Graphs
Outline and Reading

Graphs (§6.1)
- Definition
- Applications
- Terminology
- Properties
- ADT

Data structures for graphs (§6.2)
- Edge list structure
- Adjacency list structure
- Adjacency matrix structure
Graph

A graph is a pair (V, E), where
- V is a set of nodes, called vertices
- E is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements

Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route
Edge Types

- Directed edge
 - ordered pair of vertices \((u,v)\)
 - first vertex \(u\) is the origin
 - second vertex \(v\) is the destination
 - e.g., a flight

- Undirected edge
 - unordered pair of vertices \((u,v)\)
 - e.g., a flight route

- Directed graph
 - all the edges are directed
 - e.g., flight network

- Undirected graph
 - all the edges are undirected
 - e.g., route network
Applications

- **Electronic circuits**
 - Printed circuit board
 - Integrated circuit

- **Transportation networks**
 - Highway network
 - Flight network

- **Computer networks**
 - Local area network
 - Internet
 - Web

- **Databases**
 - Entity-relationship diagram
Terminology

- **End vertices (or endpoints) of an edge**
 - U and V are the endpoints of a

- **Edges incident on a vertex**
 - a, d, and b are incident on V

- **Adjacent vertices**
 - U and V are adjacent

- **Degree of a vertex**
 - X has degree 5

- **Parallel edges**
 - h and i are parallel edges

- **Self-loop**
 - j is a self-loop
Terminology (cont.)

- **Path**
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints

- **Simple path**
 - path such that all its vertices and edges are distinct

- **Examples**
 - $P_1 = (V,b,X,h,Z)$ is a simple path
 - $P_2 = (U,c,W,e,X,g,Y,f,W,d,V)$ is a path that is not simple
Terminology (cont.)

- **Cycle**
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints

- **Simple cycle**
 - cycle such that all its vertices and edges are distinct

- **Examples**
 - \(C_1 = (V, b, X, g, Y, f, W, c, U, a, \ldots) \) is a simple cycle
 - \(C_2 = (U, c, W, e, X, g, Y, f, W, d, V, a, \ldots) \) is a cycle that is not simple
Properties

Property 1

\[\sum_v \text{deg}(v) = 2m \]

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges, \[m \leq \frac{n(n - 1)}{2} \]

Proof: each vertex has degree at most \((n - 1)\)

What is the bound for a directed graph?

Notation

- \(n \): number of vertices
- \(m \): number of edges
- \(\text{deg}(v) \): degree of vertex \(v \)

Example

- \(n = 4 \)
- \(m = 6 \)
- \(\text{deg}(v) = 3 \)
Main Methods of the Graph ADT

Vertices and edges
- are positions
- store elements

Accessor methods
- aVertex()
- incidentEdges(v)
- endVertices(e)
- isDirected(e)
- origin(e)
- destination(e)
- opposite(v, e)
- areAdjacent(v, w)

Update methods
- insertVertex(o)
- insertEdge(v, w, o)
- insertDirectedEdge(v, w, o)
- removeVertex(v)
- removeEdge(e)

Generic methods
- numVertices()
- numEdges()
- vertices()
- edges()
Edge List Structure

- **Vertex object**
 - element
 - reference to position in vertex sequence

- **Edge object**
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence

- **Vertex sequence**
 - sequence of vertex objects

- **Edge sequence**
 - sequence of edge objects
Adjacency List Structure

- Edge list structure
- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices
Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non adjacent vertices
- The “old fashioned” version just has 0 for no edge and 1 for edge

![Adjacency Matrix Diagram](image)
Asymptotic Performance

- \(n \) vertices, \(m \) edges
- no parallel edges
- no self-loops
- Bounds are "big-Oh"

<table>
<thead>
<tr>
<th></th>
<th>Edge List</th>
<th>Adjacency List</th>
<th>Adjacency Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>(n + m)</td>
<td>(n + m)</td>
<td>(n^2)</td>
</tr>
<tr>
<td>incidentEdges((v))</td>
<td>(m)</td>
<td>(\text{deg}(v))</td>
<td>(n)</td>
</tr>
<tr>
<td>areAdjacent ((v, w))</td>
<td>(m)</td>
<td>(\text{min}(\text{deg}(v), \text{deg}(w)))</td>
<td>1</td>
</tr>
<tr>
<td>insertVertex((o))</td>
<td>1</td>
<td>1</td>
<td>(n^2)</td>
</tr>
<tr>
<td>insertEdge((v, w, o))</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>removeVertex((v))</td>
<td>(m)</td>
<td>(\text{deg}(v))</td>
<td>(n^2)</td>
</tr>
<tr>
<td>removeEdge((e))</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>