The Greedy Method

The Greedy Method

Outline and Reading

- The Greedy Method Technique (§5.1)
- Fractional Knapsack Problem (§5.1.1)
- Task Scheduling (§5.1.2)

Minimum Spanning Trees (§7.3) [future lecture]

The Greedy Method Technique

\diamond The greedy method is a general algorithm design paradigm, built on the following elements:

- configurations: different choices, collections, or values to find
- objective function: a score assigned to configurations, which we want to either maximize or minimize
* It works best when applied to problems with the greedy-choice property:
- a globally-optimal solution can always be found by a series of local improvements from a starting configuration.

Making Change

- Problem: A dollar amount to reach and a collection of coin amounts to use to get there.
- Configuration: A dollar amount yet to return to a customer plus the coins already returned
- Objective function: Minimize number of coins returned.
- Greedy solution: Always return the largest coin you can
- Example 1: Coins are valued \$.32, \$.08, \$. 01
- Has the greedy-choice property, since no amount over \$. 32 can be made with a minimum number of coins by omitting a $\$.32$ coin (similarly for amounts over \$.08, but under \$.32).
Example 2: Coins are valued \$.30, \$.20, \$.05, \$. 01
- Does not have greedy-choice property, since $\$.40$ is best made with two $\$.20$'s, but the greedy solution will pick three coins (which ones?)

The Fractional Knapsack Problem

Given: A set S of n items, with each item i having

- b_{i} - a positive benefit
- w_{i} - a positive weight

Goal: Choose items with maximum total benefit but with weight at most W.

- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
- In this case, we let x_{i} denote the amount we take of item i
- Objective: maximize $\sum_{i \in S} b_{i}\left(x_{i} / w_{i}\right)$
- Constraint: $\quad \sum_{i \in S} x_{i} \leq W$

Example

- Given: A set S of n items, with each item i having
- b_{i} - a positive benefit
- w_{i} - a positive weight

Goal: Choose items with maximum total benefit but with weight at most W .

Items:

Solution:

- 1 ml of 5
- 2 ml of 3
- 6 ml of 4
- 1 ml of 2

10 ml

The Fractional Knapsack Algorithm

- Greedy choice: Keep taking item with highest value (benefit to weight ratio)
- Since $\sum_{i \in s} b_{i}\left(x_{i} / w_{i}\right)=\sum_{i \in S}\left(b_{i} / w_{i}\right) x_{i}$
- Run time: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$. Why?
- Correctness: Suppose there is a better solution
- there is an item i with higher value than a chosen item j (i.e., $\mathrm{v}_{\mathrm{i}}<\mathrm{v}_{\mathrm{j}}$) but $\mathrm{x}_{\mathrm{i}}<\mathrm{w}_{\mathrm{i}}$ and $\mathrm{x}_{\mathrm{i}}>0$ If we substitute some i with j, we get a better solution
- How much of i: $\min \left\{w_{i}-x_{i}, x_{j}\right\}$
- Thus, there is no better solution than the greedy one

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit b_{i} and weight w_{i}; max. weight W
Output: amount x_{i} of each item i
to maximize benefit with weight at most W
for each item i in S

$$
\begin{array}{cc}
x_{i} \leftarrow 0 & \\
v_{i} \leftarrow b_{i} / w_{i} & \{\text { value }\} \\
w \leftarrow 0 & \{\text { total weight }\} \\
\text { while } w<W & \\
\quad \text { remove item } i \text { with highest } v_{i} \\
x_{i} \leftarrow \min \left\{w_{i}, W-w\right\} \\
w \leftarrow w+\min \left\{w_{i}, W-w\right\}
\end{array}
$$

Task Scheduling

- Given: a set T of n tasks, each having:

- A start time, s_{i}
- A finish time, f_{i} (where $\mathrm{s}_{\mathrm{i}}<\mathrm{f}_{\mathrm{i}}$)
- Goal: Perform all the tasks using a minimum number of "machines."

Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
- Run time: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$. Why?
- Correctness: Suppose there is a better schedule.
- We can use $k-1$ machines
- The algorithm uses k
- Let i be first task scheduled on machine k
- Machine i must conflict with k-1 other tasks
- But that means there is no non-conflicting schedule

Algorithm taskSchedule(T)

 Input: set \boldsymbol{T} of tasks w/ start time s_{i} and finish time f_{i}Output: non-conflicting schedule with minimum number of machines $m \leftarrow 0 \quad$ \{no. of machines $\}$
while T is not empty
remove task $i w /$ smallest s_{i}
if there's a machine j for i then schedule i on machine j
else

```
m}\leftarrowm+
```

schedule i on machine m using k -1 machines

Example

- Given: a set T of n tasks, each having:

- A start time, s_{i}
- A finish time, $\mathrm{f}_{\mathrm{i}}\left(\right.$ where $\left.\mathrm{s}_{\mathrm{i}}<\mathrm{f}_{\mathrm{i}}\right)$
- $[1,4],[1,3],[2,5],[3,7],[4,7],[6,9],[7,8]$ (ordered by start)
- Goal: Perform all tasks on min. number of machines

