Graphs

Outline and Reading

- Graphs (§6.1)
- Definition
- Applications
- Terminology
- Properties
- ADT
* Data structures for graphs (§6.2)
- Edge list structure
- Adjacency list structure
- Adjacency matrix structure

Graph

- A graph is a pair (\boldsymbol{V}, E), where
- V is a set of nodes, called vertices
- E is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements
- Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

- Directed edge
- ordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$
- first vertex u is the origin
- second vertex v is the destination
- e.g., a flight
- Undirected edge
- unordered pair of vertices (u,v)
- e.g., a flight route

- Directed graph
- all the edges are directed
- e.g., flight network
- Undirected graph
- all the edges are undirected
- e.g., route network

Applications

- Electronic circuits
- Printed circuit board
- Integrated circuit
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases

- Entity-relationship diagram

Terminology

- End vertices (or endpoints) of an edge
- U and V are the endpoints of a
- Edges incident on a vertex
- a, d, and b are incident on V
- Adjacent vertices
- U and V are adjacent
- Degree of a vertex
- X has degree 5
- Parallel edges
- h and i are parallel edges
- Self-loop

- j is a self-loop

Terminology (cont.)

- Path
- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
- path such that all its vertices and edges are distinct
- Examples
- $P_{1}=(V, b, X, h, Z)$ is a simple path
- $P_{2}=(U, c, W, e, X, g, Y, f, W, d, V)$ is a
 path that is not simple

Terminology (cont.)

- Cycle
- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
- cycle such that all its vertices and edges are distinct
- Examples
- $\left.C_{1}=(V, b, X, g, Y, f, W, c, U, a\lrcorner,\right)$ is a simple cycle
- $\left.C_{2}=(U, c, W, e, X, g, Y, f, W, d, V, a\lrcorner,\right)$ is a cycle that is not simple

Properties

Property 1
$\Sigma_{v} \operatorname{deg}(v)=2 m$
Proof: each edge is counted twice
Property 2
In an undirected graph with no self-loops and no multiple edges

$$
m \leq n(n-1) / 2
$$

Proof: each vertex has degree at most $(\boldsymbol{n}-1)$

What is the bound for a directed graph?

Notation

$n \quad$ number of vertices
$m \quad$ number of edges $\operatorname{deg}(\boldsymbol{v})$ degree of vertex \boldsymbol{v}

Example

- $n=4$
- $m=6$
- $\operatorname{deg}(v)=3$

Main Methods of the Graph ADT

- Vertices and edges
- are positions
- store elements
- Accessor methods
- aVertex()
- incidentEdges(v)
- endVertices(e)
- isDirected(e)
- origin(e)
- destination(e)
- opposite(v, e)
- areAdjacent(v, w)
- Update methods
- insertVertex(0)
- insertEdge(v, w, o)
- insertDirectedEdge($\mathrm{v}, \mathrm{w}, \mathrm{o})$
- removeVertex(v)
- removeEdge(e)
- Generic methods
- numVertices()
- numEdges()
- vertices()
- edges()

Edge List Structure

- Vertex object
- element
- reference to position in vertex sequence

- Edge object
- element
- origin vertex object
- destination vertex object
- reference to position in edge sequence
- Vertex sequence
- sequence of vertex objects
- Edge sequence
- sequence of edge objects

Adjacency List Structure

- Edge list structure
- Incidence sequence for each vertex

- sequence of references to edge objects of incident edges
- Augmented edge objects
- references to associated positions in incidence sequences of end vertices

Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
- Integer key (index) associated with vertex
- 2D adjacency array
- Reference to edge object for adjacent vertices
- Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

Graphs

Asymptotic Performance

\boldsymbol{n} vertices, \boldsymbol{m} edges no parallel edges no self-loops Bounds are "big-Oh"	Edge List	Adjacency List	Adjacency Matrix
Space	$\boldsymbol{n + m}$	$\boldsymbol{n}+\boldsymbol{m}$	\boldsymbol{n}^{2}
incidentEdges (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}
areAdjacent $(\boldsymbol{v}, \boldsymbol{w})$	\boldsymbol{m}	$\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w}))$	1
insertVertex (\boldsymbol{o})	1	1	\boldsymbol{n}^{2}
insertEdge $(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{o})$	1	1	1
removeVertex (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}^{2}
removeEdge (\boldsymbol{e})	1	1	1

