Heaps and Priority Queues

Priority Queue ADT (§ 2.4.1)

- A priority queue stores a collection of items
- An item is a pair (key, element)
- Main methods of the Priority Queue ADT
 - insertItem(k, o)
 inserts an item with key k
 and element o
 - removeMin()
 removes the item with
 smallest key and returns its
 element

- Additional methods
 - minKey()
 returns, but does not
 remove, the smallest key of
 an item
 - minElement()
 returns, but does not
 remove, the element of an
 item with smallest key
 - size(), isEmpty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Total Order Relation

- Keys in a priority queue can be arbitrary objects on which an order is defined
- Two distinct items in a priority queue can have the same key

- ◆ Mathematical concept of total order relation ≤
 - Reflexive property:
 x ≤ x
 - Antisymmetric property: $x \le y \land y \le x \Rightarrow x = y$
 - **Transitive** property: $x \le y \land y \le z \Rightarrow x \le z$

Comparator ADT (§ 2.4.1)

- A comparator encapsulates the action of comparing two objects according to a given total order relation
- A generic priority queue uses an auxiliary comparator
- The comparator is external to the keys being compared
- When the priority queue needs to compare two keys, it uses its comparator

- Methods of the Comparator ADT, all with Boolean return type
 - isLessThan(x, y)
 - isLessThanOrEqualTo(x,y)
 - isEqualTo(x,y)
 - isGreaterThan(x, y)
 - isGreaterThanOrEqualTo(x,y)
 - isComparable(x)

Sorting with a Priority Queue (§ 2.4.

- We can use a priority queue to sort a set of comparable elements
 - Insert the elements one by one with a series of insertItem(e, e) operations
 - Remove the elements in sorted order with a series of removeMin() operations
- The running time of this sorting method depends on the priority queue implementation

```
Algorithm PQ-Sort(S, C)
     Input sequence S, comparator C
     for the elements of S
     Output sequence S sorted in
     increasing order according to C
    P \leftarrow priority queue with
         comparator C
     while \neg S.isEmpty ()
         e \leftarrow S.remove(S. first())
         P.insertItem(e, e)
     while \neg P.isEmpty()
         e \leftarrow P.removeMin()
         S.insertLast(e)
```

Sequence-based Priority Queue

Implementation with an unsorted list

- Performance:
 - insertItem takes O(1) time since we can insert the item at the beginning or end of the sequence
 - removeMin, minKey and minElement take O(n) time since we have to traverse the entire sequence to find the smallest key

Implementation with a sorted list

- Performance:
 - insertItem takes O(n) time since we have to find the place where to insert the item
 - removeMin, minKey and minElement take O(1) time since the smallest key is at the beginning of the sequence

Selection-Sort

- Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence
- Running time of Selection-sort:
 - Inserting the elements into the priority queue with n insertItem operations takes O(n) time
 - Removing the elements in sorted order from the priority queue with n removeMin operations takes time proportional to

$$1 + 2 + ... + n$$

• Selection-sort runs in $O(n^2)$ time

Insertion-Sort

- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence
- Running time of Insertion-sort:
 - Inserting the elements into the priority queue with *n* insertItem operations takes time proportional to

$$1 + 2 + ... + n$$

- Removing the elements in sorted order from the priority queue with a series of n removeMin operations takes O(n) time
- Insertion-sort runs in $O(n^2)$ time

What is a heap (§2.4.3)

- A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 - Heap-Order: for every internal node v other than the root, key(v) ≥ key(parent(v))
 - Complete Binary Tree: let h
 be the height of the heap
 - for i = 0, ..., h 1, there are 2^i nodes of depth i
 - at depth h 1, the internal nodes are to the left of the external nodes

The last node of a heap is the rightmost internal node of depth h − 1

Height of a Heap (§2.4.3)

- Theorem: A heap storing n keys has height $O(\log n)$ Proof: (we apply the complete binary tree property)
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth i = 0, ..., h-2 and at least one key at depth h-1, we have $n \ge 1+2+4+...+2^{h-2}+1$
 - Thus, $n \ge 2^{h-1}$, i.e., $h \le \log n + 1$

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node
- For simplicity, we show only the keys in the pictures

Insertion into a Heap (§2.4.3)

- Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z
 (the new last node)
 - Store k at z and expand z into an internal node
 - Restore the heap-order property (discussed next)

Upheap

- lacktriangle After the insertion of a new key k, the heap-order property may be violated
- lacktriangle Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- lacktriangle Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

Removal from a Heap (§2.4.3)

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Compress w and its children into a leaf
 - Restore the heap-order property (discussed next)

Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- lacktriangle Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- lacktriangle Upheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- \bullet Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

Updating the Last Node

- The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - While the current node is a right child, go to the parent node
 - If the current node is a left child, go to the right child
 - While the current node is internal, go to the left child
- Similar algorithm for updating the last node after a removal

Heap-Sort (§2.4.4)

- Consider a priority
 queue with n items
 implemented by means
 of a heap
 - the space used is O(n)
 - methods insertItem and removeMin take O(log n) time
 - methods size, isEmpty,
 minKey, and minElement
 take time O(1) time

- Using a heap-based priority queue, we can sort a sequence of n elements in O(n log n) time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

Vector-based Heap Implementation (§2.4.3)

- We can represent a heap with n keys by means of a vector of length n + 1
- For the node at rank i
 - the left child is at rank 2i
 - the right child is at rank 2i + 1
- Links between nodes are not explicitly stored
- The leaves are not represented
- The cell at rank 0 is not used
- Operation insertItem corresponds to inserting at rank n + 1
- Operation removeMin corresponds to removing at rank n
- Yields in-place heap-sort

	2	5	6	9	7
0	1	2	3	4	5

Merging Two Heaps

- We are given two two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heaporder property

Bottom-up Heap Construction (§2.4.3)

- We can construct a heap storing n given keys in using a bottom-up construction with log n phases
- In phase i, pairs of heaps with 2ⁱ −1 keys are merged into heaps with 2ⁱ⁺¹−1 keys

Example (end)

Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n)
- \bullet Thus, bottom-up heap construction runs in O(n) time
- lacktriangle Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort

