Pattern Matching

a	b	\boldsymbol{a}	C	a	\boldsymbol{a}	b
				1		
\boldsymbol{a}	b	\boldsymbol{a}	C	\boldsymbol{a}	b	
	4			4	3	2
	\boldsymbol{a}	b	\boldsymbol{a}	c	a	b

Outline and Reading

-Strings (§9.1.1)

- Pattern matching algorithms
- Brute-force algorithm (§9.1.2)
- Boyer-Moore algorithm (§9.1.3)
- Knuth-Morris-Pratt algorithm (§9.1.4)

Strings

- A string is a sequence of characters
- Examples of strings:
- Java program
- HTML document
- DNA sequence
- Digitized image
- An alphabet Σ is the set of possible characters for a family of strings
- Example of alphabets:
- ASCII
- Unicode
- $\{0,1\}$
- $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
- Let \boldsymbol{P} be a string of size \boldsymbol{m}
- A substring $P[i . . j]$ of P is the subsequence of \boldsymbol{P} consisting of the characters with ranks between i and j
- A prefix of \boldsymbol{P} is a substring of the type $P[0$.. $i]$
- A suffix of \boldsymbol{P} is a substring of the type $P[i . . . m-1]$
- Given strings \boldsymbol{T} (text) and \boldsymbol{P} (pattern), the pattern matching problem consists of finding a substring of \boldsymbol{T} equal to \boldsymbol{P}
- Applications:
- Text editors
- Search engines
- Biological research

Brute-Force Algorithm

- The brute-force pattern matching algorithm compares the pattern \boldsymbol{P} with the text \boldsymbol{T} for each possible shift of \boldsymbol{P} relative to T, until either
- a match is found, or
- all placements of the pattern have been tried
- Brute-force pattern matching runs in time $\boldsymbol{O}(\boldsymbol{n m})$
- Example of worst case:
- $T=a a a \ldots a h$
- $P=a a a h$
- may occur in images and DNA sequences
- unlikely in English text

Algorithm BruteForceMatch(T, P)
Input text \boldsymbol{T} of size \boldsymbol{n} and pattern
\boldsymbol{P} of size \boldsymbol{m}
Output starting index of a
substring of \boldsymbol{T} equal to \boldsymbol{P} or -1
if no such substring exists
for $i \leftarrow 0$ to $n-m$
\{ test shift \boldsymbol{i} of the pattern \}
$j \leftarrow 0$
while $j<m \wedge T[i+j]=P[j]$
$j \leftarrow j+1$
if $\boldsymbol{j}=\boldsymbol{m}$
return $i\{$ match at $\boldsymbol{i}\}$
else
break while loop \{mismatch
return -1 \{no match anywhere \}

Boyer-Moore Heuristics

- The Boyer-Moore's pattern matching algorithm is based on two heuristics
Looking-glass heuristic: Compare \boldsymbol{P} with a subsequence of T moving backwards
Character-jump heuristic: When a mismatch occurs at $T[i]=c$
- If \boldsymbol{P} contains c, shift \boldsymbol{P} to align the last occurrence of \boldsymbol{c} in \boldsymbol{P} with $T[i]$
- Else, shift \boldsymbol{P} to align $\boldsymbol{P}[0]$ with $\boldsymbol{T}[i+1]$
- Example

Last-Occurrence Function

- Boyer-Moore's algorithm preprocesses the pattern \boldsymbol{P} and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where $L(c)$ is defined as
- the largest index \boldsymbol{i} such that $P[i]=\boldsymbol{c}$ or
- -1 if no such index exists
- Example:
- $\Sigma=\{a, b, c, d\}$
- $P=a b a c a b$

\boldsymbol{c}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}
$\boldsymbol{L}(\boldsymbol{c})$	4	5	3	-1

- The last-occurrence function can be represented by an array indexed by the numeric codes of the characters
- The last-occurrence function can be computed in time $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{s})$, where m is the size of P and s is the size of Σ

The Boyer-Moore Algorithm

Algorithm BoyerMooreMatch (T, P, Σ)
$L \leftarrow$ lastOccurenceFunction (P, Σ) $i \leftarrow m-1$
$j \leftarrow m-1$
repeat
if $T[i]=P[j]$
if $\boldsymbol{j}=0$
return i \{ match at i \}
else

$$
i \leftarrow i-1
$$

$$
j \leftarrow j-1
$$

else
\{ character-jump \}
$l \leftarrow L[T[i]$
$\boldsymbol{i} \leftarrow \boldsymbol{i}+\boldsymbol{m}-\min (\boldsymbol{j}, 1+\boldsymbol{l})$
$j \leftarrow m-1$
until $i>n-1$
return -1 \{ no match \}

Case 1: $\boldsymbol{j} \leq 1+\boldsymbol{l}$

Case 2: $1+\boldsymbol{l} \leq \boldsymbol{j}$

Pattern Matching

Example

$$
\begin{aligned}
& \begin{array}{|l|}
\hline a & b & a & c & a & a & b & a & d & c & a & b & a & c & a & b & a & a & b & b \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline a & b & a & c & a & b \\
\hline
\end{array} \\
& \\
& \begin{array}{|l|l|l|l|l|l|}
\hline a & b & a & c & a & b \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline a & b & a & c & a & b \\
\hline
\end{array}
\end{aligned}
$$

Analysis

- Boyer-Moore's algorithm runs in time $\boldsymbol{O}(\boldsymbol{n m}+\boldsymbol{s})$

| a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 5 | 4 | 3 | 2 | 1 | | | |
| b | a | a | a | a | a | | | |
| 12 11 10 9 8
 7 | | | | | | | | |
| | | | | | | | | |
| $\begin{array}{lllllll}18 & 17 & 16 & 15 & 14 & 13\end{array}$ | | | | | | | | |
| | | b | a | a | a | a | a | |
| | $\begin{array}{llllllll}24 & 23 & 22 & 21 & 20 & 19\end{array}$ | | | | | | | |
| | | | b | a | a | a | a | a |

The KMP Algorithm - Motivation

- Knuth-Morris-Pratt's algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of $\boldsymbol{P}[0 . . j]$ that is a suffix of $\boldsymbol{P}[1 . . j]$

KMP Failure Function

- Knuth-Morris-Pratt's algorithm preprocesses the pattern to find matches of prefixes of the pattern with

\boldsymbol{j}	0	1	2	3	4	5
$\boldsymbol{P}[\boldsymbol{j}]$	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}
$\boldsymbol{F}(\boldsymbol{j})$	0	0	1	1	2	3

The failure function $F(j)$ is | . | . | a | b | a | a | b | x | . | . | . | . | . |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | defined as the size of the largest prefix of $\boldsymbol{P}[0 . . j]$ that is also a suffix of $P[1 . j]$

- Knuth-Morris-Pratt's algorithm modifies the bruteforce algorithm so that if a mismatch occurs at $P[j] \neq \boldsymbol{T}[i]$ we set $j \leftarrow \boldsymbol{F}(\boldsymbol{j}-1)$

The KMP Algorithm

- The failure function can be represented by an array and can be computed in $\boldsymbol{O}(\boldsymbol{m})$ time
- At each iteration of the whileloop, either
- i increases by one, or
- the shift amount $i-j$ increases by at least one (observe that $\boldsymbol{F}(\boldsymbol{j}-1)<\boldsymbol{j}$)
- Hence, there are no more than $2 \boldsymbol{n}$ iterations of the while-loop
- Thus, KMP's algorithm runs in optimal time $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$

```
Algorithm KMPMatch (T, P)
    \(F \leftarrow\) failureFunction \((P)\)
    \(i \leftarrow 0\)
    \(j \leftarrow 0\)
    while \(i<n\)
        if \(T[i]=\boldsymbol{P}[j]\)
        if \(j=m-1\)
            return \(i-j\) \{ match \}
        else
            \(i \leftarrow i+1\)
            \(j \leftarrow j+1\)
    else
        if \(j>0\)
        \(\boldsymbol{j} \leftarrow \boldsymbol{F}[\boldsymbol{j}-1]\)
        else
        \(i \leftarrow i+1\)
    return -1 \{ no match \}
```


Computing the Failure Function

- The failure function can be represented by an array and can be computed in $\boldsymbol{O}(\boldsymbol{m})$ time
- The construction is similar to the KMP algorithm itself
- At each iteration of the whileloop, either
- i increases by one, or
- the shift amount $\boldsymbol{i}-\boldsymbol{j}$ increases by at least one (observe that $\boldsymbol{F}(\boldsymbol{j}-1)<\boldsymbol{j}$)
- Hence, there are no more than $2 m$ iterations of the while-loop

```
Algorithm failureF unction(P)
    \(F[0] \leftarrow 0\)
    \(i \leftarrow 1\)
    \(j \leftarrow 0\)
    while \(i<m\)
    if \(P[i]=P[j]\)
        \{we have matched \(\boldsymbol{j}+1\) chars \}
        \(\boldsymbol{F}[i] \leftarrow j+1\)
        \(i \leftarrow i+1\)
    \(j \leftarrow j+1\)
    else if \(j>0\) then
        \{use failure function to shift \(\boldsymbol{P}\) \}
        \(j \leftarrow F[j-1]\)
    else
    \(F[i] \leftarrow 0\{\) no match \}
    \(i \leftarrow i+1\)
```


Example

$$
\begin{aligned}
& \begin{array}{|l|}
\hline a & b & a & c & a & a & b & a & c & c & a & b & a & c & a & b & a & a & b & b \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
a & b & a & c & a & b \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 7 & \\
\hline a & b & a & c & a & b \\
\hline
\end{array} \\
& \begin{array}{lllll}
8 & 9 & 10 & 11 & 12
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline a & b & a & c & a & b \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 13 & \\
\hline a & b & a & c & a & b \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 14 & 15 & 16 & 17 & 18 & 19 \\
\hline a & b & a & c & a & b \\
\hline
\end{array}
\end{aligned}
$$

