Sorting Lower Bound
Comparison-Based Sorting (§ 4.4)

- Many sorting algorithms are comparison based.
 - They sort by making comparisons between pairs of objects.
 - Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

- Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort \(n \) elements, \(x_1, x_2, \ldots, x_n \).
Counting Comparisons

Let us just count comparisons then.

Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree.
Decision Tree Height

- The height of this decision tree is a lower bound on the running time.
- Every possible input permutation must lead to a separate leaf output.
 - If not, some input ...4...5... would have the same output ordering as ...5...4..., which would be wrong.
- Since there are $n! = 1*2*...*n$ leaves, the height is at least $\log (n!)$.
The Lower Bound

- Any comparison-based sorting algorithms takes at least \(\log (n!) \) time.
- Therefore, any such algorithm takes time at least

\[
\log (n!) \geq \log \left(\frac{n}{2} \right)^{\frac{n}{2}} = (n / 2) \log (n / 2).
\]

- That is, any comparison-based sorting algorithm must run in \(\Omega(n \log n) \) time.