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Comparison-Based 
Sorting (§ 4.4)

Many sorting algorithms are comparison based.
 They sort by making comparisons between pairs of objects

 Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, 
merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running 
time of any algorithm that uses comparisons to sort n 
elements, x1, x2, …, xn.
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Counting Comparisons
Let us just count comparisons then.

Each possible run of the algorithm corresponds 
to a root-to-leaf path in a decision tree
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Decision Tree Height
The height of this decision tree is a lower bound on the running time

Every possible input permutation must lead to a separate leaf 
output.  

 If not, some input …4…5… would have same output ordering as 
…5…4…, which would be wrong.

Since there are n!=1*2*…*n leaves, the height is at least log (n!)minimum height (time)
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The Lower Bound

Any comparison-based sorting algorithms takes at 
least log (n!) time

Therefore, any such algorithm takes time at least

That is, any comparison-based sorting algorithm must 
run in Ω(n log n) time.
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