
NP-Completeness 1

NP-Completeness (2)

x1 x3x2x1 x4x3x2 x4

11

12

13 21

22

23 31

32

33

NP-Completeness 2

Outline and Reading

Definitions (§13.1-2)

 NP is the set of all problems (languages) that can be

 accepted non-deterministically (using “choose”
operations) in polynomial time.

 verified in polynomial-time given a certificate y.

Some NP-complete problems (§13.3)
 Problem reduction

 SAT (and CNF-SAT and 3SAT)

 Vertex Cover

 Clique

 Hamiltonian Cycle

NP-Completeness 3

Problem Reduction
A language M is polynomial-time reducible to a
language L if an instance x for M can be transformed in
polynomial time to an instance x’ for L such that x is in M
if and only if x’ is in L.
 Denote this by ML.

A problem (language) L is NP-hard if every problem in
NP is polynomial-time reducible to L.

A problem (language) is NP-complete if it is in NP and
it is NP-hard.

CIRCUIT-SAT is NP-complete:
 CIRCUIT-SAT is in NP

 For every M in NP, M  CIRCUIT-SAT.

Inputs:

0

1

0

1

1
1

1

1

Output:

0

1

0
0 1

NP-Completeness 4

Transitivity of Reducibility
If A  B and B  C, then A  C.

 An input x for A can be converted to x’ for B, such that x is in A
if and only if x’ is in B. Likewise, for B to C.

 Convert x’ into x’’ for C such that x’ is in B iff x’’ is in C.

 Hence, if x is in A, x’ is in B, and x’’ is in C.

 Likewise, if x’’ is in C, x’ is in B, and x is in A.

 Thus, A  C, since polynomials are closed under composition.

Types of reductions:

 Local replacement: Show A  B by dividing an input to A
into components and show how each component can be
converted to a component for B.

 Component design: Show A  B by building special
components for an input of B that enforce properties needed
for A, such as “choice” or “evaluate.”

NP-Completeness 5

SAT

A Boolean formula is a formula where the
variables and operations are Boolean (0/1):

 (a+b+¬d+e)(¬a+¬c)(¬b+c+d+e)(a+¬c+¬e)

 OR: +, AND: (times), NOT: ¬

SAT: Given a Boolean formula S, is S
satisfiable, that is, can we assign 0’s and 1’s
to the variables so that S is 1 (“true”)?

 Easy to see that CNF-SAT is in NP:

 Non-deterministically choose an assignment of 0’s and
1’s to the variables and then evaluate each clause. If
they are all 1 (“true”), then the formula is satisfiable.

NP-Completeness 6

SAT is NP-complete
Reduce CIRCUIT-SAT to SAT.

 Given a Boolean circuit, make a variable for every
input and gate.

 Create a sub-formula for each gate, characterizing
its effect. Form the formula as the output variable
AND-ed with all these sub-formulas:

 Example: m((a+b)↔e)(c↔¬f)(d↔¬g)(e↔¬h)(ef↔i)…
Inputs:

a

b

c

e

f
i

d

m

Output:

h

k

g j n

The formula is satisfiable
if and only if the
Boolean circuit
is satisfiable.

NP-Completeness 7

3SAT

The SAT problem is still NP-complete even if
the formula is a conjunction of disjuncts, that
is, it is in conjunctive normal form (CNF).

The SAT problem is still NP-complete even if
it is in CNF and every clause has just 3 literals
(a variable or its negation):

 (a+b+¬d)(¬a+¬c+e)(¬b+d+e)(a+¬c+¬e)

Reduction from SAT (See §13.3.1).

NP-Completeness 8

Vertex Cover

A vertex cover of graph G=(V,E) is a subset W of V, such
that, for every edge (a,b) in E, a is in W or b is in W.

VERTEX-COVER: Given an graph G and an integer K, is
does G have a vertex cover of size at most K?

VERTEX-COVER is in NP: Non-deterministically choose a
subset W of size K and check that every edge is covered
by W.

NP-Completeness 9

Vertex-Cover is NP-complete
Reduce 3SAT to VERTEX-COVER.

Let S be a Boolean formula in CNF with each clause
having 3 literals.

For each variable x, create a node for x and ¬x, and
connect these two:

For each clause (a+b+c), create a triangle and
connect these three nodes.

x ¬x

c b

a

NP-Completeness 10

Vertex-Cover is NP-complete
Completing the construction

Connect each literal in a clause triangle to its copy
in a variable pair.

E.g., a clause (¬x+y+z)

Let n=# of variables

Let m=# of clauses

Set K=n+2m

y ¬y

c b

a

x ¬x z ¬z

NP-Completeness 11

Vertex-Cover is NP-complete

¬dd

11

12

13 21

22

23 31

32

33

Example: (a+b+c)(¬a+b+¬c)(¬b+¬c+¬d)

Graph has vertex cover of size K=4+6=10 iff formula is
satisfiable.

¬cc¬aa ¬bb

NP-Completeness 12

Clique

A clique of a graph G=(V,E) is a subgraph C that is
fully-connected (every pair in C has an edge).

CLIQUE: Given a graph G and an integer K, is there a
clique in G of size at least K?

CLIQUE is in NP: non-deterministically choose a
subset C of size K and check that every pair in C has
an edge in G.

This graph has
a clique of size 5

NP-Completeness 13

CLIQUE is NP-Complete

G’G

Reduction from VERTEX-COVER.

A graph G has a vertex cover of size K if and only if
it’s complement has a clique of size n-K.

NP-Completeness 14

Some Other
NP-Complete Problems

SET-COVER: Given a collection of m sets, are
there K of these sets whose union is the
same as the whole collection of m sets?

 NP-complete by reduction from VERTEX-COVER

SUBSET-SUM: Given a set of integers and a
distinguished integer K, is there a subset of
the integers that sums to K?

 NP-complete by reduction from VERTEX-COVER

NP-Completeness 15

Some Other
NP-Complete Problems

0/1 Knapsack: Given a collection of items with
weights and benefits, is there a subset of weight
at most W and benefit at least K?

 NP-complete by reduction from SUBSET-SUM

Hamiltonian-Cycle: Given an graph G, is there a
cycle in G that visits each vertex exactly once?

 NP-complete by reduction from VERTEX-COVER

Traveling Saleperson Tour: Given a complete
weighted graph G, is there a cycle that visits each
vertex and has total cost at most K?

 NP-complete by reduction from Hamiltonian-Cycle.

