## Dynamic Programming



## Outline and Reading

- Matrix Chain-Product (§5.3.1)
- The General Technique (§5.3.2)

0-1 Knapsack Problem (§5.3.3)


Dynamic Programming

## Matrix Chain-Products

Dynamic Programming is a general algorithm design paradigm.

- Rather than give the general structure, let us first give a motivating example:
- Matrix Chain-Products
- Review: Matrix Multiplication.
- $\boldsymbol{C}=\boldsymbol{A} * \boldsymbol{B}$
- $A$ is $d \times e$ and $B$ is $e \times f$
- O(d.e.f) time
$C[i, j]=\sum_{k=0}^{e-1} A[i, k] * B[k, j]$



## Matrix Chain-Products

* Matrix Chain-Product:
- Compute $A=A_{0}{ }^{*} A_{1}{ }^{*} \ldots A_{n-1}$
- $A_{i}$ is $d_{i} \times d_{i+1}$
- Problem: How to parenthesize?
- Example
- B is $3 \times 100$
- C is $100 \times 5$
- $D$ is $5 \times 5$
- $(\mathrm{B} * \mathrm{C}) * D$ takes $1500+75=1575$ ops
- $B^{*}\left(C^{*} D\right)$ takes $1500+2500=4000$ ops


## Enumeration Approach

## $\diamond$ Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize $A=A_{0} * A_{1} * \ldots * A_{n-1}$
- Calculate number of ops for each one
- Pick the one that is best
$\bullet$ Running time:
- The number of parenthesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4 .
- This is a terrible algorithm!


## Greedy Approach

$\diamond$ Idea \#1: repeatedly select the product that uses (up) the most operations.

* Counter-example:
- $A$ is $10 \times 5$
- B is $5 \times 10$
- C is $10 \times 5$
- D is $5 \times 10$
- Greedy idea \#1 gives (A*B)*(C*D), which takes $500+1000+500=2000$ ops
- $A *((B * C) * D)$ takes $500+250+250=1000$ ops


## Another Greedy Approach

* Idea \#2: repeatedly select the product that uses the fewest operations.
* Counter-example:
- $A$ is $101 \times 11$
- $B$ is $11 \times 9$
- C is $9 \times 100$
- D is $100 \times 99$
- Greedy idea \#2 gives $\left.A^{*}\left(\left(B^{*} C\right) * D\right)\right)$, which takes $109989+9900+108900=228789$ ops
- (A*B)*(C*D) takes 9999+89991+89100=189090 ops
$\leqslant$ The greedy approach is not giving us the optimal value.


## "Recursive" Approach

- Define subproblems:
- Find the best parenthesization of $A_{i}{ }^{*} \mathrm{~A}_{\mathrm{i}+1}{ }^{*} . .{ }^{*} \mathrm{~A}_{\mathrm{j}}$.
- Let $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is $\mathrm{N}_{0, \mathrm{n}-1}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index $\mathrm{i}:\left(\mathrm{A}_{0} * \ldots * \mathrm{~A}_{\mathrm{i}}\right) *\left(\mathrm{~A}_{\mathrm{i}+1} * \ldots * A_{n-1}\right)$.
- Then the optimal solution $N_{0, n-1}$ is the sum of two optimal subproblems, $N_{0, i}$ and $N_{i+1, n-1}$ plus the time for the last multiply.
- If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.


## Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
- Recall that $\mathrm{A}_{\mathrm{i}}$ is a $\mathrm{d}_{\mathrm{i}} \times \mathrm{d}_{\mathrm{i}+1}$ dimensional matrix.
- So, a characterizing equation for $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is the following:

$$
N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$

- Note that subproblems are not independent-the subproblems overlap.


## Dynamic Programming Algorithm Visualization

- The bottom-up construction fills in the N array by diagonals
- $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ gets values from previous entries in i-th row and $j$-th column
- Filling in each entry in the N table takes $\mathrm{O}(\mathrm{n})$ time.
- Total run time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Getting actual parenthesization can be done by remembering " k " for each N entry

$$
\begin{aligned}
& N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
\end{aligned}
$$

## Dynamic Programming Algorithm

- Since subproblems overlap, we don't use recursion.
- Instead, we construct optimal subproblems "bottom-up."
- $\mathrm{N}_{\mathrm{i}, \mathrm{i}}$ 's are easy, so start with them
- Then do problems of "length" 2,3,... subproblems, and so on.
- Running time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$


## Algorithm matrixChain(S):

Input: sequence $S$ of $\boldsymbol{n}$ matrices to be multiplied
Output: number of operations in an optimal
parenthesization of $S$
for $i \leftarrow 1$ to $n-1$ do
$N_{i, i} \leftarrow 0$
for $b \leftarrow 1$ to $n-1$ do
$\{b=j-i$ is the length of the problem $\}$
for $i \leftarrow 0$ to $n-b-1$ do

$$
j \leftarrow i+b
$$

$N_{i, j} \leftarrow+\infty$
for $k \leftarrow i$ to $j-1$ do

$$
N_{i, j} \leftarrow \min \left\{N_{i, j}, N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$

return $N_{0, n-1}$

## The General Dynamic Programming Technique

* Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
- Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m , and so on.
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).


## The 0/1 Knapsack Problem

- Given: A set S of $n$ items, with each item i having
- $\mathrm{w}_{\mathrm{i}}$ - a positive weight
- $b_{i}$ - a positive benefit
- Goal: Choose items with maximum total benefit but with weight at most W .
- If we are not allowed to take fractional amounts, then this is the $\mathbf{0 / 1}$ knapsack problem.
- In this case, we let T denote the set of items we take
- Objective: maximize $\sum_{i \in T} b_{i}$
- Constraint: $\sum_{i \in T} w_{i} \leq W$


## Example

Given: A set S of n items, with each item i having

- $b_{i}$ - a positive "benefit"
- $\mathrm{w}_{\mathrm{i}}$ - a positive "weight"
- Goal: Choose items with maximum total benefit but with weight at most W .

Items:


Weight: 4 in 2 in 2 in 6 in 2 in
Benefit: $\$ 20 \quad \$ 3 \quad \$ 6 \quad \$ 25 \quad \$ 80$
"knapsack"

box of width 9 in
Solution:

- item 5 (\$80, 2 in)
- item 3 (\$6, 2in)
- item 1 (\$20, 4in)


## A 0/1 Knapsack Algorithm, First Attempt

- $\mathrm{S}_{\mathrm{k}}$ : Set of items numbered 1 to k .

- Define $B[k]$ = best selection from $S_{k}$.
- Problem: does not have subproblem optimality:
- Consider set $S=\{(3,2),(5,4),(8,5),(4,3),(10,9)\}$ of (benefit, weight) pairs and total weight $\mathrm{W}=20$


## Best for $\mathrm{S}_{4}$ :



Best for $\mathrm{S}_{5}$ :


## A 0/1 Knapsack Algorithm, Second Attempt

- $S_{k}$ : Set of items numbered 1 to $k$.

Define $B[k, w]$ to be the best selection from $S_{k}$ with weight at most w

- Good news: this does have subproblem optimality.

$$
B[k, w]=\left\{\begin{array}{cc}
B[k-1, w] & \text { if } w_{k}>w \\
\max \left\{B[k-1, w], B\left[k-1, w-w_{k}\right]+b_{k}\right\} & \text { else }
\end{array}\right.
$$

I.e., the best subset of $S_{k}$ with weight at most $w$ is either

- the best subset of $S_{k-1}$ with weight at most $w$ or
- the best subset of $\mathrm{S}_{\mathrm{k}-1}$ with weight at most $\mathrm{w}-\mathrm{w}_{\mathrm{k}}$ plus item k


## 0/1 Knapsack Algorithm

 $B[k, w]=\left\{\begin{array}{cc}B[k-1, w] & \text { if } w_{k}>w \\ \max \left\{B[k-1, w], B\left[k-1, w-w_{k}\right]+b_{k}\right\} & \text { else }\end{array}\right.$

Algorithm 01Knapsack(S, W):
Input: set $\boldsymbol{S}$ of $\boldsymbol{n}$ items with benefit $\boldsymbol{b}_{\boldsymbol{i}}$ and weight $\boldsymbol{w}_{i}$; maximum weight $\boldsymbol{W}$
Output: benefit of best subset of $S$ with weight at most $\boldsymbol{W}$
let $\boldsymbol{A}$ and $\boldsymbol{B}$ be arrays of length $W+1$
for $w \leftarrow \mathbf{0}$ to $W$ do

$$
\boldsymbol{B}[w] \leftarrow \mathbf{0}
$$

for $k \leftarrow 1$ to $n$ do
copy array $\boldsymbol{B}$ into array $\boldsymbol{A}$
for $w \leftarrow w_{k}$ to $W$ do
if $A\left[w-w_{k}\right]+b_{k}>A[w]$ then

$$
B[w] \leftarrow A\left[w-w_{k}\right]+\boldsymbol{b}_{k}
$$

return $B[W]$

