The Greedy Method
Outline and Reading

- The Greedy Method Technique (§5.1)
- Fractional Knapsack Problem (§5.1.1)
- Task Scheduling (§5.1.2)
- Minimum Spanning Trees (§7.3) [future lecture]
The Greedy Method Technique

The greedy method is a general algorithm design paradigm, built on the following elements:

- **configurations**: different choices, collections, or values to find

- **objective function**: a score assigned to configurations, which we want to either maximize or minimize

It works best when applied to problems with the greedy-choice property:

- a globally-optimal solution can always be found by a series of local improvements from a starting configuration.
Making Change

- **Problem:** A dollar amount to reach and a collection of coin amounts to use to get there.
- **Configuration:** A dollar amount yet to return to a customer plus the coins already returned.
- **Objective function:** Minimize number of coins returned.
- **Greedy solution:** Always return the largest coin you can.

Example 1: Coins are valued $.32, $.08, $.01
- Has the greedy-choice property, since no amount over $.32 can be made with a minimum number of coins by omitting a $.32 coin (similarly for amounts over $.08, but under $.32).

Example 2: Coins are valued $.30, $.20, $.05, $.01
- Does not have greedy-choice property, since $.40 is best made with two $.20’s, but the greedy solution will pick three coins (which ones?)
The Fractional Knapsack Problem

Given: A set S of n items, with each item i having
- b_i - a positive benefit
- w_i - a positive weight

Goal: Choose items with maximum total benefit but with weight at most W.

If we are allowed to take fractional amounts, then this is the **fractional knapsack problem**.
- In this case, we let x_i denote the amount we take of item i

Objective: maximize
$$\sum_{i \in S} b_i \left(\frac{x_i}{w_i} \right)$$

Constraint:
$$\sum_{i \in S} x_i \leq W$$
Example

Given: A set S of n items, with each item i having
- b_i - a positive benefit
- w_i - a positive weight

Goal: Choose items with maximum total benefit but with weight at most W.

<table>
<thead>
<tr>
<th>Items:</th>
<th>Weight:</th>
<th>Benefit:</th>
<th>Value: ($ per ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 ml</td>
<td>$12</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>8 ml</td>
<td>$32</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2 ml</td>
<td>$40</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>6 ml</td>
<td>$30</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1 ml</td>
<td>$50</td>
<td>50</td>
</tr>
</tbody>
</table>

Solution:
- 1 ml of 5
- 2 ml of 3
- 6 ml of 4
- 1 ml of 2
The Fractional Knapsack Algorithm

- **Greedy choice:** Keep taking item with highest value (benefit to weight ratio)
 - Since $\sum_{i \in S} b_i (x_i / w_i) = \sum_{i \in S} (b_i / w_i) x_i$
 - Run time: $O(n \log n)$. Why?

- **Correctness:** Suppose there is a better solution
 - there is an item i with higher value than a chosen item j (i.e., $v_i < v_j$) but $x_i < w_i$ and $x_j > 0$
 - If we substitute some i with j, we get a better solution
 - How much of i: $\min\{w_i - x_i, x_j\}$
 - Thus, there is no better solution than the greedy one

Algorithm $\text{fractionalKnapsack}(S, W)$

Input: set S of items with benefit b_i and weight w_j; max. weight W

Output: amount x_i of each item i to maximize benefit with weight at most W

```plaintext
for each item $i$ in $S$
    $x_i \leftarrow 0$
    $v_i \leftarrow b_i / w_i$  \{value\}
    $w \leftarrow 0$  \{total weight\}
while $w < W$
    remove item $i$ with highest $v_i$
    $x_i \leftarrow \min\{w_i, W - w\}$
    $w \leftarrow w + \min\{w_i, W - w\}$
```
Task Scheduling

Given: a set T of n tasks, each having:
- A start time, s_i
- A finish time, f_i (where $s_i < f_i$)

Goal: Perform all the tasks using a minimum number of "machines."
Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
 - Run time: O(n log n). Why?
- Correctness: Suppose there is a better schedule.
 - We can use k-1 machines
 - The algorithm uses k
 - Let i be first task scheduled on machine k
 - Machine i must conflict with k-1 other tasks
 - But that means there is no non-conflicting schedule using k-1 machines

Algorithm taskSchedule(T)

Input: set T of tasks w/ start time s_i and finish time f_i
Output: non-conflicting schedule with minimum number of machines

$m \leftarrow 0$ \hspace{1cm} \{no. of machines\}

while T is not empty
 remove task i w/ smallest s_i
 if there's a machine j for i then
 schedule i on machine j
 else
 $m \leftarrow m + 1$
 schedule i on machine m
Example

Given: a set T of n tasks, each having:

- A start time, s_i
- A finish time, f_i (where $s_i < f_i$)
- $[1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]$ (ordered by start)

Goal: Perform all tasks on min. number of machines