The Greedy Method

The Greedy Method

Outline and Reading

The Greedy Method Technique (§5.1)
Fractional Knapsack Problem (§5.1.1)
Task Scheduling (§5.1.2)
Minimum Spanning Trees (§7.3) [future lecture]

The Greedy Method Technique

- The greedy method is a general algorithm design paradigm, built on the following elements:
 - configurations: different choices, collections, or values to find
 - objective function: a score assigned to configurations, which we want to either maximize or minimize
- It works best when applied to problems with the greedy-choice property:
 - a globally-optimal solution can always be found by a series of local improvements from a starting configuration.

Making Change

- Problem: A dollar amount to reach and a collection of coin amounts to use to get there.
- Configuration: A dollar amount yet to return to a customer plus the coins already returned
- Objective function: Minimize number of coins returned.
- Greedy solution: Always return the largest coin you can
- Example 1: Coins are valued \$.32, \$.08, \$.01
 - Has the greedy-choice property, since no amount over \$.32 can be made with a minimum number of coins by omitting a \$.32 coin (similarly for amounts over \$.08, but under \$.32).
- Example 2: Coins are valued \$.30, \$.20, \$.05, \$.01
 - Does not have greedy-choice property, since \$.40 is best made with two \$.20's, but the greedy solution will pick three coins (which ones?)

The Fractional Knapsack Problem

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
 - In this case, we let x_i denote the amount we take of item i
 - Objective: maximize

$$\sum_{i\in S} b_i(x_i / w_i)$$

- Constraint:
- $i \in S$ The Greedy Method

 $\sum x_i \leq W$

Example

Given: A set S of n items, with each item i having

- b_i a positive benefit
- w_i a positive weight

Goal: Choose items with maximum total benefit but with weight at most W.
"knapsack"

Solution: • 1 ml of 5 • 2 ml of 3 • 6 ml of 4 • 1 ml of 2

The Fractional Knapsack Algorithm

Greedy choice: Keep taking item with highest value (benefit to weight ratio) • Since $\sum_{i=1}^{n} b_i (x_i / w_i) = \sum_{i=1}^{n} (b_i / w_i) x_i$ • Run time: $O(n \log n)$. Why? Correctness: Suppose there is a better solution there is an item i with higher value than a chosen item j (i.e., $v_i < v_j$) but $x_i < w_i$ and $x_j > 0$ If we substitute some i with j, we get a better solution • How much of i: $min\{w_i-x_i, x_i\}$ Thus, there is no better solution than the greedy one

Algorithm *fractionalKnapsack(S, W)*

Input: set *S* of items w/ benefit b_i and weight w_i ; max. weight *W* **Output:** amount x_i of each item *i* to maximize benefit with weight at most *W*

for each item i in S

 $x_i \leftarrow 0$

 $v_i \leftarrow b_i / w_i$ {value}

 $w \leftarrow 0$ {total weight}

while w < W

remove item i with highest v_i

$$x_i \leftarrow \min\{w_i, W - w\}$$
$$w \leftarrow w + \min\{w_i, W - w\}$$

Task Scheduling

Given: a set T of n tasks, each having:

- A start time, s_i
- A finish time, f_i (where s_i < f_i)

Goal: Perform all the tasks using a minimum number of "machines."

Machine 3					 	 				
Machine 2 Machine 1			 		1		·····L			 J
	L	Τ	I	Т	 Т		Т	Т	-	 1
		1	2	3	4	5	6	7	8	9

Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
 - Run time: O(n log n). Why?
- Correctness: Suppose there is a better schedule.
 - We can use k-1 machines
 - The algorithm uses k
 - Let i be first task scheduled on machine k
 - Machine i must conflict with k-1 other tasks
 - But that means there is no non-conflicting schedule using k-1 machines

Algorithm *taskSchedule(T)*

Input: set *T* of tasks w/ start time s_i and finish time f_i

Output: non-conflicting schedule with minimum number of machines

 $m \leftarrow 0$ {no. of machines}

while T is not empty

remove task i w/ smallest s_i if there's a machine j for i then schedule i on machine j

else

m ← *m* + 1

schedule i on machine m

Example

Given: a set T of n tasks, each having:

- A start time, s_i
- A finish time, f_i (where s_i < f_i)
- [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

Machine 3									<u> </u>
Machine 2			<u> </u>				<u> </u>		
Machine 1		<u></u>	<u>.</u>						
	I		Π	1				- I	Π
	1	2	3	4	5	6	7	8	9
	•	-	U	•	U	v		U	Ŭ