NP-Completeness (2)

Outline and Reading

* Definitions (§13.1-2)
- NP is the set of all problems (languages) that can be
- accepted non-deterministically (using "choose" operations) in polynomial time.
- verified in polynomial-time given a certificate y.
* Some NP-complete problems (§13.3)
- Problem reduction
- SAT (and CNF-SAT and 3SAT)
- Vertex Cover
- Clique
- Hamiltonian Cycle

Problem Reduction

- A language M is polynomial-time reducible to a language L if an instance x for M can be transformed in polynomial time to an instance x^{\prime} for L such that x is in M if and only if x^{\prime} is in L.
- Denote this by $\mathrm{M} \rightarrow \mathrm{L}$.
- A problem (language) L is NP-hard if every problem in NP is polynomial-time reducible to L .
A problem (language) is NP-complete if it is in NP and it is NP-hard.
- CIRCUIT-SAT is NP-complete:
- CIRCUIT-SAT is in NP
- For every M in NP, M \rightarrow CIRCUIT-SAT.

Inputs:

Transitivity of Reducibility

If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$.

- An input x for A can be converted to x^{\prime} for B, such that x is in A if and only if x^{\prime} is in B. Likewise, for B to C.
- Convert x^{\prime} into $x^{\prime \prime}$ for C such that x^{\prime} is in B iff $x^{\prime \prime}$ is in C.
- Hence, if x is in A, x^{\prime} is in B, and $x^{\prime \prime}$ is in C.
- Likewise, if $x^{\prime \prime}$ is in C, x^{\prime} is in B, and x is in A.
- Thus, $A \rightarrow C$, since polynomials are closed under composition.
- Types of reductions:
- Local replacement: Show $A \rightarrow B$ by dividing an input to A into components and show how each component can be converted to a component for B .
- Component design: Show A \rightarrow B by building special components for an input of B that enforce properties needed for A, such as "choice" or "evaluate."

NP-Completeness

SAT

A Boolean formula is a formula where the variables and operations are Boolean ($0 / 1$):

- $(a+b+\neg d+e)(\neg a+\neg c)(\neg b+c+d+e)(a+\neg c+\neg e)$
- OR: +, AND: (times), NOT: ᄀ

SAT: Given a Boolean formula S, is S satisfiable, that is, can we assign 0's and 1's to the variables so that S is 1 ("true")?

- Easy to see that CNF-SAT is in NP:
- Non-deterministically choose an assignment of 0's and 1's to the variables and then evaluate each clause. If they are all 1 ("true"), then the formula is satisfiable.

SAT is NP-complete

* Reduce CIRCUIT-SAT to SAT.

- Given a Boolean circuit, make a variable for every input and gate.
- Create a sub-formula for each gate, characterizing its effect. Form the formula as the output variable AND-ed with all these sub-formulas:
- Example: $\mathrm{m}((\mathrm{a}+\mathrm{b}) \leftrightarrow \mathrm{e})(\mathrm{c} \leftrightarrow \neg \mathrm{f})(\mathrm{d} \leftrightarrow \neg \mathrm{g})(\mathrm{e} \leftrightarrow \neg \mathrm{h})(\mathrm{ef} \leftrightarrow \mathrm{i}) .$.

Inputs:

3SAT

The SAT problem is still NP-complete even if the formula is a conjunction of disjuncts, that is, it is in conjunctive normal form (CNF).
The SAT problem is still NP-complete even if it is in CNF and every clause has just 3 literals (a variable or its negation):

- $(a+b+\neg d)(\neg a+\neg c+e)(\neg b+d+e)(a+\neg c+\neg e)$

Reduction from SAT (See §13.3.1).

Vertex Cover

- A vertex cover of graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subset W of V , such that, for every edge (a, b) in E, a is in W or b is in W.
VERTEX-COVER: Given an graph G and an integer K , is does G have a vertex cover of size at most K ?

- VERTEX-COVER is in NP: Non-deterministically choose a subset W of size K and check that every edge is covered by W .

Vertex-Cover is NP-complete

- Reduce 3SAT to VERTEX-COVER.

Let S be a Boolean formula in CNF with each clause having 3 literals.

- For each variable x, create a node for x and $\neg x$, and connect these two:

For each clause ($\mathrm{a}+\mathrm{b}+\mathrm{c}$), create a triangle and connect these three nodes.

Vertex-Cover is NP-complete

- Completing the construction
- Connect each literal in a clause triangle to its copy in a variable pair.
- E.g., a clause ($\neg \mathrm{x}+\mathrm{y}+\mathrm{z}$)

Vertex-Cover is NP-complete

- Example: $(a+b+c)(\neg a+b+\neg c)(\neg b+\neg c+\neg d)$
- Graph has vertex cover of size $\mathrm{K}=4+6=10$ iff formula is satisfiable.

Clique

- A clique of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subgraph C that is fully-connected (every pair in C has an edge).
- CLIQUE: Given a graph G and an integer K, is there a clique in G of size at least K ?

This graph has a clique of size 5

- CLIQUE is in NP: non-deterministically choose a subset C of size K and check that every pair in C has an edge in G.

CLIQUE is NP-Complete

- Reduction from VERTEX-COVER.
- A graph G has a vertex cover of size K if and only if it's complement has a clique of size $n-K$.

G

G^{\prime}

Some Other NP-Complete Problems

* SET-COVER: Given a collection of m sets, are there K of these sets whose union is the same as the whole collection of m sets?
- NP-complete by reduction from VERTEX-COVER
\diamond SUBSET-SUM: Given a set of integers and a distinguished integer K, is there a subset of the integers that sums to K ?
- NP-complete by reduction from VERTEX-COVER

Some Other NP-Complete Problems

- 0/1 Knapsack: Given a collection of items with weights and benefits, is there a subset of weight at most W and benefit at least K ?
- NP-complete by reduction from SUBSET-SUM
* Hamiltonian-Cycle: Given an graph G, is there a cycle in G that visits each vertex exactly once?
- NP-complete by reduction from VERTEX-COVER
* Traveling Saleperson Tour: Given a complete weighted graph G , is there a cycle that visits each vertex and has total cost at most K?
- NP-complete by reduction from Hamiltonian-Cycle.

