Sorting Lower Bound

Comparison-Based Sorting (§ 4.4)

Many sorting algorithms are comparison based.

- They sort by making comparisons between pairs of objects
- Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, x₁, x₂, ..., x_n.

Counting Comparisons

Let us just count comparisons then.

Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

Decision Tree Height

- The height of this decision tree is a lower bound on the running time
 Every possible input permutation must lead to a separate leaf output.
 - If not, some input ...4...5... would have same output ordering as ...5...4..., which would be wrong.
- Since there are n!=1*2*..*n leaves. the height is at least log (n!)

The Lower Bound

 Any comparison-based sorting algorithms takes at least log (n!) time
 Therefore, any such algorithm takes time at least

$$\log (n!) \ge \log \left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2)\log (n/2).$$

That is, any comparison-based sorting algorithm must run in Ω(n log n) time.