# Graphs





## **Outline and Reading**

- Graphs (§6.1)
  - Definition
  - Applications
  - Terminology
  - Properties
  - ADT
- Data structures for graphs (§6.2)
  - Edge list structure
  - Adjacency list structure
  - Adjacency matrix structure

### Graph

- A graph is a pair (V, E), where
  - *V* is a set of nodes, called vertices
  - *E* is a collection of pairs of vertices, called edges
  - Vertices and edges are positions and store elements
- Example:
  - A vertex represents an airport and stores the three-letter airport code
  - An edge represents a flight route between two airports and stores the mileage of the route



# Edge Types

#### Directed edge

- ordered pair of vertices (u,v)
- first vertex u is the origin
- second vertex v is the destination
- e.g., a flight

#### Undirected edge

- unordered pair of vertices (u,v)
- e.g., a flight route
- Directed graph
  - all the edges are directed
  - e.g., flight network
- Undirected graph
  - all the edges are undirected
  - e.g., route network







- Electronic circuits
  - Printed circuit board
  - Integrated circuit
- Transportation networks
  - Highway network
  - Flight network
- Computer networks
  - Local area network
  - Internet
  - Web

### Databases

Entity-relationship diagram



# Terminology

- End vertices (or endpoints) of an edge
  - U and V are the endpoints of a
- Edges incident on a vertex
  - a, d, and b are incident on V
- Adjacent vertices
  - U and V are adjacent
- Degree of a vertex
  - X has degree 5
- Parallel edges
  - h and i are parallel edges
- Self-loop
  - j is a self-loop

b

e

g

C

h

a

# Terminology (cont.)

#### Path

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
  - path such that all its vertices and edges are distinct
- Examples
  - P<sub>1</sub>=(V,b,X,h,Z) is a simple path
  - P<sub>2</sub>=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple



# Terminology (cont.)

#### Cycle

- circular sequence of alternating
- vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
  - cycle such that all its vertices and edges are distinct
- Examples
  - C<sub>1</sub>=(V,b,X,g,Y,f,W,c,U,a,⊥) is a simple cycle
  - C<sub>2</sub>=(U,c,W,e,X,g,Y,f,W,d,V,a, ⊥) is a cycle that is not simple



### Properties

**Property 1**  $\Sigma_{v} \deg(v) = 2m$ Proof: each edge is counted twice Property 2 In an undirected graph with no self-loops and no multiple edges  $m \le n \ (n-1)/2$ Proof: each vertex has degree at most (n - 1)What is the bound for a directed graph?

### Notation

| n      | number of vertices |
|--------|--------------------|
| m      | number of edges    |
| deg(v) | degree of vertex v |

Example n = 4

■ *m* = 6

•  $\deg(v) = 3$ 

## Main Methods of the Graph ADT

Vertices and edges are positions store elements Accessor methods aVertex() incidentEdges(v) endVertices(e) isDirected(e) origin(e) destination(e) opposite(v, e) areAdjacent(v, w)

Update methods insertVertex(o) insertEdge(v, w, o) insertDirectedEdge(v, w, o) removeVertex(v) removeEdge(e) Generic methods numVertices() numEdges() vertices() edges()

## **Edge List Structure**

#### Vertex object

- element
- reference to position in vertex sequence
- Edge object
  - element
  - origin vertex object
  - destination vertex object
  - reference to position in edge sequence
- Vertex sequence
  - sequence of vertex objects
- Edge sequence
  - sequence of edge objects



### Adjacency List Structure

b Edge list structure a Incidence sequence W for each vertex sequence of references to edge objects of incident edges W Augmented edge objects references to associated positions in incidence sequences of end а b vertices

### **Adjacency Matrix Structure**

- Edge list structure
   Augmented vertex objects
  - Integer key (index) associated with vertex
- 2D adjacency array
  - Reference to edge object for adjacent vertices
  - Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge



a

b

### **Asymptotic Performance**

| <ul> <li><i>n</i> vertices, <i>m</i> edges</li> <li>no parallel edges</li> <li>no self-loops</li> <li>Bounds are "big-Oh"</li> </ul> | Edge<br>List | Adjacency<br>List        | Adjacency<br>Matrix   |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|-----------------------|
| Space                                                                                                                                | n+m          | n+m                      | <b>n</b> <sup>2</sup> |
| incidentEdges(v)                                                                                                                     | m            | deg(v)                   | n                     |
| areAdjacent (v, w)                                                                                                                   | m            | $\min(\deg(v), \deg(w))$ | 1                     |
| insertVertex( <i>o</i> )                                                                                                             | 1            |                          | <b>n</b> <sup>2</sup> |
| insertEdge(v, w, o)                                                                                                                  | 1            | 1                        | 1                     |
| removeVertex(v)                                                                                                                      | m            | deg(v)                   | <b>n</b> <sup>2</sup> |
| removeEdge(e)                                                                                                                        | 1            | 1                        | 1                     |