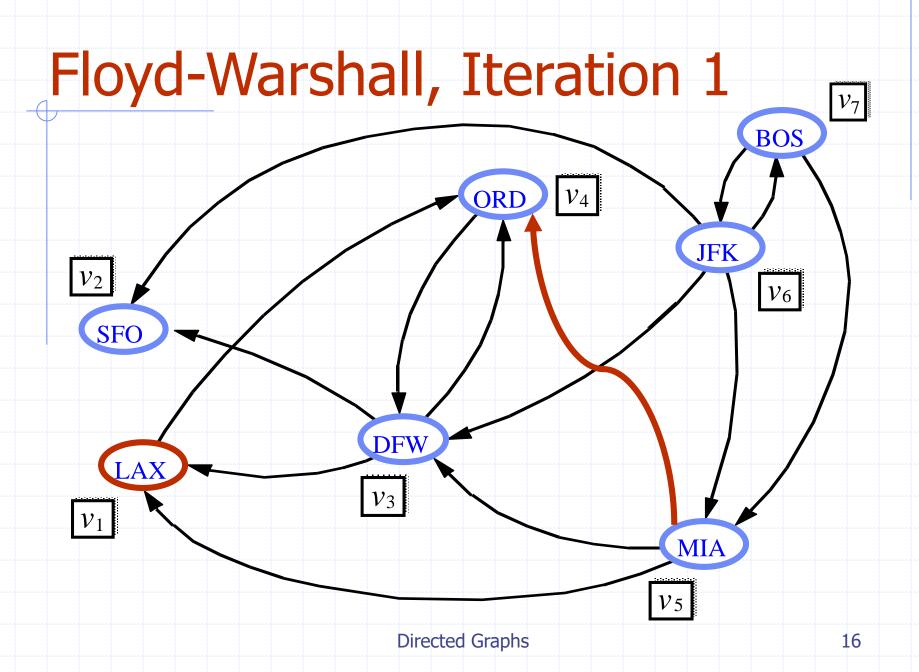
k Uses only vertices numbered 1,...,k-1

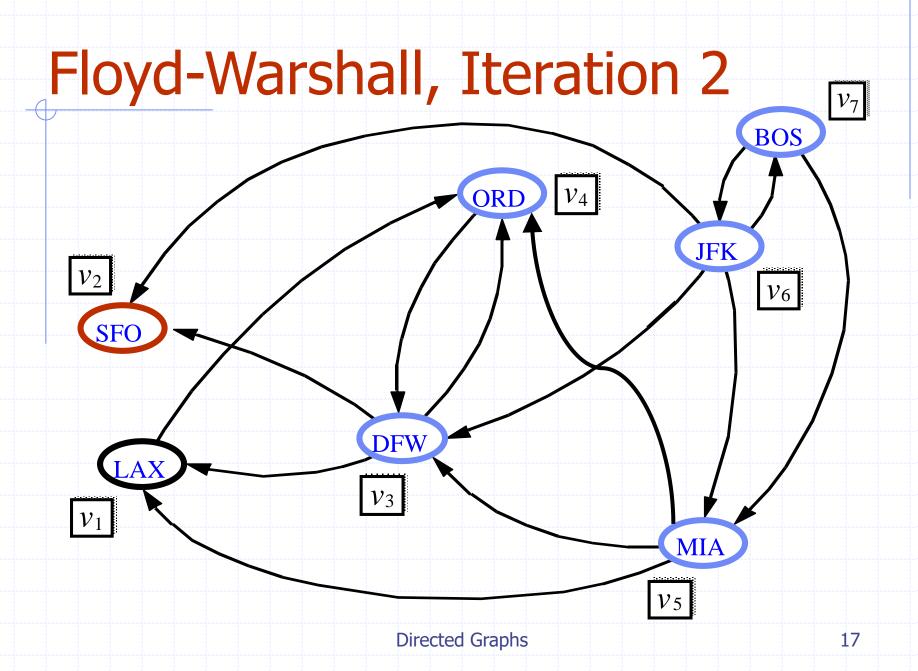
Floyd-Warshall's Algorithm

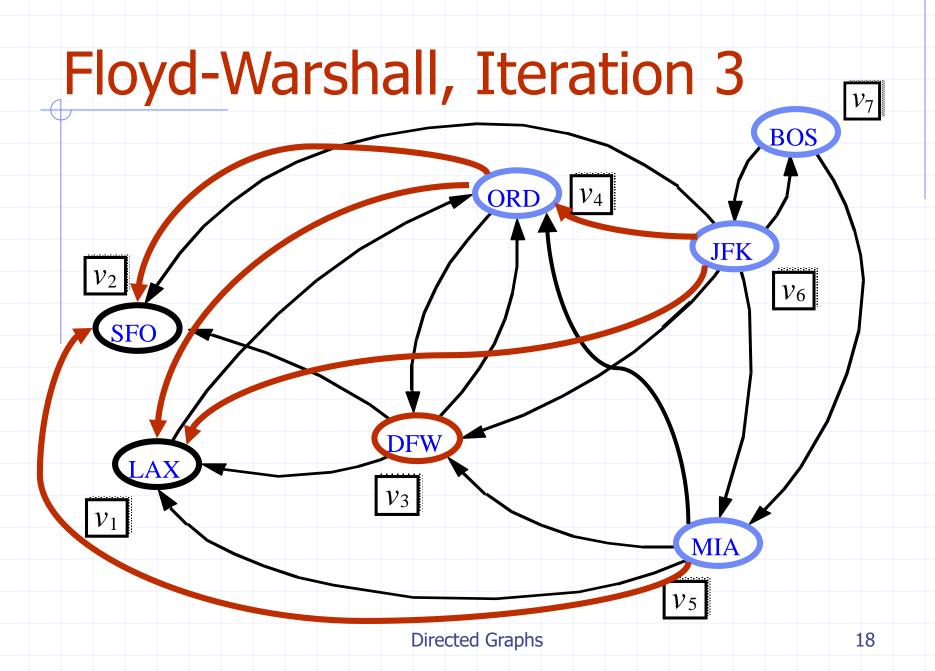
- Floyd-Warshall's algorithm numbers the vertices of G as $v_1, ..., v_n$ and computes a series of digraphs $G_0, ..., G_n$
 - $G_0 = G$
 - G_k has a directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate vertices in the set {v₁, ..., v_k}
- We have that $G_n = G^*$
- In phase k, digraph G_k is computed from G_{k-1}
 Running time: O(n³), assuming areAdjacent is O(1)
 - (e.g., adjacency matrix)

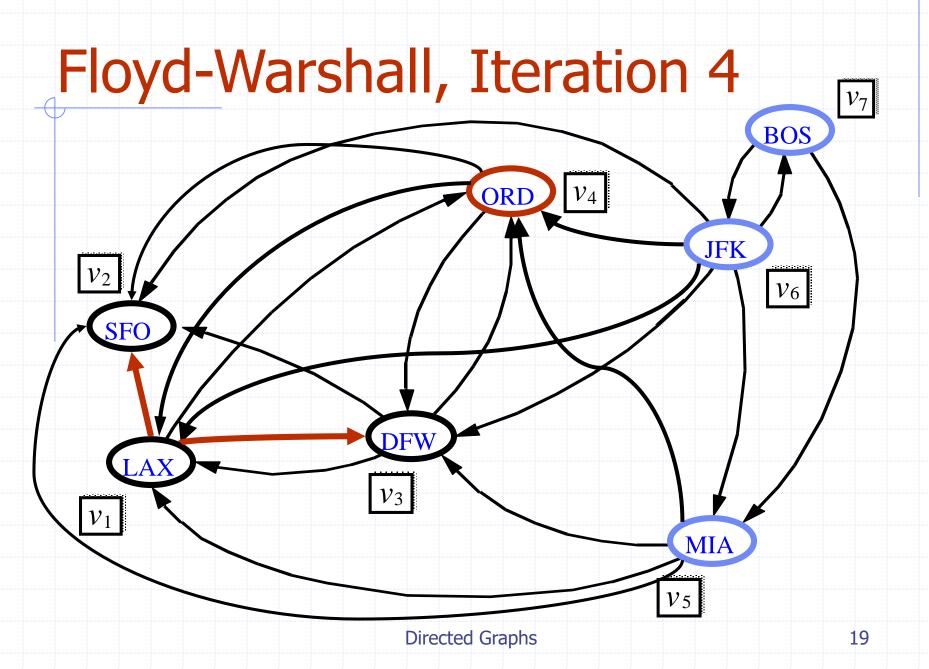
Algorithm *FloydWarshall(G)* **Input** digraph *G* **Output** transitive closure *G** of *G i* ← 1 for all $v \in G.vertices()$ denote v as v_i $i \leftarrow i + 1$ $G_0 \leftarrow G$ for $k \leftarrow 1$ to n do $G_k \leftarrow G_{k-1}$ for $i \leftarrow 1$ to $n \ (i \neq k)$ do for $j \leftarrow 1$ to $n \ (j \neq i, k)$ do if G_{k-1} .areAdjacent $(v_i, v_k) \land$ G_{k-1} .areAdjacent(v_k, v_j) if $\neg G_k$.areAdjacent(v_i, v_j) G_k .insertDirectedEdge(v_i, v_j, k) return G_n

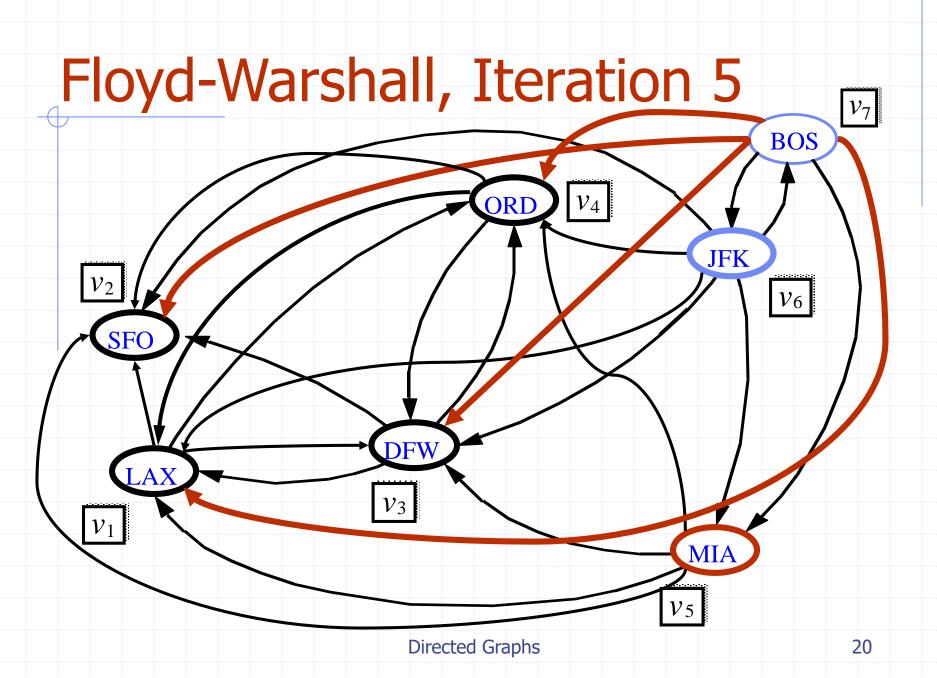


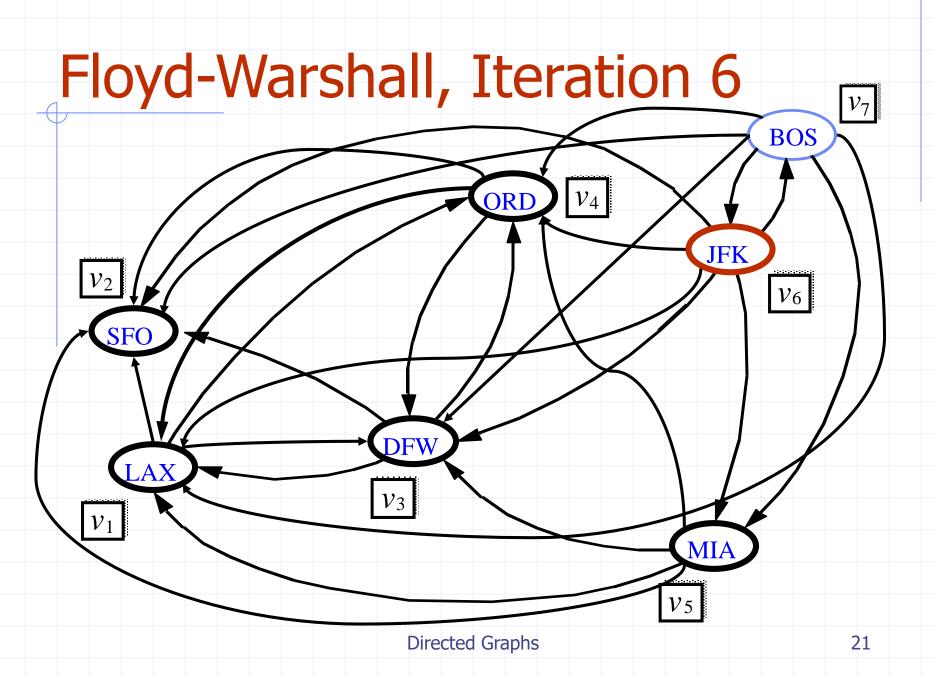


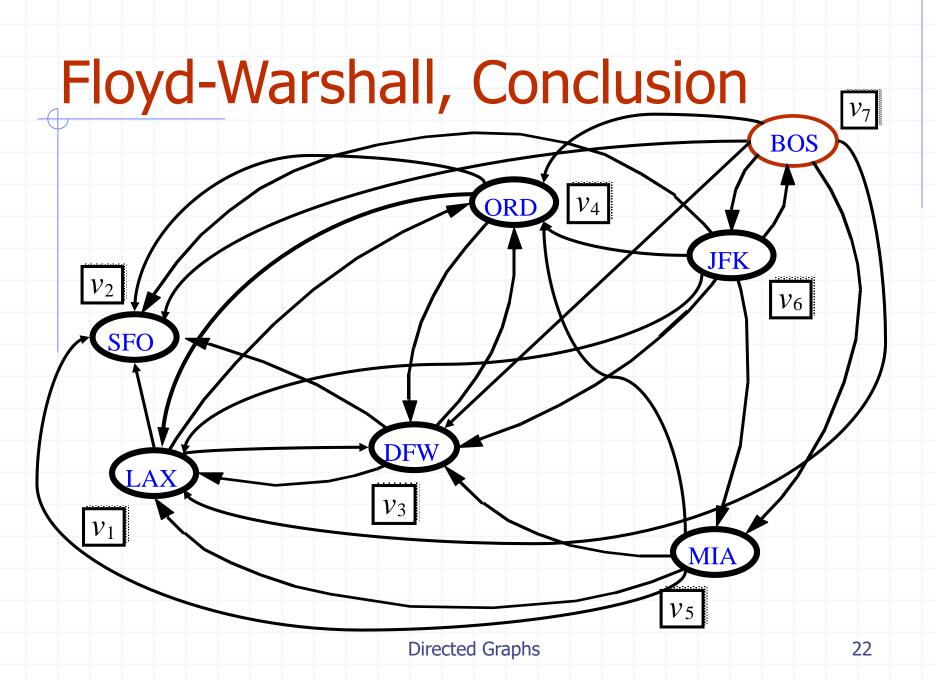




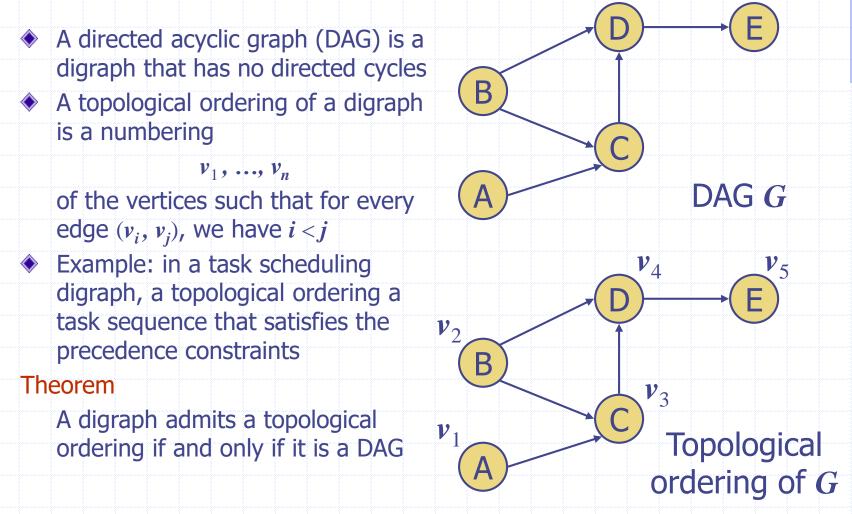






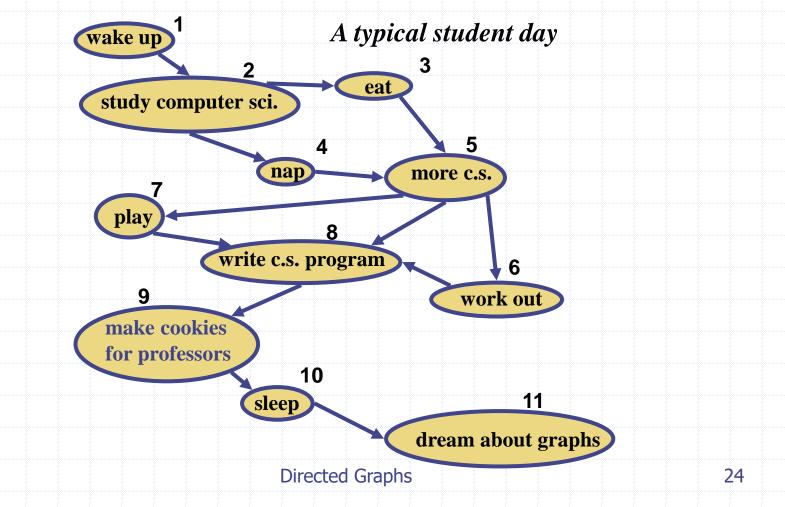


DAGs and Topological Ordering



Topological Sorting

Number vertices, so that (u,v) in E implies u < v</p>



Algorithm for Topological Sorting

Note: This algorithm is different than the one in Goodrich-Tamassia

Method TopologicalSort(G) $H \leftarrow G$ // Temporary copy of G $n \leftarrow G.numVertices()$ while H is not empty do Let v be a vertex with no outgoing edges Label $v \leftarrow n$ $n \leftarrow n - 1$ Remove v from H

Running time: O(n + m). How...?

Topological Sorting Algorithm using DFS

Simulate the algorithm by using depth-first search
 Algorithm topologicalDFS(G)

Input dag G Output topological ordering of G $n \leftarrow G.numVertices()$ for all $u \in G.vertices()$ setLabel(u, UNEXPLORED)for all $e \in G.edges()$ setLabel(e, UNEXPLORED)for all $v \in G.vertices()$ if getLabel(v) = UNEXPLOREDtopologicalDFS(G, v)

O(n+m) time.

Algorithm topologicalDFS(G, v) Input graph G and a start vertex v of G Output labeling of the vertices of G in the connected component of v setLabel(v, VISITED) for all $e \in G.incidentEdges(v)$ if getLabel(e) = UNEXPLORED $w \leftarrow opposite(v,e)$ if getLabel(w) = UNEXPLORED setLabel(e, DISCOVERY) topologicalDFS(G, w)

else

{e is a forward or cross edge} Label v with topological number n

 $n \leftarrow n - 1$

