Predicates and Quantifiers Section 1.4

Section Summary

- Predicates
- Variables
- Quantifiers
 - Universal Quantifier
 - Existential Quantifier
- Negating Quantifiers
 - De Morgan's Laws for Quantifiers
- Translating English to Logic

Propositional Logic Not Enough

• If we have:

"All men are mortal."

"Socrates is a man."

- Does it follow that "Socrates is mortal?"
- Can't be represented in propositional logic. Need a language that talks about objects, their properties, and their relations.
- Later we'll see how to draw inferences.

Introducing Predicate Logic

- Predicate logic uses the following new features:
 - Variables: *x*, *y*, *z*
 - Predicates: P(x), M(x)
 - Quantifiers (to be covered in a few slides):
- *Propositional functions* are a generalization of propositions.
 - They contain variables and a predicate, e.g., P(x)
 - Variables can be replaced by elements from their *domain*.

Propositional Functions

- Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the *domain* (or *bound* by a quantifier, as we will see later).
- The statement *P*(*x*) is said to be the value of the propositional function *P* at *x*.
- For example, let *P*(*x*) denote "*x* > 0" and the domain be the integers. Then:
 - P(-3) is false.
 - P(0) is false.
 - P(3) is true.
- Often the domain is denoted by *U*. So in this example *U* is the integers.

Examples of Propositional

Functions

• Let "x + y = z" be denoted by R(x, y, z) and U (for all three variables) be the integers. Find these truth values: R(2,-1,5)Solution: F R(3,4,7)Solution: T R(x, 3, z)**Solution:** Not a Proposition • Now let "x - y = z" be denoted by Q(x, y, z), with U as the integers. Find these truth values: Q(2,-1,3)Solution: T Q(3,4,7)Solution: F Q(x, 3, z)**Solution:** Not a Proposition

Compound Expressions

- Connectives from propositional logic carry over to predicate logic.
- If P(x) denotes "x > 0," find these truth values:
 - $P(3) \vee P(-1)$ Solution: T
 - $P(3) \land P(-1)$ Solution: F
 - $P(3) \rightarrow P(-1)$ Solution: F
 - $P(3) \rightarrow P(-1)$ Solution: T
- Expressions with variables are not propositions and therefore do not have truth values. For example,

 $P(3) \land P(y)$ $P(x) \rightarrow P(y)$

• When used with quantifiers (to be introduced next), these expressions (propositional functions) become propositions.

Quantifiers

Charles Peirce (1839-1914)

- We need *quantifiers* to express the meaning of English words including *all* and *some*:
 - "All men are Mortal."
 - "Some cats do not have fur."
- The two most important quantifiers are:
 - Universal Quantifier, "For all," symbol: \forall
 - *Existential Quantifier*, "There exists," symbol: **J**
- We write as in $\forall x P(x)$ and $\exists x P(x)$.
- $\forall x P(x)$ asserts P(x) is true for <u>every</u> x in the domain.
- $\exists x P(x)$ asserts P(x) is true for <u>some</u> x in the *domain*.
- The quantifiers are said to bind the variable *x* in these expressions.

Universal Quantifier

- ∀x P(x) is read as "For all x, P(x)" or "For every x, P(x)"
 Examples:
 - 1) If P(x) denotes "x > 0" and U is the integers, then $\forall x P(x)$ is false.
 - 2) If P(x) denotes "x > 0" and U is the positive integers, then $\forall x P(x)$ is true.
 - 3) If P(x) denotes "x is even" and U is the integers, then $\forall x P(x)$ is false.

Existential Quantifier

• $\exists x P(x)$ is read as "For some x, P(x)", or as "There is an x such that P(x)," or "For at least one x, P(x)."

Examples:

- If P(x) denotes "x > 0" and U is the integers, then $\exists x P(x)$ is true. It is also true if U is the positive integers.
- 2. If P(x) denotes "x < 0" and U is the positive integers, then $\exists x P(x)$ is false.
- 3. If P(x) denotes "x is even" and U is the integers, then $\exists x P(x)$ is true.

Uniqueness Quantifier (optional)

- $\exists !x P(x)$ means that P(x) is true for <u>one and only one</u> x in the universe of discourse.
- This is commonly expressed in English in the following equivalent ways:
 - "There is a unique *x* such that *P*(*x*)."
 - "There is one and only one *x* such that *P*(*x*)"
- Examples:
 - 1. If P(x) denotes "x + 1 = 0" and U is the integers, then $\exists !x P(x)$ is true.
 - 2. But if P(x) denotes "x > 0," then $\exists !x P(x)$ is false.
- The uniqueness quantifier is not really needed as the restriction that there is a unique *x* such that *P*(*x*) can be expressed as:
 ∃*x* (*P*(*x*) ∧∀*y* (*P*(*y*) → *y* = *x*))

Thinking about Quantifiers

- When the domain of discourse is finite, we can think of quantification as looping through the elements of the domain.
- To evaluate $\forall x P(x)$ loop through all x in the domain.
 - If at every step P(x) is true, then $\forall x P(x)$ is true.
 - If at a step P(x) is false, then $\forall x P(x)$ is false and the loop terminates.
- To evaluate $\exists x P(x)$ loop through all x in the domain.
 - If at some step, P(x) is true, then $\exists x P(x)$ is true and the loop terminates.
 - If the loop ends without finding an x for which P(x) is true, then $\exists x P(x)$ is false.
- Even if the domains are infinite, we can still think of the quantifiers this fashion, but the loops will not terminate in some cases.

Properties of Quantifiers

• The truth value of $\exists x P(x)$ and $\forall x P(x)$ depend on both the propositional function P(x) and on the domain *U*.

• Examples:

- 1. If *U* is the positive integers and P(x) is the statement "x < 2", then $\exists x P(x)$ is true, but $\forall x P(x)$ is false.
- 2. If *U* is the negative integers and P(x) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true.
- 3. If *U* consists of 3, 4, and 5, and *P*(*x*) is the statement "x > 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true. But if *P*(*x*) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are false.

Precedence of Quantifiers

- The quantifiers ∀ and ∃ have higher precedence than all the logical operators.
- For example, $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
- $\forall x (P(x) \lor Q(x))$ means something different.
- Unfortunately, often people write $\forall x P(x) \lor Q(x)$ when they mean $\forall x (P(x) \lor Q(x))$.

Translating from English to Logic

Example 1: Translate the following sentence into predicate logic: "Every student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

- **Solution 1**: If *U* is all students in this class, define a propositional function J(x) denoting "x has taken a course in Java" and translate as $\forall x J(x)$.
- **Solution 2**: But if *U* is all people, also define a propositional function S(x) denoting "x is a student in this class" and translate as $\forall x (S(x) \rightarrow J(x))$.

 $\forall x (S(x) \land J(x))$ is not correct. What does it mean?

Translating from English to Logic

Example 2: Translate the following sentence into predicate logic: "Some student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

Solution 1: If *U* is all students in this class, translate as

 $\exists X J(X)$

Solution 1: But if *U* is all people, then translate as $\exists x (S(x) \land J(x))$

 $\exists x (S(x) \rightarrow J(x))$ is not correct. What does it mean?

Returning to the Socrates Example

- Introduce the propositional functions Man(x) denoting "x is a man" and Mortal(x) denoting "x is mortal." Specify the domain as all people.
- The two premises are: $\forall x Man(x) \rightarrow Mortal(x)$
 - Man(Socrates)
- The conclusion is: Mortal(Socrates)
- Later we will show how to prove that the conclusion follows from the premises.

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value
 - for every predicate substituted into these statements and
 - for every domain of discourse used for the variables in the expressions.
- The notation $S \equiv T$ indicates that S and T are logically equivalent.
- Example: $\forall x \neg \neg S(x) \equiv \forall x S(x)$

Thinking about Quantifiers as Conjunctions and Disjunctions

- If the domain is finite, a universally quantified proposition is equivalent to a conjunction of propositions without quantifiers and an existentially quantified proposition is equivalent to a disjunction of propositions without quantifiers.
- If *U* consists of the integers 1,2, and 3:

$$\forall x P(x) \equiv P(1) \land P(2) \land P(3)$$
$$\exists x P(x) \equiv P(1) \lor P(2) \lor P(3)$$

• Even if the domains are infinite, you can still think of the quantifiers in this fashion, but the equivalent expressions without quantifiers will be infinitely long.

Negating Quantified Expressions

• Consider $\forall x J(x)$

"Every student in your class has taken a course in Java." Here J(x) is "x has taken a course in Java" and the domain is students in your class.

• Negating the original statement gives "It is not the case that every student in your class has taken Java." This implies that "There is a student in your class who has not taken Java."

Symbolically $\neg \forall x J(x)$ and $\exists x \neg J(x)$ are equivalent

Negating Quantified Expressions (continued)

- Now Consider $\exists x J(x)$
 - "There is a student in this class who has taken a course in Java."
 - Where *J(x)* is "x has taken a course in Java."
- Negating the original statement gives "It is not the case that there is a student in this class who has taken Java." This implies that "Every student in this class has not taken Java"
 - Symbolically $\neg \exists x J(x)$ and $\forall x \neg J(x)$ are equivalent

De Morgan's Laws for Quantifiers

• The rules for negating quantifiers are:

TABLE 2 De Morgan's Laws for Quantifiers.			
Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x.

• The reasoning in the table shows that:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

• These are important. You will use these.

Translation from English to Logic Examples:

"Some student in this class has visited Mexico."
 Solution: Let M(x) denote "x has visited Mexico" and S(x) denote "x is a student in this class," and U be all people.

 $\exists x \ (S(x) \land M(x))$

 "Every student in this class has visited Canada or Mexico."

Solution: Add C(x) denoting "*x* has visited Canada." $\forall x (S(x) \rightarrow (M(x) \lor C(x)))$