Data Min Knowl Disc (2011) 23:215-251
DOI 10.1007/s10618-010-0203-9

Summarizing transactional databases with overlapped
hyperrectangles

Yang Xiang - Ruoming Jin - David Fuhry -
Feodor F. Dragan

Received: 13 January 2009 / Accepted: 20 September 2010 / Published online: 24 October 2010
© The Author(s) 2010

Abstract Transactional data are ubiquitous. Several methods, including frequent
itemset mining and co-clustering, have been proposed to analyze transactional dat-
abases. In this work, we propose a new research problem to succinctly summarize
transactional databases. Solving this problem requires linking the high level structure
of the database to a potentially huge number of frequent itemsets. We formulate this
problem as a set covering problem using overlapped hyperrectangles (a concept gener-
ally regarded as tile according to some existing papers); we then prove that this problem
and its several variations are NP-hard, and we further reveal its relationship with the

Responsible editor: Bart Goethals.

A preliminary version of this article appeared in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Xiang et al. 2008). This submission has substantially
extended the previous paper and contains new and major-value added contribution in comparison with the
conference publication.

Y. Xiang (<)
Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
e-mail: yang.xiang@osumc.edu; yxiang @bmi.osu.edu

D. Fuhry

Department of Computer Science and Engineering, The Ohio State University, Columbus,
OH 43210, USA

e-mail: fuhry @cse.ohio-state.edu

R. Jin - F. F. Dragan
Department of Computer Science, Kent State University, Kent, OH 44242, USA

R. Jin
e-mail: jin@cs.kent.edu

F. F. Dragan
e-mail: dragan@cs.kent.edu

@ Springer

216 Y. Xiang et al.

compact representation of a directed bipartite graph. We develop an approximation
algorithm HYPER which can achieve a logarithmic approximation ratio in polynomial
time. We propose a pruning strategy that can significantly speed up the processing
of our algorithm, and we also propose an efficient algorithm HYPER+ to further sum-
marize the set of hyperrectangles by allowing false positive conditions. Additionally,
we show that hyperrectangles generated by our algorithms can be properly visualized.
A detailed study using both real and synthetic datasets shows the effectiveness and
efficiency of our approaches in summarizing transactional databases.

Keywords Hyperrectangle - Tile - Set cover - Summarization -
Transactional database - Frequent itemset mining

1 Introduction

Transactional data are ubiquitous. In the business domain, from the world’s largest
retailers to the multitude of online stores, transactional databases carry the most funda-
mental business information: customer shopping transactions. In biomedical research,
high-throughput experimental data, like microarray, can be recorded as transactional
data, where each transaction records the conditions under which a gene or a protein
is expressed (Madeira and Oliveira 2004) (or alternatively, repressed). In document
indexing and search engine applications, a transactional model can be applied to repre-
sent the document-term relationship. Transactional data also appear in several different
equivalent formats, such as a binary matrix and a bipartite graph, among others.

Driven by the real-world applications, ranging from business intelligence to bioin-
formatics, mining transactional data has been one of the major topics in data mining
research. Several methods have been proposed to analyze transactional data. Among
them, frequent itemset mining (Agrawal and Srikant 1994) is perhaps the most popular
and well-known. It tries to discover sets of items which appear in at least a certain num-
ber of transactions. Recently, co-clustering (Hartigan 1972; Mirkin 1996; Li 2005),
has gained much attention. It tries to simultaneously cluster transactions (rows) and
items (columns) into different respective groups. Using binary matrix representation,
co-clustering can be formulated as a matrix-factorization problem.

In general, we may classify transactional data mining methods and their respective
tools into two categories (borrowing terms from economics): micro-pattern mining
and macro-pattern mining. The first type focuses on providing local knowledge of
the transactional database, exemplified by frequent itemset mining. The second type
works to offer a global view of the entire database; co-clustering is one such method.
However, both types are facing some major challenges which significantly limit their
applicability. On the micro-pattern mining side, the number of patterns being gen-
erated from the transaction data is generally very large, containing many patterns
which differ only slightly from one another. Even though many methods have been
proposed to tackle this issue, it remains a major open problem in the data mining
research community. On the macro-pattern mining side, as argued by Faloutsos and
Megalooikonomou (2007), data mining is essentially the art of trying to develop con-
cise descriptions of a complex dataset, and the conciseness of the description can be

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 217

measured by Kolmogorov complexity. So far, limited efforts have been undertaken
towards this goal of concise descriptions of transactional databases.

Above all, little work has been done to understand the relationship between the
macro-patterns and micro-patterns. Can a small number of macro-patterns or high-
level structures be used to infer or explain the large number of micro-patterns in a trans-
actional database? How can the micro-patterns, like frequent itemsets, be augmented
to form the macro-patterns? Even though this paper will not provide all the answers
for all these questions, we believe the research problem formulated and addressed in
this work takes a solid step in this direction, and particularly sheds light on a list of
important issues related to mining transactional databases.

Specifically, we seek a succinct representation of a transactional database based
on the hyperrectangle notion. A hyperrectangle is a Cartesian product of a set of
transactions (rows) and a set of items (columns). A database is covered by a set of
hyperrectangles if any element in the database, i.e., the transaction-item pair, is con-
tained in at least one of the hyperrectangles in the set. Each hyperrectangle is associated
with a representation cost, which is the sum of the representation costs (commonly the
cardinality) of its set of transactions and set of items. The most succinct representation
for a transactional database is the one which covers the entire database with the least
total cost.

Here, the succinct representation can provide a high-level structure of the database
and thus, mining a succinct representation corresponds to a macro-pattern mining
problem. In addition, the number of hyperrectangles in the set may serve as a mea-
surement of the intrinsic complexity of the transactional database. In the meantime, as
we will show later, the rows of the hyperrectangle generally correspond to the frequent
itemsets, and the columns are those transactions in which they appear. Given this, the
itemsets being used in the representation can be chosen as representative itemsets for
the large collection of frequent itemsets, as they are more informative for revealing the
underlying structures of the transactional database. Thus, the hyperrectangle notion
and the succinct covering problem build a bridge between the macro-structures and
the micro-structures of a transactional database.

1.1 Problem formulation

Let the transactional database DB be represented as a binary matrix such that a cell
(i, j) is 1 if a transaction i contains item j, otherwise 0. Throughout the paper, we
use 7 to denote the set of all transactions of DB, and we use Z to denote the set of all
items of DB. For convenience, we also denote the database DB as the set of all cells
which are 1, i.e., DB = {(i, j) : DB[i, j] = 1}. To distinguish those zero cells in the
binary matrix, a cell in DB is also called as a DB element.

A hyperrectangle H is a Cartesian product of a transaction set 7(7 € 7) and an
itemset I(I C7),iie. H=T x1={(i,j):i € Tandje l}. Let CDB = {H\,
Ha, ..., Hy,}beasetof hyperrectangles, and let the set of cells being covered by CDB
be denoted as CDB® = |J!_, H;.

If database DB is contained in CDB¢, DB C CDB¢, then, we refer to CDB as the
covering database or the summarization of DB. Figure 1 gives a very simple example
of transaction database DB and its covering database CDB.

@ Springer

218 Y. Xiang et al.

Fig. 1 A transaction database i i i i i i

DB, with T = {11, ..., t6) and ! =0 £
T =A{i,..., g t 1 1 1 0 0
CDB = {H|, H>}, where H| = t

L 1 1 1 1 0 0
Ut 12, 13, 16} > iy, 2, 43, ia}} 2
is shaded by blue gnd.HZ. = t, 1 1 1 1 1 1
{13, 14, 15, 16} X {i3, i4, i5, ic}}
is shaded by red, is a covering t4 0 0 1 1 1 1
database for DB. The cost of
CDB is 16. (Color figure online) t o o 1 A\ 1

If there is no false positive coverage in CDB, we have CDB¢ C DB. If there is false
positive coverage, we will have |CDB\DB| > 0.

For a hyperrectangle H = T x I, we define its cost to be the sum of the cardinalities
of its transaction set and item set: cost (H) = |T'|+|I|. This definition is very intuitive
as |T| 4 |1] is the minimum number of integers (supposing each transaction or item
has an integer ID) needed to present the Cartesian product 7 x I. Given this, the cost
of CDB is

p p
cost(CDB) = Zcost(Hi) = Z |T;| + |1;]-

i=1 i=1

Typically, we store the transactional database in either horizontal or vertical repre-
sentation. The horizontal representation can be represented as CDBy = {{t;} x I},
where [, is all the set of items transaction # contains. The vertical representation is
as CDBy = {T; x {j}}, where T is the transactions which contain item j. Let 7 be
the set of all transactions in DB and 7 be the set of all items in DB. Then, the cost of
these two representations are:

7]
cost(CDBy) = |T|+ >_ |I,| =|T| + |DB|,
i=1

and

IZ|
cost(CDBy) = |I| + > |Tj| = || + |DB|.
Jj=1

In this work, we are interested in the following main problem. Given a transactional

database DB and with no false positives allowed, how can we find the covering database
CDB with minimal cost (or simply the minimal covering database) efficiently?

min cost(CDB).
DB=CDB*

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 219

Under certain constraint (e.g. cost (CDB) < §,or |CDB| < k),no CDB may entirely
cover DB. In these cases, we will be interested in finding a CDB that can, under the
given constraint, maximally cover DB, i.e., maximizing |DB N CDB¢|.

In addition, we are also interested in how we can further reduce the cost of covering
the database if false positives are allowed.

1.2 Our contributions

Our contributions are as follows.

1. We propose a new research problem to succinctly summarize transactional dat-
abases, and formally formulate it as a variant of a weighted set covering problem
based on a hyperrectangle notion.

2. We study the complexity of this problem and prove this problem and its several
variations are NP-hard, and we show that our problem is closely related to another
hard problem, the compact representation of a directed bipartite graph (Sect. 2).

3. We develop an approximation algorithm HYPER which can achieve a In(n) + 1
approximation ratio in polynomial time. We also propose a pruning strategy that
can significantly speed up the processing of our algorithm (Sect. 3).

4. We propose an efficient algorithm to further summarize the set of hyperrectangles
by allowing false positive conditions (Sect. 4).

5. We show that hyperrectangles generated by our algorithms can be properly visu-
alized (Sect. 5).

6. We provide a detailed discussion on how this new problem is related to a list of
important data mining problems (Sect. 6).

7. We provide a detailed empirical study using both real and synthetic datasets. The
empirical study shows that our method can not only succinctly summarize trans-
actional data but also provide very useful information for people (Sect. 7).

2 The hardness of hyperrectangle summarization and its relationship
with directed bipartite graph compression

In this section, we prove that hyperrectangle summarization problem and its several
variations are NP-hard. In addition, we reveal the interesting link between hyperrec-
tangle summarization and directed bipartite graph compression to further understand
the nature of the hyperrectangle summarization problem.

2.1 Hardness results

In the following, we prove the complexity of the succinct summarization problem
and several of its variants. We begin the problem with no false positives and extend
it to false positive cases in Corollary 1 and Theorem 4. Even though these problems
can quickly be identified as variants of the set-covering problem, proving them to be
NP-hard is non-trivial. We need to show that at least one of the NP-hard problems can
be reduced to these problems.

@ Springer

220 Y. Xiang et al.

Theorem 1 Given DB, it is an NP-hard problem to construct a CDB of minimal cost
which covers DB.

Proof To prove this theorem, we reduce the minimum set cover problem, which is
well-known as NP-hard, to this problem.

The minimum set cover problem can be formulated as follows: Given a collection
C of subsets of a finite set D, find C’ € C with minimum |C’| such that every element
in D belongs to at least one member of C’. We assume that there is no set C € C that
covers D completely, otherwise the minimum set cover problem is too trivial to solve.
We also assume each set C is unique in C.

To provide the reduction, we construct a transactional database DB from the set D
and C. DB follows the transactional database definition in Sect. 1.1.

In our construction, each item in DB corresponds to an element in D. All items in
aset C € C are recorded in 2|C| (the reason to choose 2 will be clear in the following
proof) transactions in DB, denoted collectively as a set T¢(T¢ < 7) (for any two
different items C1, C» € C, T¢, and T¢, are disjoint). In addition, we create a special
transaction w in DB containing all items in D. Clearly, this reduction takes polynomial
time with respect to C and D.

Below we show that if we can construct a CDB with minimum cost, then we can
find the optimal solution for the minimum set cover problem. This can be inferred by
the following three key observations, which we state as Lemmas 1, 2, and 3.

Lemma 1 All transactions in Tc will be covered by the same number of hyperrectan-
gles in CDB.

Lemma 2 Let CDB be the minimal covering of DB. Then, all the Tc transactions in
DB which record the same itemset C € C will be covered by a single hyperrectangle
T; x I; € CDB, i.e. Tc € T; and C = I,.

Lemma 3 Let CDB be the minimal covering of DB. Let transaction w which contains
all the items in D be covered by k hyperrectangles in CDB, T) x Iy, ..., Ty X I.
Then each of the hyperrectangles is in the form of Tc U {w} x C, C € C. Further, the
k itemsets in the hyperrectangles, 11, ..., Iy, correspond to the minimum set cover
of D.

Putting these three lemmas together, we can see that the minimal CDB problem can
be used to solve the minimum set cover problem. O

Proofs of the three lemmas are given below.

Proof of Lemma 1: Let CDB(t}), t; € Tc be the subset of CDB, which includes only
the hyperrectangles covering transaction ¢, i.e., CDB(t;) = {T; x I; : t; € T;}. Then,
we conclude that for any two transactions ¢; and #; in T¢c, |CDB(t;)| = |CDB(1;)|.
This is true because if |[CDB(t;)| > |CDB(t;)|, we can simply cover t; by CDB(t;)
with less cost. This contradicts that CDB is the minimal covering database. O

Proof of Lemma 2: First, we prove that every transaction in 7¢ is covered by one
hyperrectangle, i.e. |CDB(¢;)| = 1,t; € Tc. According to Lemma 1, we can assume

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 221

every transaction in T¢ is covered by k hyperrectangles in CDB. Assume k > 1. Let
CDB ={Ty x I1, ..., T; x Iy} where s > k. Then, we can modify it as:

CDB' = {(h\T¢c) x I, ..., (Ts\Tc) x I} U {T¢c x C}.

Clearly, CDB’ covers DB, and the cost of CDB’ is smaller than the cost of DB:

N
cost(CDB) = D (IT; \ Tl + L) + |Te| + |C|

i=1

N
=D T+ L) —k x |Te| + |Tc| +|C| |CDB(t))| = k. tj € Tc

i=1

N
ZZ(|T1‘|+|Ii|)+(3_2k)X|C|) ITcl =2[Cl. k> 1

i=1

< Z(|Ti| + |1;]) = cost(CDB).

i=1

This is a contradiction. Thus, we can conclude that every transaction in 7¢ can be
covered by exactly one hyperrectangle.

We now show by contradiction that if more than one hyperrectangle is used to cover
Tc, it cannot be minimal. Assume T¢ x C is covered by k hyperrectangles in CDB
where k > 1, expressed in the form of Tc x C C 71 x CU---U T x C. We see that
we can simply combine all k£ of them into one: 77 U --- U Ty x C. The cost of that
latter is less than the cost of the former: |77 U --- U Tx| + |C| < Zf»‘zl(ﬂﬂ + |C))
This again contradicts the assumption that CDB is the minimal database covering.

Put together, we can see that T¢ x C is covered by only a single hyperrectangle.

(]

Proof of Lemma 3: Let CDB(w) = {T1 x 11, ..., Ty x It}. From Lemma 2, we can see
all the transactions besides w have been covered by a hyperrectangle T¢ x C, C € C.
Thus, in CDB(w), each hyperrectangle can either be in the form of 7¢ U {w} x C, or
{w} x I, where I C D. We show that the latter case {w} x I where I C D is not
optimal. Assuming / can be minimally covered by z setsinC, I C C;U---UC,, then
|I| > z. Thus, we can cover {w} x I by z hyperrectangles in the form of (7¢, U {w}) x
Ci, ..., (T¢c, U{w}) x C,, with Iess cost. This contradicts that CDB is minimal. Thus,
we can see each hyperrectangle covering w has the form 7¢ U {w} x C, C € C.
Note that the cost of CDB is

cost(CDB) = »_(ITc| +|C) + .
ceC

In the above equation, s is minimized under the constraint that Iy U---U Iy = D. We
conclude that I1, ..., I, forms the minimum cover of §. O

Several variants of the above problem turn out to be NP-hard as well.

@ Springer

222 Y. Xiang et al.

Theorem 2 Given DB, it is an NP-hard problem to construct a CDB with no more
than k hyperrectangles that maximally covers DB.

Proof The result holds even for k = 1. To prove this theorem, we reduce the maximum
edge biclique problem, which is NP-hard (Peeters 2003), to this problem with k = 1.

Maximum edge biclique problem can be formulated as: Given a bipartite graph
G = (V1 U V,, E), what is the biclique that has maximum edges?

The polynomial-time reduction is as follows: Create DB by letting7 = V|, 7 = V»,
and an element (¢,i) in DB (t € 7 and i € 7) if and only if ¢ and i are the two end
points of an edge in E. Also setk = 1.

Below we show that if we can construct a CDB with 1 Cartesian product that
maximally covers DB, we find the maximum edge biclique in G.

Let the only Cartesian product in CDB be T x I. If CDB maximally covers DB,
then it is easy to see that |T'||/| is maximum. Because a transaction ¢ (¢ € T') contains
anitemi (i € I)if and only if # and i are the two end points of an edge in E, we can
conclude that we find the maximum edge biclique 7 U I with |T'||]] edges. O

In view of Theorem 2 and by using the decision version of minimum set cover
problem in the proof of Theorem 1, we can prove the following result.

Theorem 3 Given DB and a budget §, it is an NP-hard problem to construct a CDB
that maximally covers DB with a cost no more than §, i.e., cost(CDB) < 4.

If we reduce the above problems into false positive cases by letting 8 = 0, we can
easily show the following corollary is correct.

Corollary 1 When false positive coverage is allowed with %CI;DB‘ < B, where B is

a user-defined threshold, the above problems in Theorems 1, 2, and 3 are still NP-hard.

Assuming a set of hyperrectangles is given, i.e., the rectangles used in the covering
database must be chosen from a predefined set, we can prove all the above problems
are NP-hard as well.

Theorem 4 Given DB and a set S of candidate hyperrectangles, it is NP-hard to

(1) construct a CDB C S with minimal cost that covers DB;
(2) construct a CDB C S to maximally cover DB with |CDB| < k;
() construct a CDB C S to maximally cover DB with cost(CDB) < 6 (S is a

user-defined budget).
The same results hold for the false positive case: |CD|£;—”B>|DB\ < B, where B is a user-
defined threshold.

Proof Theorem 4 (1) can be deduced by letting the minimum set cover problem and
DB be the same as in Theorem 1. For each C € C, we create two hyperrectangles in
S A(Tc U{w}) x C}and {T¢ x C}, where T¢ and w are the same as in Theorem 1.
It is easy to see that one of those hyperrectangles (but not both) will be selected for
CDB according to this reduction. In view of the proof of Lemma 3, the solution will
correspond to the set cover problem so that Theorem 4 (1) is correct.

In view of Theorem 2 and Theorem 3, it is easy to conclude Theorem 4 (2) and (3)
are correct.

If we set B = 0, then the false positive cases reduce to the original statements. O

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 223

& TR VAV
l5 I5 ll i2 i.‘! i-t |5 lﬂ
[E|=28 [E|=16
(a) (b)

Fig. 2 a A directed bipartite graph generated from the transaction database, b A directed graph compactly
representing a

2.2 Relationship with compact representation of directed bipartite graph

Representing a directed bipartite graph by a compact directed graph is a funda-
mental problem related to important applications including the reachability query
on DAG (Directed Acyclic Graph) (Agrawal et al. 1989) and modern coding theo-
rem (Richardson and Urbanke 2008), and etc. Here, we reveal the close relationship
between our summarization problem and compact representation of directed bipartite
graph and show how the solutions for the former one can be applied to the latter one.

Consider a directed bipartite graph G whose vertices can be divided into two sets
A and B. Any vertex in A may point to any vertex in B.

Any graph reachability query scheme must be able to tell that b (b € B) can
be reached from a (a € A) if there is an edge from a to b in the bipartite graph
G. Further, we say graph G’ (not necessarily bipartite) is reachability isomorphic to
G,if A C V(G') and B C V(G’) such that if there is an edge froma € Atob € B
in G then there must be a directed path froma € A to b € B in G/, and vice versa.

The initial idea of compactly representing a directed bipartite graph by adding addi-
tional vertices was originally pointed out in Agrawal et al. (1989) as a simple heuristic
for compressing transitive closure of a DAG. However, no detailed investigation was
performed in Agrawal et al. (1989) and no further research is done on this topic to our
best knowledge.

Considering a bipartite graph G stored as a linked list, we may reduce the index
size of reachability query on G by finding a reachability isomorphic graph G’ of G
such that |E(G")| < |E(G)|. To geta G’, we can add some intermediate vertices, each
of which points to a subset of B. Then vertices A may point to some intermediate
vertices so that |[E(G")| is less than |E(G)|. Figure 2 is an example: Graph (a) and
graph (b) are reachability isomorphic but (b) has far fewer edges.

We can reduce the summarization problem of a transactional database to the prob-
lem of compactly representing a directed bipartite graph, and vice versa. Let each
transaction of a database DB be a vertex in the set A of a directed bipartite graph G.
Let each item in Z of DB be a vertex in the set B of G. Then each hyperrectangle in
the covering database CDB is expressed as a new intermediate vertex in G.

@ Springer

224 Y. Xiang et al.

For example, a transaction database in Fig. 1 has 28 elements if represented as
DB = {(t1,1i1), (t1,12), - - - }. But it only has 16 numbers if represented as CDB =
{{t1, 1o, 13, te} x {i1, i2, 3, 14}, {13, ta, 15, 6} X {i3, i4, i5, ig}}. Correspondingly, we can
reduce the summarization scheme for the transaction database in Fig. 1 to the method
of compactly representing a directed bipartite graph in Fig. 2.

3 Algorithms for summarization without false positives

In this section, we develop algorithms for summarizing transactional data by hyperrec-
tangles without false positives. Starting with an intuitive greedy algorithm, we develop
HYPER algorithm for summarizing transactional data by non-false-positive hyperrec-
tangles in polynomial time with respect to |Z|, |7 |, and the size of frequent itemsets.
Finally, we speedup HYPER algorithm by a pruning technique.

3.1 The intuitive greedy algorithm

In this section, we develop algorithms to find minimal cost covering database CDB
for a given transactional database with no false positives. As we mentioned before,
this problem is closely related to the traditional weighted set cover problem:

Given a collection £ of subsets (each element E € £ has a cost cost (E)) of a finite
set D, how can we cover D with elements (i.e. subsets of D) in £ such that the total
cost is minimum?

As a Greedy algorithm for Weighted Set Cover problem (GWSC or GWSC algo-
rithm in the following), at each step we choose a set E € &£ which has the low-
est price until D is completely covered. The price of E is defined as cost(E)
over the size of newly covered elements. Then the following theorem holds

Theorem 5 Chvatal (1979) The GWSC algorithm achieves an approximation ratio of
Inn + 1 over the optimal solution (i.e. minimum cost) where n is the size of D.

Let C be a candidate set of all possible hyperrectangles, which cover a part of the
DB without false positives, i.e., C = {T; x I; : T; x I; € DB}. Then, we may apply
the GWSC algorithm to find the minimal set cover, which essentially corresponds to
the minimal covering database, as follows.

Let R be the covered DB (initially, R = ¢). For each possible hyperrectangle
H =T; x I; € C, we define its cost as cost (H) = |T;| + |I;|. Then the price of H is

T; I;
Sy = T
T, x I \ R|

At each iteration, the greedy algorithm picks up the hyperrectangle H with the mini-
mum y (H) (the cheapest price) and inserts it into CDB. Then, the algorithm updates
R tobe R = RUT; x I. The process continues until CDB completely covers DB
(R = DB). According to Theorem 5, the approximation ratio of this algorithm is
Inn + 1, where n = |DB]|. Recall that in Sect. 1.1 we define the transactional database

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 225

DB as the set of all cells which are 1, i.e., DB = {(i, j) : DB[i, j] = 1}. Hence, |DB)|
is the total number of 1s in the binary matrix.

Clearly, this algorithm is not a feasible solution for the minimal database covering
problem due to the exponential number of candidate hyperrectangles in C, which in
the worst case is in the order of 2!71+1Z | where 7 and Z are the sets of transactions
and items in DB, respectively. To tackle this issue, we propose to work on a smaller
candidate set, denoted as

Co={T; xI; : T; xI; CDB, I; € Fy UT},

where F, is the set of all frequent itemsets with minimal support level «, and 7 is
the set of all singleton sets (sets with only one item). F, can be generated by Apriori
algorithm (Agrawal et al. 1996). Essentially, we put constraint on the columns for
the hyperrectangles. As we will show in the experimental evaluation, the cost of the
minimal covering database tends to converge as we reduce the support level «. Note
that this reduced candidate set is still very large and contains an exponential number of
hyperrectangles. Let T (/;) be the transaction set where [; appears. |T (/;)] is basically
the support of itemset /;. Then, the total number of hyperrectangles in Cy is

ICo| = Z 2| TUDI

LieF,UT

Thus, even running the GWSC algorithm on this reduced set C, is too expensive.

In the following, we describe how to generate hyperrectangles by an approximate
algorithm which achieves the same approximation ratio with respect to the candidate
set Cy, while running in polynomial time in terms of |F, U Z| and 7.

3.2 The HYPER algorithm

As we mentioned before, the candidate set Cy, is still exponential in size. If we directly
apply the GWsC algorithm, it will take an exponential time to find the hyperrectangle
with the cheapest price. The major challenge is thus to derive a polynomial-time
algorithm that finds such a hyperrectangle. Our basic idea is to handle all the hyper-
rectangles with the same itemsets together as a single group. A key result here is a
novel greedy algorithm, which runs in polynomial time with respect to |F|, and is
guaranteed to find the hyperrectangle with the cheapest price among all the hyperrec-
tangles with the same itemsets. Since we only have | F, UZ| such groups, we can then
find a globally cheapest hyperrectangle in C, in polynomial time.

Specifically, let C, = {T'(I;) x I; : I; € Fo UL}, where T(I;) is the set of all
supporting transactions of /;. We can see that C, can easily be generated from C,,
which has only polynomial size O (|(F, U Z)|).

The sketch of this algorithm is illustrated in Algorithm 1. Taking C, as input, the
HYPER algorithm repeatedly adds sub-hyperrectangles to set R. In this paper, we say
a hyperrectangle H; = {T1 x I1} is a sub-hyperrectangle of Hy = {T> x I}, if and
onlyif 71 € T> and I} = I».

@ Springer

226 Y. Xiang et al.

Fig. 3 A hyperrectangle i, i, i, i,
H € Cy . Shaded cells are DB - -
elements covered by
hyperrectangles currently
available in CDB

w

IS

3

—, . e+ =+ = =
o

H=TXI

In each iteration (Lines 4-9), HYPER will find the lowest priced sub-hyperrectangle
H’ from each hyperrectangle 7' (1;) x I; € C; (Line 4-6), and then select the cheapest
H' from the set of selected sub-hyperrectangles (Line 7). H' will then be added into
CDB (Line 8). Set R records the covered database DB. The process continues until
CDB covers DB (R = DB, line 3).

Algorithm 1 HYPER(DB, C,)
1: R < ¢;

2: CDB <« {;

3: while R # DB do

4. forall H; € C, do

5: X; =FINDHYPER(H;,R);
6: end for
7
8

H' = argminy, y(X;);
CDB < CDBU {H'};
9: R« RUH/
10: end while
11: return CDB

The key procedure is FINDHYPER, which will find the sub-hyperrectangle with the
cheapest price among all the sub-hyperrectangles of 7' (I;) x I;. Algorithm 2 sketches
the procedure. The basic idea here is that we will decompose the hyperrectangle
T (I;) x 1; into single-transaction hyperrectangles S = {t;} x I;, where t; € T (I;).
Then, we will order those rectangles by the number of uncovered DB elements they
contain (Lines 1-4). We will perform an iterative procedure to construct the sub-hyper-
rectangle with cheapest price (Lines 6-13). At each iteration, we will simply choose
the single-transaction hyperrectangle with maximal number of uncovered DB elements
and try to add it into H’. If its addition can decrease y (H'), we will add it to H'. By
adding S = {t;} x I; into H' = T; x I;, H' will be updated as H' = (T; U{t;}) x ;.
We will stop when S begins to increase H'.

Example 1 (Fig. 3) Given hyperrectangle H € C,, consistingof H = T(I) x [=
{11, 13, 14, Lg, 13, Lo} X {i2, i4, i5, i7}, we construct H' with minimum y (H") in the fol-
lowing steps. First, we order all the single-transaction hyperrectangles according to
their uncovered DB elements as follows: {#4} x I, {tg} x I,{t1} x I, {te} x I, {13} %
I, {tr9} x I. Beginning with H' = {t4} x I, the price y (H')is (4+1)/4 = 5/4 = 1.25.

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 227

Algorithm 2 A greedy procedure to find the sub-hyperrectangle with cheapest price

Procedure FINDHYPER(H, R)
{Input: H =T(I;) x I;}
{Output:H' =T; x I;, T; € T(I;)}
L: forall S = {t;} x I; € H do
calculate the number of uncovered DB elements in S, |S\R|
end for
sort S according to |S\R| and put it in U;
H' <« first hyperrectangle S popped from U
while U # ¢ do
pop a single-transaction hyperrectangle S from U’;
if adding S into H’ increases y (H') then
9: break;
10: else
11: add S into H';
12: endif
13: end while
14: return H';

RPRINRERN

Adding {g} x I into H', y (H') falls to 3140 = £ = 0.75.

Adding {f;} x I into H', y (H') decreases to 6J§r2LO = {5 = 0.70.
Adding {t¢} x I into H’', y (H') decreases to 7;5?; = 8 =0.67.
However, if we then add {#3} x I into H’', y (H") would increase to 851:10 = 12 = 0.69.

Therefore we stop at the point where H' = {14, 13, 11, t6} X I and y (H’) = 0.67.

Properties of HYPER: We discuss several properties of HYPER, which will prove its
approximation ratio.

Lemma 4 The FINDHYPER procedure finds a sub-hyperrectangle H' with minimum
y (H') for any input hyperrectangle T (I;) x I; € C; .

Proof Let H' = T; x I; be the sub-hyperrectangle of T (I;) x I; with the least y (H').
Then, we first claim that if there exists two single-transaction hyperrectangles H; and
Hysuchthat H; = {t;} x I; € H', H = {} x I;,; € T(I;),and |H; \ R| < |H; \ R|
(i.e. H; covers the same or larger number of uncovered elements), then H; will be part
of H'. We prove the above claim in the following:

Let

\Ti + 14 _ ITi\{z;} + Ll +1
[H\R| [(Ti\{t;}) x i\R| + |Hj\R|

y(H') =
and
x = |Ti\{t;} + L], y=[T:\{t;}) x ;\R]|.

Then we conclude

x+1

HYy= —" |
V)= S HAR]

@ Springer

228 Y. Xiang et al.

Because y (H’) is minimum, we have

X x+1
~ >

y ~ y+IH\R|’
which implies
y < x|Hj\R|.
Because |H;\ R| < |H;\ R|, we have
(x+ DIH\R| =z y+ |Hj\R|,
which implies
(x+ DO+ [H\R|+ [Hj\R]) = (x +2)(y + |Hj\R]),

ie.,

x+1 - x+1+1
y+IHj\R| ~ y+|H;\R| + |H\R|

It means that adding H; into H' can reduce the price y (H'), a contradiction to the
assumption that H’ is the sub-hyperrectangle of T (I;) x I; with minimal cost.

Since any two single-transaction hyperrectangles in H' are disjoint, the above claim
suggests that FINDHYPER procedure finds the lowest cost H' by considering the addi-
tion of single-transaction hyperrectangles in 7'(/;) x I;, ordered by their number of
uncovered DB elements. O

Corollary 2 In FINDHYPER, if two single-transaction hyperrectangles have the same
number of uncovered DB elements, i.e., |{t;} x I;\R| = |{t;} x I;\R|, then either both
of them can be added into H' or none of them.

Proof Without loss of generality assume in the HYPER algorithm a single-transac-
tion hyperrectangle Hj; is ranked before another single-transaction hyperrectangle
s, ,and |Hy; \R| = |H,; \R| = a. Before adding H; into H' where H' = T; x

y(H') = \{H'(\,gl' Let x = |Ti| + |lil,y = |H'\R|, then y(H') = %. Since

X x+1 x+1 x+2 x> x+1 X+l o x42
v < 3ta implies Via < 372q> AN d T 1mphes via = y13a> We conclude that
either both H A and H; sj, are added 1nt0 H " or none of them. O

Corollary 2 suggests that we can process all the single-transaction hyperrectangles
with the same number of uncovered elements as a single group so as to speed up the
FINDHYPER procedure.

The following corollary (Corollary 3) provides a formula to quickly identify the
cutting point for constructing H'. After calculating the coverage for each single-trans-
action hyperrectangle and ranking them according to their coverages in descending

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 229

order (Hy, Hy, ...), we can quickly identify the number g such that H' is composed
of g single-transaction hyperrectangles (Hy, H, ..., Hy).

Corollary 3 Assume that in iteration j of the while loop in the FINDHYPER proce-
dure, we choose Hj = {t;} x I;. We denote aj = |{tj} x I;|\R|, and let H' = T; x I
with minimum y (H) contain the single-transaction hyperrectangles Hy, Hy, - - - , H,,.
X a

Then we have ag 1 < TR

Proof We know adding H, 1 to H' will increase y (H'). Let y (H') = ;—f before add-

x+1

ing H,11 into H'. According to the algorithm we have £ < , which means
q+ y

y+ag+1
ag+1x < y. We also know that x = g + |/;| and y = Zf.’:l a;. Therefore a,41 <
Z,’q=1 i O
g+

Lemma 4 and the GWSC algorithm (Chvatal 1979) (with log approximation bound)
lead to the major property of the HYPER algorithm, stated as Theorem 6.

Theorem 6 For our problem of finding the minimum cost CDB to cover DB, the solu-
tion of HYPER has exactly the same approximation ratio as the solution of GWSC given
candidate set Cy. In other words, HYPER has In(n) + 1(n = |DB|) approximation ratio
with respect to the optimal solution given candidate set C,.

Proof If the following claim is correct, by literally following the proof of Theorem 5,
we can easily show Theorem 6 is correct.

Claim: Given DB, R (R # DB), and Cy, letting H; = {T x I} be the hyperrectan-
gle discovered by the first selection of HYPER (i.e., step 4 to step 7 of the first while
loop), and letting Hy = {T> x I} be the hyperrectangle returned by the first selection
of Gwsc for weighted set cover, We claim that y (Hy) = y (H3).

To prove this claim, we first show that y (H;) > y (H3). This is true because any
output by FINDHYPER is a hyperrectangle in C,, while GWSC will always select a
minimum price hyperrectangle in Cy.

Second, we show that y (H;) < y(H3). According to the definitions of C, and C,
there must exist a hyperrectangle H3 = {T3 x I3} € C, suchthat [, = [zand T C T5.
If y(H1) > y(H>), according to Lemma 4, first selection of HYPER should return a
hyperrectangle with price no more than y (H>), a contradiction. This completes the
proof. O

Time Complexity of HYPER: Here we do not take into account the time to gen-
erate J,, which can be done through the classic Apriori algorithm. Assuming F is
available, the HYPER algorithm runs in O (|7 |(|Z]|+1og |7 |)(|Fu| +|Z])k), where & is
the number of hyperrectangles in CDB. The analysis is as follows. Assume the while
loop in Algorithm 1 runs k times. Each time it chooses a H’ with minimum y (H')
from C,, which contains no more than |F,| + |Z| candidates. To construct H' with
minimum y (H’) for H, we need to update every single-transaction hyperrectangle
in H, sort them and add them one by one, which takes O(|7||Z| + |7 |log|7| +
7)) = O(IT|(|Z| + log|7)) time. Since we need to do so for every hyperrectangle
inC; , it takes O (|7 |(|Z| +log |T)(|F«| + |Z])). Therefore, the total time complex-
ity is O(|7|(|Z] + log |7])(|F«| + |Z])k). In addition, we note that k is bounded by

@ Springer

230 Y. Xiang et al.

(IF«l + |IZ1) x |T| since each hyperrectangle in C, can be visited at most | 7| times.
Thus, we conclude that HYPER, our novel greedy algorithm, runs in polynomial time
with respect to | Fy|, |Z] and |7].

3.3 Pruning technique for HYPER

Although the time complexity of HYPER is polynomial, it is still very expensive in
practice since in each iteration, it needs to scan the entire C, to find the hyperrectangle
with cheapest price. Theorem 7 reveals an interesting property of HYPER, which leads
to an effective pruning technique for speeding up HYPER significantly (up to |C, | =
| Fo U Z| times faster).

Theorem 7 For any H € C, the minimum y (H') output by FINDHYPER will never
decrease during the processing of the HYPER algorithm.

Proof This holds because the covered database R is monotonically increasing. Let R;
and R; be the covered database at the i-th and j-th iterations in HYPER, respectively
(i < j). Then, forany H' =T; x I; C T(l;) x I; = H € C,, we have

1T+ 141 _ 1Tl + 14
Ti x \R; — T; x I; \ R

y(H', R) = =y(H', R)).

where y (H', R;) and y (H', R) are the price for H' at iteration i and j, respectively.
m}

Algorithm 3 HYPER(DB,C,,)

1: R < 0,

2: CDB <« @;

3: call FINDHYPER to find H' with minimum y (H') for each T'(I;) x I; € Cy;

4: Sortall T(I;) x I; € Cy into a queue U according to their minimum y (H ") from low to high and store
H’ and its price (as the lower bound);

5: while R # DB do

6: Pop the first element H with H]’ from the queue U

7: call FINDHYPER to update H{ with minimum y (H{) for Hy;

8

9

while y(Hl’) > y(Hé) do { H; is the next element in U after popping the last hyperrectangle }
insert Hy with H 1’ back to U in the sorting order;

10: Pop the first element H; with H { from the queue U;
11: call FINDHYPER to update H{ with minimum y (H) for Hy;
12: end while

13: CDB < CDBU {H{};

14: R« RUH];

15: call FINDHYPER to find the updated minimum y (H]/) of Hy, and insert it back to the queue U in the
sorting order;

16: end while

17: return CDB;

Using Theorem 7, we can revise the HYPER algorithm to prune the unnecessary
visits of H € C; . Simply speaking, we can use the minimum y (H') computed for H
in the previous iteration as its lower bound for the current iteration since the minimum

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 231

y (H") will be monotonically increasing over time. It is necessary to point out that
similar pruning techniques have appeared in early literature (see Minoux (1977) for
an example).

Our detailed procedure is as follows. Initially, we compute the minimum y (H") for
each H in C, . We then order all H into a queue U according to the computed mini-
mum possible price (y (H')) from the sub-hyperrectangle of H. To find the cheapest
hyperrectangle, we visit H in the order of U. When we visit H, we call the FINDHYPER
procedure to find the exact H' with the minimum price for H, and update its lower
bound as y (H'). We also maintain the current overall minimum price for the H visited
so far. If at any point, the current minimum price is less than the lower bound of the
next H in the queue, we will prune the rest of the hyperrectangles in the queue.

Algorithm 3 shows the complete HYPER algorithm which utilizes the pruning tech-
nique.

4 Summarization of the covering database

In Sect. 3, we developed an efficient algorithm to find a set of hyperrectangles, CDB, to
cover a transactional database. The summarization with false positives is more general
than the summarization without a false positive (i.e. false positive ratio is 0). If there
is no restriction on the false positive ratio, one can imagine that the summarization
result is just one simple hyperrectangle 7 x Z with cost |7'| 4 |Z|. Our empirical
study also shows that summarization with false positives is generally more succinct
(i.e. with less cost and less hyperrectangles) to reveal the high-level structure of the
transactional database.

In this section, we study how to provide more succinct summarization by allowing
certain false positive coverage. Our strategy is to build a new set of hyperrectangles,
referred to as the succinct covering database to cover the set of hyperrectangles found
by HYPER. Let SCDB be the set of hyperrectangles which covers CDB, i.e., for any
hyperrectangle H € CDB, there is a hyperrectangle H' € SCDB, such that H € H'.
Let the false positive ratio of SCDB be

|SCDB\DB|
|DB|

)

where SCDB¢ is the set of all cells being covered by SCDB. Given this, we are inter-
ested in the following two questions:

1. Given the false positive budget 3, % < B, how can we succinctly sum-

marize CDB such that cost (SCDB) is minimized? .
2. Given |[SCDB| = k, how can we minimize both the false positive ratio %
and the cost of SCDB?

We will focus on the first problem and we will show later that the same algorithm
for the first problem can be employed for solving the second problem. Intuitively, we
can lower the total cost by selectively merging two hyperrectangles in the covering
set into one. We introduce the the merge operation (@) for any two hyperrectangles,
H =T xI1and H, =T x >,

@ Springer

232 Y. Xiang et al.

H @& H,=(T1UT) x (11 U D).
The net cost saving from merging H; and H> is

cost(Hy) + cost(Hy) — cost(Hy & H»)
=TI+ 1T + il + 1] = 1T U T — |1 U]

To minimize cost(SCDB) with given false positive constraint w < B, we

apply a greedy heuristic: we will select two hyperrectangles in SCDB for combination
so that the merge can yield the best savings with respect to the new false positive
coverage, i.e., for any two hyperrectangles H; and Hj,

are max ITi| +1T51 + [+ ;| = 1T UT;| — |I; U 1]
S0 |(H; @ H;) \ SCDB’| '

The numerator is the saving in cost (SCDB) by merging H; and H;, and the denom-
inator is the number of false positives newly introduced. Therefore, our approach is
to find a merge that yields highest saving in cost (SCDB) per false positive quota.
Algorithm 4 sketches the procedure which utilizes the heuristics.

Algorithm 4 HYPER+(DB, CDB,)
1: SCDB <« CDB;
C
2: while w < B do
3: find the two hyperrectangles H; and H; in SCDB whose merge is within the false positive budget:

|(SCDB\ (H;. Hj) U {H; @ H;))° \ DB| _
|DB| -

B.

and produces the maximum (or near maximum) saving-false positive ratio:

arg max \T; | + 1T+ [1|+ 1| = |T; T = | U T
H; H;j |(H; @ Hj) \ SCDBC|

4: remove H; and Hj from SCDB and add H; & Hj: SCDB < SCDB\ {H;, Hj} U{H; & Hj}
5: end while
6: return SCDB;

The second problem tries to merge the hyperrectangles in CDB into k hyperrec-
tangles. We can see the same heuristic can be employed to merge hyperrectangles.
In essence, we can replace the while condition (Line 2) in Algorithm 4 with the con-
dition that SCDB has only k hyperrectangles. Finally, we note that the heuristic we
employed here is similar to the greedy heuristic for the traditional knapsack prob-
lem (Kellerer et al. 2004). However, since we consider only pair-wise merging, our
algorithm does not have a guaranteed bound like the knapsack greedy algorithm.
Algorithm 4 could be too time-costly when |CDB] is large. In practice, we slightly
revise Algorithm 4 and perform a random sampling merging to speed up the algorithm:

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 233

In each round, we randomly choose C pairs of hyperrectangles among all possible
pairs (|]SCDB|(|SCDB| —1)/2) of hyperrectangles (when C > |SCDB|(|]SCDB|—1)/2
we choose all). Then among the C pairs of hyperrectangles we find two hyperrectangles
H; and H; whose merge is within the false positive budget and produces the maximum
saving-false positive ratio. Finally, we remove H; and H; from SCDB and add H; ® H
into SCDB. C is an adjustable constant and the larger the C, the closer the random
sampling merging algorithm to Algorithm 4, and when C > |CDB|(|CDB| —1)/2 the
two algorithms are equal.

In Sect. 7, we show that the above greedy algorithm works effectively for both real
and synthetic transactional datasets.

It is also worthwhile to mention that after merging hyperrectangles as discussed
above, some existing hyperrectangles might become redundant, i.e. they are com-
pletely covered by some other hyperrectangles.

But it is expected that most redundant hyperrectangles are small when false positive
budget is low (i.e. low merging activities). This is because most large hyperrectan-
gles are expected to cover a good number of unique DB elements as a consequence
of HYPER algorithm, thus they are less likely to be completely covered after running
HYPER+. Itis a good idea to remove redundant hyperrectangles if the minimum |SCDB)|
is desired. But it may not be worthwhile to remove a few small redundant hyperrec-
tangles at the cost of identifying maximum number of redundant hyperrectangles, if
the desired application primarily focuses on the first few large hyperrectangles dis-
covered. In our empirical study we still keep the redundant hyperrectangles and leave
the redundancy clearance problem as an open question to the readers.

5 Visualization

In many applications, people are not only interested in the patterns discovered from
data, but also interested in how these patterns ‘look’. Here, it is also quite natural for
us to ask: “What is the best way to display those discovered hyperrectangles from a
transactional database?”

In our visualization work (Jin et al. 2008), we refined the above question as: “Given
a set of discovered hyperrectangles, how can we order the rows and columns of the
transactional database to best display these hyperrectangles?” Furthermore, we for-
mally defined the visualization cost and visualization problem as follows:

Given a database DB with a set of hyperrectangles CDB = {H| = {T| x I}, H, =
{T) x Ib}, -+, H, = {Ty x I;}}, and two orders o7 (the order of transactions) and o1
(the order of items), the visualization cost of CDB, i.e., visual_cost(CDB, or, 07),
is

k k
max o7 (t,) — min or(ty,)) + max o7 (i,) — min o7(iy)).
Z_:(,,,erj (1) — min o7 (1) Z(fuez,- 1) = min o1 ()
Given a database DB with a set of hyperrectangles CDB, the visualization prob-
lem is to find the optimal orders o7 and oy, such that visual_cost(CDB, or, o) is
minimized, i.e.,

@ Springer

234 Y. Xiang et al.

arg min visual_cost(CDB, o, 07).
or,0]

We answered the above question by linking the visualization problem to the well-
known graph ordering problem, i.e., the minimal linear arrangement problem (Harper
1964; Safro et al. 2006). Interested readers may refer to Jin et al. (2008) for details of
our hyperrectangle visualization algorithm. As a complement to our main results, we
will show some visualization results in the experimental section.

6 Related research problems and work

In this section, we discuss how the summarization problem studied in this work is
related to a list of other important data mining problems, and how solving this prob-
lem can help to tackle those related problems.

Data Descriptive Mining and Rectangle Covering: This problem is generally in
the line of descriptive data mining. More specifically, it is closely related to the efforts
in applying rectangles to summarize underlying datasets. Agrawal et al. (1998) define
and develop a heuristic algorithm to represent a dense cluster in grid data using a set
of rectangles. Further, Lakshmanan et al. (2002) consider the situation where false
positives are allowed. Recently, Gao and Ester (2006) extend descriptive data mining
from a clustering description to a discriminative setting using a rectangle notion. Our
problem is different from these problems from several perspectives. First, they focus
on multi-dimensional spatial data where the rectangle area forms a continuous space.
Clearly, the hyperrectangle is more difficult to handle because transactional data are
discrete, so any combination of items or transactions can be selected to form a hyper-
rectangle. Further, their cost functions are based on the minimal number of rectangles,
whereas our cost is based on the cardinalities of sets of transactions and items, which
is potentially more precise and much harder to handle.

Summarization for Categorical Databases: Data summarization has been studied
by some researchers in recent years. Wang and Karypis proposed to summarize cate-
gorical databases by mining summary sets (Wang and Karypis 2006). Each summary
set contains a set of summary itemsets. A summary itemset is the longest frequent
itemsets supported by a transaction. This approach can be regarded as using a sin-
gle-transaction hyperrectangle from {{t} x I; : I; € F,,t € T(l;)} to maximally
cover each transaction. Chandola and Kumar compress datasets of transactions with
categorical attributes into informative representations by summarizing transactions
(Chandola and Kumar 2007). They showed their methods are effective in summa-
rizing network traffic. Their approach is similar to ours but different in the problem
definition and research focus. Their goal is to effectively cover all transactions with
more compaction gain and less information loss, while our goal is to effectively cover
all transaction-item pairs, which are finer granules of a database. In addition, our
methods are shown to be effective not only by experimental results but also by the
theoretical approximation bound.

Data Categorization and Comparison: Our work is closely related to the effort
by Siebes et al. (2006), van Leeuwen et al. (2006), Vreeken et al. (2007). In Siebes
etal. (2006), van Leeuwen et al. (2006), they propose to recognize significant itemsets

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 235

by their ability to compress a database based on the MDL principles. The compression
strategy can be explained as covering the entire database using the non-overlapped
hyperrectangles with no false positives allowed. The set of itemsets being used in the
hyperrectangles is referred to as the code table, and each transaction is rewritten using
the itemsets in the code table. They try to optimize the description length of both the
code table and the rewritten database. In addition, they propose to compare databases
by the code length with regard to the same code table (Vreeken et al. 2007). A major
difference between our work and this work is that we apply overlapped hyperrec-
tangles to cover the entire database. Furthermore, the optimization function is also
different. Our cost is determined by the cardinalities of the sets forming the hyper-
rectangles, and their cost is based on the MDL principle. In addition, we also study
how the hyperrectangle can be further summarized by allowing false positives. Thus,
our methods can provide a much more succinct summarization of the transactional
database. Finally, we not only provide rigorous proofs on the hardness of various
summarization problems, but also develop a polynomial-time algorithm with a proven
approximation bound.

Co-clustering and Numerical Data Mining: As mentioned before, co-clustering
(Hartigan 1972; Mirkin 1996) attempts simultaneous clustering of both row and col-
umn sets in different groups in a binary matrix. This approach can be formulated as
a matrix factorization problem (Li 2005). The goal of co-clustering is to reveal the
homogeneous block structures being dominated by either 1s or Os in the matrix. From
the summarization viewpoint, co-clustering essentially provides a so-called check-
erboard structure summarization with false positives allowed. Clearly, the problem
addressed in this work is much more general in terms of the summarization structure
and the false positive assumption (we consider both).

In Besson et al. (2006), the authors try to identify relevant pattern (bi-sets), which
is defined similar to hyperrectangle in this paper, to mine numerical data. A bi-sets
pattern is a Cartesian product between X rows and Y columns, in which each element
has different numerical values. It is required that the difference between the maxi-
mum value and the minimum value in a bi-sets pattern is no larger than a threshold
€. Although the definition of bi-sets and hyperrectangle are related, their goals and
their applications are quite different: By defining bi-sets, the authors try to identify
relevant numerical patterns in numerical data, while our goal is to use hyperrectangles
to summarize 0/1 transactional databases.

Approximate Frequent Itemset Mining: Mining error-tolerant frequent itemsets
has attracted a lot of research attention over the last several years. We can look at
error-tolerant frequent itemsets from two perspectives. First, it tries to recognize the
frequent itemsets when some noise is added into the data. In other words, the frequent
itemsets are disguised in the data. Second, it provides a way to reduce the number
of frequent itemsets since many of these frequent itemsets can be recognized as the
variants of a true frequent itemset. This in general is referred to as pattern summariza-
tion (Afrati et al. 2004; Pei et al. 2004). Most of the efforts in error-tolerant frequent
itemsets can be viewed as finding dense hyperrectangles with certain constraints.
The support envelope notion proposed by Steinbach et al. (2004) also fits into this
framework. Generally speaking, our work does not directly address how to discover
individual error-tolerant itemsets. Our goal is to derive a global summarization of the

@ Springer

236 Y. Xiang et al.

entire transactional database. However, we can utilize error-tolerant frequent itemsets
to form a succinct summarization if false positives are allowed.

Data Compression: How to effectively compress large boolean matrices or trans-
actional databases is becoming an increasingly important research topic as the size of
databases is growing at a very fast pace. For instance, Johnson et al. (2004), tries to
reorder the rows and columns so that the consecutive 1’s and 0’s can be compressed
together. Our work differs because compression is concerned only with reducing data
representation size; our goal is summarization, which aims to emphasize the important
characteristics of the data.

Set Covering: From the theoretical computer science viewpoint, our problem can
be generalized as a variation of the sef covering problem. Similar to the problem stud-
ied in Gao et al. (2007), our covering problem does not directly have a list of candidate
sets as in traditional set covering, because our total set of candidate sets is too large
to be materialized. The problem and solution studied in Gao et al. (2007) cannot be
applied to our problem as it tries to find a minimal number of sets for covering. The
strategy proposed in this work to handle this variation of the set covering problem
is also very different from Gao et al. (2007). In Gao et al. (2007), the strategy is to
transform the set cover problem into an independent vertex set problem. The graph in
the new problem space contains all the elements in the universal (or grounding) set
which needs to be covered. Any two elements in the grounding set can potentially be
put into one candidate set for covering if connected with an edge. Then, finding a min-
imal set cover is linked to finding an independent vertex set, and a heuristic algorithm
progressively collapses the graph to identify the set cover. Considering the number of
elements in the transaction database, this strategy is too expensive and the solution is
not scalable. Here, we propose to identify a large family of candidate sets which is
significantly smaller than the number of all candidate sets but is deemed sufficient for
set covering. Then, we investigate how to efficiently process these candidate sets to
find an optimal set cover.

Tiling Databases: The concept of a tile, which is very similar to a hyperrectan-
gle, has been defined previously in Geerts et al. (2004); Gionis et al. (2004) to cover
transactional databases for knowledge discovery purposes. The tile concepts defined
in Geerts et al. (2004) and Gionis et al. (2004) are slightly different.

Geerts et al. (2004), define a tile corresponding to an itemset to be all transaction-
item pairs resulting from the Cartesian product between the itemset and its support-
ing-transaction set.

Gionis et al. (2004) define a basic tile to be a Cartesian product between a set of
rows and a set of columns, and the Cartesian product is associated with a probability p.
They also define a hierarchical tile to be a basic tile plus a set of disjoint exception tiles.

In our hyperrectangle definition, we only require a Cartesian product be between
a itemset and a subset of its supporting-transaction when no false positive is allowed.
When false positives are allowed, a Cartesian product can be between any number
of rows (i.e. transactions) and any number of columns (i.e. items). Therefore our
hyperrectangle definition is more general than the tile definition in Geerts et al. (2004),
but very close to the basic tile definition in Gionis et al. (2004). The only difference
between our hyperrectangle definition and the basic tile definition in Gionis et al.
(2004) is that our definition does not associate a probability to each Cartesian product.

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 237

Table 1 Dataset characteristics

Datasets A i Avg. Len. |DB| Density
Chess 75 3,196 37 118,252 Very dense
Pumsb_star 2,088 49,046 50.5 2,476,823 Sparse
Mushroom 119 8,124 23 186,852 Dense
T1014D100K 1,000 100,000 10 ~ 1,000,000 Very sparse

Based on our simple definition of a hyperrectangle, we propose a complete set of
theorems and algorithms for efficient transactional database summarization.

Itemsets other than frequent: Frequent itemset mining and the concept of fre-
quent itemsets (Agrawal et al. 1993) are well known by now. Since the set of frequent
itemsets is very important in succinctly describing a transactional database, we use it
as an input for our HYPER algorithm. By adjusting the support level «, we can let the
set of frequent itemsets include all itemsets or most frequent itemsets.

However, frequent itemsets themselves may not be succinct enough for transac-
tional data mining purposes. The well-known closed frequent itemsets and maximal
frequent itemsets (Han and Kamber 2006) give concise presentations of frequent item-
sets. Recently, free-sets by Boulicaut et al. (2003), §-cluster by Xin et al. (2005), non-
derivable itemset by Calders and Goethals (2007), and Cartesian contour by Jin et al.
(2009) are defined and can be used to further summarize frequent items. All these
concepts aim at finding most essential information from huge amounts of itemsets.

Although in our algorithm HYPER we use the set of frequent itemsets as a default
input, the set of frequent itemsets can be replaced by any set of itemsets. Therefore
HYPER can serve as a platform for inputting any summarizing itemsets to summarize
a transactional database. In the experimental section we also report the summarization
results by replacing the set of frequent itemsets with the set of frequent closed itemsets
and also the set of maximal frequent itemsets.

7 Experimental results

In this section, we report our experimental evaluation on three real datasets and one
synthetic dataset. All of them are publicly available from the FIMI repository !. The
basic characteristics of the datasets are listed in Table 1. We use MAFIA? Burdick et al.
(2005)3, a very good open source software for quickly generating frequent itemset (fi),
maximal frequent itemset (mfi), and frequent closed itemset (fci).

1 http://fimi.cs.helsinki.fi/data/.

2 In Xiang et al. (2008), the conference version of this paper, we used Borgelt’s Apriori software (http://
fuzzy.cs.Uni-Magdeburg.de/%7Eborgelt/software) under its default setting (version 4.08—4.31), which gen-
erates a frequent itemset with at most 5 items. In this experimental study, we use MAFIA under its default
setting, which has no limit on the size of an itemset. Therefore, values obtained in this experimental study
are different from the conference version.

3 Software available online: http://himalaya-tools.sourceforge.net/Mafia/.

@ Springer

http://fimi.cs.helsinki.fi/data/
http://fuzzy.cs.Uni-Magdeburg.de/%7Eborgelt/software
http://fuzzy.cs.Uni-Magdeburg.de/%7Eborgelt/software
http://himalaya-tools.sourceforge.net/Mafia/

238 Y. Xiang et al.

Our algorithms were implemented in C++ and run on Linux 2.6 on an AMD Opteron
2.2 GHz with 4GB of memory.
In our experimental evaluation, we will focus on answering the following questions.

1. How well can HYPER (Algorithm 3) and HYPER+ (Algorithm 4) summarize a
transactional dataset with respect to the summarization cost?

2. How well can the false positive condition improve the summarization cost?

3. How do the sets of frequent itemsets, maximal frequent itemsets, and frequent
closed itemsets at different minimum support levels («) affect the summarization
results?

4. When users prefer a limited number of hyperrectangles, i.e. limited |SCDB|, how
will the summarization cost and the false positive ratio W look?

5. What is the running time of our algorithms?

To answer these questions, we performed a list of experiments, which we summa-
rized as follows.

7.1 Summarization with varying support levels

In this experiment, we study the summarization cost, the number of hyperrectangles,
and the running time of HYPER and HYPER+ using the sets of frequent itemsets at
different support levels.

In Figs. 4a, b, 5a, b, we show the summarization cost with respect to different sup-
port levels o on the chess, mushroom, pumsb_star and T10I4D100K datasets. Each
of these four figures has a total of 8§ lines. Two of them are reference lines: the first
reference line, named “DB”, is the value of |DB], i.e. the number of elements in DB.
Recall that in the problem formulation, we denote cost (CDBy) = |7 | + |DB| and
cost(CDBy) = |Z|+|DB|. Thus, the upper bound of costis |DB|+min{|7 |, | Z|}. Since
|DB| > max{|7 |, |Z|}, This reference line | DB|, is no less than half of the upper bound
of any summarization cost. The other reference line, named “min_possible_cost”, is
the value of |7| 4+ |Z|. This corresponds to the lower bound any summarization can
achieve, i.e. SCDB contains only one hyperrectangle 7 x Z. The “fi_CDB” line records
the cost of CDB being produced by HYPER. The “fi_SCDB_0.1", “fi_SCDB_0.2",
and “fi_SCDB_0.4" lines record the cost of SCDB being produced by HYPER+ with
10%, 20%, and 40% false positive budget. The “mfi_CDB” line records the cost of
CDB being produced by HYPER with frequent itemsets being replaced by maximal
frequent itemsets. The “fci_CDB” line records the cost of CDB being produced by
HYPER+ with frequent itemsets being replaced by frequent closed itemsets.

Accordingly, in Figs. 4c, d, 5c, d, we show the number of hyperrectangles (i.e. k) in
the covering database CDB or SCDB at different support levels. The “fi_ CDB_k” line
records |CDB|, and the “fi_SCDB_0.1_k”,“fi_SCDB_0.2_k”, “fi_SCDB_0.4_k” lines
record |SCDB| being generated by HYPER+ with 10%, 20%, and 40% false positive
budget. The “mfi_CDB_k” line records |CDB| being generated by HYPER with fre-
quent itemsets being replaced by maximal frequent itemsets. The “fci_CDB_k” line
records |CDB| being generated by HYPER with frequent itemsets being replaced by
frequent closed itemsets.

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 239

(a) chess (b) mushroom
140000 ; ; ; ' ; ; 200000 T T T T T T T
ble_sie 180000 i ible_sme
— | le_size — F min_possible_size -~ - 1
% 120000 e e e % Poshe 0B - x
; oo I 5 VRS S
2 -
S 100000 S 140000 - ﬁisanﬁo.A e 4
= = mfi_CDR# "~ [T
N 80000 'S 120000 Got
5 o S 100000
E 60000 w, JE S — - a B E 80000
e [:
3 40000 57 SR R 3 60000 B
40000 + «
20000 |]
20000 + «
0 * * * * * x 0 ; X X ; ; X ;
60 65 70 75 80 85 90 95 10 20 30 40 50 60 70 80 90
min-sup (%) min-sup (%)

(d) mushroom

i, ki
60 65 70 75. 80 o 85 90 95 10 20 30 40 50 60 70 80 90
min-su '
P (%) min-sup (%)

(e) chess (f) mushroom
400 j " fi_CDB_time —+— " " fi_CDB_time ——
fi_SCDB_0.1_time --x--- | i_SCDB_0.1_time ---x---
< 350 fi_SCDB_0.2_time ---%:-- < fi_SCDB_0.2_time ---%--
@ fi_SCDB_0.4_time --& @ fi_SCDB_0.4_time & -
& g0l mfi_CDB_time ——a-- 1 & mfi_CDB_time --a--
> fci_CDB_time --o-- Y fci_CDB_time --o--
£ 1 E]
S S
j=2} 4 [=2
£ £
c c 4
[=4 < [=
2 2
95 50 60 70 80 90
min-sup (%) min-sup (%)

Fig. 4 Experimental results. a Chess summarization cost varying «. b Mushroom summarization cost
varying «. ¢ Chess hyperrectangle number varying «. d Mushroom hyperrectangle number varying o.
e Chess running time varying «. f Mushroom running time varying o

Figures 4e, f, Se, f show the running time. Here the line “fi_CDB_time” records the
running time of HYPER generating CDB from DB given frequent itemsets of DB. The
“mfi_CDB_time” line records the running time of HYPER generating CDB from DB
given maximal frequent itemsets of DB. The “fci_CDB_time” line records the running
time of HYPER generating CDB from DB given frequent closed itemsets of DB.

The “fi_SCDB-0.1_time”, “fi_SCDB-0.2_time”, and “fi_SCDB-0.4_time” lines
record the running time of HYPER+ generating SCDB under 10%, 20%, 40% false
positive budget respectively. Here, we include both the time of generating CDB from
DB (HYPER) and SCDB from CDB (HYPER+). However, we do not count the running
time of MAFIA that is being used to generate those itemsets.

@ Springer

240

Y. Xiang et al.

(a) pumsb star T10I4D1OOK
3e+06 T T T 1.2e+06 -
‘min. posst\e snzg ———x———
L o
- 2.5e+06 = 1e+06 i SCDB 0
? ? P et
o (8] e~
S S 800000 il DB - o - T
o o fci_CDB —a~
g § 600000
a a
E e E 400000
a fi_ SCDB 0.1 B a .
500000 | e : B 200000 | 4
mfi_CDB - -e--
PO .. 2 oL
40 45 50 55 60 65 70 75 80 006 008 01 012 014 016 018 02
min-sup (%) min-sup (%)
(c) pumsb star (d T1014D100K
2250 ‘ ‘ — ‘ 9000 ‘
fi_Cl
2200 8000
7
2150 000
6000
x> 2100 e~
5000
2050
4000
2000 3000
1950 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 2000 ‘ ‘
40 45 50 55 60 65 70 75 80 006 008 01 012 014 016 018 02
min-sup (%) min-sup (%)
(e) pumsb star (f) 3500 T1014D100K
' ' " fi_CDB_time ——] ' " fi_CDB_time ——
fi_SCDB_0.1_time ---x--- Y .1_time ---x---
i R 3000 x time ---%--
— time & — . time &
%) mfi_ CDB_ _time - (%) mfi_ CDB_t _time —-m-—
g fci_CDB_time --o--+ | % 2500 fci_CDB_time ---@- |
[Q [
g g 2000
> > 1500 |
£ £
IS g
s S 1000 -
500 |
o
5 60 65 70 75 80 006 008 01 012 014 016 018 02

min-sup (%)

min-sup (%)

Fig. 5 Experimental results. a pumsb_star summarization cost varying «. b T10I4D100K summarization
cost varying «. ¢ pumsb_star hyperrectangle number varying «. d T10I4D100K hyperrectangle number
varying «. e pumsb star running time varying «. f T10I4D100K running time varying o

Here, we can make the following observations:

1. The summarization cost reduces as the support level o decreases; the number
of hyperrectangles increases as the support level decreases; and the running time
increases as the support level decreases. Those are understandable since the lower
the support level is, the bigger the input (C,) is for HYPER, and the larger the
possibility for a more succinct covering database. However, this comes at the cost
of a larger number of hyperrectangles.

2. One of the most interesting observations is the “threshold behavior” and the
“convergence behavior” across all the data, including the summarization cost,

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 241

the number of hyperrectangles, and the running time (excluding mfi_CDB_time
and fci_ CDB_time) on all these datasets. First, we observe the summarization
cost tends to converge when o drops. Second, we can see that for mushroom and
pumsb_star, the number of hyperrectangles k tend to increase fast when « drops
below some threshold, and the running time, which shares the same threshold,
increases accordingly. (This phenomenon is less obvious in very sparse dataset
T10I4D100K and very dense dataset chess, which have relatively less number
of optimal covering choices.) However, the convergence behavior tends to main-
tain the summarization cost at the same level or only decrease it slightly. This we
believe suggests that a lot of smaller hyperrectangles are chosen without reducing
the cost significantly, and that these small hyperrectangles are of little benefit to
the data summarization. This phenomenon suggests that a reasonably high « can
produce a comparable summarization as a low « with much less computational
cost, which would be especially important for summarizing very large datasets.

3. Frequent closed itemsets and maximal frequent itemsets are good substitutes for
frequent itemsets in HYPER and HYPER+. We can see in most experiments, the
summarization cost of HYPER or HYPER+ with maximal frequent itemsets or fre-
quent closed itemsets, are very close to the results with frequent itemsets, but the
running time is much shorter under small supports. This suggests that frequent
closed itemsets and maximal frequent itemsets are good approximations for fre-
quent itemsets. Recall that under the same support level, mfi € fci C fi, and when
the support level is very low, |fi| is much larger than |fci| and |mfi|. This also
explains why for each dataset, mfi_CDB_time and fci_CDB_time do not have
the similar behaviors as other running times.

7.2 Summarization with varying k

In this experiment, we will construct a succinct summarization with varying limited
numbers of hyperrectangles (k). We perform the experiments on chess, mushroom and
T10I4D100K datasets. We vary the number of k from around 100 to 10.

In Figs. 6a—f, each method (i.e. HYPER+ with fi, fci, and mfi) has two lines which
correspond to two different minimum support levels « for generating SCDB. For
instance, support_15_fi is the 15% minimal support for the HYPER+ using frequent
itemsets.

Here in Fig. 6a, c, e, we observe that the summarization costs converge towards
minimum possible cost when k decreases. This is understandable since the minimum
possible cost is achieved when k = 1, i.e., there is only one hyperrectangle 7 x 7
in SCDB. In the meantime, in Fig. 6b, d, f, we observe that the false positive ratio
increases when k decreases. Especially, we observe a similar threshold behavior for
the false positive ratio. This threshold again provides us a reasonable choice for the
number of hyperrectangles to be used in summarizing the corresponding database.

We also observe that the sparse datasets, like T10I4D100K, tend to have a rather
higher false positive ratio. However, if we compare with the worst case scenario, where
only one hyperrectangle is used, the false positive ratio seems rather reasonable. For
instance, the maximum false positive ratio is around 10000% for T10I14D100K, i.e.,

@ Springer

242

Y. Xiang et al.

(a) chess (b) chess
140000 T T T 1 T T T
o DBt — suppo:tt,gg,:m J—
min possible cost ---x--- suppol Ci X
120000 - . Sopport 70,11 -
3 supportaggalcfi 2z o 08 suppr?r;,o':)ofzw a-f
Suppol i = support_70_mfi —-&-
8 100000 sﬁggon{go}i - 1 © suggon,so,mh --of
c support_70_mi
.S 80000 | support_90_mfi —-a-— | _029 0.6 |
g e 2
S 60000 | 1 8 o4l |
£ @
E 40000 | A 18
> £
] 0.2 - B
20000 B
o « . 5 e 0 Lgzme i ‘
120 100 80 60 40 20 120 100 80 60 40 20
k k
(C) mushroom (d) mushroom
200000 T T T T T T ,
DB support_15_fci —+—
180000 - min possible cost - 35 support_85_fci |
support_15_fci --- - support_15_fi ---%--/
+ 160000 | support_85_fci @ support_85_fi i'f
8 support_15_fi —-—#-— .g 3r support_15_mfi —-sf- o
© 140000 | support_85_{ -4 ® support_85_mfi -~ ¢~
c N support_15_mfi - = 251} 4
© 120000 | " support_85_mfi - °>J - 7
= o =
.g 100000 3 2| /x4
S 80000 2 s |
£ o I
€ 60000 @
= [} 1 Bl
® 40000 =
20000 05]
0 0
100 80 60 40 20 0
k k
(e T1014D100K ® T1014D100K
1.26+06 : : s 80 o : ,
—— support_0.1_fci —+—
min possible cost ——X--- 70 L sﬁggon:().s:lc= B
1e+06 support_0.1_fci ---*--- | O
5 support_0.5_fci & ® .5_f
o suppo:,gj fi - = 60 - suppozfg.;,mv! - ¢ B
o support_0. - [support_0.5_mfi ---G--
< 800000 - supp’z)pn,OJ fi o1 2 59l PP % |
K} support_0.5_mfi —-a-— “5 &
600000 |- 4 8§ 40} go 1
= ® o's
g © 30+ a% il
g 400000 . o 1=)
SRaig. L * / 4
? . - 2 ¥ ' w2 5°
200000 k- pe. “Bonneg, 1 * z«
R e g 10 + " it X 05 4
‘ ‘ ‘ ‘ . e X
100 80 60 40 20 0 400 350 300 250 200 150 100 50 0
k k

Fig. 6 Experimental results. a Chess cost varying k. b Chess false positive ratio varying k. ¢ Mushroom
cost varying k. d Mushroom false positive ratio varying k. e T10I4D100K cost varying k. f T1014D100K
false positive ratio varying k. k denotes the number of hyperrectangles

there is only around 1% ones in the binary matrix. Using the minimal support 0.5%
and k = 200 and maximal frequent itemsets, our false positive ratio is around 300%,
which suggests that we use around 4% of the cells in the binary matrix to summarize
T1014D100K.

7.3 Hyperrectangle visualization

As a complement to our main results, in this subsection we show some visualization
results of discovered hyperrectangles.

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 243

In Fig. 7 we display visualization effects of hyperrectangles on sampled datasets of
“mushroom” and “T10I4D100K” by our visualization algorithm (Jin et al. 2008). The
visualization method can be incorporated into an interactive visualization environment
to allow users to quickly have some intuitive ideas of the data and its main patterns,
such as how dense the data is, how large the main patterns are, etc.

To illustrate how hyperrectangles are visualized, we first select a number of
hyperrectangles from a transactional database for our visualization purpose. Typi-
cally we select the first several hyperrectangles outputted by HYPER or HYPER+. Then
we run our visualization algorithm to determine the order of transactions and the order
of items. Recall the visualization cost in Sect. 5. Intuitive speaking, our visualization
algorithm tries to find an order of transactions and an order of items such that for
most hyperrectangles, their cells are getting closer in 2-dimension. We mark a pixel
(i, j) black if the transaction at order i contains the item at order j, otherwise white.
For each hyperrectangle, we draw a minimum bounding box - the smallest rectangle
in 2-dimension that covers all the cells of the hyperrectangle. Hence, one can also
conclude that our visualization algorithm aims at minimizing the total perimeters of
all bounding boxes. In some cases all the cells inside the bounding box belong to
the corresponding hyperrectangle and the area inside the bounding box is completely
black. But in many cases the bounding rectangle may contains white pixels, even if
false positive is prohibited. This is because given an order of transactions and an order
of items, there may exist hyperrectangles whose cells are scattered on the 2-dimension.

We selected two datasets, mushroom (dense) and T10I14D100k (sparse), for our
visualization illustration. To let the visualization best fit the limited space on the paper,
we choose partial data from these datasets. Specifically, we randomly sampled 1000
transactions from each datasets, so that the number of transactions are more in line
with the number of items. Then we apply HYPER on each sampled dataset (frequent
itemsets with 10% support for the sampled mushroom dataset, and frequent itemsets
with 0.5% support for the sampled T10I14D100k dataset) and collect the first 10 out-
putted hyperrectangles for our visualization. We display four figures for each sampled
dataset: Figs. 7a and 8a show their appearances with original transaction order (o7)
and item order (o). Figures 7b and 8b show their appearances with updated orders by
our visualization algorithms for the best visualization of the ten hyperrectangles. In
Figs. 7c and 8c, we highlight the first five hyperrectangles by zooming in and drawing
a colored bounding box around each hyperrectangle. We highlight the second five
hyperrectangles in Figs. 7d and 8d in the same way as we do in Figs. 7c, 8c. Interested
readers may refer to Jin et al. (2008) for more visualization results.

7.4 Case study on real datasets

In this subsection, we give a case study to show how our methods are useful in real
data mining applications, we test them on real datasets.

We built two datasets of KDD author / keyword correspondence. From the DBLP
repository, we extracted a list of KDD papers, and augmented each paper with abstract
text extracted from the ACM Digital Library, where possible. We then took the 972
KDD papers with complete information, processed their abstract and keyword text

@ Springer

244 Y. Xiang et al.

= —
1
- p— —
-

T Pl B
Tl Wy

—— ——

1000 transactions
1000 transactions

B, e

A

5 p—
T
o
ITRTEAT)

[

895 transactions
895 transactions

36 items 36 items

Fig. 7 Visualization results (hyperrectangles best viewed in color). a Sampled mushroom in original
orders. b Sampled mushroom in new orders. ¢ Hyperrectangles 1-5 of sampled mushroom after zooming
in d Hyperrectangles 6-10 of sampled mushroom after zooming in. (Color figure online)

with full text search tools (from a standard database engine) to stem them and remove
stop words, and chose 114 common and representative words to serve as the feature
vector for all papers. Common words are words (except prepositions and articles)
appearing in high frequency. Representative words, which are selected subjectively
by us, are in our opinion good representatives of research topics. The larger dataset
KDD contains all author / keyword correspondences. The smaller dataset KDD2008
contains only author / keyword correspondences made from KDD 2008 papers. In
these datasets, each word is represented as an item, and each author is represented as
a transaction.

By applying HYPER and HYPER+ algorithms, we can get hyperrectangles out-
puts as summarizations for the above datasets. For example, we apply HYPER+
on both KDD and KDD2008 with 1% support and a 10% false positive ratio. To

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 245

1000 transactions
1000 transactions

(d)
- -
L]
= —
_— =
= . .
2 4 B S " .
£ 2 - " _
(%) [*)
[i+] @ n
: .
3 e .
3 : B - -
w w
.- ..
- -
] -
E - 5 -
55 items 55 items

Fig. 8 Visualization results. a Sampled T10I4D100K in original orders. bf b Sampled T10I4D100K in
new orders. ¢ Hyperrectangles 1-5 of sampled T1014D100K after zooming in. d Hyperrectangles 6—10 of
sampled T10I4D100K after zooming in

facilitate the following discussion, let us name the results as K DD_0.01_0.1 and
KDDO08_0.01_0.1, respectively. We get around 400 hyperrectangles in KDD_0.01_0.1
for covering the dataset KDD, and around 130 hyperrectangles in KDD08_0.01_0.1
for covering the dataset KDD2008. Among these covering hyperrectangles, about 30%
or less contain at least 4 keywords and at least 8 authors. These hyperrectangles may
be most informative to readers. This also suggests that we may use a relatively small
amount of hyperrectangles to summarize the major characters of a dataset.

In outputs by HYPER and HYPER+, we can observe which set of authors are related
to which set of keywords. This result is interesting to many authors because they can
find who else are working on the similar topics. For example, in K D D08_0.01_0.1,
we discover a hyperrectangle as follows: (Note: Keywords are stems.)

@ Springer

246 Y. Xiang et al.

Authors: A Sridharan, C Faloutsos, D Cosley, DB Neill, DP Huttenlocher,
DJ Crandall, J Bolot, JG Schneider, JM Kleinberg, J Leskovec, K Das, L
Backstrom, M Seshadri, S Suri, S Machiraju

Keywords: network, social, massiv, behavior, process, time;

It shows many authors of KDDOS who are related to social network research with
emphasis on its behavior, process and time.

When false positive ratio increases, in the summarization results, authors are more
likely to be associated with some topics (i.e., keywords) they rarely (or never) worked
on. This result might be interesting to some authors because it provides an interesting
indication on the possible extensions or related work to their research.

As an example of facilitating the analysis of the major summarization results
for dataset KDD and KDD200S8, we visualize the first 10 hyperrectangles from
KDD_0.01_0.1inFig. 9c, e, and the first 10 hyperrectangles from K D D08_0.01_0.1
KDD2008 in Fig. 9d, . Recall that hyperrectangles are not necessarily rectangles, and
the general objective of our visualization is to bring hyperrectangles as close as pos-
sible in 2-dimension. We draw a bounding rectangle for each hyperrectangle, which
is the smallest rectangle that covers all of its cells. (However, it does not mean that all
cells inside the bounding box belong to this hyperrectangle.) Incorporating our visu-
alization algorithm into an interactive visualization platform, we can imagine that by
clicking a bounding rectangle, one can see the actual authors-keywords relationship.

From this visualization, one can tell roughly how large or how dispersed a hy-
perrectangle could be. More importantly, we can observe the interaction between
hyperrectangles. For example, the magenta bounding box is completely enclosed by
the red bounding box in Fig. 9c. This suggests it is very likely that hyperrectangle
5 is somehow related to hyperrectangle 1. By examining the actual authors and key-
words included in these two hyperrectangles (see below), we conclude that our guess
is legitimate.

Hyperrectangle 1 in Fig. 9c:

Authors: AW Moore, CC Aggarwal, C Faloutsos, D Fuhry, D Xin, F Mrchen,
FF Dragan, H Mannila, H Xiong, JX Yu, J Pei,] Wang, J Han, J Yang, M Ester,
M Hu, M Vlachos, MJ Zaki, PN Tan, PS Yu, R Jin, S Jaroszewicz, V Kumar, W
Su, W Wang, W Jin, X Yan, X Wu, Y Xiang

Keywords: synthet, databas, frequent, itemset, prune, process, mine, cluster, time,
algorithm, pattern

Hyperrectangle 5 in Fig. 9c:

Authors: A Ghoting, AKH Tung, B Field, BJ Gao, C Wang, D Polshakov, E
Stroulia, G Agrawal, G Fang, G Cong, G Buehrer, H Saigo, H Xiong, K Tsuda,
LH Yang, M Steinbach, M El-Ramly, N Krmer, P Smyth, PG Sorenson, R Gupta,
R Kohavi, S Jaroszewicz, W Peng, W Wang, X Guo

Keywords: frequent, process, mine, algorithm, pattern

Complemented by another important hyperrectangle found in K DD_0.01_0.1, as

listed in the following, we find important authors and topics in frequent itemset mining
of KDD conferences.

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 247

(a)

1818 transactions
399 transactions

262 transactions
91 transactions
T

91 transactions

262 transactions

21 items 40 items

Fig. 9 KDD author keyword visualization. Red(1,6), green(2,7), blue(3,8), yellow(4,9), magenta(5,10).
Red(1,6) means hyperrectangle 1 and 6 are visualized by red bounding boxes. Others can be explained
in the same way. a KDD in new orders. b KDD2008 in new orders. ¢ Hyperrectangles 1-5 of KDD after
zooming in. d Hyperrectangles 1-5 of KDD2008 after zooming in. e Hyperrectangles 610 of KDD after
zooming in. f Hyperrectangles 6-10 of KDD2008 after zooming in. (Color figure online)

@ Springer

248 Y. Xiang et al.

Authors: A Bifet, A Grama, B Shi, B Mobasher, B Goethals, C Liu, C Wang,
D Lo, F Chen, F Pan, FSL Brinkman, H Wang, J Prins, JL Gardy, J Cai, J Li, J
Huan, K Sinha, K Zhang, L. Wong, LD Raedt, M Koyutrk, M Hu, O Schulte, O
Verscheure, R Gavald, R She, RW White, SC Khoo, T Calders, V Tankasali, W
Su, X Shen, Y Zhu

Keywords: frequent, mine, algorithm, pattern

7.5 Empirical comparison with related work

In this section, we compare HYPER with related work through experiments. Although
there are no universal standards on what a good summarization scheme is, we believe
the following comparison on the effectiveness of summarization gives readers some
ideas on how HYPER compares to related work.

The following two factors, in our opinion, are good descriptions of the effectiveness
of summarization methods:

— How well do the major summarization results capture the nature of the data?

— How concise are these summarization results?
Given the above two factors, we are primarily interested in studying the first k
hyperrectangles discovered by HYPER algorithm according to the following two
criteria:

— The total number of elements in DB (i.e., cells that are 1 in the original matrix) the
first k hyperrectangles cover.

— The ratio of coverage per cost, i.e., the total number of covered elements over the
total cost of the k hyperrectangles. (See Sect. 1.1 for the definition of cost.)

We compare HYPER with tiling (Geerts et al. 2004) and NDI Calders and Goethals
(2007). Both tiling and NDI only output itemsets. We build hyperrectangles for them
by associating supporting transactions with each itemset.

The source code of tiling is provided by the authors and implemented in Java. The
source of NDI is made available publicly by the authors. Our PC platform (for running
Java program of tiling) is an AMD Opteron 2.2 GHz with 4 GB of memory.

Since the tiling program implemented in Java cannot run efficiently on large inputs
on our PC settings, we test all three methods on two sampled datasets: The sampled
mushroom dataset consisting of 250 randomly selected transactions from the dense
dataset mushroom, and the sampled pumsb_star dataset consisting of 250 randomly
selected transactions from the sparse dataset pumsb_star.

For HYPER, we not only use the default frequent itemsets (i.e., fi), but also use the
frequent closed itemsets (i.e., fci) as inputs. As we have discussed in Sect. 7.1, HYPER
can take a lower support-level on fci than fi given the same running time. Hence, we test
HYPER on the sampled mushroom dataset with frequent itemsets of 7% support-level
(fi-7), and frequent closed itemsets of 1% support-level (fci-1). We also test HYPER on
the sampled pumsb_star dataset with frequent itemsets of 30% support-level (fi-30),
and frequent closed itemsets of 4% support-level (fci-4).

To be comparable to HYPER, we tried the same support levels on NDI (ndi-7 and
ndi-1 for the sampled mushroom; ndi-30 and ndi-4 for the sampled pumsb_star). Since
NDI does not rank the outputs, we need to select the k hyperrectangles. To be as fair

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 249

(a)os — (b) oss
o7l 0.5
0.45
o 06 o 04
® ®
< £ 035
g *° g
g o4 g 0.3
g ’ % 0.25 |
S 03 o 02 |
015 o E
02} i e
0.1 .]
01 0.05
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
number of hyperrectangles number of hyperrectangles

Fig. 10 Coverage on sampled datasets. a Coverage on sampled mushroom. b Coverage on sampled
pumsb_star

(a) 35 T T T T T

—~
=2

~
»
(9]

T T
fi-7 —+—
fei-1 —-x---
ndi-g %o
ndi-7 &
tiling -~

1i-80 ——
fei-d --x---

IN
T
!

3

25 |

coverage per cost
¢ N
T
I
coverage per cost

. Ty T e B

05 o, e 05 P A
2 4 6 8 10 12 14 16 18 20 2 6 8 10 12 14 16 18 20

number of hyperrectangles number of hyperrectangles

IS

Fig. 11 Coverage per cost on sampled datasets. a Coverage per cost on sampled mushroom. b Coverage
per cost on sampled pumsb_star

as we can, we select hyperrectangles from NDI outputs according to the greedy set
cover approach, i.e., in each iteration select the hyperrectangle that can cover the most
uncovered elements.

The tiling program for mining maximum k-tilings does not take support-levels as
inputs. Since it exactly output k tiles, we do not need to make additional selections.

Here are the results of comparison:

We vary k from 2 to 20. The total coverage (displayed as the ratio of coverage
over the total elements) on each sampled dataset by the k hyperrectangles is shown
in Fig. 10, the ratio of coverage per cost on each sampled dataset is shown in Fig. 11.
The Java-based tiling program cannot output a result on the sampled pumsb_star in
a reasonable time therefore it is missing in Figs. 10b and 11b. We do not report the
running time for our empirical comparison due to the platform disparateness (i.e.,
tiling in Java but NDI and HYPER in C++).

From Fig. 10, we can see that when k increasing, the coverage ratio of all the meth-
ods increases, as expected. Generally speaking, the coverage ratios of these methods do
not differ much. However, tiling slightly outperform HYPER on the sampled mushroom
dataset, and HYPER is slightly better than NDI in most of the cases. This is understand-
able because the goal of tiling is directly towards maximum coverage, while the goal
of NDI is to find a minimal representation for all frequent itemsets with respect to the
deduction rules. For NDI, the coverage ratio is almost collinear with the number of

@ Springer

250 Y. Xiang et al.

hyperrectangles. This suggests that largest k hyperrectangles constructed from non-
derivable itemsets have very limited overlapping, if any, and their sizes (Note | H | is the
size of hyperrectangle H) are comparable. In contrast, the coverage ratio of tiling or
HYPER increases quickly at the beginning but slowly at the end when k increases, which
suggests that both methods are quite successful in identifying largest hyperrectangles.

Although tiling and HYPER have similar performance in coverage, HYPER signif-
icantly outperforms tiling in coverage per cost, as shown in Fig. 11. This confirms
that HYPER achieves its goal in succinctly summarizing transactional datasets. The
decreasing of coverage per cost in HYPER and in tiling justify the motivation of finding
major hyperrectangles for succinctly summarizing transactional datasets. The almost
flat lines of NDI in Fig. 11 again suggest that the largest k£ hyperrectangles constructed
from non-derivable itemsets have similar sizes but dissimilar coverages.

8 Conclusions

In this paper, we have introduced a new research problem to succinctly summarize
transactional databases. We have formulated this problem as a set covering problem
using overlapped hyperrectangles; we then proved that this problem and its several
variations are NP-hard. We have developed two novel algorithms, HYPER and HYPER+
to effectively summarize transactional databases. In the experimental evaluation, we
have demonstrated the effectiveness and efficiency of our methods. In particular, we
found interesting “threshold behavior” and “convergence behavior”, which we believe
can help us generate succinct summarizations in terms of the summarization cost, the
number of hyperrectangles, and the computational cost. In addition, we showed how
to visualize hyperrectangles to facilitate the analysis of the summarization results. In
the future, we would like to investigate those behaviors analytically and thus produce
better summarizations. We also plan to apply this method on real world applications,
such as biomedical data analysis, for which we conjecture some hyperrectangles in
biomedical data may correspond to certain biomarkers.

Acknowledgment This work was supported in part by the National Science Foundation under Grant
#1019343 to the Computing Research Association for the CIFellows Project.

References

Afrati FN, Gionis A, Mannila H (2004) Approximating a collection of frequent sets. In: KDD, pp 12-19

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: VLDB, pp
487-499

Agrawal R, Borgida A, Jagadish HV (1989) Efficient management of transitive relationships in large data,
knowledge bases. In: SIGMOD Conference, pp 253-262

Agrawal R, Imielinski T, Swami AN (1993) Mining association rules between sets of items in large dat-
abases. In: SIGMOD Conference, pp 207-216

Agrawal A, Mannila H, Srikant R, Toivonen H, Verkamo A (1996) Fast discovery of association rules. Adv
Knowl Discov Data Min 307-308

Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional
data for data mining applications. In: SIGMOD Conference, pp 94-105

Besson J, Robardet C, De Raedt L, Boulicaut J-F (2006) Mining bi-sets in numerical data. In: KDID,
pp 11-23

@ Springer

Summarizing transactional databases with overlapped hyperrectangles 251

Boulicaut J-F, Bykowski A, Rigotti C (2003) Free-sets: a condensed representation of boolean data for the
approximation of frequency queries. Data Min Knowl Discov 7(1):5-22

Burdick D, Calimlim M, Flannick J, Gehrke J, Yiu T (2005) Mafia: a maximal frequent itemset algorithm.
IEEE Trans Knowl Data Eng 17(11)1490-1504

Calders T, Goethals B (2007) Non-derivable itemset mining. Data Min Knowl Discov 14(1):171-206

Chandola V, Kumar V (2007) Summarization—compressing data into an informative representation. Knowl
Inf Syst 12(3):355-378

Chvital V. (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4:233-235

Faloutsos C, Megalooikonomou V (2007) On data mining, compression, kolmogorov complexity. Data Min
Knowl Discov 15(1):3-20

Gao Byron J, Ester M (2006) Turning clusters into patterns: rectangle-based discriminative data description.
In: ICDM, pp 200-211

Gao Byron J, Ester M, Cai JY, Schulte O, Xiong H (2007) The minimum consistent subset cover problem,
its applications in data mining. In: KDD, pp 310-319

Geerts F, Goethals B, Mielikidinen T (2004) Tiling databases. In: Discovery science, pp 278-289

Gionis A, Mannila H, Seppinen JK (2004) Geometric, combinatorial tiles in 0-1 data. In: PKDD, pp 173-184

Han J, Kamber M (2006) Data mining: concepts, techniques, second edition. Morgan Kaufmann,
San Francisco

Harper LH (1964) Optimal assignments of numbers to vertices. J Soc Ind Appl Math 12(1):131-135

Hartigan JA (1972) Direct clustering of a data matrix.] Am Stat Assoc 67(337):123-129

JinR, Xiang Y, Fuhry D, Dragan FF (2008) Overlapping matrix pattern visualization: a hypergraph approach.
In: ICDM, pp 313-322 (© IEEE, 2008. doi:10.1109/ICDM.2008.102)

Jin R, Xiang Y, Liu L (2009) Cartesian contour: a concise representation for a collection of frequent sets.
In: KDD, pp 417-426

Johnson D, Krishnan S, Chhugani J, Kumar S, Venkatasubramanian S (2004) Compressing large boolean
matrices using reordering techniques. In: VLDB, pp 13-23

Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. Springer Verlag, New York

Lakshmanan LVS, Ng RT, Wang CX, Zhou X, Johnson TJ (2002) The generalized mdl approach for sum-
marization. In: VLDB, pp 766777

Li T (2005) A general model for clustering binary data. In: KDD, pp 188-197

Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM
Trans Comput Biol Bioinf 1(1):24-45

Minoux M (1977) Accelerated greedy algorithms for maximizing submodular set functions. In: the 8th IFIP
Conference on Optimization Techniques

Mirkin B (1996) Mathematical classification and clustering. Kluwer Academic Publishers, Boston

Peeters R (2003) The maximum edge biclique problem is np-complete. Discret Appl Math 131(3):651-654

Pei J, Dong G, Zou W, Han J (2004) Mining condensed frequent-pattern bases. Knowl Inf Syst 6(5):
570-594

Richardson TJ, Urbanke RL (2008) Modern coding theory. Cambridge University Press, Cambridge

Safro I, Ron D, Brandt A (2006) Graph minimum linear arrangement by multilevel weighted edge contrac-
tions. J Algorithms 60(1):24—41

Siebes A, Vreeken J, van Leeuwen M (2006) Item sets that compress. In: SDM

Steinbach M, Tan P-N, Kumar V (2004) Support envelopes: a technique for exploring the structure of
association patterns. In: KDD, pp 296-305

van Leeuwen M, Vreeken J, Siebes A (2006) Compression picks item sets that matter. In: PKDD,
pp 585-592

Vreeken J, van Leeuwen M, Siebes A (2007) Characterising the difference. In: KDD, pp 765-774

Wang J, Karypis G (2006) On efficiently summarizing categorical databases. Knowl Inf Syst 9(1):19-37

Xiang Y, Jin R, Fuhry D, Dragan FF (2008) Succinct summarization of transactional databases: an over-
lapped hyperrectangle scheme. In: KDD, pp 758-766 (© ACM, 2008. http://doi.acm.org/10.1145/
1401890.1401981)

Xin D, Han J, Yan X, Cheng H (2005) Mining compressed frequent-pattern sets. In: VLDB, pp 709-720

@ Springer

http://dx.doi.org/10.1109/ICDM.2008.102
http://doi.acm.org/10.1145/1401890.1401981
http://doi.acm.org/10.1145/1401890.1401981

	Summarizing transactional databases with overlapped hyperrectangles
	Abstract
	1 Introduction
	1.1 Problem formulation
	1.2 Our contributions

	2 The hardness of hyperrectangle summarization and its relationship with directed bipartite graph compression
	2.1 Hardness results
	2.2 Relationship with compact representation of directed bipartite graph

	3 Algorithms for summarization without false positives
	3.1 The intuitive greedy algorithm
	3.2 The Hyper algorithm
	3.3 Pruning technique for Hyper

	4 Summarization of the covering database
	5 Visualization
	6 Related research problems and work
	7 Experimental results
	7.1 Summarization with varying support levels
	7.2 Summarization with varying k
	7.3 Hyperrectangle visualization
	7.4 Case study on real datasets
	7.5 Empirical comparison with related work

	8 Conclusions
	Acknowledgment
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

