Selection
The Selection Problem

Given an integer k and n elements x_1, x_2, \ldots, x_n, taken from a total order, find the k-th smallest element in this set.

Of course, we can sort the set in $O(n \log n)$ time and then index the k-th element.

Can we solve the selection problem faster?
Quick-Select (§ 4.7)

Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:

- **Prune**: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x

- **Search**: depending on k, either answer is in E, or we need to recurse in either L or G

$$
|L| < k \leq |L|+|E|
$$

(done)

$$
k > |L|+|E|
$$

$$
k' = k - |L| - |E|
$$
Partition

- We partition an input sequence as in the quick-sort algorithm:
 - We remove, in turn, each element \(y \) from \(S \) and
 - We insert \(y \) into \(L, E \) or \(G \), depending on the result of the comparison with the pivot \(x \)

- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes \(O(1) \) time

- Thus, the partition step of quick-select takes \(O(n) \) time

Algorithm \(\text{partition}(S, p) \)

Input sequence \(S \), position \(p \) of pivot

Output subsequences \(L, E, G \) of the elements of \(S \) less than, equal to, or greater than the pivot, resp.

\(L, E, G \leftarrow \) empty sequences

\(x \leftarrow S.\text{remove}(p) \)

while \(\neg S.\text{isEmpty}() \)

\(y \leftarrow S.\text{remove}(S.\text{first}()) \)

if \(y < x \)

\(L.\text{insertLast}(y) \)

else if \(y = x \)

\(E.\text{insertLast}(y) \)

else \{ \(y > x \) \}

\(G.\text{insertLast}(y) \)

return \(L, E, G \)
Quick-Select Visualization

An execution of quick-select can be visualized by a recursion path

- Each node represents a recursive call of quick-select, and stores k and the remaining sequence

$k=5, S=(7\ 4\ 9\ 3\ 2\ 6\ 5\ 1\ 8)$

$k=2, S=(7\ 4\ 9\ 6\ 5\ 8)$

$k=2, S=(7\ 4\ 6\ 5)$

$k=1, S=(7\ 6\ 5)$

Selection
Expected Running Time

Consider a recursive call of quick-select on a sequence of size s

- **Good call**: the sizes of L and G are each less than $3s/4$
- **Bad call**: one of L and G has size greater than $3s/4$

A call is **good** with probability $1/2$

- $1/2$ of the possible pivots cause good calls:
Expected Running Time, Part 2

- **Probabilistic Fact #1**: The expected number of coin tosses required in order to get one head is two

- **Probabilistic Fact #2**: Expectation is a linear function:
 - \(E(X + Y) = E(X) + E(Y) \)
 - \(E(cX) = cE(X) \)

Let \(T(n) \) denote the expected running time of quick-select.

- By Fact #2,
 - \(T(n) \leq T(3n/4) + bn \) *(expected # of calls before a good call)*

- By Fact #1,
 - \(T(n) \leq T(3n/4) + 2bn \)

That is, \(T(n) \) is a geometric series:

- \(T(n) \leq 2bn + 2b(3/4)n + 2b(3/4)^2n + 2b(3/4)^3n + ... \)

So \(T(n) \) is \(O(n) \).

We can solve the selection problem in \(O(n) \) expected time.
Deterministic Selection

- We can do selection in $O(n)$ worst-case time.
- Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
 - Divide S into $n/5$ sets of 5 each
 - Find a median in each set
 - Recursively find the median of the “baby” medians.

See Exercise C-4.24 for details of analysis.