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Outline and Reading (§6.4)

N

& Reachability (§6.4.1) }
= Directed DFS ﬁ/
= Strong connectivity

# Transitive closure (§6.4.2)
= The Floyd-Warshall Algorithm

# Directed Acyclic Graphs (DAG’s) (§6.4.4)
= Topological Sorting
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Digraphs

N

# A digraph is a graph
whose edges are all
directed

= Short for “directed graph”
# Applications

= One-way streets

= task scheduling
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Digraph Properties

# A graph G=(V,E) such that
s Each edge goes in one direction:
» Edge (a,b) goes from a to b, but not b to a.

# If G is simple, m < n(n-1).
# If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of of

the sets of in-edges and out-edges in time
proportional to their size.
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Digraph Application

K Scheduling: edge (a,b) means task a must be
completed before b can be started

ics21 @— ics23
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ics51 ics53 @52

@ The good life
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Directed DFS

# We can specialize the
traversal algorithms (DFS and
BFS) to digraphs by
traversing edges only along
their direction

# In the directed DFS

algorithm, we have four types
of edges

= discovery edges
= back edges
= forward edges
m Cross edges
# A directed DFS starting at a

vertex s determines the
vertices reachable from s

Directed Graphs




N

Reachability ﬂ

#DFS tree rooted at v: vertices reachable
from v via directed paths

CE“/\© ©

Directed Graphs 7




1 o +*°% o
00 * *

o s .
_) 8

( LS
S

00000

-

* e
*
*
*
*

-Strong Connectivity ;

* *
* *
*

#Each vertex can reach all other vertices

=

wge

|

—

o

Directed Graphs 8




Strong Connectivity

N

Algorithm

# Pick a vertex v in G.

# Perform a DFS from v in G.
= If there’s a w not visited, print “no”.

# Let G’ be G with edges reversed.

# Perform a DFS from v in G’
= If there’s a w not visited, print “no”.
= Else, print “yes”.

# Running time: O(n+m).
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Strongly Connected
Components

# Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph

# Can also be done in O(n+m) time using DFS, but is
more complicated (similar to blconnectlwty)

__________________________

{a,c,g}

] || {f.d.e.b)
e

_________________________
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Transitive Closure

N

# Given a digraph G, the
transitive closure of G is the
digraph G* such that

s G* has the same vertices
as G

= if G has a directed path
fromutov (u=v), G*
has a directed edge from
utov

# The transitive closure
provides reachability
information about a digraph

® &

>
k@ 9@
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Computing the

Transitive Closure

" @ We can perform
DFS starting at
each vertex

= O(n(n+m))

If there's a way to get
from A to B and from
B to C, then there's a

way to get from A to C.

#Alternatively ... Use
dynamic programming:
the Floyd-Warshall
Algorithm
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Floyd-Warshall
Transitive Closure

N

" @ Idea #1: Number the vertices 1.2, ;D

# Idea #2: Consider paths that use only
vertices numbered 1, 2, ..., k, as
intermediate vertices:

Uses only vertices numbered 1,...,k
(add this edge if it's not already in)

—
~~~
—

Uses only vertices

numbered 1,... k-1 Uses only vertices

numbered 1,..., k-1
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Floyd-Warshall’'s Algorithm

@f\\

L

Floyd-Warshall’s algorithm
numbers the vertices of G as
Vy, ..., ¥, @Nd computes a
series of digraphs G, ..., G|

n G=G

= G, has a directed edge (v;, v;)

if G has a directed path from

@
®

®

v; to v; with intermediate
vertices in the set {v,, ..

We have that G, = G*

In phase k, digraph G, is
computed from G, _,
Running time: O(n3),
assuming areAdjacent is O(1)
(e.g., adjacency matrix)

o Vi }

Algorithm FloydWarshall(G)

Input digraph G
Output transitive closure G* of G
<1
for all v e G.vertices()
denote v as v;
I« i1+1
Gy« G
fork < 1tondo
G« G, _;
fori<« 1ton (i #k)do
forj <« 1ton (] #Ii, k)do
If G, _,.areAdjacent(v;, v,) A
G, _;.areAdjacent(vy, v;)
If =G,.areAdjacent(v;, v;)
G,.insertDirectedEdge(v;
return G,

v

i’ j1

K)
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C/Fond-WarshaII Example
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C/Fond-WarshaII, [teration 1




C/Fond-WarshaII, [teration 2




Floyd-Warshall, Iteration 3




Warshall, Iteration 4
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Floyd-Warshall, Conclusion
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Theorem

DAGs and Topological Ordering

A directed acyclic graph (DAG) is a @ @

digraph that has no directed cycles @

A topological ordering of a digraph

is @ numbering

of the vertices such that for every Q DAG G
edge (v;, V), we have i <]

Example: in a task scheduling Vy Vi

digraph, a topological ordering a
task sequence that satisfies the Vs
precedence constraints

A digraph admits a topological

ordering if and only if it is a DAG 1 Topological
ordering of G
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A typical student day

»
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Algorithm for Topological Sorting

# Note: This algorithm is different than the
one in Goodrich-Tamassia

Method TopologicalSort(G)

He«G /[ Temporary copy of G

N <« G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v« n
nNen-1
Remove v from H

# Running time: O(n + m). How...?
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Topological Sorting
Algorithm using DFS

N

# Simulate the algorithm by using | Algorithm topologicalDFS(G, v)
depth-first search Input graph G and a start vertex v of G

Output labeling of the vertices of G
In the connected component of v

setLabel(v, VISITED)

Algorithm topologicalDFS(G)
Input dag G

Output topological ordering of G o
N <« g_numpvert?ces() : forall e e G.incidentEdges(v)

for all u e G.vertices() if getLabel(e) = UNEXPLORED

setLabel(u, UNEXPLORED) W <— Opposite(v,e)
forall e e G.edges() if getLabeI(W) = UNEXPLORED

setLabel(e, UNEXPLORED) setlabel(e, DISCOVERY)
for all v e G.vertices() topologicalDFS(G, w)

if getLabel(v) = UNEXPLORED else
topologicalDFS(G, V) {e is a forward or cross edge}

Label v with topological number n

& O(n+m) time. Nen-1
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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