Directed Graphs

Outline and Reading (§6.4)

N

& Reachability (§6.4.1) }
= Directed DFS ﬁ/
= Strong connectivity

Transitive closure (§6.4.2)
= The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAG’s) (§6.4.4)
= Topological Sorting

Directed Graphs 2

Digraphs

N

A digraph is a graph
whose edges are all
directed

= Short for “directed graph”
Applications

= One-way streets

= task scheduling

Directed Graphs 3

N

Digraph Properties

A graph G=(V,E) such that
s Each edge goes in one direction:
» Edge (a,b) goes from a to b, but not b to a.

If G is simple, m < n(n-1).
If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of of

the sets of in-edges and out-edges in time
proportional to their size.

Directed Graphs 4

N

Digraph Application

K Scheduling: edge (a,b) means task a must be
completed before b can be started

ics21 @— ics23

&

v J'
ics51 ics53 @52

@ The good life

Directed Graphs 5

ics161

N

Directed DFS

We can specialize the
traversal algorithms (DFS and
BFS) to digraphs by
traversing edges only along
their direction

In the directed DFS

algorithm, we have four types
of edges

= discovery edges
= back edges
= forward edges
m Cross edges
A directed DFS starting at a

vertex s determines the
vertices reachable from s

Directed Graphs

N

Reachability ﬂ

#DFS tree rooted at v: vertices reachable
from v via directed paths

CE“/\© ©

Directed Graphs 7

1 o +*°% o
00 * *

o s .
_) 8

(LS
S

00000

-

* e
*
*
*
*

-Strong Connectivity ;

* *
* *
*

#Each vertex can reach all other vertices

=

wge

|

—

o

Directed Graphs 8

Strong Connectivity

N

Algorithm

Pick a vertex v in G.

Perform a DFS from v in G.
= If there’s a w not visited, print “no”.

Let G’ be G with edges reversed.

Perform a DFS from v in G’
= If there’s a w not visited, print “no”.
= Else, print “yes”.

Running time: O(n+m).

Directed Graphs

N
\

Strongly Connected
Components

Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph

Can also be done in O(n+m) time using DFS, but is
more complicated (similar to blconnectlwty)

{a,c,g}

] || {f.d.e.b)
e

Il
i

Directed Graphs 10

Transitive Closure

N

Given a digraph G, the
transitive closure of G is the
digraph G* such that

s G* has the same vertices
as G

= if G has a directed path
fromutov (u=v), G*
has a directed edge from
utov

The transitive closure
provides reachability
information about a digraph

® &

>
k@ 9@

Directed Graphs 11

N

Computing the

Transitive Closure

" @ We can perform
DFS starting at
each vertex

= O(n(n+m))

If there's a way to get
from A to B and from
B to C, then there's a

way to get from A to C.

#Alternatively ... Use
dynamic programming:
the Floyd-Warshall
Algorithm

Directed Graphs 12

Floyd-Warshall
Transitive Closure

N

" @ Idea #1: Number the vertices 1.2, ;D

Idea #2: Consider paths that use only
vertices numbered 1, 2, ..., k, as
intermediate vertices:

Uses only vertices numbered 1,...,k
(add this edge if it's not already in)

—
~~~
—

Uses only vertices

numbered 1,... k-1 Uses only vertices

numbered 1,..., k-1

Directed Graphs 13



Floyd-Warshall’'s Algorithm

@f\\

L

Floyd-Warshall’s algorithm
numbers the vertices of G as
Vy, ..., ¥, @Nd computes a
series of digraphs G, ..., G|

n G=G

= G, has a directed edge (v;, v;)

if G has a directed path from

@
®

®

v; to v; with intermediate
vertices in the set {v,, ..

We have that G, = G*

In phase k, digraph G, is
computed from G, _,
Running time: O(n3),
assuming areAdjacent is O(1)
(e.g., adjacency matrix)

o Vi }

Algorithm FloydWarshall(G)

Input digraph G
Output transitive closure G* of G
<1
for all v e G.vertices()
denote v as v;
I« i1+1
Gy« G
fork < 1tondo
G« G, _;
fori<« 1ton (i #k)do
forj <« 1ton (] #Ii, k)do
If G, _,.areAdjacent(v;, v,) A
G, _;.areAdjacent(vy, v;)
If =G,.areAdjacent(v;, v;)
G,.insertDirectedEdge(v;
return G,

v

i’ j1

K)

Directed Graphs

14




C/Fond-WarshaII Example

Directed Graphs

15




C/Fond-WarshaII, [teration 1




C/Fond-WarshaII, [teration 2




Floyd-Warshall, Iteration 3




Warshall, Iteration 4

Floyd







Floyd-Warshall, Iteration 6



Floyd-Warshall, Conclusion




N

@

®

Theorem

DAGs and Topological Ordering

A directed acyclic graph (DAG) is a @ @

digraph that has no directed cycles @

A topological ordering of a digraph

is @ numbering

of the vertices such that for every Q DAG G
edge (v;, V), we have i <]

Example: in a task scheduling Vy Vi

digraph, a topological ordering a
task sequence that satisfies the Vs
precedence constraints

A digraph admits a topological

ordering if and only if it is a DAG 1 Topological
ordering of G

Directed Graphs 23




N

A typical student day

»
4 5

11

@am about g@

Directed Graphs

24




Algorithm for Topological Sorting

# Note: This algorithm is different than the
one in Goodrich-Tamassia

Method TopologicalSort(G)

He«G /[ Temporary copy of G

N <« G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v« n
nNen-1
Remove v from H

# Running time: O(n + m). How...?

Directed Graphs 25




Topological Sorting
Algorithm using DFS

N

# Simulate the algorithm by using | Algorithm topologicalDFS(G, v)
depth-first search Input graph G and a start vertex v of G

Output labeling of the vertices of G
In the connected component of v

setLabel(v, VISITED)

Algorithm topologicalDFS(G)
Input dag G

Output topological ordering of G o
N <« g_numpvert?ces() : forall e e G.incidentEdges(v)

for all u e G.vertices() if getLabel(e) = UNEXPLORED

setLabel(u, UNEXPLORED) W <— Opposite(v,e)
forall e e G.edges() if getLabeI(W) = UNEXPLORED

setLabel(e, UNEXPLORED) setlabel(e, DISCOVERY)
for all v e G.vertices() topologicalDFS(G, w)

if getLabel(v) = UNEXPLORED else
topologicalDFS(G, V) {e is a forward or cross edge}

Label v with topological number n

& O(n+m) time. Nen-1

Directed Graphs 26



. Topological Sorting Example

Directed Graphs

27




. Topological Sorting Example

28




. Topological Sorting Example

29




. Topological Sorting Example

30




. Topological Sorting Example

31




. Topological Sorting Example

32




. Topological Sorting Example

33




. Topological Sorting Example

34




. Topological Sorting Example

35




. Topological Sorting Example

36




