Dynamic Programming

Outline and Reading

Matrix Chain-Product (§5.3.1)
The General Technique (§5.3.2)
0-1 Knapsack Problem (§5.3.3)

e

C

Matrix Chain-Products

- Dynamic Programming is a general algorithm design paradigm. Rather than give the general structure, let us first give a motivating example: Matrix Chain-Products Review: Matrix Multiplication.
 - C = A * B
 - A is $d \times e$ and B is $e \times f$
 - $O(d \cdot e \cdot f)$ time

$$C[i, j] = \sum_{k=0}^{e-1} A[i, k] * B[k, j] \quad d$$

i,j

Matrix Chain-Products

Matrix Chain-Product:

- Compute $A = A_0 * A_1 * ... * A_{n-1}$
- A_i is $d_i \times d_{i+1}$
- Problem: How to parenthesize?

Example

- B is 3 × 100
- C is 100 × 5
- D is 5 × 5
- (B*C)*D takes 1500 + 75 = 1575 ops
 B*(C*D) takes 1500 + 2500 = 4000 ops

Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize A=A₀*A₁*...*A_{n-1}
- Calculate number of ops for each one
- Pick the one that is best

Running time:

- The number of parenthesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4ⁿ.
- This is a terrible algorithm!

Greedy Approach

Idea #1: repeatedly select the product that uses (up) the most operations.

- Counter-example:
 - A is 10 × 5
 - B is 5 × 10
 - C is 10 × 5
 - D is 5 × 10
 - Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
 - A*((B*C)*D) takes 500+250+250 = 1000 ops

Another Greedy Approach

Idea #2: repeatedly select the product that uses the fewest operations.

- Counter-example:
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the optimal value.
Dynamic Programming

"Recursive" Approach

Define subproblems:

- Find the best parenthesization of $A_i * A_{i+1} * ... * A_j$.
- Let N_{i,j} denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is N_{0,n-1}.

Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems

- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index i: $(A_0^*...^*A_i)^*(A_{i+1}^*...^*A_{n-1})$.
- Then the optimal solution N_{0,n-1} is the sum of two optimal subproblems, N_{0,i} and N_{i+1,n-1} plus the time for the last multiply.
- If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

Characterizing Equation

The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.

Let us consider all possible places for that final multiply:

- Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
- So, a characterizing equation for N_{i,j} is the following:

$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$

Note that subproblems are not independent—the subproblems overlap.

Dynamic Programming Algorithm Visualization

The bottom-up $N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$ construction fills in the N array by diagonals 012i n-1 ... N_{i,i} gets values from 0 previous entries in i-th row and j-th column answer Filling in each entry in the N table takes O(n) time. • Total run time: $O(n^3)$ Getting actual parenthesization can be done by remembering n-1 "k" for each N entry

Dynamic Programming Algorithm

 Since subproblems overlap, we don't use recursion.
 Instead, we

construct optimal subproblems "bottom-up."

- N_{i,i}'s are easy, so start with them
- Then do problems of "length" 2,3,... subproblems, and so on.
- Running time:
 O(n³)

Algorithm *matrixChain(S)*:

Input: sequence S of n matrices to be multipliedOutput: number of operations in an optimal parenthesization of S

for $i \leftarrow 1$ to n - 1 do

 $N_{i,i} \leftarrow \mathbf{0}$
for $\mathbf{b} \leftarrow 1$ to $\mathbf{n} - 1$ do

{ b = j - i is the length of the problem }

for $i \leftarrow 0$ to n - b - 1 do

 $j \leftarrow i + b$ $N_{i,j} \leftarrow +\infty$

for $k \leftarrow i$ to j - 1 do

 $N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$ return $N_{0,n-1}$

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

The 0/1 Knapsack Problem

- Given: A set S of n items, with each item i having
 - w_i a positive weight
 - b_i a positive benefit
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are not allowed to take fractional amounts, then this is the **0/1 knapsack problem**.
 - In this case, we let T denote the set of items we take

 $\sum b_i$

 $i \in T$

Objective: maximize

A 0/1 Knapsack Algorithm, First Attempt

- \bullet S_k: Set of items numbered 1 to k.
- Define $B[k] = best selection from S_k$.
- Problem: does not have subproblem optimality:
 - Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of (benefit, weight) pairs and total weight W = 20

Best for S ₄	(2.0)	(5,4)	(8,5)	(4,3)	

Best for S_5 :

A 0/1 Knapsack Algorithm, Second Attempt

• S_k : Set of items numbered 1 to k.

Define B[k,w] to be the best selection from S_k with weight at most w

Good news: this does have subproblem optimality.

$$B[k,w] = \begin{cases} B[k-1,w] & \text{if } w_k > w \\ \max\{B[k-1,w], B[k-1,w-w_k] + b_k\} & \text{else} \end{cases}$$

I.e., the best subset of S_k with weight at most w is either

the best subset of S_{k-1} with weight at most w or

• the best subset of S_{k-1} with weight at most $w-w_k$ plus item k

0/1 Knapsack Algorithm

 $B[k,w] = \begin{cases} B[k-1,w] & \text{if } w_k > w \\ \max\{B[k-1,w], B[k-1,w-w_k] + b_k\} & \text{else} \end{cases}$

- Recall the definition of B[k,w]
- Since B[k,w] is defined in terms of B[k–1,*], we can use two arrays of instead of a matrix
- Running time: O(nW).
- Not a polynomial-time algorithm since W may be large
- This is a pseudo-polynomial time algorithm

Algorithm *01Knapsack(S, W)*:

Input: set *S* of *n* items with benefit *b*, and weight w_i ; maximum weight W**Output:** benefit of best subset of *S* with weight at most W let A and B be arrays of length W + 1for $w \leftarrow 0$ to W do $B[w] \leftarrow 0$ for $k \leftarrow 1$ to n do copy array **B** into array A for $w \leftarrow w_k$ to W do if $A[w-w_k] + b_k > A[w]$ then $B[w] \leftarrow A[w - w_k] + b_k$ return *B*[*W*]