Divide-and-Conquer
Outline and Reading

- Divide-and-conquer paradigm (§5.2)
- Review Merge-sort (§4.1.1)
- Recurrence Equations (§5.2.1)
 - Iterative substitution
 - Recursion trees
 - Guess-and-test
 - The master method
- Integer Multiplication (§5.2.2)
Divide-and-Conquer

Divide-and conquer is a general algorithm design paradigm:

- **Divide**: divide the input data S in two or more disjoint subsets S_1, S_2, ...
- **Recur**: solve the subproblems recursively
- **Conquer**: combine the solutions for S_1, S_2, ..., into a solution for S

The base case for the recursion are subproblems of constant size

Analysis can be done using recurrence equations
Merge-Sort Review

Merge-sort on an input sequence S with n elements consists of three steps:

- **Divide**: partition S into two sequences S_1 and S_2 of about $n/2$ elements each
- **Recur**: recursively sort S_1 and S_2
- **Conquer**: merge S_1 and S_2 into a unique sorted sequence

Algorithm $mergeSort(S, C)$

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if $S.size() > 1$

$(S_1, S_2) \leftarrow partition(S, n/2)$

$mergeSort(S_1, C)$

$mergeSort(S_2, C)$

$S \leftarrow merge(S_1, S_2)$
Recurrence Equation Analysis

The conquer step of merge-sort consists of merging two sorted sequences, each with \(n/2 \) elements and implemented by means of a doubly linked list, takes at most \(bn \) steps, for some constant \(b \).

Likewise, the basis case (\(n < 2 \)) will take at most \(b \) most steps.

Therefore, if we let \(T(n) \) denote the running time of merge-sort:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases}
\]

We can therefore analyze the running time of merge-sort by finding a **closed form solution** to the above equation.

- That is, a solution that has \(T(n) \) only on the left-hand side.
Iterative Substitution

In the iterative substitution, or “plug-and-chug,” technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern:

\[T(n) = 2T(n/2) + bn \]

\[= 2(2T(n/2^2)) + b(n/2)) + bn \]

\[= 2^2T(n/2^2) + 2bn \]

\[= 2^3T(n/2^3) + 3bn \]

\[= 2^4T(n/2^4) + 4bn \]

\[= \ldots \]

\[= 2^i T(n/2^i) + ibn \]

Note that base, \(T(n)=b \), case occurs when \(2^i=n \). That is, \(i = \log n \).

So,

\[T(n) = bn + bn \log n \]

Thus, \(T(n) \) is \(O(n \log n) \).
The Recursion Tree

- Draw the recursion tree for the recurrence relation and look for a pattern:

\[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases} \]

<table>
<thead>
<tr>
<th>depth</th>
<th>T’s</th>
<th>size</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
<td>bn</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>n/2</td>
<td>bn</td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>n/2^i</td>
<td>bn</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Total time = \(bn + bn \log n \)
(last level plus all previous levels)
Guess-and-Test Method

In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

\[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases} \]

Guess: \(T(n) < cn \log n \).

\[
T(n) = 2T(n/2) + bn \log n \\
= 2(cn/2) \log(n/2) + bn \log n \\
= cn(\log n - \log 2) + bn \log n \\
= cn \log n - cn + bn \log n
\]

Wrong: we cannot make this last line be less than \(cn \log n \)
Guess-and-Test Method, Part 2

Recall the recurrence equation:

\[T(n) = \begin{cases} b & \text{if } n < 2 \\ 2T(n/2) + bn \log n & \text{if } n \geq 2 \end{cases} \]

Guess #2: \(T(n) < cn \log^2 n \).

\[
T(n) = 2T(n/2) + bn \log n \\
= 2(c(n/2) \log^2 (n/2)) + bn \log n \\
= cn(\log n - \log 2)^2 + bn \log n \\
= cn \log^2 n - 2cn \log n + cn + bn \log n \\
\leq cn \log^2 n
\]

if \(c > b \).

So, \(T(n) \) is \(O(n \log^2 n) \).

In general, to use this method, you need to have a good guess and you need to be good at induction proofs.
Master Method

Many divide-and-conquer recurrence equations have the form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).
Master Method, Example 1

The form:
\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:
1. If \(f(n) = O(n^{\log_b a - \varepsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
2. If \(f(n) = \Theta(n^{\log_b a \log^k n}) \), then \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
3. If \(f(n) = \Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) = \Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:
\[T(n) = 4T(n/2) + n \]

Solution: \(\log_b a = 2 \), so case 1 says \(T(n) \) is \(O(n^2) \).
Master Method, Example 2

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 2T(n/2) + n \log n \]

Solution: \(\log_b a = 1 \), so case 2 says \(T(n) \) is \(O(n \log^2 n) \).
Master Method, Example 3

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = T(n/3) + n \log n \]

Solution: \(\log_b a = 0 \), so case 3 says \(T(n) \) is \(O(n \log n) \).
Master Method, Example 4

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)

2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)

3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 8T(n/2) + n^2 \]

Solution: \(\log_b a = 3 \), so case 1 says \(T(n) \) is \(O(n^3) \).
Master Method, Example 5

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 9T(n/3) + n^3 \]

Solution: \(\log_b a = 2 \), so case 3 says \(T(n) \) is \(O(n^3) \).
Master Method, Example 6

- **The form:**

\[
T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}
\]

- **The Master Theorem:**

 1. if \(f(n) = O(n^{\log_b a - \varepsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
 2. if \(f(n) = \Theta(n^{\log_b a \log^k n}) \), then \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
 3. if \(f(n) = \Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) = \Theta(f(n)) \),

 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- **Example:**

\[
T(n) = T(n/2) + 1 \quad \text{(binary search)}
\]

Solution: \(\log_b a = 0 \), so case 2 says \(T(n) = O(\log n) \).
Master Method, Example 7

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 2T(n/2) + \log n \]

(heap construction)

Solution: \(\log_b a = 1 \), so case 1 says \(T(n) \) is \(O(n) \).
Iterative “Proof” of the Master Theorem

Using iterative substitution, let us see if we can find a pattern:

\[T(n) = aT(n/b) + f(n) \]

\[= a(aT(n/b^2)) + f(n/b) + bn \]
\[= a^2T(n/b^2) + af(n/b) + f(n) \]
\[= a^3T(n/b^3) + a^2f(n/b^2) + af(n/b) + f(n) \]
\[= \ldots \]
\[= a^{\log_b n}T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f(n/b^i) \]
\[= n^{\log_b a}T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f(n/b^i) \]

We then distinguish the three cases as:

- The first term is dominant
- Each part of the summation is equally dominant
- The summation is a geometric series
Integer Multiplication

<table>
<thead>
<tr>
<th>Algorithm: Multiply two n-bit integers I and J.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Divide step: Split I and J into high-order and low-order bits</td>
</tr>
<tr>
<td>- I = (I_h 2^{n/2} + I_l)</td>
</tr>
<tr>
<td>- J = (J_h 2^{n/2} + J_l)</td>
</tr>
<tr>
<td>- We can then define I*J by multiplying the parts and adding:</td>
</tr>
<tr>
<td>- I * J = ((I_h 2^{n/2} + I_l) \cdot (J_h 2^{n/2} + J_l))</td>
</tr>
<tr>
<td>- = (I_h J_h 2^n + I_h J_l 2^{n/2} + I_l J_h 2^{n/2} + I_l J_l)</td>
</tr>
<tr>
<td>- So, (T(n) = 4T(n/2) + n), which implies (T(n)) is (O(n^2)).</td>
</tr>
<tr>
<td>- But that is no better than the algorithm we learned in grade school.</td>
</tr>
</tbody>
</table>
An Improved Integer Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.

- Divide step: Split I and J into high-order and low-order bits
 \[I = I_h 2^{n/2} + I_l \]
 \[J = J_h 2^{n/2} + J_l \]

- Observe that there is a different way to multiply parts:

\[
I \times J = I_h J_h 2^n + [(I_h - I_l)(J_l - J_h) + I_h J_l + I_l J_h]2^{n/2} + I_l J_l
\]
\[
= I_h J_h 2^n + [(I_h J_l - I_l J_l - I_h J_h + I_l J_h) + I_h J_h + I_l J_h]2^{n/2} + I_l J_l
\]
\[
= I_h J_h 2^n + (I_h J_l + I_l J_h)2^{n/2} + I_l J_l
\]

- So, \(T(n) = 3T(n/2) + n \), which implies \(T(n) \) is \(O(n^{\log_2{3}}) \), by the Master Theorem.
- Thus, \(T(n) \) is \(O(n^{1.585}) \).