Propositional Equivalences

Section 1.3
Section Summary

- Tautologies, Contradictions, and Contingencies.
- Logical Equivalence
 - Important Logical Equivalences
 - Showing Logical Equivalence
- Normal Forms (optional, covered in exercises in text)
 - Disjunctive Normal Form
 - Conjunctive Normal Form
- Propositional Satisfiability
 - Sudoku Example
Tautologies, Contradictions, and Contingencies

- A tautology is a proposition which is always true.
 - Example: \(p \lor \neg p \)
- A contradiction is a proposition which is always false.
 - Example: \(p \land \neg p \)
- A contingency is a proposition which is neither a tautology nor a contradiction, such as \(p \)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(\neg p)</th>
<th>(p \lor \neg p)</th>
<th>(p \land \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Logically Equivalent

- Two compound propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology.
- We write this as $p \iff q$ or as $p \equiv q$ where p and q are compound propositions.
- Two compound propositions p and q are equivalent if and only if the columns in a truth table giving their truth values agree.
- This truth table show $\neg p \lor q$ is equivalent to $p \to q$.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$\neg p \lor q$</th>
<th>$p \to q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
De Morgan’s Laws

\[\neg(p \land q) \equiv \neg p \lor \neg q \]

\[\neg(p \lor q) \equiv \neg p \land \neg q \]

This truth table shows that De Morgan’s Second Law holds.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
<td>(\neg p)</td>
<td>(\neg q)</td>
<td>(p \lor q)</td>
<td>(\neg(p \lor q))</td>
<td>(\neg p \land \neg q)</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Key Logical Equivalences

- **Identity Laws:** \[p \land T \equiv p \ , \ p \lor F \equiv p \]
- **Domination Laws:** \[p \lor T \equiv T \ , \ p \land F \equiv F \]
- **Idempotent laws:** \[p \lor p \equiv p \ , \ p \land p \equiv p \]
- **Double Negation Law:** \[\neg(\neg p) \equiv p \]
- **Negation Laws:** \[p \lor \neg p \equiv T \ , \ p \land \neg p \equiv F \]
Key Logical Equivalences (cont)

- **Commutative Laws:** \(p \lor q \equiv q \lor p \), \(p \land q \equiv q \land p \)
- **Associative Laws:**
 - \((p \land q) \land r \equiv p \land (q \land r) \)
 - \((p \lor q) \lor r \equiv p \lor (q \lor r) \)
- **Distributive Laws:**
 - \((p \lor (q \land r)) \equiv (p \lor q)) \land (p \lor r) \)
 - \((p \land (q \lor r)) \equiv (p \land q) \lor (p \land r) \)
- **Absorption Laws:**
 - \(p \lor (p \land q) \equiv p \)
 - \(p \land (p \lor q) \equiv p \)
More Logical Equivalences

TABLE 7 Logical Equivalences Involving Conditional Statements.

- \(p \to q \equiv \neg p \lor q \)
- \(p \to q \equiv \neg q \to \neg p \)
- \(p \lor q \equiv \neg p \to q \)
- \(p \land q \equiv \neg(p \to \neg q) \)
- \(\neg(p \to q) \equiv p \land \neg q \)
- \((p \to q) \land (p \to r) \equiv p \to (q \land r) \)
- \((p \to r) \land (q \to r) \equiv (p \lor q) \to r \)
- \((p \to q) \lor (p \to r) \equiv p \to (q \lor r) \)
- \((p \to r) \lor (q \to r) \equiv (p \land q) \to r \)

TABLE 8 Logical Equivalences Involving Biconditional Statements.

- \(p \iff q \equiv (p \to q) \land (q \to p) \)
- \(p \iff q \equiv \neg p \iff \neg q \)
- \(p \iff q \equiv (p \land q) \lor (\neg p \land \neg q) \)
- \(\neg(p \iff q) \equiv p \iff \neg q \)
Constructing New Logical Equivalences

- We can show that two expressions are logically equivalent by developing a series of logically equivalent statements.

- To prove that \(A \equiv B \), we produce a series of equivalences beginning with \(A \) and ending with \(B \).
 \[
 A \equiv A_1 \\
 \vdots \\
 A_n \equiv B
 \]

- Keep in mind that whenever a proposition (represented by a propositional variable) occurs in the equivalences listed earlier, it may be replaced by an arbitrarily complex compound proposition.
Equivalence Proofs

Example: Show that \(\neg(p \lor (\neg p \land q)) \)

is logically equivalent to \(\neg p \land \neg q \)

Solution:

\[
\begin{align*}
\neg(p \lor (\neg p \land q)) & \equiv \neg p \land \neg(\neg p \land q) & \text{by the second De Morgan law} \\
& \equiv \neg p \land [\neg(\neg p) \lor \neg q] & \text{by the first De Morgan law} \\
& \equiv \neg p \land (p \lor \neg q) & \text{by the double negation law} \\
& \equiv (\neg p \land p) \lor (\neg p \land \neg q) & \text{by the second distributive law} \\
& \equiv F \lor (\neg p \land \neg q) & \text{because } \neg p \land p \equiv F \\
& \equiv (\neg p \land \neg q) \lor F & \text{by the commutative law for disjunction} \\
& \equiv (\neg p \land \neg q) & \text{by the identity law for } F
\end{align*}
\]
Equivalence Proofs

Example: Show that \((p \land q) \rightarrow (p \lor q)\) is a tautology.

Solution:

\[
(p \land q) \rightarrow (p \lor q) \equiv \neg(p \land q) \lor (p \lor q)
\]

by truth table for \(\rightarrow\)

\[
\equiv (\neg p \lor \neg q) \lor (p \lor q)
\]

by the first De Morgan law

\[
\equiv (\neg p \lor p) \lor (\neg p \lor \neg q)
\]

by associative and

commutative laws

laws for disjunction

\[
\equiv T \lor T
\]

by truth tables

\[
\equiv T
\]

by the domination law
Disjunctive Normal Form (optional)

- A propositional formula is in disjunctive normal form if it consists of a disjunction of \((1, \ldots, n)\) disjuncts where each disjunct consists of a conjunction of \((1, \ldots, m)\) atomic formulas or the negation of an atomic formula.
 - Yes \((p \land \lnot q) \lor (\lnot p \lor q)\)
 - No \(p \land (p \lor q)\)

- Disjunctive Normal Form is important for the circuit design methods discussed in Chapter 12.
Disjunctive Normal Form (optional)

Example: Show that every compound proposition can be put in disjunctive normal form.

Solution: Construct the truth table for the proposition. Then an equivalent proposition is the disjunction with \(n \) disjuncts (where \(n \) is the number of rows for which the formula evaluates to \(T \)). Each disjunct has \(m \) conjuncts where \(m \) is the number of distinct propositional variables. Each conjunct includes the positive form of the propositional variable if the variable is assigned \(T \) in that row and the negated form if the variable is assigned \(F \) in that row. This proposition is in disjunctive normal form.
Example: Find the Disjunctive Normal Form (DNF) of

\[(p \lor q) \rightarrow \neg r\]

Solution: This proposition is true when \(r \) is false or when both \(p \) and \(q \) are false.

\[(\neg p \land \neg q) \lor \neg r \]
Conjunctive Normal Form (optional)

- A compound proposition is in *Conjunctive Normal Form* (CNF) if it is a conjunction of disjunctions.
- Every proposition can be put in an equivalent CNF.
- Conjunctive Normal Form (CNF) can be obtained by eliminating implications, moving negation inwards and using the distributive and associative laws.
- Important in resolution theorem proving used in artificial Intelligence (AI).
- A compound proposition can be put in conjunctive normal form through repeated application of the logical equivalences covered earlier.
Conjunctive Normal Form (optional)

Example: Put the following into CNF:
\[-(p \rightarrow q) \lor (r \rightarrow p)\]

Solution:
1. Eliminate implication signs:
 \[-(\neg p \lor q) \lor (\neg r \lor p)\]
2. Move negation inwards; eliminate double negation:
 \[(p \land \neg q) \lor (\neg r \lor p)\]
3. Convert to CNF using associative/distributive laws
 \[(p \lor \neg r \lor p) \land (\neg q \lor \neg r \lor p)\]
Propositional Satisfiability

- A compound proposition is *satisfiable* if there is an assignment of truth values to its variables that make it true. When no such assignments exist, the compound proposition is *unsatisfiable*.
- A compound proposition is unsatisfiable if and only if its negation is a tautology.
Questions on Propositional Satisfiability

Example: Determine the satisfiability of the following compound propositions:

\[(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)\]

Solution: Satisfiable. Assign T to p, q, and r.

\[(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)\]

Solution: Satisfiable. Assign T to p and F to q.

\[(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p) \land (p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)\]

Solution: Not satisfiable. Check each possible assignment of truth values to the propositional variables and none will make the proposition true.
Notation

\[\bigvee_{j=1}^{n} p_j \text{ is used for } p_1 \lor p_2 \lor \ldots \lor p_n \]

\[\bigwedge_{j=1}^{n} p_j \text{ is used for } p_1 \land p_2 \land \ldots \land p_n \]

Needed for the next example.
Sudoku

- A **Sudoku puzzle** is represented by a 9×9 grid made up of nine 3×3 subgrids, known as **blocks**. Some of the 81 cells of the puzzle are assigned one of the numbers 1, 2, ..., 9.

- The puzzle is solved by assigning numbers to each blank cell so that every row, column and block contains each of the nine possible numbers.

- Example
Encoding as a Satisfiability Problem

- Let $p(i,j,n)$ denote the proposition that is true when the number n is in the cell in the ith row and the jth column.
- There are $9 \times 9 \times 9 = 729$ such propositions.
- In the sample puzzle $p(5,1,6)$ is true, but $p(5,j,6)$ is false for $j = 2,3,...9$
Encoding (cont)

- For each cell with a given value, assert $p(i, j, n)$, when the cell in row i and column j has the given value.
- Assert that every row contains every number.
 $$\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{j=1}^{9} p(i, j, n)$$
- Assert that every column contains every number.
 $$\bigwedge_{j=1}^{9} \bigwedge_{i=1}^{9} \bigvee_{n=1}^{9} p(i, j, n)$$
Encoding (cont)

- Assert that each of the 3 x 3 blocks contain every number.

\[\bigwedge_{r=0}^{2} \bigwedge_{s=0}^{2} \bigwedge_{n=1}^{3} \bigwedge_{i=1}^{3} \bigvee_{j=1}^{3} p(3r + i, 3s + j, n) \]

(this is tricky - ideas from chapter 4 help)

- Assert that no cell contains more than one number. Take the conjunction over all values of \(n, n', i, \) and \(j, \) where each variable ranges from 1 to 9 and \(n \neq n', \) of

\[p(i, j, n) \rightarrow \neg p(i, j, n') \]
Solving Satisfiability Problems

- To solve a Sudoku puzzle, we need to find an assignment of truth values to the 729 variables of the form $p(i,j,n)$ that makes the conjunction of the assertions true. Those variables that are assigned T yield a solution to the puzzle.
- A truth table can always be used to determine the satisfiability of a compound proposition. But this is too complex even for modern computers for large problems.
- There has been much work on developing efficient methods for solving satisfiability problems as many practical problems can be translated into satisfiability problems.