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Section Summary 
 Predicates  

 Variables 

 Quantifiers 

 Universal Quantifier 

 Existential Quantifier 

 Negating Quantifiers 

 De Morgan’s Laws for Quantifiers 

 Translating English to Logic 

 

 

 



Propositional Logic Not Enough 
 If we have:  

“All men are mortal.” 

“Socrates is a man.” 

 Does it follow that “Socrates is mortal?” 

 Can’t  be represented in propositional logic. Need a 
language that talks about objects, their properties, and 
their relations.  

 Later we’ll see how to draw inferences.  



Introducing Predicate Logic 
 Predicate logic uses the following new features: 

 Variables:   x, y, z 

 Predicates:   P(x), M(x) 

 Quantifiers (to be covered in a few slides): 

 Propositional functions are a generalization of 
propositions.  

 They contain variables and a predicate, e.g., P(x) 

 Variables can be replaced by elements from their 
domain. 

 



Propositional Functions 
 Propositional functions become propositions (and have 

truth values) when their variables are each replaced by a 
value from the domain (or  bound by a quantifier, as we will 
see later). 

 The statement P(x) is said to be the value of the 
propositional function P at x.  

 For example, let P(x) denote  “x > 0” and the domain be the 
integers. Then: 
P(-3)   is false. 
P(0)   is false. 
P(3)  is true.  

 Often the domain is denoted by U. So in this example U is 
the integers. 
 



Examples of Propositional 
Functions 
 Let “x + y = z” be denoted by  R(x, y, z) and U (for all three variables) be 

the integers. Find these truth values:  
R(2,-1,5) 

Solution:  F 

R(3,4,7) 
Solution: T 

R(x, 3, z) 
Solution: Not a Proposition 

 Now let  “x - y = z” be denoted by Q(x, y, z), with U as the integers. 
Find these truth values: 
Q(2,-1,3) 

 Solution:  T 

Q(3,4,7) 
 Solution: F 

 Q(x, 3, z) 
 Solution:  Not a Proposition 

 
 



Compound Expressions 
 Connectives from propositional logic carry over to predicate 

logic.  
 If P(x) denotes  “x > 0,” find these truth values: 

P(3) ∨ P(-1)      Solution: T 
P(3) ∧ P(-1)      Solution: F 
P(3) → P(-1)     Solution: F 
P(3) → P(-1)     Solution: T 

 Expressions with variables are not propositions and therefore do 
not have truth values.  For example, 
P(3) ∧ P(y)       
P(x) → P(y)      

 When used with quantifiers (to be introduced next), these 
expressions (propositional functions) become propositions. 

 
 



Quantifiers 
 We need quantifiers to express the meaning of English 

words including all and some: 
 “All men are Mortal.” 
 “Some cats do not have fur.” 

 The two most important quantifiers are: 

 Universal Quantifier, “For all,”   symbol:  
 Existential Quantifier, “There exists,”  symbol:  

 We write  as in x P(x) and x P(x). 
 x P(x) asserts P(x) is true for every x in the domain. 
 x P(x) asserts P(x) is true for some x in the domain. 
 The quantifiers are said to bind the variable x in these 

expressions.  
 
 

Charles Peirce (1839-1914) 



Universal Quantifier 
 x P(x)  is read as “For all x, P(x)” or “For every x, P(x)” 

Examples: 

1)  If P(x) denotes  “x > 0” and U is the integers, then x P(x) is 
false. 

2) If P(x) denotes  “x > 0” and U  is the positive integers, then     
x P(x) is true. 

3) If P(x) denotes  “x is even” and U  is the integers,  then  x 
P(x) is false. 

 

 

 



Existential Quantifier 
 x P(x) is read as “For some x, P(x)”,  or as “There is an 

x such that P(x),”  or “For at least one x, P(x).”  

Examples: 

1.  If P(x) denotes  “x > 0” and U  is the integers, then x P(x) is 
true. It is also true if U is the positive integers. 

2. If P(x) denotes  “x < 0” and U  is the positive integers,  then     
x P(x) is false. 

3. If P(x) denotes  “x is even” and U  is the integers,  then     x 
P(x) is true. 

 



Uniqueness Quantifier (optional) 
 !x P(x) means that P(x) is true for one and only one x in the 

universe of discourse. 

 This is commonly expressed in English in the following 
equivalent ways: 
 “There is a unique x such that P(x).”  

 “There is one and only one x such that P(x)” 

 Examples: 
1. If P(x) denotes  “x + 1 = 0”  and U is the integers, then !x P(x) is 

true.  

2. But if P(x) denotes  “x > 0,”  then !x P(x) is false. 

 The uniqueness quantifier is not really needed as the restriction 
that there is a unique x such that P(x) can be expressed as:   

                               x (P(x) ∧y (P(y) → y =x)) 



Thinking about Quantifiers 
 When the  domain of discourse is finite, we can think of 

quantification as looping through the elements of the domain. 
 To evaluate x P(x) loop through all x in the domain.  

 If at every step P(x) is true, then x P(x) is true.  
 If at a step P(x) is false, then x P(x) is false and the loop 

terminates.  

 To evaluate x P(x) loop through all x in the domain.  
 If  at some step, P(x) is true, then x P(x) is true and the loop 

terminates.  
 If the loop ends without finding an x for which P(x) is true, then x 

P(x) is false. 

 Even if the domains are infinite, we can still think of the 
quantifiers this fashion, but the loops will not terminate in some 
cases. 
 
 

 



Properties of Quantifiers 
 The truth value of x P(x)  and  x P(x)  depend on both 

the propositional function P(x) and on  the domain U.  

 Examples: 

1. If U is the  positive integers and P(x) is the statement           
“x < 2”, then x P(x)   is true, but  x P(x)  is false.  

2. If U is the negative integers and P(x) is the statement           
“x < 2”, then both x P(x)  and   x P(x)  are true.  

3. If U consists of 3, 4, and 5,  and P(x) is the statement           
“x > 2”, then  both x P(x)   and  x P(x)  are true. But if 
P(x) is the statement “x < 2”, then  both x P(x)   and             
 x P(x)  are false.  

 

 



Precedence of Quantifiers 
 The quantifiers  and   have higher precedence than 

all the logical operators. 

 For example, x P(x) ∨ Q(x)  means (x P(x))∨ Q(x)   

 x (P(x) ∨ Q(x)) means something different. 

 Unfortunately, often people write x P(x) ∨ Q(x)  when 
they mean  x (P(x) ∨ Q(x)).  



Translating from English to Logic 
Example 1:  Translate the following sentence into predicate 

logic: “Every student in this class has taken a course in 
Java.” 

Solution: 

  First decide on the domain U.  
Solution 1: If U is all students in this class, define a 

propositional function J(x) denoting “x has taken a course in 
Java” and translate as x J(x).  

Solution 2: But if U is all people, also define a propositional  
function S(x) denoting “x is a student in this class” and 
translate as     x (S(x)→ J(x)).  
             x (S(x) ∧ J(x))  is not correct.  What does it mean? 

 



Translating from English to Logic 
Example 2: Translate the following sentence into 

predicate logic: “Some student in this class has taken a 
course in Java.”  

Solution: 

First decide on the domain U.  

Solution 1: If U is all students in this class, translate as  

                           x J(x) 

Solution 1: But if U is all people, then translate as                 
x (S(x) ∧ J(x))  
        x (S(x)→ J(x)) is not correct. What does it mean? 

 



Returning to the Socrates Example  
 Introduce the  propositional functions Man(x) 

denoting “x is a man” and  Mortal(x) denoting “x is 
mortal.”  Specify the  domain as all people. 

 The two premises are: 

 

 The conclusion is: 

 

 Later we will show how to prove that the conclusion 
follows from the premises. 

 



Equivalences in Predicate Logic 
 Statements involving predicates and quantifiers are 

logically equivalent if and only if they have the same 
truth value  

 for every predicate substituted into these statements 
and  

 for every domain of discourse used for the variables in 
the expressions.  

 The notation S ≡T  indicates that S and T  are logically 
equivalent.  

 Example:  x ¬¬S(x) ≡ x S(x) 



Thinking about Quantifiers as 
Conjunctions and Disjunctions 
 If the domain is finite, a universally quantified proposition is 

equivalent to a conjunction of propositions without quantifiers 
and an existentially quantified proposition is equivalent to  a 
disjunction of propositions without quantifiers.  

 If U consists of the integers 1,2, and 3: 
 
 
 
 
 
 Even if the domains are infinite, you can still think of the 

quantifiers in this fashion, but the equivalent expressions 
without quantifiers will be infinitely long. 
 
 

 



Negating Quantified Expressions 
 Consider x J(x) 

“Every student in your class has taken a course in Java.” 

 Here J(x)  is “x has taken a course in Java” and  

 the domain is students in your class.  

 Negating the original statement gives “It is not the case 
that every student in your class has taken Java.” This 
implies that “There is a student in your class who has 
not taken Java.” 

     Symbolically  ¬x J(x)  and x ¬J(x) are equivalent 

 



Negating Quantified Expressions 
(continued) 
 Now Consider  x J(x) 

“There is a student in this class who has taken a course in 
Java.” 

Where J(x)  is “x has taken a course in Java.” 

 Negating the original statement gives “It is not the case 
that there is a student in this class who has taken Java.” 
This implies that “Every student in this class has not 
taken Java” 

     Symbolically  ¬ x J(x)  and  x ¬J(x) are equivalent 



De Morgan’s Laws for Quantifiers 
 The rules for negating quantifiers are: 

 

 

 

 The reasoning in the table shows that: 

 

 

 

 These are important. You will use these.  



Translation from English to Logic 
Examples: 

1. “Some student in this class has visited Mexico.” 

   Solution: Let M(x) denote “x has visited Mexico” and 
S(x) denote “x is a student in this class,”  and U  be all 
people. 

                      x  (S(x) ∧ M(x)) 

2. “Every student in this class has visited Canada or 
Mexico.” 

  Solution: Add C(x) denoting “x has visited Canada.” 

                    x (S(x)→ (M(x)∨C(x))) 

 


