
Dynamic Programming 1

Dynamic Programming

Dynamic Programming 2

Outline and Reading

Matrix Chain-Product (§5.3.1)

The General Technique (§5.3.2)

0-1 Knapsack Problem (§5.3.3)

Dynamic Programming 3

Matrix Chain-Products
Dynamic Programming is a general
algorithm design paradigm.

 Rather than give the general structure, let
us first give a motivating example:

 Matrix Chain-Products

Review: Matrix Multiplication.
 C = A*B

 A is d × e and B is e × f

 O(def) time
A C

B

d d

f

e

f

e

i

j

i,j

1

0

],[*],[],[
e

k

jkBkiAjiC

Dynamic Programming 4

Matrix Chain-Products
Matrix Chain-Product:
 Compute A=A0*A1*…*An-1

 Ai is di × di+1

 Problem: How to parenthesize?

Example
 B is 3 × 100

 C is 100 × 5

 D is 5 × 5

 (B*C)*D takes 1500 + 75 = 1575 ops

 B*(C*D) takes 1500 + 2500 = 4000 ops

Dynamic Programming 5

Enumeration Approach
Matrix Chain-Product Alg.:
 Try all possible ways to parenthesize

A=A0*A1*…*An-1

 Calculate number of ops for each one

 Pick the one that is best

Running time:
 The number of parenthesizations is equal

to the number of binary trees with n nodes

 This is exponential!

 It is called the Catalan number, and it is
almost 4n.

 This is a terrible algorithm!

Dynamic Programming 6

Greedy Approach

Idea #1: repeatedly select the product that
uses (up) the most operations.

Counter-example:
 A is 10 × 5

 B is 5 × 10

 C is 10 × 5

 D is 5 × 10

 Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops

 A*((B*C)*D) takes 500+250+250 = 1000 ops

Dynamic Programming 7

Another Greedy Approach

Idea #2: repeatedly select the product that uses
the fewest operations.

Counter-example:
 A is 101 × 11

 B is 11 × 9

 C is 9 × 100

 D is 100 × 99

 Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops

 (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the
optimal value.

Dynamic Programming 8

“Recursive” Approach
Define subproblems:
 Find the best parenthesization of Ai*Ai+1*…*Aj.

 Let Ni,j denote the number of operations done by this
subproblem.

 The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems
 There has to be a final multiplication (root of the expression

tree) for the optimal solution.

 Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).

 Then the optimal solution N0,n-1 is the sum of two optimal
subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.

 If the global optimum did not have these optimal
subproblems, we could define an even better “optimal”
solution.

Dynamic Programming 9

Characterizing Equation
The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.

Let us consider all possible places for that final multiply:
 Recall that Ai is a di × di+1 dimensional matrix.

 So, a characterizing equation for Ni,j is the following:

Note that subproblems are not independent–the
subproblems overlap.

}{min 11,1,,

 jkijkki
jki

ji dddNNN

Dynamic Programming 10

answer

N 0 1

0

1

2 …

n-1

…

n-1j

i

Dynamic Programming
Algorithm Visualization

The bottom-up
construction fills in the
N array by diagonals

Ni,j gets values from
previous entries in i-th
row and j-th column

Filling in each entry in
the N table takes O(n)
time.

Total run time: O(n3)

Getting actual
parenthesization can be
done by remembering
“k” for each N entry

}{min 11,1,,

 jkijkki
jki

ji dddNNN

i

j

Dynamic Programming 11

Dynamic Programming
Algorithm

Since
subproblems
overlap, we don’t
use recursion.
Instead, we
construct optimal
subproblems
“bottom-up.”
Ni,i’s are easy, so
start with them
Then do
problems of
“length” 2,3,…
subproblems,
and so on.
Running time:
O(n3)

Algorithm matrixChain(S):

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal
parenthesization of S

for i 1 to n 1 do

Ni,i 0

for b 1 to n 1 do

{ b j i is the length of the problem }

for i 0 to n b 1 do

j i b

Ni,j

for k i to j 1 do

Ni,j min{Ni,j, Ni,k + Nk+1,j + di dk+1 dj+1}

return N0,n1

Dynamic Programming 12

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:
 Simple subproblems: the subproblems can be

defined in terms of a few variables, such as j, k, l,
m, and so on.

 Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

 Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

Dynamic Programming 13

The 0/1 Knapsack Problem
Given: A set S of n items, with each item i having
 wi - a positive weight
 bi - a positive benefit

Goal: Choose items with maximum total benefit but with
weight at most W.
If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.
 In this case, we let T denote the set of items we take

 Objective: maximize

 Constraint:

Ti

ib

Ti

i Ww

Dynamic Programming 14

Given: A set S of n items, with each item i having
 bi - a positive “benefit”

 wi - a positive “weight”

Goal: Choose items with maximum total benefit but with
weight at most W.

Example

Weight:

Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in

$20 $3 $6 $25 $80

Items:

box of width 9 in

Solution:
• item 5 ($80, 2 in)
• item 3 ($6, 2in)
• item 1 ($20, 4in)

“knapsack”

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

Dynamic Programming 15

A 0/1 Knapsack Algorithm,
First Attempt

Sk: Set of items numbered 1 to k.

Define B[k] = best selection from Sk.

Problem: does not have subproblem optimality:
 Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of

(benefit, weight) pairs and total weight W = 20

Best for S4:

Best for S5:

Dynamic Programming 16

A 0/1 Knapsack Algorithm,
Second Attempt

Sk: Set of items numbered 1 to k.

Define B[k,w] to be the best selection from Sk with
weight at most w

Good news: this does have subproblem optimality.

I.e., the best subset of Sk with weight at most w is
either
 the best subset of Sk-1 with weight at most w or

 the best subset of Sk-1 with weight at most wwk plus item k

else}],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB

wwwkB
wkB

Dynamic Programming 17

0/1 Knapsack Algorithm

Recall the definition of
B[k,w]

Since B[k,w] is defined in
terms of B[k1,*], we can
use two arrays of instead of
a matrix

Running time: O(nW).

Not a polynomial-time
algorithm since W may be
large

This is a pseudo-polynomial
time algorithm

Algorithm 01Knapsack(S, W):

Input: set S of n items with benefit bi

and weight wi; maximum weight W

Output: benefit of best subset of S with
weight at most W

let A and B be arrays of length W + 1

for w 0 to W do

B[w] 0

for k 1 to n do

copy array B into array A

for w wk to W do

if A[wwk] bk > A[w] then

B[w] A[wwk] bk

return B[W]

else}],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB

wwwkB
wkB

