Stacks
Outline and Reading

- The Stack ADT (§2.1.1)
- Applications of Stacks (§2.1.1)
- Array-based implementation (§2.1.1)
- Growable array-based stack (§1.5)
Abstract Data Types (ADTs)

- An abstract data type (ADT) is an abstraction of a data structure.

- An ADT specifies:
 - Data stored
 - Operations on the data
 - Error conditions associated with operations

Example: ADT modeling a simple stock trading system

- The data stored are buy/sell orders
- The operations supported are:
 - order \texttt{buy}(stock, shares, price)
 - order \texttt{sell}(stock, shares, price)
 - void \texttt{cancel}(order)
- Error conditions:
 - Buy/sell a nonexistent stock
 - Cancel a nonexistent order
The Stack ADT

- The **Stack** ADT stores arbitrary objects.
- Insertions and deletions follow the last-in first-out scheme.
- Think of a spring-loaded plate dispenser.

Main stack operations:
- `push(object)`: inserts an element.
- `object pop()`: removes and returns the last inserted element.

Auxiliary stack operations:
- `object top()`: returns the last inserted element without removing it.
- `integer size()`: returns the number of elements stored.
- `boolean isEmpty()`: indicates whether no elements are stored.
Exceptions

- Attempting the execution of an operation of ADT may sometimes cause an error condition, called an exception.

- Exceptions are said to be “thrown” by an operation that cannot be executed.

- In the Stack ADT, operations pop and top cannot be performed if the stack is empty.

- Attempting the execution of pop or top on an empty stack throws an EmptyStackException.
Applications of Stacks

Direct applications
- Page-visited history in a Web browser
- Undo sequence in a text editor
- Chain of method calls in the Java Virtual Machine

Indirect applications
- Auxiliary data structure for algorithms
- Component of other data structures
Method Stack in the JVM

- The Java Virtual Machine (JVM) keeps track of the chain of active methods with a stack.
- When a method is called, the JVM pushes on the stack a frame containing:
 - Local variables and return value
 - Program counter, keeping track of the statement being executed
- When a method ends, its frame is popped from the stack and control is passed to the method on top of the stack.

```java
main() {
    int i = 5;
    foo(i);
}

foo(int j) {
    int k;
    k = j+1;
    bar(k);
}

bar(int m) {
    ...
}
```
Array-based Stack

A simple way of implementing the Stack ADT uses an array

We add elements from left to right

A variable keeps track of the index of the top element

Algorithm `size()`

return \(t + 1 \)

Algorithm `pop()`

if `isEmpty()` then
 throw `EmptyStackException`
else
 \(t \leftarrow t - 1 \)
 return \(S[t + 1] \)
Array-based Stack (cont.)

- The array storing the stack elements may become full
- A push operation will then throw a FullStackException
 - Limitation of the array-based implementation
 - Not intrinsic to the Stack ADT

Algorithm `push(o)`

```
if t = S.length - 1 then
    throw FullStackException
else
    t ← t + 1
    S[t] ← o
```

Stacks
Performance and Limitations

Performance
- Let n be the number of elements in the stack
- The space used is $O(n)$
- Each operation runs in time $O(1)$

Limitations
- The maximum size of the stack must be defined a priori and cannot be changed
- Trying to push a new element into a full stack causes an implementation-specific exception
Computing Spans

- We show how to use a stack as an auxiliary data structure in an algorithm.
- Given an array X, the span $S[i]$ of $X[i]$ is the maximum number of consecutive elements $X[j]$ immediately preceding $X[i]$ and such that $X[j] \leq X[i]$.
- Spans have applications to financial analysis:
 - E.g., stock at 52-week high.
Quadratic Algorithm

Algorithm spans1(X, n)

- **Input** array X of n integers
- **Output** array S of spans of X

\[S \leftarrow \text{new array of } n \text{ integers} \]

\[
\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do}
\]

\[
\begin{align*}
& s \leftarrow 1 \\
& \text{while } s \leq i \land X[i - s] \leq X[i] \\
& \quad s \leftarrow s + 1 \\
\end{align*}
\]

\[
S[i] \leftarrow s
\]

return S

\[\text{Algorithm } \text{spans1} \text{ runs in } O(n^2) \text{ time}\]
Computing Spans with a Stack

- We keep in a stack the indices of the elements visible when “looking back”
- We scan the array from left to right
 - Let i be the current index
 - We pop indices from the stack until we find index j such that $X[i] < X[j]$
 - We set $S[i] \leftarrow i - j$
 - We push x onto the stack
Linear Algorithm

- Each index of the array
 - Is pushed into the stack exactly one
 - Is popped from the stack at most once
- The statements in the while-loop are executed at most \(n \) times
- Algorithm \(\text{spans2} \) runs in \(O(n) \) time

Algorithm \(\text{spans2}(X, n) \)

\[
\begin{align*}
S & \leftarrow \text{new array of } n \text{ integers} \\
A & \leftarrow \text{new empty stack} \\
\text{for } i & \leftarrow 0 \text{ to } n - 1 \text{ do} \\
\quad \text{while } \neg A.\text{isEmpty()} \land X[A.\text{top()}] \leq X[i] \text{ do} \\
\quad & \phantom{\text{while}} A.\text{pop()} \\
\quad \quad \text{if } A.\text{isEmpty()} \text{ then} \\
\quad & \quad \phantom{\text{while}} S[i] \leftarrow i + 1 \\
\quad \quad \text{else} \\
\quad & \quad \phantom{\text{while}} S[i] \leftarrow i - A.\text{top()} \\
& \text{return } S
\end{align*}
\]

\(\text{Algorithm } \text{spans2}(X, n) \) runs in \(O(n) \) time.
Growable Array-based Stack

- In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one.

- How large should the new array be?
 - Incremental strategy: increase the size by a constant c.
 - Doubling strategy: double the size.

Algorithm `push(o)`

```plaintext
if t = S.length - 1 then
    A ← new array of size ...
    for $i ← 0$ to $t$ do
        $A[i] ← S[i]
        S ← A$
    $t ← t + 1$
    $S[t] ← o$
```

Stacks
Comparison of the Strategies

- We compare the incremental strategy and the doubling strategy by analyzing the total time $T(n)$ needed to perform a series of n push operations.
- We assume that we start with an empty stack represented by an array of size 1.
- We call amortized time of a push operation the average time taken by a push over the series of operations, i.e., $T(n)/n$.
Incremental Strategy Analysis

- We replace the array \(k = n/c \) times
- The total time \(T(n) \) of a series of \(n \) push operations is proportional to
 \[
 n + c + 2c + 3c + 4c + \ldots + kc = \\
 n + c(1 + 2 + 3 + \ldots + k) = \\
 n + ck(k + 1)/2
 \]
- Since \(c \) is a constant, \(T(n) \) is \(O(n + k^2) \), i.e., \(O(n^2) \)
- The amortized time of a push operation is \(O(n) \)
Doubling Strategy Analysis

- We replace the array \(k = \log_2 n \) times
- The total time \(T(n) \) of a series of \(n \) push operations is proportional to
 \[
 n + 1 + 2 + 4 + 8 + \ldots + 2^k = n + 2^{k+1} - 1 = 2n - 1
 \]
- \(T(n) \) is \(O(n) \)
- The amortized time of a push operation is \(O(1) \)
Stack Interface in Java

Java interface corresponding to our Stack ADT

Requires the definition of class EmptyStackException

Different from the built-in Java class java.util.Stack

```java
public interface Stack {
    public int size();
    public boolean isEmpty();
    public Object top() throws EmptyStackException;
    public void push(Object o);
    public Object pop() throws EmptyStackException;
}
```
Array-based Stack in Java

```java
public class ArrayStack implements Stack {
    // holds the stack elements
    private Object S[];
    // index to top element
    private int top = -1;
    // constructor
    public ArrayStack(int capacity) {
        S = new Object[capacity];
    }

    public Object pop() throws EmptyStackException {
        if (isEmpty())
            throw new EmptyStackException("Empty stack: cannot pop");
        Object temp = S[top];
        // facilitates garbage collection
        S[top] = null;
        top = top - 1;
        return temp;
    }
}
```