Quick-Sort

Quick-Sort
Outline and Reading

- Quick-sort (§4.3)
 - Algorithm
 - Partition step
 - Quick-sort tree
 - Execution example
- Analysis of quick-sort (4.3.1)
- In-place quick-sort (§4.8)
- Summary of sorting algorithms
Quick-Sort

Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

- **Divide**: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x

- **Recur**: sort L and G

- **Conquer**: join L, E and G
Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x

- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $O(1)$ time

- Thus, the partition step of quick-sort takes $O(n)$ time

Algorithm $\text{partition}(S, p)$

Input sequence S, position p of pivot

Output subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp.

L, E, $G \leftarrow$ empty sequences

$x \leftarrow S.remove(p)$

while $\neg S.isEmpty()$

 $y \leftarrow S.remove(S.first())$

 if $y < x$
 $L.insertLast(y)$
 else if $y = x$
 $E.insertLast(y)$
 else
 $G.insertLast(y)$

return L, E, G
Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree

- Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

```
7 4 9 6 2 → 2 4 6 7 9
```

```
4 2 → 2 4
7 9 → 7 9
2 → 2
9 → 9
```
Execution Example

Pivot selection

7 2 9 4 3 7 6 1
Execution Example (cont.)

Partition, recursive call, pivot selection

```
7 2 9 4 3 7 6 1
```

```
2 4 3 1
```

```
2 4 3 1
```

```
1 3 8 6
```

```
1 3 8 6
```

```
2
```

```
2
```
Execution Example (cont.)

Partition, recursive call, base case

![Diagram of quicksort execution example]
Execution Example (cont.)

Recursive call, ..., base case, join
Execution Example (cont.)

Recursive call, pivot selection

```
7 2 9 4 3 7 6 1
```

```
2 4 3 1 → 1 2 3 4
```

```
1 → 1
```

```
4 3 → 3 4
```

```
4 → 4
```

```
7 9 7
```

```
```

```
```

Quick-Sort 10
Execution Example (cont.)

Partition, ..., recursive call, base case
Execution Example (cont.)

Join, join

\[
\begin{array}{c}
7 & 2 & 9 & 4 & 3 & 7 & 6 & 1 \\
\end{array}
\rightarrow
\begin{array}{c}
1 & 2 & 3 & 4 & 6 & 7 & 7 & 9 \\
\end{array}
\]
Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element.
- One of L and G has size $n - 1$ and the other has size 0.
- The running time is proportional to the sum:
 \[n + (n - 1) + \ldots + 2 + 1 \]
- Thus, the worst-case running time of quick-sort is $O(n^2)$.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>$n - 1$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$n - 1$</td>
<td>1</td>
</tr>
</tbody>
</table>

Diagram:

- The diagram illustrates the recursive nature of the quick-sort algorithm, showing the depth versus time for different splits.
Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s

- **Good call**: the sizes of L and G are each less than $3s/4$
- **Bad call**: one of L and G has size greater than $3s/4$

A call is **good** with probability $1/2$

- $1/2$ of the possible pivots cause good calls:

012345678910111213141516

Bad pivots | **Good pivots** | **Bad pivots**
Expected Running Time, Part 2

- **Probabilistic Fact:** The expected number of coin tosses required in order to get k heads is 2^k

- For a node of depth i, we expect:
 - $i/2$ ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$

Therefore, we have:
- For a node of depth $2\log_{4/3}n$, the expected input size is one
- The expected height of the quick-sort tree is $O(\log n)$

The amount of work done at the nodes of the same depth is $O(n)$

Thus, the expected running time of quick-sort is $O(n \log n)$

Total expected time: $O(n \log n)$
In-Place Quick-Sort

Quick-sort can be implemented to run in-place.

In the partition step, we use replace operations to rearrange the elements of the input sequence such that:

- the elements less than the pivot have rank less than h
- the elements equal to the pivot have rank between h and k
- the elements greater than the pivot have rank greater than k

The recursive calls consider:

- elements with rank less than h
- elements with rank greater than k

Algorithm $inPlaceQuickSort(S, l, r)$

Input sequence S, ranks l and r

Output sequence S with the elements of rank between l and r rearranged in increasing order

1. if $l \geq r$
 - return
2. $i \leftarrow$ a random integer between l and r
3. $x \leftarrow S\.elemAtRank(i)$
4. $(h, k) \leftarrow inPlacePartition(x)$
5. $inPlaceQuickSort(S, l, h - 1)$
6. $inPlaceQuickSort(S, k + 1, r)$
In-Place Partitioning

- Perform the partition using two indices to split S into L and $E \cup G$ (a similar method can split $E \cup G$ into E and G).

$$3 \ 2 \ 5 \ 1 \ 0 \ 7 \ 3 \ 5 \ 9 \ 2 \ 7 \ 9 \ 8 \ 9 \ 7 \ \boxed{6} \ 9$$

(pivot = 6)

- Repeat until j and k cross:
 - Scan j to the right until finding an element $\geq x$.
 - Scan k to the left until finding an element $< x$.
 - Swap elements at indices j and k
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>quick-sort</td>
<td>$O(n \log n)$ expected</td>
<td>in-place, randomized, fastest (good for large inputs)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>in-place, fast (good for large inputs)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>sequential data access, fast (good for huge inputs)</td>
</tr>
</tbody>
</table>