Red-Black Trees

Diagram of a Red-Black Tree with node values 3, 4, 6, and 8.
Outline and Reading

- From (2,4) trees to red-black trees (§3.3.3)
- Red-black tree (§ 3.3.3)
 - Definition
 - Height
 - Insertion
 - restructuring
 - recoloring
 - Deletion
 - restructuring
 - recoloring
 - adjustment
From (2,4) to Red-Black Trees

- A red-black tree is a representation of a (2,4) tree by means of a binary tree whose nodes are colored red or black.
- In comparison with its associated (2,4) tree, a red-black tree has:
 - Same logarithmic time performance.
 - Simpler implementation with a single node type.

![Diagram of (2,4) trees converted to red-black trees](image)
Red-Black Tree

A red-black tree can also be defined as a binary search tree that satisfies the following properties:

- **Root Property**: the root is black
- **External Property**: every leaf is black
- **Internal Property**: the children of a red node are black
- **Depth Property**: all the leaves have the same black depth
Height of a Red-Black Tree

Theorem: A red-black tree storing \(n \) items has height \(O(\log n) \)

Proof:
- The height of a red-black tree is at most twice the height of its associated (2,4) tree, which is \(O(\log n) \)

- The search algorithm for a binary search tree is the same as that for a binary search tree.

- By the above theorem, searching in a red-black tree takes \(O(\log n) \) time.
Insertion

To perform operation $\text{insertItem}(k, o)$, we execute the insertion algorithm for binary search trees and color red the newly inserted node z unless it is the root

- We preserve the root, external, and depth properties
- If the parent v of z is black, we also preserve the internal property and we are done
- Else (v is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree

Example where the insertion of 4 causes a double red:
Remedying a Double Red

Consider a double red with child z and parent v, and let w be the sibling of v

Case 1: w is black
- The double red is an incorrect replacement of a 4-node
- **Restructuring**: we change the 4-node replacement

Case 2: w is red
- The double red corresponds to an overflow
- **Recoloring**: we perform the equivalent of a split
Restructuring

- A restructuring remedies a child-parent double red when the parent red node has a black sibling.
- It is equivalent to restoring the correct replacement of a 4-node.
- The internal property is restored and the other properties are preserved.

\[\begin{array}{c}
\text{w} & 4 & 7 & v \\
2 & 6 & 7 & \end{array} \]
\[\begin{array}{c}
\text{w} & 4 & 7 & v \\
2 & 6 & 7 & \end{array} \]
\[\begin{array}{c}
\text{4 6 7} \\
\text{.. 2 ..} & \end{array} \]
\[\begin{array}{c}
\text{4 6 7} \\
\text{.. 2 ..} & \end{array} \]

1/30/2020 1:59 PM
Red-Black Trees
Restructuring (cont.)

There are four restructuring configurations depending on whether the double red nodes are left or right children.
Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling.
- The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root.
- It is equivalent to performing a split on a 5-node.
- The double red violation may propagate to the grandparent u.

![Tree diagram showing recoloring process](image)
Analysis of Insertion

Algorithm insertItem(k, o)

1. We search for key k to locate the insertion node z
2. We add the new item (k, o) at node z and color z red
3. while doubleRed(z)
 if isBlack(sibling(parent(z)))
 z ← restructure(z)
 return
 else { sibling(parent(z)) is red }
 z ← recolor(z)

Recall that a red-black tree has $O(\log n)$ height
Step 1 takes $O(\log n)$ time because we visit $O(\log n)$ nodes
Step 2 takes $O(1)$ time
Step 3 takes $O(\log n)$ time because we perform
- $O(\log n)$ recolorings, each taking $O(1)$ time, and
- at most one restructuring taking $O(1)$ time
Thus, an insertion in a red-black tree takes $O(\log n)$ time
Deletion

To perform operation \texttt{remove}(k), we first execute the deletion algorithm for binary search trees.

Let \(v \) be the internal node removed, \(w \) the external node removed, and \(r \) the sibling of \(w \).

- If either \(v \) of \(r \) was red, we color \(r \) black and we are done.
- Else (\(v \) and \(r \) were both black) we color \(r \) \textit{double black}, which is a violation of the internal property requiring a reorganization of the tree.

Example where the deletion of 8 causes a double black:
Remedying a Double Black

The algorithm for remedying a double black node \(w \) with sibling \(y \) considers three cases:

Case 1: \(y \) is black and has a red child
- We perform a restructuring, equivalent to a transfer, and we are done

Case 2: \(y \) is black and its children are both black
- We perform a recoloring, equivalent to a fusion, which may propagate up the double black violation

Case 3: \(y \) is red
- We perform an adjustment, equivalent to choosing a different representation of a 3-node, after which either Case 1 or Case 2 applies

Deletion in a red-black tree takes \(O(\log n) \) time
Red-Black Tree Reorganization

<table>
<thead>
<tr>
<th>Insertion</th>
<th>remedy double red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red-black tree action</td>
<td>(2,4) tree action</td>
</tr>
<tr>
<td>restructuring</td>
<td>change of 4-node representation</td>
</tr>
<tr>
<td>recoloring</td>
<td>split</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deletion</th>
<th>remedy double black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red-black tree action</td>
<td>(2,4) tree action</td>
</tr>
<tr>
<td>restructuring</td>
<td>transfer</td>
</tr>
<tr>
<td>recoloring</td>
<td>fusion</td>
</tr>
<tr>
<td>adjustment</td>
<td>change of 3-node representation</td>
</tr>
</tbody>
</table>