
1/13/2020 2:10 PM Sequences 1

Lists and Sequences



1/13/2020 2:10 PM Sequences 2

Outline and Reading

Singly linked list

Position ADT and List ADT (§2.2.2)

Doubly linked list (§ 2.2.2)

Sequence ADT (§ 2.2.3)

Implementations of the sequence ADT 
(§ 2.2.3)

Iterators (2.2.3)



1/13/2020 2:10 PM Sequences 3

Singly Linked List

A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes

Each node stores
 element

 link to the next node

next

elem node

A B C D





1/13/2020 2:10 PM Sequences 4

Stack with a Singly Linked List

We can implement a stack with a singly linked list

The top element is stored at the first node of the list

The space used is O(n) and each operation of the 
Stack ADT takes O(1) time 

t

nodes

elements



1/13/2020 2:10 PM Sequences 5

Queue with a Singly Linked List

We can implement a queue with a singly linked list

 The front element is stored at the first node

 The rear element is stored at the last node

The space used is O(n) and each operation of the 
Queue ADT takes O(1) time

f

r



nodes

elements



1/13/2020 2:10 PM Sequences 6

Position ADT

The Position ADT models the notion of 
place within a data structure where a 
single object is stored

It gives a unified view of diverse ways 
of storing data, such as
 a cell of an array

 a node of a linked list

Just one method:
 object element(): returns the element 

stored at the position



1/13/2020 2:10 PM Sequences 7

List ADT

The List ADT models a 
sequence of positions 
storing arbitrary objects

It establishes a 
before/after relation 
between positions

Generic methods:

 size(), isEmpty()

Query methods:

 isFirst(p), isLast(p)

Accessor methods:

 first(), last()

 before(p), after(p)

Update methods:

 replaceElement(p, o), 
swapElements(p, q) 

 insertBefore(p, o), 
insertAfter(p, o),

 insertFirst(o), 
insertLast(o)

 remove(p)



1/13/2020 2:10 PM Sequences 8

Doubly Linked List
A doubly linked list provides a natural 
implementation of the List ADT

Nodes implement Position and store:

 element

 link to the previous node

 link to the next node

Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node



1/13/2020 2:10 PM Sequences 9

Insertion
We visualize operation insertAfter(p, X), which returns position q

A B X C

A B C

p

A B C

p

X

q

p q



1/13/2020 2:10 PM Sequences 10

Deletion
We visualize remove(p), where p = last()

A B C D

p

A B C

D

p

A B C



1/13/2020 2:10 PM Sequences 11

Performance

In the implementation of the List ADT 
by means of a doubly linked list
 The space used by a list with n elements is 

O(n)

 The space used by each position of the list 
is O(1)

 All the operations of the List ADT run in 
O(1) time

 Operation element() of the 
Position ADT runs in O(1) time



1/13/2020 2:10 PM Sequences 12

Sequence ADT

The Sequence ADT is the 
union of the Vector and 
List ADTs

Elements accessed by
 Rank, or

 Position

Generic methods:
 size(), isEmpty()

Vector-based methods:
 elemAtRank(r), 

replaceAtRank(r, o), 
insertAtRank(r, o), 
removeAtRank(r)

List-based methods:

 first(), last(), 
before(p), after(p), 
replaceElement(p, o), 
swapElements(p, q), 
insertBefore(p, o), 
insertAfter(p, o), 
insertFirst(o), 
insertLast(o), 
remove(p)

Bridge methods:

 atRank(r), rankOf(p)



1/13/2020 2:10 PM Sequences 13

Applications of Sequences

The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered 
collection of elements

Direct applications:

 Generic replacement for stack, queue, vector, or 
list

 small database (e.g., address book)

Indirect applications:

 Building block of more complex data structures



1/13/2020 2:10 PM Sequences 14

Array-based Implementation

We use a 
circular array 
storing 
positions 

A position 
object stores:
 Element

 Rank

Indices f and l
keep track of 
first and last 
positions

0 1 2 3

positions

elements

S

lf



1/13/2020 2:10 PM Sequences 15

Sequence Implementations
Operation Array List

size, isEmpty 1 1

atRank, rankOf, elemAtRank 1 n

first, last, before, after 1 1

replaceElement, swapElements 1 1

replaceAtRank 1 n

insertAtRank, removeAtRank n n

insertFirst, insertLast 1 1

insertAfter, insertBefore n 1

remove n 1



1/13/2020 2:10 PM Sequences 16

Iterators

An iterator abstracts the 
process of scanning through 
a collection of elements

Methods of the ObjectIterator 
ADT:
 object object()

 boolean hasNext()

 object nextObject()

 reset()

Extends the concept of 
Position by adding a traversal 
capability

Implementation with an array 
or singly linked list

An iterator is typically 
associated with an another 
data structure

We can augment the Stack, 
Queue, Vector, List and 
Sequence ADTs with method:

 ObjectIterator elements()

Two notions of iterator:

 snapshot: freezes the 
contents of the data 
structure at a given time

 dynamic: follows changes to 
the data structure


