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Propositional Logic Not Enough 
 If we have:  

“All men are mortal.” 

“Socrates is a man.” 

 Does it follow that “Socrates is mortal?” 

 Can’t  be represented in propositional logic. Need a 
language that talks about objects, their properties, and 
their relations.  

 Later we’ll see how to draw inferences.  



Introducing Predicate Logic 
 Predicate logic uses the following new features: 

 Variables:   x, y, z 

 Predicates:   P(x), M(x) 

 Quantifiers (to be covered in a few slides): 

 Propositional functions are a generalization of 
propositions.  

 They contain variables and a predicate, e.g., P(x) 

 Variables can be replaced by elements from their 
domain. 

 



Propositional Functions 
 Propositional functions become propositions (and have 

truth values) when their variables are each replaced by a 
value from the domain (or  bound by a quantifier, as we will 
see later). 

 The statement P(x) is said to be the value of the 
propositional function P at x.  

 For example, let P(x) denote  “x > 0” and the domain be the 
integers. Then: 
P(-3)   is false. 
P(0)   is false. 
P(3)  is true.  

 Often the domain is denoted by U. So in this example U is 
the integers. 
 



Examples of Propositional 
Functions 
 Let “x + y = z” be denoted by  R(x, y, z) and U (for all three variables) be 

the integers. Find these truth values:  
R(2,-1,5) 

Solution:  F 

R(3,4,7) 
Solution: T 

R(x, 3, z) 
Solution: Not a Proposition 

 Now let  “x - y = z” be denoted by Q(x, y, z), with U as the integers. 
Find these truth values: 
Q(2,-1,3) 

 Solution:  T 

Q(3,4,7) 
 Solution: F 

 Q(x, 3, z) 
 Solution:  Not a Proposition 

 
 



Compound Expressions 
 Connectives from propositional logic carry over to predicate 

logic.  
 If P(x) denotes  “x > 0,” find these truth values: 

P(3) ∨ P(-1)      Solution: T 
P(3) ∧ P(-1)      Solution: F 
P(3) → P(-1)     Solution: F 
P(3) → P(-1)     Solution: T 

 Expressions with variables are not propositions and therefore do 
not have truth values.  For example, 
P(3) ∧ P(y)       
P(x) → P(y)      

 When used with quantifiers (to be introduced next), these 
expressions (propositional functions) become propositions. 

 
 



Quantifiers 
 We need quantifiers to express the meaning of English 

words including all and some: 
 “All men are Mortal.” 
 “Some cats do not have fur.” 

 The two most important quantifiers are: 

 Universal Quantifier, “For all,”   symbol:  
 Existential Quantifier, “There exists,”  symbol:  

 We write  as in x P(x) and x P(x). 
 x P(x) asserts P(x) is true for every x in the domain. 
 x P(x) asserts P(x) is true for some x in the domain. 
 The quantifiers are said to bind the variable x in these 

expressions.  
 
 

Charles Peirce (1839-1914) 



Universal Quantifier 
 x P(x)  is read as “For all x, P(x)” or “For every x, P(x)” 

Examples: 

1)  If P(x) denotes  “x > 0” and U is the integers, then x P(x) is 
false. 

2) If P(x) denotes  “x > 0” and U  is the positive integers, then     
x P(x) is true. 

3) If P(x) denotes  “x is even” and U  is the integers,  then  x 
P(x) is false. 

 

 

 



Existential Quantifier 
 x P(x) is read as “For some x, P(x)”,  or as “There is an 

x such that P(x),”  or “For at least one x, P(x).”  

Examples: 

1.  If P(x) denotes  “x > 0” and U  is the integers, then x P(x) is 
true. It is also true if U is the positive integers. 

2. If P(x) denotes  “x < 0” and U  is the positive integers,  then     
x P(x) is false. 

3. If P(x) denotes  “x is even” and U  is the integers,  then     x 
P(x) is true. 

 



Uniqueness Quantifier (optional) 
 !x P(x) means that P(x) is true for one and only one x in the 

universe of discourse. 

 This is commonly expressed in English in the following 
equivalent ways: 
 “There is a unique x such that P(x).”  

 “There is one and only one x such that P(x)” 

 Examples: 
1. If P(x) denotes  “x + 1 = 0”  and U is the integers, then !x P(x) is 

true.  

2. But if P(x) denotes  “x > 0,”  then !x P(x) is false. 

 The uniqueness quantifier is not really needed as the restriction 
that there is a unique x such that P(x) can be expressed as:   

                               x (P(x) ∧y (P(y) → y =x)) 



Thinking about Quantifiers 
 When the  domain of discourse is finite, we can think of 

quantification as looping through the elements of the domain. 
 To evaluate x P(x) loop through all x in the domain.  

 If at every step P(x) is true, then x P(x) is true.  
 If at a step P(x) is false, then x P(x) is false and the loop 

terminates.  

 To evaluate x P(x) loop through all x in the domain.  
 If  at some step, P(x) is true, then x P(x) is true and the loop 

terminates.  
 If the loop ends without finding an x for which P(x) is true, then x 

P(x) is false. 

 Even if the domains are infinite, we can still think of the 
quantifiers this fashion, but the loops will not terminate in some 
cases. 
 
 

 



Properties of Quantifiers 
 The truth value of x P(x)  and  x P(x)  depend on both 

the propositional function P(x) and on  the domain U.  

 Examples: 

1. If U is the  positive integers and P(x) is the statement           
“x < 2”, then x P(x)   is true, but  x P(x)  is false.  

2. If U is the negative integers and P(x) is the statement           
“x < 2”, then both x P(x)  and   x P(x)  are true.  

3. If U consists of 3, 4, and 5,  and P(x) is the statement           
“x > 2”, then  both x P(x)   and  x P(x)  are true. But if 
P(x) is the statement “x < 2”, then  both x P(x)   and             
 x P(x)  are false.  

 

 



Precedence of Quantifiers 
 The quantifiers  and   have higher precedence than 

all the logical operators. 

 For example, x P(x) ∨ Q(x)  means (x P(x))∨ Q(x)   

 x (P(x) ∨ Q(x)) means something different. 

 Unfortunately, often people write x P(x) ∨ Q(x)  when 
they mean  x (P(x) ∨ Q(x)).  



Translating from English to Logic 
Example 1:  Translate the following sentence into predicate 

logic: “Every student in this class has taken a course in 
Java.” 

Solution: 

  First decide on the domain U.  
Solution 1: If U is all students in this class, define a 

propositional function J(x) denoting “x has taken a course in 
Java” and translate as x J(x).  

Solution 2: But if U is all people, also define a propositional  
function S(x) denoting “x is a student in this class” and 
translate as     x (S(x)→ J(x)).  
             x (S(x) ∧ J(x))  is not correct.  What does it mean? 

 



Translating from English to Logic 
Example 2: Translate the following sentence into 

predicate logic: “Some student in this class has taken a 
course in Java.”  

Solution: 

First decide on the domain U.  

Solution 1: If U is all students in this class, translate as  

                           x J(x) 

Solution 1: But if U is all people, then translate as                 
x (S(x) ∧ J(x))  
        x (S(x)→ J(x)) is not correct. What does it mean? 

 



Returning to the Socrates Example  
 Introduce the  propositional functions Man(x) 

denoting “x is a man” and  Mortal(x) denoting “x is 
mortal.”  Specify the  domain as all people. 

 The two premises are: 

 

 The conclusion is: 

 

 Later we will show how to prove that the conclusion 
follows from the premises. 

 



Equivalences in Predicate Logic 
 Statements involving predicates and quantifiers are 

logically equivalent if and only if they have the same 
truth value  

 for every predicate substituted into these statements 
and  

 for every domain of discourse used for the variables in 
the expressions.  

 The notation S ≡T  indicates that S and T  are logically 
equivalent.  

 Example:  x ¬¬S(x) ≡ x S(x) 



Thinking about Quantifiers as 
Conjunctions and Disjunctions 
 If the domain is finite, a universally quantified proposition is 

equivalent to a conjunction of propositions without quantifiers 
and an existentially quantified proposition is equivalent to  a 
disjunction of propositions without quantifiers.  

 If U consists of the integers 1,2, and 3: 
 
 
 
 
 
 Even if the domains are infinite, you can still think of the 

quantifiers in this fashion, but the equivalent expressions 
without quantifiers will be infinitely long. 
 
 

 



Negating Quantified Expressions 
 Consider x J(x) 

“Every student in your class has taken a course in Java.” 

 Here J(x)  is “x has taken a course in Java” and  

 the domain is students in your class.  

 Negating the original statement gives “It is not the case 
that every student in your class has taken Java.” This 
implies that “There is a student in your class who has 
not taken Java.” 

     Symbolically  ¬x J(x)  and x ¬J(x) are equivalent 

 



Negating Quantified Expressions 
(continued) 
 Now Consider  x J(x) 

“There is a student in this class who has taken a course in 
Java.” 

Where J(x)  is “x has taken a course in Java.” 

 Negating the original statement gives “It is not the case 
that there is a student in this class who has taken Java.” 
This implies that “Every student in this class has not 
taken Java” 

     Symbolically  ¬ x J(x)  and  x ¬J(x) are equivalent 



De Morgan’s Laws for Quantifiers 
 The rules for negating quantifiers are: 

 

 

 

 The reasoning in the table shows that: 

 

 

 

 These are important. You will use these.  



Translation from English to Logic 
Examples: 

1. “Some student in this class has visited Mexico.” 

   Solution: Let M(x) denote “x has visited Mexico” and 
S(x) denote “x is a student in this class,”  and U  be all 
people. 

                      x  (S(x) ∧ M(x)) 

2. “Every student in this class has visited Canada or 
Mexico.” 

  Solution: Add C(x) denoting “x has visited Canada.” 

                    x (S(x)→ (M(x)∨C(x))) 

 


