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Outline and Reading

Matrix Chain-Product (§5.3.1)

The General Technique (§5.3.2)

0-1 Knapsack Problem (§5.3.3)
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Matrix Chain-Products
Dynamic Programming is a general 
algorithm design paradigm.

 Rather than give the general structure, let 
us first give a motivating example:

 Matrix Chain-Products

Review: Matrix Multiplication.
 C = A*B

 A is d × e and B is e × f
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Matrix Chain-Products
Matrix Chain-Product:
 Compute A=A0*A1*…*An-1

 Ai is di × di+1

 Problem: How to parenthesize?

Example
 B is 3 × 100

 C is 100 × 5

 D is 5 × 5

 (B*C)*D takes 1500 + 75 = 1575 ops

 B*(C*D) takes 1500 + 2500 = 4000 ops
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Enumeration Approach
Matrix Chain-Product Alg.:
 Try all possible ways to parenthesize 

A=A0*A1*…*An-1

 Calculate number of ops for each one

 Pick the one that is best

Running time:
 The number of parenthesizations is equal 

to the number of binary trees with n nodes

 This is exponential!

 It is called the Catalan number, and it is 
almost 4n.

 This is a terrible algorithm!
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Greedy Approach

Idea #1: repeatedly select the product that 
uses (up) the most operations.

Counter-example: 
 A is 10 × 5

 B is 5 × 10

 C is 10 × 5

 D is 5 × 10

 Greedy idea #1 gives (A*B)*(C*D), which takes 
500+1000+500 = 2000 ops

 A*((B*C)*D) takes 500+250+250 = 1000 ops
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Another Greedy Approach

Idea #2: repeatedly select the product that uses 
the fewest operations.

Counter-example: 
 A is 101 × 11

 B is 11 × 9

 C is 9 × 100

 D is 100 × 99

 Greedy idea #2 gives A*((B*C)*D)), which takes 
109989+9900+108900=228789 ops

 (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the 
optimal value.
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“Recursive” Approach
Define subproblems:
 Find the best parenthesization of Ai*Ai+1*…*Aj.

 Let Ni,j denote the number of operations done by this 
subproblem.

 The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be 
defined in terms of optimal subproblems
 There has to be a final multiplication (root of the expression 

tree) for the optimal solution.  

 Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).

 Then the optimal solution N0,n-1 is the sum of two optimal 
subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.

 If the global optimum did not have these optimal 
subproblems, we could define an even better “optimal” 
solution.
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Characterizing Equation
The global optimal has to be defined in terms of 
optimal subproblems, depending on where the final 
multiply is at.

Let us consider all possible places for that final multiply:
 Recall that Ai is a di × di+1 dimensional matrix.

 So, a characterizing equation for Ni,j is the following:

Note that subproblems are not independent–the 
subproblems overlap.

}{min 11,1,, 
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Dynamic Programming 
Algorithm Visualization

The bottom-up 
construction fills in the 
N array by diagonals

Ni,j gets values from 
previous entries in i-th 
row and j-th column 

Filling in each entry in 
the N table takes O(n) 
time.

Total run time: O(n3)

Getting actual 
parenthesization can be 
done by remembering 
“k” for each N entry

}{min 11,1,, 
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Dynamic Programming 
Algorithm

Since 
subproblems 
overlap, we don’t 
use recursion.
Instead, we 
construct optimal 
subproblems 
“bottom-up.” 
Ni,i’s are easy, so 
start with them
Then do 
problems of 
“length” 2,3,… 
subproblems, 
and so on.
Running time: 
O(n3)

Algorithm matrixChain(S):

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal 
parenthesization of S

for i  1 to n  1 do

Ni,i  0

for b  1 to n  1 do  

{ b  j  i is the length of the problem }

for i  0 to n  b  1 do

j  i  b

Ni,j  

for k  i to j  1 do

Ni,j  min{Ni,j, Ni,k + Nk+1,j + di dk+1 dj+1}

return N0,n1
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The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:
 Simple subproblems: the subproblems can be 

defined in terms of a few variables, such as j, k, l, 
m, and so on.

 Subproblem optimality: the global optimum value 
can be defined in terms of optimal subproblems

 Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up).
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The 0/1 Knapsack Problem
Given: A set S of n items, with each item i having
 wi - a positive weight
 bi - a positive benefit

Goal: Choose items with maximum total benefit but with 
weight at most W.
If we are not allowed to take fractional amounts, then 
this is the 0/1 knapsack problem.
 In this case, we let T denote the set of items we take

 Objective: maximize

 Constraint:


Ti
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Given: A set S of n items, with each item i having
 bi - a positive “benefit”

 wi - a positive “weight”

Goal: Choose items with maximum total benefit but with 
weight at most W.

Example

Weight:

Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in

$20 $3 $6 $25 $80

Items:

box of width 9 in

Solution:
• item 5 ($80, 2 in)
• item 3 ($6, 2in)
• item 1 ($20, 4in)

“knapsack”

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
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A 0/1 Knapsack Algorithm, 
First Attempt

Sk: Set of items numbered 1 to k.

Define B[k] = best selection from Sk.

Problem: does not have subproblem optimality:
 Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of

(benefit, weight) pairs and total weight W = 20

Best for S4:

Best for S5:
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A 0/1 Knapsack Algorithm, 
Second Attempt

Sk: Set of items numbered 1 to k.

Define B[k,w] to be the best selection from Sk with 
weight at most w

Good news: this does have subproblem optimality.

I.e., the best subset of Sk with weight at most w is 
either 
 the best subset of Sk-1 with weight at most w or 

 the best subset of Sk-1 with weight at most wwk plus item k
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0/1 Knapsack Algorithm

Recall the definition of 
B[k,w]

Since B[k,w] is defined in 
terms of B[k1,*], we can 
use two arrays of instead of 
a matrix

Running time: O(nW).

Not a polynomial-time 
algorithm since W may be 
large

This is a pseudo-polynomial
time algorithm

Algorithm 01Knapsack(S, W):

Input: set S of n items with benefit bi

and weight wi; maximum weight W

Output: benefit of best subset of S with 
weight at most W

let A and B be arrays of length W + 1

for w  0 to W do

B[w]  0

for k  1 to n do

copy array B into array A 

for w  wk to W do

if A[wwk]  bk > A[w] then

B[w]  A[wwk]  bk

return B[W]
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