Merge Sort

7 2 | 9 4 → 2 4 7 9

7 | 2 → 2 7

9 | 4 → 4 9

7 → 7
2 → 2
9 → 9
4 → 4
Outline and Reading

- Divide-and-conquer paradigm (§4.1.1)
- Merge-sort (§4.1.1)
 - Algorithm
 - Merging two sorted sequences
 - Merge-sort tree
 - Execution example
 - Analysis
- Generic merging and set operations (§4.2.1)
- Summary of sorting algorithms (§4.2.1)
Divide-and-Conquer

- **Divide-and conquer** is a general algorithm design paradigm:
 - **Divide**: divide the input data S in two disjoint subsets S_1 and S_2
 - **Recur**: solve the subproblems associated with S_1 and S_2
 - **Conquer**: combine the solutions for S_1 and S_2 into a solution for S

- The base case for the recursion are subproblems of size 0 or 1

- **Merge-sort** is a sorting algorithm based on the divide-and-conquer paradigm
 - **Like heap-sort**
 - It uses a comparator
 - It has $O(n \log n)$ running time
 - **Unlike heap-sort**
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)
Merge-Sort

Merge-sort on an input sequence S with n elements consists of three steps:

- **Divide**: partition S into two sequences S_1 and S_2 of about $n/2$ elements each
- **Recur**: recursively sort S_1 and S_2
- **Conquer**: merge S_1 and S_2 into a unique sorted sequence

Algorithm $mergeSort(S, C)$

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if $S.size() > 1$

$\begin{align*}
(S_1, S_2) &\leftarrow partition(S, n/2) \\
mergeSort(S_1, C) &\\nmergeSort(S_2, C) &\\nS &\leftarrow merge(S_1, S_2)
\end{align*}$
Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B.
- Merging two sorted sequences, each with $n/2$ elements and implemented by means of a doubly linked list, takes $O(n)$ time.

Algorithm $\text{merge}(A, B)$

Input sequences A and B with $n/2$ elements each

Output sorted sequence of $A \cup B$

$S \leftarrow$ empty sequence

while $\neg A.\text{isEmpty()} \land \neg B.\text{isEmpty()}$

 if $A.\text{first().element()} < B.\text{first().element()}$
 $S.\text{insertLast}(A.\text{remove}(A.\text{first()}))$
 else
 $S.\text{insertLast}(B.\text{remove}(B.\text{first()}))$

while $\neg A.\text{isEmpty()}$

 $S.\text{insertLast}(A.\text{remove}(A.\text{first()}))$

while $\neg B.\text{isEmpty()}$

 $S.\text{insertLast}(B.\text{remove}(B.\text{first()}))$

return S
Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree:
- each node represents a recursive call of merge-sort and stores:
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
- the root is the initial call
- the leaves are calls on subsequences of size 0 or 1
Execution Example

Partition

Merge Sort
Execution Example (cont.)

Recursive call, partition

7 2 9 4 | 3 8 6 1

7 2 | 9 4
Execution Example (cont.)

Recursive call, partition

Merge Sort
Execution Example (cont.)

Recursive call, base case

Merge Sort
Execution Example (cont.)

Recursive call, base case

Merge Sort
Execution Example (cont.)

Merge Sort
Execution Example (cont.)

Recursive call, ..., base case, merge

Merge Sort
Execution Example (cont.)

Merge Sort

Merge
Execution Example (cont.)

Recursive call, ..., merge, merge

```
7 2 9 4 | 3 8 6 1
```

```
7 2 | 9 4 -> 2 4 7 9
```

```
7 | 2 -> 2 7
```

```
9 4 -> 4 9
```

```
3 8 | 6 1 -> 1 3 6 8
```

```
3 8 -> 3 8
```

```
6 1 -> 1 6
```

```
7 -> 7
```

```
2 -> 2
```

```
9 -> 9
```

```
4 -> 4
```

```
3 -> 3
```

```
8 -> 8
```

```
6 -> 6
```

```
1 -> 1
```
Execution Example (cont.)

Merge

```
7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9
```

```
7 2 | 9 4 → 2 4 7 9
```

```
3 8 6 1 → 1 3 6 8
```

```
7 | 2 → 2 7
```

```
9 4 → 4 9
```

```
3 8 → 3 8
```

```
6 1 → 1 6
```

```
7 → 7
```

```
2 → 2
```

```
9 → 9
```

```
4 → 4
```

```
3 → 3
```

```
8 → 8
```

```
6 → 6
```

```
1 → 1
```
Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- The overall amount or work done at the nodes of depth i is $O(n)$
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

<table>
<thead>
<tr>
<th>depth</th>
<th>#seqs</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$n/2$</td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>$n/2^i$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>slow, in-place, for small data sets (< 1K)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>slow, in-place, for small data sets (< 1K)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>fast, in-place, for large data sets (1K — 1M)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>fast, sequential data access, for huge data sets (> 1M)</td>
</tr>
</tbody>
</table>