
Sorting Lower Bound 1

Sorting Lower Bound

Sorting Lower Bound 2

Comparison-Based
Sorting (§ 4.4)

Many sorting algorithms are comparison based.
 They sort by making comparisons between pairs of objects

 Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,
merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running
time of any algorithm that uses comparisons to sort n
elements, x1, x2, …, xn.

Is xi < xj?

yes

no

Sorting Lower Bound 3

Counting Comparisons
Let us just count comparisons then.

Each possible run of the algorithm corresponds
to a root-to-leaf path in a decision tree

x
i
 < x

j
 ?

x
a
 < x

b
 ?

x
m
 < x

o
 ? x

p
 < x

q
 ?x

e
 < x

f
 ? x

k
 < x

l
 ?

x
c
 < x

d
 ?

Sorting Lower Bound 4

Decision Tree Height
The height of this decision tree is a lower bound on the running time

Every possible input permutation must lead to a separate leaf
output.

 If not, some input …4…5… would have same output ordering as
…5…4…, which would be wrong.

Since there are n!=1*2*…*n leaves, the height is at least log (n!)minimum height (time)

log (n!)

x
i
 < x

j
 ?

x
a
 < x

b
 ?

x
m
 < x

o
 ? x

p
 < x

q
 ?x

e
 < x

f
 ? x

k
 < x

l
 ?

x
c
 < x

d
 ?

n!

Sorting Lower Bound 5

The Lower Bound

Any comparison-based sorting algorithms takes at
least log (n!) time

Therefore, any such algorithm takes time at least

That is, any comparison-based sorting algorithm must
run in Ω(n log n) time.

).2/(log)2/(
2

log)!(log
2

nn
n

n

n

