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Propositional Logic Not Enough
[f we have:

“All men are mortal.”
« . »
Socrates is a man.

Does it follow that “Socrates is mortal?”

Can't be represented in propositional logic. Need a
language that talks about objects, their properties, and
their relations.

Later we'll see how to draw inferences.
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Introducing Predicate Logic

Predicate logic uses the following new features:
e Variables: x,y, z
e Predicates: P(x), M(x)
e Quantifiers (to be covered in a few slides):

Propositional functions are a generalization of
propositions.
e They contain variables and a predicate, e.g., P(x)

e Variables can be replaced by elements from their
domain.
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Propositional Functions

Propositional functions become propositions (and have
truth values) when their variables are each replaced by a
value from the domain (or bound by a quantifier, as we will
see later).

The statement P(x) is said to be the value of the
propositional function P at x.

For example, let P(x) denote “x > 0” and the domain be the
integers. Then:

P(-3) is false.

P(0) is false.

P(3) is true.
Often the domain is denoted by U. So in this example U is
the integers.



“Examples of Propositional

Functions

Let “x + y = z”be denoted by R(x, y, z) and U (for all three variables) be
the integers. Find these truth values:
R(2,-1,5)
Solution: F
R(3,4,7)
Solution: T
R(x, 3, z)
Solution: Not a Proposition

Now let “x - y = z”be denoted by Q(x, y, z), with U as the integers.
Find these truth values:

Q(2,-1,3)

Solution: T

Q(3,4,7)

Solution: F

Q(x, 3, z)

Solution: Not a Proposition
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Compound Expressions

1Corolnectives from propositional logic carry over to predicate
ogic.
If P(x) denotes “x > 0,” find these truth values:

P(3) vP(-1) Solution: T

P(3) AP(-1) Solution: F

P(3) > P(-1) Solution: F

P(3) > P(-1) Solution: T
Expressions with variables are not propositions and therefore do
not have truth values. For example,

P(3) AP(»)

P(x) = P(»)
When used with quantifiers (to be introduced next), these
expressions (propositional functions) become propositions.
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QU a n t i fi e rS Charles Peirc (839—1914)

We need quantifiers to express the meaning of English
words including all and some:

e “All men are Mortal.”
e “Some cats do not have fur”

The two most important quantifiers are:
e Universal Quantifier, “For all,” symbol: V
e Existential Quantifier, “There exists,” symbol: 3
We write as in Vx P(x) and 3x P(x).
Vx P(x) asserts P(x) is true for every x in the domain.
dx P(x) asserts P(x) is true for some x in the domain.

The quantifiers are said to bind the variable x in these
expressions.




Universal Quantifier

Vx P(x) isread as “Forall x, P(x)” or “For every x, P(x)”

Examples:
1) If P(x) denotes “x > 0” and Uis the integers, then Vx P(x) is
false.

.) If P(x) denotes “x > 0” and U is the positive integers, then
Vx P(x) is true.

;) If P(x) denotes “xis even” and U is the integers, then V x
P(x) is false.
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Existential Quantifier

dx P(x) is read as “For some x, P(x)” oras “There is an
x such that P(x),” or “For at least one x, P(x).”

Examples:

. If P(x) denotes “x > 0” and U is the integers, then Ix P(x) is
true. It is also true if U is the positive integers.

.. If P(x) denotes “x < 0” and U is the positive integers, then
dx P(x) is false.

5. If P(x) denotes “xiseven” and U is the integers, then 3Ix
P(x) is true.
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Uniqueness Quantifier (optional)

d!x P(x) means that P(x) is true for one and only one X in the
universe of discourse.

This is commonly expressed in English in the following
equivalent ways:

e “There is a unique X such that P(x).”

e “There is one and only one X such that P(x)”

Examples:
1. If P(x) denotes “x + 1 = 0” and U is the integers, then 3!x P(x) is
true.

>.  Butif P(x) denotes “x > 0,” then 3'x P(x) is false.

The uniqueness quantifier is not really needed as the restriction
that there is a unique x such that P(x) can be expressed as:

Ix (P(x) AVy (P(y) = y=x))
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Thinking about Quantifiers

When the domain of discourse is finite, we can think of
quantification as looping through the elements of the domain.
To evaluate Vx P(x) loop through all x in the domain.

o If at every step P(x) is true, then Vx P(x) is true.

e If atastep P(x) is false, then Vx P(x) is false and the loop
terminates.

To evaluate 3x P(x) loop through all x in the domain.

e If at some step, P(x) is true, then 3x P(x) is true and the loop
terminates.

o If the loop ends without finding an x for which P(x) is true, then 3x
P(x) is false.
Even if the domains are infinite, we can still think of the

quantifiers this fashion, but the loops will not terminate in some
cases.
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Properties of Quantifiers

The truth value of 7x P(x) and V' x P(x) depend on both
the propositional function P(x)and on the domain U.

Examples:

1. If Uis the positive integers and P(x) is the statement
“x < 2” then Fx P(x) istrue, but V"x P(x) is false.

>. If U is the negative integers and P(x) is the statement
“x < 27, then both 7x P(x) and V' x P(x) are true.

3. If U consists of 3, 4, and 5, and P(x) is the statement
“x > 27 then both Fx P(x) and V' x P(x) are true. But if
P(x) is the statement “x < 2”, then both Fx P(x) and
V' x P(x) are false.
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Precedence of Quantifiers

The quantifiers V and 3 have higher precedence than
all the logical operators.

For example, Vx P(x) V Q(x) means (Vx P(x))V Q(x)
Vx (P(x) V Q(x)) means something different.

Unfortunately, often people write Vx P(x) V Q(x) when
they mean V' x (P(x) V Q(x)).
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Translating from English to Logic

Example 1: Translate the following sentence into predicate
logic: “Every student in this class has taken a course in
Java.”

Solution:

First decide on the domain U.

Solution 1: If U is all students in this class, define a
propositional function J(x) denoting “x has taken a course in
Java” and translate as Vx /(x).

Solution 2: But if U is all people, also define a propositional
function S(x) denoting “x is a student in this class” and
translateas Vx (S(x)- J(x)).

Vx (S(x) A\ J(x)) is not correct. What does it mean?
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Translating from English to Logic

Example 2: Translate the following sentence into
predicate logic: “Some student in this class has taken a
course in Java.”

Solution:
First decide on the domain U.

Solution 1: If U is all students in this class, translate as
Ix J(x)
Solution 1: But if U is all people, then translate as

Tx (S(x) 1] (x))

Ix (S(x)— J(x))is not correct. What does it mean?
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Returning to the Socrates Example

Introduce the propositional functions Man(x)

denoting “x isa man” and Mortal(x) denoting “x is

mortal.” Specify the domain as all people.

The two premises are: VxMan(x) — Mortal(x)
Man(Socrates)

The conclusion is: Mortal(Socrates)

Later we will show how to prove that the conclusion
follows from the premises.
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Equivalences in Predicate Logic

Statements involving predicates and quantifiers are
logically equivalent if and only if they have the same
truth value

e for every predicate substituted into these statements
and

e for every domain of discourse used for the variables in
the expressions.

The notation S =7 indicates that Sand 7 are logically
equivalent.

Example: Vx——-5(x)= VxS5(x)
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~“Thinking about Quantifiers as
Conjunctions and Disjunctions

If the domain is finite, a universally quantified proposition is
equivalent to a conjunction of propositions witﬁout quantifiers
and an existentially quantified proposition is equivalent to a
disjunction of propositions WitEOUt quantifiers.

If U consists of the integers 1,2, and 3:
VeP(x) = P(1) A P(2) A P(3)

dzxP(x) = P(1) v P(2) vV P(3)

Even if the domains are infinite, you can still think of the
quantifiers in this fashion, but the equivalent expressions
without quantifiers will be infinitely long.
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Negating Quantified Expressions
Consider Vx /(x)

“Every student in your class has taken a course in Java.”
Here /(x) is “x has taken a course in Java” and

the domain is students in your class.

Negating the original statement gives “It is not the case
that every student in your class has taken Java.” This
implies that “There is a student in your class who has
not taken Java.”

Symbolically —Vx /(x) and Fx —/(x) are equivalent



“Negating Quantified Expressions

(continued)
Now Consider 7 x /(x)

“There is a student in this class who has taken a course in
»
Java.

Where /(x) is “x has taken a course in Java.”
Negating the original statement gives “It is not the case

that there is a student in this class who has taken Java.”
This implies that “Every student in this class has not

taken Java”
Symbolically =7 x/(x) and V' x —/(x)are equivalent



De Morgan’s Laws for Quantifiers

* The rules for negating quantifiers are:

TABLE 2 De Morgan’s Laws for Quantifiers.

Negation Equivalent Statement When Is Negation True? When False?
—3x P(x) Vx—P(x) For every x, P(x) is false. There is an x for which
P(x) is true.
=VxP(x) Ix—=P(x) There is an x for which P (x) is true for every x.
P(x) is false.

* The reasoning in the table shows that:

P = P
bl v Pl

* These are important. You will use these.
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Translation from English to Logic

Examples:

“Some student in this class has visited Mexico.”

Solution: Let M(x) denote “x has visited Mexico” and
S(x) denote “x is a student in this class,” and U be all

people.
dx (S(x)\ M(x))
“Every student in this class has visited Canada or
Mexico.”

Solution: Add C(x) denoting “x has visited Canada.”

VX (5(x)=> (M()V((X)))



