Stacks

Outline and Reading

- The Stack ADT (§2.1.1)
- Applications of Stacks (§2.1.1)
- Array-based implementation (§2.1.1)
- Growable array-based stack (§1.5)

Abstract Data Types (ADTs)

* An abstract data type (ADT) is an abstraction of a data structure
* An ADT specifies:
- Data stored
- Operations on the data
- Error conditions associated with operations
- Example: ADT modeling a simple stock trading system
- The data stored are buy/sell orders
- The operations supported are
- order buy(stock, shares, price)
- order sell(stock, shares, price)
- void cancel(order)
- Error conditions:
- Buy/sell a nonexistent stock
- Cancel a nonexistent order

The Stack ADT

- The Stack ADT stores arbitrary objects
- Insertions and deletions follow the last-in first-out scheme
- Think of a spring-loaded plate dispenser
- Main stack operations:
- push(object): inserts an element
- object pop(): removes and returns the last inserted element
- Auxiliary stack operations:
- object top(): returns the last inserted element without removing it
- integer size(): returns the number of elements stored
- boolean isEmpty(): indicates whether no elements are stored

Exceptions

* Attempting the execution of an operation of ADT may sometimes cause an error condition, called an exception
* Exceptions are said to be "thrown" by an operation that cannot be executed
* In the Stack ADT, operations pop and top cannot be performed if the stack is empty
* Attempting the execution of pop or top on an empty stack throws an
EmptyStackException

Applications of Stacks

- Direct applications
- Page-visited history in a Web browser
- Undo sequence in a text editor
- Chain of method calls in the Java Virtual Machine
- Indirect applications
- Auxiliary data structure for algorithms
- Component of other data structures

Method Stack in the JVM

- The Java Virtual Machine (JVM) keeps track of the chain of active methods with a stack
- When a method is called, the JVM pushes on the stack a frame containing
- Local variables and return value
- Program counter, keeping track of the statement being executed
- When a method ends, its frame is popped from the stack and control is passed to the method on top of the stack

```main() { int i= 5; foo(i); }```	bar $P C=1$ $m=6$
$\begin{aligned} & \text { foo(int j) \{ } \\ & \text { int k; } \\ & \text { k }=j+1 ; \\ & \text { bar(k); } \end{aligned}$	foo $P C=3$ $j=5$ $k=6$
bar(int m) \{	$\begin{aligned} & \text { main } \\ & P C=2 \\ & i=5 \end{aligned}$

## Array-based Stack

- A simple way of implementing the Stack ADT uses an array
- We add elements from left to right
- A variable keeps track of the index of the top element


## Algorithm size() <br> return $t+1$

Algorithm pop()
if isEmpty() then throw EmptyStackException
else
$t \leftarrow t-1$
return $S[t+1]$


## Array-based Stack (cont.)

- The array storing the stack elements may become full
- A push operation will then throw a
FullStackException
- Limitation of the arraybased implementation

Algorithm push(o)
if $t=$ S.length -1 then throw FullStackException else
$t \leftarrow t+1$
$S[t] \leftarrow o$

- Not intrinsic to the Stack ADT


Stacks

## Performance and Limitations

- Performance
- Let $\boldsymbol{n}$ be the number of elements in the stack
- The space used is $\boldsymbol{O}(\boldsymbol{n})$
- Each operation runs in time $\boldsymbol{O}(1)$
* Limitations
- The maximum size of the stack must be defined a priori and cannot be changed
- Trying to push a new element into a full stack causes an implementation-specific exception


## Computing Spans

- We show how to use a stack as an auxiliary data structure in an algorithm
- Given an an array $X$, the span $S[i]$ of $X[i]$ is the maximum number of consecutive elements $X[j]$ immediately preceding $X[i]$ and such that $X[j] \leq X[i]$
- Spans have applications to financial analysis
- E.g., stock at 52-week high

$\boldsymbol{X}$	6	3	4	5	2
$S$	1	1	2	3	1

## Quadratic Algorithm

Algorithm spans 1 ( $\boldsymbol{X}, \boldsymbol{n}$ )
Input array $\boldsymbol{X}$ of $\boldsymbol{n}$ integers
Output array $S$ of spans of $X$

## \#

$S \leftarrow$ new array of $\boldsymbol{n}$ integers n
for $i \leftarrow 0$ to $\boldsymbol{n}-1$ do n
$s \leftarrow 1$ n
while $s \leq i \wedge X[i-s] \leq X[i]$
$s \leftarrow s+1$ $S[i] \leftarrow S$
return $S$
1

Algorithm spans1 runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

## Computing Spans with a Stack

- We keep in a stack the indices of the elements visible when "looking back"
- We scan the array from left to right
- Let $i$ be the current index
- We pop indices from the stack until we find index $j$ such that $X[i]<X[j]$

- We set $S[i] \leftarrow i-j$
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
- We push $x$ onto the stack


## Linear Algorithm

- Each index of the array
- Is pushed into the stack exactly one
- Is popped from the stack at most once
* The statements in the while-loop are executed at most $n$ times
- Algorithm spans2 runs in $\boldsymbol{O}(\boldsymbol{n})$ time

Algorithm spans2(X, $\boldsymbol{n}$ )
$S \leftarrow$ new array of $n$ integers ..... n
$A \leftarrow$ new empty stack ..... 1
for $i \leftarrow 0$ to $n-1$ do ..... n

while ( $\neg$ A.isEmpty ()$\wedge$ $X[$ A.top ()$] \leq X[i])$ do $n$ A.pop ()$\quad n$
if A.isEmpty() then ..... n
$S[i] \leftarrow i+1$ ..... n
else
$S[i] \leftarrow i-A \cdot \operatorname{top}() \quad n$
A.push(i) n
return $S \quad 1$

## Growable Array-based Stack

* In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one
* How large should the new array be?
- incremental strategy: increase the size by a constant $c$
- doubling strategy: double the size

Algorithm push(o)
if $t=$ S.length -1 then
$A \leftarrow$ new array of
size ...
for $i \leftarrow 0$ to $t$ do
$A[i] \leftarrow S[i]$
$S \leftarrow A$
$t \leftarrow t+1$
$S[t] \leftarrow o$

## Comparison of the Strategies

We compare the incremental strategy and the doubling strategy by analyzing the total time $\boldsymbol{T}(\boldsymbol{n})$ needed to perform a series of $n$ push operations
We assume that we start with an empty stack represented by an array of size 1

- We call amortized time of a push operation the average time taken by a push over the series of operations, i.e., $T(n) / \boldsymbol{n}$


## Incremental Strategy Analysis

$\diamond$ We replace the array $k=n / c$ times

* The total time $T(n)$ of a series of $n$ push operations is proportional to

$$
\begin{gathered}
n+c+2 \boldsymbol{c}+3 \boldsymbol{c}+4 \boldsymbol{c}+\ldots+\boldsymbol{k} \boldsymbol{c}= \\
\boldsymbol{n}+\boldsymbol{c}(1+2+3+\ldots+\boldsymbol{k})= \\
\boldsymbol{n}+\boldsymbol{c k}(\boldsymbol{k}+1) / 2
\end{gathered}
$$

$\diamond$ Since $c$ is a constant, $T(n)$ is $\boldsymbol{O}\left(n+\boldsymbol{k}^{2}\right)$, i.e., $\boldsymbol{O}\left(n^{2}\right)$
$*$ The amortized time of a push operation is $\boldsymbol{O}(\boldsymbol{n})$

## Doubling Strategy Analysis

$*$ We replace the array $k=\log _{2} n$ times
$\stackrel{\text { The total time }}{ } T(n)$ of a series of $n$ push operations is proportional to

$$
\begin{gathered}
\boldsymbol{n}+1+2+4+8+\ldots+2^{k}= \\
\boldsymbol{n}+2^{k+1}-1=2 \boldsymbol{n}-1
\end{gathered}
$$

$\forall T(n)$ is $O(n)$
$\diamond$ The amortized time of a push operation is $\boldsymbol{O}(1)$
geometric series


## Stack Interface in Java

* Java interface corresponding to our Stack ADT
* Requires the definition of class EmptyStackException
* Different from the built-in Java class java.util.Stack
public interface Stack \{
public int size();
public boolean isEmpty();
public Object top() throws EmptyStackException;
public void push(Object o);
public Object pop() throws EmptyStackException; \}


## Array-based Stack in Java

public class ArrayStack implements Stack \{
// holds the stack elements private Object S[ ];
I/ index to top element
private int top $=-1$;
// constructor public ArrayStack(int capacity) \{ S = new Object[capacity]); \}

```
public Object pop()
 throws EmptyStackException {
 if isEmpty()
 throw new EmptyStackException
 ("Empty stack: cannot pop");
 Object temp = S[top];
 // facilitates garbage collection
 S[top] = null;
 top = top - 1;
 return temp;
 }
```

