1V

Dynamic Programming

N

Outline and Reading

Matrix Chain-Product (§5.3.1)
The General Technique (§5.3.2)
0-1 Knapsack Problem (§5.3.3)

Dynamic Programming

Matrix Chain-Products *“**g

N

K Dynamic Programming is a general
algorithm design paradigm.

f
= Rather than give the general structure, let p A
us first give a motivating example: B
= Matrix Chain-Products
Review: Matrix Multiplication. e
s C=A"B
m AisdxeandBise x f 8
m O(d-ef)time s a N
e-1 A C .
Cli, j]= > Ali,k]*Bk, j] d i i
k=0 C y
f

Dynamic Programming

Matrix Chain-Products

N

" Matrix Chain-Product:
s Compute A=A *A*...*A 4
H Ai IS di X di+1
= Problem: How to parenthesize?
Example
m Bis3 x 100
= Cis100 x 5
m Disb x5
s (B*C)*D takes 1500 + 75 = 1575 ops
s B*(C*D) takes 1500 + 2500 = 4000 ops

Dynamic Programming

N

Enumeration Approach

" Matrix Chain-Product Alg.:

= Try all possible ways to parenthesize
A=A * A *. FA

= Calculate number of ops for each one

= Pick the one that is best

-’

Running time:

= The number of parenthesizations is equal
to the number of binary trees with n nodes

= This is exponential!

s It is called the Catalan number, and it is
almost 4".

= This is a terrible algorithm!

Dynamic Programming

@
Greedy Approach t%

N

Idea #1: repeatedly select the product that
uses (up) the most operations.

Counter-example:
= Ais10 x 5

m Bis5 x 10

m Cis10x5

m Dis5 x 10

s Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops

s A¥((B*C)*D) takes 500+250+250 = 1000 ops

Dynamic Programming 6

&
Another Greedy Approach %

N

Idea #2: repeatedly select the product that uses
the fewest operations.

Counter-example:
= Ais 101 x 11
= Bis11 x 9
= Cis9 x 100
= Dis 100 x 99

s Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops

s (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the
optimal value.

Dynamic Programming 7/

“"Recursive” Approach

N
\

Define subproblems:
= Find the best parenthesization of A*A;,;*...*A,.

= Let N;; denote the number of operations done by this
subproblem

= The optimal solution for the whole problem is N, ;.

Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems

= There has to be a final multiplication (root of the expression
tree) for the optimal solution.

= Say, the final multiply is at index i: (Ag*...*A)* (A ... %A1)-

= Then the optimal solution N, ., is the sum of two optimal
subproblems, Ny ; and N;,; 4 plus the time for the last multiply.

= If the global optimum did not have these optimal

subproblems, we could define an even better “optimal”
solution.

Dynamic Programming 8

.....

N

jﬁ The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.

Let us consider all possible places for that final multiply:
= Recall that A is a d; x d.,; dimensional matrix.
= S0, a characterizing equation for N; ; is the following:

N. . = min{Ni,k + Nk+1,j +didk+1d +1}

DI i<k<

Note that subproblems are not independent—the
subproblems overlap.

Dynamic Programming 9

Dynamic Programming
Algorithm Visualization

N

A4

A4

The bottom-up
construction fills in the
N array by diagonals

N;; gets values from
previous entries in i-th
row and j-th column

Filling in each entry in
the N table takes O(n)
time.

Total run time: O(n3)

Getting actual
parenthesization can be
done by remembering
“k” for each N entry

N. . = min{Ni,k + Nk+1,j + didk+1dj+1}

bl k<]

N|0-i1-2i ot mel
0
\
answer
i N

o

]

n-1

Dynamic Programming 10

Dynamic Programming
Algorithm

N

L
Since

subproblems
overlap, we don't
use recursion.

Instead, we
construct optimal
subproblems
“bottom-up.”

N..'s are easy, so
start with them
Then do
\problems of

length” 2,3,...
subproblems,
and so on.
Running time:
O(n3)

Algorithm matrixChain(S):

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal
parenthesization of S

fori<1ton—-1do
N;; <0

forb«1ton-1do
{ b =] —iisthe length of the problem }
fori< Oton—-b—-1do

jJ<i+b
Njj ¢ +o0
fork<«itoj—1do
N;; <= min{N;;, Nj + Ny ; + didy,; diig }

return Ny, 4

Dynamic Programming 11

The General Dynamic
Programming Technique

N

J@Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

= Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, |,

m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

Dynamic Programming 12

f\

The 0/1 Knapsack Problem 4[&

o
i

I

'@ Given: A set S of n items, with each item i having
= W; - a positive weight
= b, - a positive benefit

Goal: Choose items with maximum total benefit but with
weight at most W.

If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.

= In this case, we let T denote the set of items we take

= Objective: maximize Zbi
ieT
s Constraint: ZWi <W

ieT

Dynamic Programming 13

Example e

Given: A set S of n items, with each item i having
= b, - a positive “benefit”
= W, - a positive “weight”
Goal: Choose items with maximum total benefit but with
weight at most W.

ARy | “knapsack”

Items: [-

box of width 9 in

Weight: 4in 2in 2in 6in 2in Solution:

T o item 5 ($80, 2 in)
Benefit: $20 $3 $6 $25 $80 e item 3 ($6, 2in)
o item 1 ($20, 4in)

Dynamic Programming 14

N

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

A 0/1 Knapsack Algorithm, ﬁ
First Attempt =

N

@ S,: Set of items numbered 1 to k.
Define B[k] = best selection from S,.

Problem: does not have subproblem optimality:

= Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of
(benefit, weight) pairs and total weight W = 20

ol

i

"‘r‘):'

Best for S,: |~

(3

4)

(8.3) (4,3)

Best for Sc: |

3.2)|

(5

A4)

(8.3) (10.9)

20 >|

Dynamic Programming 15

A 0/1 Knapsack Algorithm, ﬁ

Second Attempt %QMJ@

N

Sk
S,: Set of items numbered 1 to k.

Define B[k,w] to be the best selection from S, with
weight at most w

Good news: this does have subproblem optimality.

B[k —1, w] ifw, >w
max{ B[k —1,w], B[k -, w—w,]+Db } else
I.e., the best subset of S, with weight at most w is

either

= the best subset of S, ; with weight at most w or
= the best subset of S, ; with weight at most w—w, plus item k

B[k,w]z{

Dynamic Programming 16

0/1 Knapsack Algorithm %&Q@

N

@

@

& @

B[k,w]:{

B[k —1,w]

Recall the definition of
B[k, w]

Since B[k,w] is defined in
terms of B[k-1,*], we can
use two arrays of instead of
a matrix

Running time: O(nW).
Not a polynomial-time
algorithm since W may be
large

This is a pseudo-polynomial
time algorithm

max{ B[k —1,w], B[k -1, w—

if w, >w
w,]+b} else

Algorithm 01Knapsack(S, W):

Input: set S of n items with benefit b,
and weight w;; maximum weight W

Output: benefit of best subset of S with
weight at most W

let A and B be arrays of length W + 1
for w <« 0 to Wdo

Blw] « 0
fork < 1tondo

copy array B into array A

for w < w, to W do

if Alw-w,] + b, > A[w] then
B[w] « A[w-w,] + b,

return B[W]

Dynamic Programming 17

