NP-Completeness (2)
Outline and Reading

Definitions (§13.1-2)

- NP is the set of all problems (languages) that can be
 - accepted non-deterministically (using “choose” operations) in polynomial time.
 - verified in polynomial-time given a certificate y.

Some NP-complete problems (§13.3)

- Problem reduction
- SAT (and CNF-SAT and 3SAT)
- Vertex Cover
- Clique
- Hamiltonian Cycle
Problem Reduction

A language M is polynomial-time **reducible** to a language L if an instance x for M can be transformed in polynomial time to an instance x' for L such that x is in M if and only if x' is in L.

- Denote this by $M \rightarrow L$.

A problem (language) L is **NP-hard** if every problem in NP is polynomial-time reducible to L.

A problem (language) is **NP-complete** if it is in NP and it is NP-hard.

CIRCUIT-SAT is NP-complete:

- CIRCUIT-SAT is in NP
- For every M in NP, $M \rightarrow$ CIRCUIT-SAT.
Transitivity of Reducibility

If \(A \rightarrow B \) and \(B \rightarrow C \), then \(A \rightarrow C \).

- An input \(x \) for \(A \) can be converted to \(x' \) for \(B \), such that \(x \) is in \(A \) if and only if \(x' \) is in \(B \). Likewise, for \(B \) to \(C \).
- Convert \(x' \) into \(x'' \) for \(C \) such that \(x' \) is in \(B \) iff \(x'' \) is in \(C \).
- Hence, if \(x \) is in \(A \), \(x' \) is in \(B \), and \(x'' \) is in \(C \).
- Likewise, if \(x'' \) is in \(C \), \(x' \) is in \(B \), and \(x \) is in \(A \).
- Thus, \(A \rightarrow C \), since polynomials are closed under composition.

Types of reductions:

- **Local replacement:** Show \(A \rightarrow B \) by dividing an input to \(A \) into components and show how each component can be converted to a component for \(B \).
- **Component design:** Show \(A \rightarrow B \) by building special components for an input of \(B \) that enforce properties needed for \(A \), such as “choice” or “evaluate.”
A Boolean formula is a formula where the variables and operations are Boolean (0/1):
- \((a+b+\neg d+e)(\neg a+\neg c)(\neg b+c+d+e)(a+\neg c+\neg e)\)
- OR: +, AND: (times), NOT: \(\neg\)

SAT: Given a Boolean formula \(S\), is \(S\) satisfiable, that is, can we assign 0’s and 1’s to the variables so that \(S\) is 1 (“true”)?
- Easy to see that CNF-SAT is in NP:
 - Non-deterministically choose an assignment of 0’s and 1’s to the variables and then evaluate each clause. If they are all 1 (“true”), then the formula is satisfiable.
SAT is NP-complete

Reduce CIRCUIT-SAT to SAT.

- Given a Boolean circuit, make a variable for every input and gate.
- Create a sub-formula for each gate, characterizing its effect. Form the formula as the output variable AND-ed with all these sub-formulas:
 - Example: \(m((a+b)\leftrightarrow e)(c\leftrightarrow \neg f)(d\leftrightarrow \neg g)(e\leftrightarrow \neg h)(ef\leftrightarrow i) \ldots \)

The formula is satisfiable if and only if the Boolean circuit is satisfiable.
The SAT problem is still NP-complete even if the formula is a conjunction of disjuncts, that is, it is in conjunctive normal form (CNF).

The SAT problem is still NP-complete even if it is in CNF and every clause has just 3 literals (a variable or its negation):

(a+b+¬d)(¬a+¬c+e)(¬b+d+e)(a+¬c+¬e)

Reduction from SAT (See §13.3.1).
Vertex Cover

A vertex cover of graph $G = (V,E)$ is a subset W of V, such that, for every edge (a,b) in E, a is in W or b is in W.

VERTEX-COVER: Given a graph G and an integer K, does G have a vertex cover of size at most K?

VERTEX-COVER is in NP: Non-deterministically choose a subset W of size K and check that every edge is covered by W.
Vertex-Cover is NP-complete

Reduce 3SAT to VERTEX-COVER.

Let S be a Boolean formula in CNF with each clause having 3 literals.

For each variable x, create a node for x and $\neg x$, and connect these two:

For each clause $(a+b+c)$, create a triangle and connect these three nodes.
Vertex-Cover is NP-complete

Completing the construction

Connect each literal in a clause triangle to its copy in a variable pair.

E.g., a clause \((-x + y + z)\)

Let \(n\) = # of variables
Let \(m\) = # of clauses
Set \(K = n + 2m\)
Vertex-Cover is NP-complete

Example: \((a+b+c)(\neg a+b+\neg c)(\neg b+\neg c+\neg d)\)

Graph has vertex cover of size \(K=4+6=10\) iff formula is satisfiable.

\[\begin{align*}
11 & \quad 12 & \quad 13 \\
21 & \quad 22 & \quad 23 \\
31 & \quad 32 & \quad 33
\end{align*}\]
A **clique** of a graph $G=(V,E)$ is a subgraph C that is fully-connected (every pair in C has an edge).

CLIQUE: Given a graph G and an integer K, is there a clique in G of size at least K?

This graph has a clique of size 5

CLIQUE is in NP: non-deterministically choose a subset C of size K and check that every pair in C has an edge in G.

NP-Completeness
CLIQUE is NP-Complete

- Reduction from VERTEX-COVER.
- A graph G has a vertex cover of size K if and only if its complement has a clique of size $n-K$.

G

G'
Some Other NP-Complete Problems

- **SET-COVER**: Given a collection of m sets, are there K of these sets whose union is the same as the whole collection of m sets?
 - NP-complete by reduction from VERTEX-COVER

- **SUBSET-SUM**: Given a set of integers and a distinguished integer K, is there a subset of the integers that sums to K?
 - NP-complete by reduction from VERTEX-COVER
Some Other NP-Complete Problems

- **0/1 Knapsack**: Given a collection of items with weights and benefits, is there a subset of weight at most \(W \) and benefit at least \(K \)?
 - NP-complete by reduction from SUBSET-SUM

- **Hamiltonian-Cycle**: Given a graph \(G \), is there a cycle in \(G \) that visits each vertex exactly once?
 - NP-complete by reduction from VERTEX-COVER

- **Traveling Salesperson Tour**: Given a complete weighted graph \(G \), is there a cycle that visits each vertex and has total cost at most \(K \)?
 - NP-complete by reduction from Hamiltonian-Cycle.