Heaps and Priority Queues
Priority Queue ADT (§ 2.4.1)

- A priority queue stores a collection of items
- An item is a pair (key, element)
- Main methods of the Priority Queue ADT
 - `insertItem(k, o)` inserts an item with key k and element o
 - `removeMin()` removes the item with smallest key and returns its element
- Additional methods
 - `minKey()` returns, but does not remove, the smallest key of an item
 - `minElement()` returns, but does not remove, the element of an item with smallest key
 - `size()`, `isEmpty()` applications:
 - Standby flyers
 - Auctions
 - Stock market
Total Order Relation

- Keys in a priority queue can be arbitrary objects on which an order is defined.
- Two distinct items in a priority queue can have the same key.

Mathematical concept of total order relation \(\leq \)

- **Reflexive** property:
 \[x \leq x \]

- **Antisymmetric** property:
 \[x \leq y \land y \leq x \Rightarrow x = y \]

- **Transitive** property:
 \[x \leq y \land y \leq z \Rightarrow x \leq z \]
Comparator ADT (§ 2.4.1)

- A comparator encapsulates the action of comparing two objects according to a given total order relation.
- A generic priority queue uses an auxiliary comparator.
- The comparator is external to the keys being compared.
- When the priority queue needs to compare two keys, it uses its comparator.

Methods of the Comparator ADT, all with Boolean return type:
- `isLessThan(x, y)`
- `isLessThanOrEqualTo(x, y)`
- `isEqualTo(x, y)`
- `isGreaterThan(x, y)`
- `isGreaterThanOrEqualTo(x, y)`
- `isComparable(x)`
We can use a priority queue to sort a set of comparable elements:

- Insert the elements one by one with a series of `insertItem(e, e)` operations.
- Remove the elements in sorted order with a series of `removeMin()` operations.

The running time of this sorting method depends on the priority queue implementation.

Algorithm *PQ-Sort*(*S, C*)

Input sequence *S*, comparator *C* for the elements of *S*

Output sequence *S* sorted in increasing order according to *C*

1. \(P \leftarrow \text{priority queue with comparator } C \)
2. while \(\neg S . isEmpty() \)
 - \(e \leftarrow S . remove (S . first()) \)
 - \(P . insertItem(e, e) \)
3. while \(\neg P . isEmpty() \)
 - \(e \leftarrow P . removeMin() \)
 - \(S . insertLast(e) \)
Sequence-based Priority Queue

Implementation with an unsorted list

4 5 2 3 1

Performance:
- insertItem takes $O(1)$ time since we can insert the item at the beginning or end of the sequence
- removeMin, minKey and minElement take $O(n)$ time since we have to traverse the entire sequence to find the smallest key

Implementation with a sorted list

1 2 3 4 5

Performance:
- insertItem takes $O(n)$ time since we have to find the place where to insert the item
- removeMin, minKey and minElement take $O(1)$ time since the smallest key is at the beginning of the sequence
Selection-Sort

Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence.

Running time of Selection-sort:
- Inserting the elements into the priority queue with \(n \) `insertItem` operations takes \(O(n) \) time.
- Removing the elements in sorted order from the priority queue with \(n \) `removeMin` operations takes time proportional to

\[
1 + 2 + \ldots + n
\]

Selection-sort runs in \(O(n^2) \) time.

Heaps and Priority Queues
Insertion-Sort

- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence

- Running time of Insertion-sort:
 - Inserting the elements into the priority queue with n `insertItem` operations takes time proportional to $1 + 2 + \ldots + n$
 - Removing the elements in sorted order from the priority queue with a series of n `removeMin` operations takes $O(n)$ time

- Insertion-sort runs in $O(n^2)$ time
What is a heap (§2.4.3)

A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:

- **Heap-Order**: for every internal node \(v \) other than the root, \(key(v) \geq key(parent(v)) \)

- **Complete Binary Tree**: let \(h \) be the height of the heap
 - for \(i = 0, \ldots, h - 1 \), there are \(2^i \) nodes of depth \(i \)
 - at depth \(h - 1 \), the internal nodes are to the left of the external nodes

The last node of a heap is the rightmost internal node of depth \(h - 1 \)
Height of a Heap (§2.4.3)

Theorem: A heap storing n keys has height $O(\log n)$

Proof: (we apply the complete binary tree property)

- Let h be the height of a heap storing n keys
- Since there are 2^i keys at depth $i = 0, \ldots, h - 2$ and at least one key at depth $h - 1$, we have $n \geq 1 + 2 + 4 + \ldots + 2^{h-2} + 1$
- Thus, $n \geq 2^{h-1}$, i.e., $h \leq \log n + 1$

<table>
<thead>
<tr>
<th>depth</th>
<th>keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$h-2$</td>
<td>2^{h-2}</td>
</tr>
<tr>
<td>$h-1$</td>
<td>1</td>
</tr>
</tbody>
</table>
Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node
- For simplicity, we show only the keys in the pictures
Insertion into a Heap (§2.4.3)

- Method `insertItem` of the priority queue ADT corresponds to the insertion of a key \(k \) to the heap.
- The insertion algorithm consists of three steps:
 - Find the insertion node \(z \) (the new last node).
 - Store \(k \) at \(z \) and expand \(z \) into an internal node.
 - Restore the heap-order property (discussed next).
Upheap

- After the insertion of a new key k, the heap-order property may be violated.
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node.
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k.
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time.
Removal from a Heap (§2.4.3)

- Method `removeMin` of the priority queue ADT corresponds to the removal of the root key from the heap.
- The removal algorithm consists of three steps:
 - Replace the root key with the key of the last node w.
 - Compress w and its children into a leaf.
 - Restore the heap-order property (discussed next).
Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated.
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root.
- Upheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k.
- Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time.
Updating the Last Node

- The insertion node can be found by traversing a path of $O(\log n)$ nodes:
 - While the current node is a right child, go to the parent node
 - If the current node is a left child, go to the right child
 - While the current node is internal, go to the left child

- Similar algorithm for updating the last node after a removal
Heap-Sort (§2.4.4)

Consider a priority queue with n items implemented by means of a heap
- the space used is $O(n)$
- methods `insertItem` and `removeMin` take $O(\log n)$ time
- methods `size`, `isEmpty`, `minKey`, and `minElement` take time $O(1)$ time

Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time

The resulting algorithm is called heap-sort

Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort
Vector-based Heap Implementation (§2.4.3)

- We can represent a heap with \(n \) keys by means of a vector of length \(n + 1 \)
- For the node at rank \(i \):
 - the left child is at rank \(2i \)
 - the right child is at rank \(2i + 1 \)
- Links between nodes are not explicitly stored
- The leaves are not represented
- The cell at rank 0 is not used
- Operation insertItem corresponds to inserting at rank \(n + 1 \)
- Operation removeMin corresponds to removing at rank \(n \)
- Yields in-place heap-sort
Merging Two Heaps

- We are given two heaps and a key k.
- We create a new heap with the root node storing k and with the two heaps as subtrees.
- We perform downheap to restore the heap-order property.
We can construct a heap storing n given keys in using a bottom-up construction with $\log n$ phases.

In phase i, pairs of heaps with $2^i - 1$ keys are merged into heaps with $2^{i+1} - 1$ keys.
Example

Heaps and Priority Queues
Example (contd.)

Heaps and Priority Queues
Example (contd.)
Example (end)
Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path).
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is $O(n)$.
- Thus, bottom-up heap construction runs in $O(n)$ time.
- Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.