Pattern Matching
Outline and Reading

- Strings (§9.1.1)
- Pattern matching algorithms
 - Brute-force algorithm (§9.1.2)
 - Boyer-Moore algorithm (§9.1.3)
 - Knuth-Morris-Pratt algorithm (§9.1.4)
Strings

- A string is a sequence of characters
- Examples of strings:
 - Java program
 - HTML document
 - DNA sequence
 - Digitized image
- An alphabet \(\Sigma \) is the set of possible characters for a family of strings
- Example of alphabets:
 - ASCII
 - Unicode
 - \{0, 1\}
 - \{A, C, G, T\}

Let \(P \) be a string of size \(m \)

- A substring \(P[i .. j] \) of \(P \) is the subsequence of \(P \) consisting of the characters with ranks between \(i \) and \(j \)
- A prefix of \(P \) is a substring of the type \(P[0 .. i] \)
- A suffix of \(P \) is a substring of the type \(P[i .. m - 1] \)

Given strings \(T \) (text) and \(P \) (pattern), the pattern matching problem consists of finding a substring of \(T \) equal to \(P \)

Applications:

- Text editors
- Search engines
- Biological research
Brute-Force Algorithm

- The brute-force pattern matching algorithm compares the pattern P with the text T for each possible shift of P relative to T, until either
 - a match is found, or
 - all placements of the pattern have been tried

- Brute-force pattern matching runs in time $O(nm)$

- Example of worst case:
 - $T = \text{aaa … ah}$
 - $P = \text{aaah}$
 - may occur in images and DNA sequences
 - unlikely in English text

Algorithm

$\text{BruteForceMatch}(T, P)$

Input text T of size n and pattern P of size m

Output starting index of a substring of T equal to P or -1 if no such substring exists

for $i \leftarrow 0$ to $n - m$

{ test shift i of the pattern }

$j \leftarrow 0$

while $j < m \land T[i + j] = P[j]$

$\quad j \leftarrow j + 1$

if $j = m$

$\quad \text{return } i$ \{match at i\}

else

$\quad \text{break while loop \{}$mismatch$\}$

return -1 \{no match anywhere\}
Boyer-Moore Heuristics

The Boyer-Moore’s pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare P with a subsequence of T moving backwards

Character-jump heuristic: When a mismatch occurs at $T[i] = c$
 - If P contains c, shift P to align the last occurrence of c in P with $T[i]$
 - Else, shift P to align $P[0]$ with $T[i + 1]$

Example

a	p	a	t	t	e	r	n	m	a	t	c	h	i	n	g	a	l	g	o	r	i	t	h	m		
			1																							
r	i	t	h	m																						
			3																							
r	i	t	h	m	r	i	t	h	m																	
			5																							
r	i	t	h	m	r	i	t	h	m	r	i	t	h	m												
	11	10	9	8	7																					
r	i	t	h	m	r	i	t	h	m	r	i	t	h	m	r	i	t	h	m							
	2	4	6																							

Pattern Matching
Last-Occurrence Function

Boyer-Moore’s algorithm preprocesses the pattern P and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where $L(c)$ is defined as
- the largest index i such that $P[i] = c$ or
- -1 if no such index exists

Example:
- $\Sigma = \{a, b, c, d\}$
- $P = abacab$

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(c)$</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

The last-occurrence function can be represented by an array indexed by the numeric codes of the characters.

The last-occurrence function can be computed in time $O(m + s)$, where m is the size of P and s is the size of Σ.

The Boyer-Moore Algorithm

Algorithm \textit{BoyerMooreMatch}(T, P, \Sigma)

\begin{align*}
L & \leftarrow \text{lastOccurrenceFunction}(P, \Sigma) \\
i & \leftarrow m - 1 \\
j & \leftarrow m - 1 \\
\text{repeat} & \\
\text{if} & \ T[i] = P[j] \\
\text{if} & \ j = 0 \\
\quad & \text{return } i \ \{ \text{match at } i \} \\
\text{else} & \\
\quad & i \leftarrow i - 1 \\
\quad & j \leftarrow j - 1 \\
\text{else} & \\
\quad & \{ \text{character-jump} \} \\
\quad & l \leftarrow L[T[i]] \\
\quad & i \leftarrow i + m - \min(j, 1 + l) \\
\quad & j \leftarrow m - 1 \\
\text{until} & \ i > n - 1 \\
\text{return} & -1 \ \{ \text{no match} \}
\end{align*}

Case 1: \(j \leq 1 + l \)

Case 2: \(1 + l \leq j \)
Example

```
a b a c a a b a d c a b a c a b a a b b
```

Pattern Matching
Analysis

- Boyer-Moore’s algorithm runs in time $O(nm + s)$
- Example of worst case:
 - $T = \text{aaa} \ldots \text{a}$
 - $P = \text{baaa}$
- The worst case may occur in images and DNA sequences but is unlikely in English text
- Boyer-Moore’s algorithm is significantly faster than the brute-force algorithm on English text
The KMP Algorithm - Motivation

Knuth-Morris-Pratt’s algorithm compares the pattern to the text in **left-to-right**, but shifts the pattern more intelligently than the brute-force algorithm.

When a mismatch occurs, what is the **most** we can shift the pattern so as to avoid redundant comparisons?

Answer: the largest prefix of $P[0..j]$ that is a suffix of $P[1..j]$.

No need to repeat these comparisons

Resume comparing here
Knuth-Morris-Pratt’s algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself.

The **failure function** $F(j)$ is defined as the size of the largest prefix of $P[0..j]$ that is also a suffix of $P[1..j]$.

Knuth-Morris-Pratt’s algorithm modifies the brute-force algorithm so that if a mismatch occurs at $P[j] \neq T[i]$ we set $j \leftarrow F(j - 1)$.

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[j]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>$F(j)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
The KMP Algorithm

- The failure function can be represented by an array and can be computed in $O(m)$ time.
- At each iteration of the while-loop, either
 - i increases by one, or
 - the shift amount $i - j$ increases by at least one (observe that $F(j - 1) < j$)
- Hence, there are no more than $2n$ iterations of the while-loop.
- Thus, KMP’s algorithm runs in optimal time $O(m + n)$.

Algorithm $KMPMatch(T, P)$

\[
F \leftarrow \text{failureFunction}(P)
\]
\[
i \leftarrow 0
\]
\[
j \leftarrow 0
\]
\[
\text{while } i < n
\]
\[
\quad \text{if } T[i] = P[j]
\]
\[
\quad \quad \text{if } j = m - 1
\]
\[
\quad \quad \quad \text{return } i - j \{ \text{ match } \}
\]
\[
\quad \quad \text{else}
\]
\[
\quad \quad \quad i \leftarrow i + 1
\]
\[
\quad \quad \quad j \leftarrow j + 1
\]
\[
\quad \text{else}
\]
\[
\quad \quad \text{if } j > 0
\]
\[
\quad \quad \quad j \leftarrow F[j - 1]
\]
\[
\quad \quad \text{else}
\]
\[
\quad \quad \quad i \leftarrow i + 1
\]
\[
\text{return } -1 \{ \text{ no match } \}
\]
Computing the Failure Function

- The failure function can be represented by an array and can be computed in $O(m)$ time.
- The construction is similar to the KMP algorithm itself.
- At each iteration of the while-loop, either
 - i increases by one, or
 - the shift amount $i - j$ increases by at least one (observe that $F(j - 1) < j$).
- Hence, there are no more than $2m$ iterations of the while-loop.

Algorithm \textit{failureFunction}(P)

\begin{algorithmic}
 \STATE $F[0] \leftarrow 0$
 \STATE $i \leftarrow 1$
 \STATE $j \leftarrow 0$
 \WHILE{$i < m$}
 \IF{$P[i] = P[j]$}
 \STATE \{we have matched $j + 1$ chars\}
 \STATE $F[i] \leftarrow j + 1$
 \STATE $i \leftarrow i + 1$
 \STATE $j \leftarrow j + 1$
 \ELSE IF $j > 0$ \THEN
 \STATE \{use failure function to shift P\}
 \STATE $j \leftarrow F[j - 1]$
 \ELSE
 \STATE $F[i] \leftarrow 0$ \{no match\}
 \STATE $i \leftarrow i + 1$
 \ENDIF
 \ENDWHILE
\end{algorithmic}
Example

Pattern Matching