Nested Quantifiers

Section 1.5

Section Summary

- Nested Quantifiers
- Order of Quantifiers
- Translating from Nested Quantifiers into English
- Translating Mathematical Statements into Statements involving Nested Quantifiers.
- Translating English Sentences into Logical Expressions.
- Negating Nested Quantifiers.

Nested Quantifiers

- Nested quantifiers are often necessary to express the meaning of sentences in English as well as important concepts in computer science and mathematics. Example: "Every real number has an inverse" is

$$
\forall x \exists y(x+y=0)
$$

where the domains of x and y are the real numbers.

- We can also think of nested propositional functions: $\forall x \exists y(x+y=0)$ can be viewed as $\forall x Q(x)$ where $Q(x)$ is $\exists y P(x, y)$ where $P(x, y)$ is $(x+y=0)$

Thinking of Nested Quantification

- Nested Loops
- To see if $\forall x \forall y P(x, y)$ is true, loop through the values of x :
- At each step, loop through the values for y.
- If for some pair of x and $y, P(x, y)$ is false, then $\forall x \forall y P(x, y)$ is false and both the outer and inner loop terminate.
$\forall x \forall y P(x, y)$ is true if the outer loop ends after stepping through each x.
- To see if $\forall x \exists y P(x, y)$ is true, loop through the values of x.
- At each step, loop through the values for y.
- The inner loop ends when a pair x and y is found such that $P(x, y)$ is true.
- If no y is found such that $P(x, y)$ is true the outer loop terminates as $\forall x \exists y P(x, y)$ has been shown to be false.
$\forall x \exists y P(x, y)$ is true if the outer loop ends after stepping through each x.
- If the domains of the variables are infinite, then this process can not actually be carried out.

Order of Quantifiers

Examples:

1. Let $P(x, y)$ be the statement " $x+y=y+x$." Assume that U is the real numbers. Then $\forall x \forall y P(x, y)$ and $\forall y \forall x P(x, y)$ have the same truth value.
2. Let $Q(x, y)$ be the statement " $x+y=0$." Assume that U is the real numbers. Then $\forall x \exists y P(x, y)$ is true, but $\exists y \forall x P(x, y)$ is false.

Questions on Order of Quantifiers

Example 1: Let U be the real numbers,
Define $P(x, y): x \cdot y=0$
What is the truth value of the following:

1. $\forall x \forall y P(x, y)$

Answer: False
2. $\forall x \exists y P(x, y)$

Answer: True
3. $\exists x \forall y P(x, y)$

Answer: True
4. $\exists x \exists y P(x, y)$

Answer: True

Questions on Order of Quantifiers

Example 2: Let U be the real numbers,
Define $P(x, y): x / y=1$
What is the truth value of the following:

1. $\forall x \forall y P(x, y)$

Answer: False
2. $\forall x \exists y P(x, y)$

Answer: True
3. $\exists x \forall y P(x, y)$

Answer: False
4. $\exists x \exists y P(x, y)$

Answer: True

Quantifications of Two Variables

Statement	When True?	When False
$\forall x \forall y P(x, y)$	$P(x, y)$ is true for every pair x, y.	There is a pair x, y for which $P(x, y)$ is false.
$\forall y \forall x P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y.
$\forall x \exists y P(x, y)$	There is an x for which $P(x, y)$ is true for every y.	For every x there is a y for which $P(\mathrm{x}, \mathrm{y})$ is false.
$\exists x \forall y P(x, y)$	There is a pair x, y for which $P(x, y)$ is true.	$P(\mathrm{x}, \mathrm{y})$ is false for every pair x, y
$\exists x \exists y P(x, y)$		
$y \exists x P(x, y)$		

Translating Nested Quantifiers into

English

Example 1: Translate the statement

$$
\forall x(C(x) \vee \exists y(C(y) \wedge F(x, y)))
$$

where $\mathrm{C}(\mathrm{x})$ is " x has a computer," and $F(x, y)$ is " x and y are friends," and the domain for both x and y consists of all students in your school.
Solution: Every student in your school has a computer or has a friend who has a computer.
Example 1: Translate the statement

$$
\exists \mathrm{x} \forall y \forall z((F(x, y) \wedge F(x, z) \wedge(y \neq z)) \rightarrow \neg F(y, z))
$$

Solution: There is a student none of whose friends are also friends with each other.

Translating Mathematical Statements into Predicate Logic

Example : Translate "The sum of two positive integers is always positive" into a logical expression.

Solution:

1.

Rewrite the statement to make the implied quantifiers and domains explicit:
"For every two integers, if these integers are both positive, then the sum of these integers is positive."
2. Introduce the variables x and y, and specify the domain, to obtain:
"For all positive integers x and $y, x+y$ is positive."
3. The result is:

$$
\forall x \forall y((x>0) \wedge(y>0) \rightarrow(x+y>0))
$$

where the domain of both variables consists of all integers

Translating English into Logical

Expressions Example

Example: Use quantifiers to express the statement "There is a woman who has taken a flight on every airline in the world."

Solution:

1. Let $P(w, f)$ be " w has taken f " and $Q(f, a)$ be " f is a flight on a."
2. The domain of w is all women, the domain of f is all flights, and the domain of a is all airlines.
3. Then the statement can be expressed as:

$$
\exists w \forall a \exists f(P(w, f) \wedge Q(f, a))
$$

Questions on Translation from

English

Choose the obvious predicates and express in predicate logic.
Example 1: "Brothers are siblings."
Solution: $\forall x \forall y(B(\mathrm{x}, \mathrm{y}) \rightarrow S(\mathrm{x}, \mathrm{y}))$
Example 2: "Siblinghood is symmetric."
Solution: $\forall x \forall y(S(x, y) \rightarrow S(y, x))$
Example 3: "Everybody loves somebody."
Solution: $\forall x \exists y L(x, y)$
Example 4: "There is someone who is loved by everyone."
Solution: $\exists y \forall x L(x, y)$
Example 5: "There is someone who loves someone."
Solution: $\exists x \exists y L(x, y)$
Example 6: "Everyone loves himself"
Solution: $\forall x L(x, x)$

Negating Nested Quantifiers

Example 1: Recall the logical expression developed three slides back:

$$
\exists w \forall a \exists f(P(w, f) \wedge Q(f, a))
$$

Part 1: Use quantifiers to express the statement that "There does not exist a woman who has taken a flight on every airline in the world."
Solution: $\neg \exists w \forall a \exists f(P(w, f) \wedge Q(f, a))$
Part 2: Now use De Morgan's Laws to move the negation as far inwards as possible.

Solution:

$$
\begin{aligned}
& \neg \exists w \forall a \exists f(P(w, f) \wedge Q(f, a)) \\
& \forall w \neg \forall a \exists f(P(w, f) \wedge Q(f, a)) \text { by De Morgan's for } \exists \\
& \forall w \exists a \neg \exists f(P(w, f) \wedge Q(f, a)) \text { by De Morgan's for } \forall \\
& \forall w \exists a \forall f \neg(P(w, f) \wedge Q(f, a)) \text { by De Morgan's for } \exists \\
& \forall w \exists a \forall f(\neg P(w, f) \vee \neg Q(f, a)) \text { by De Morgan's for } \wedge \text {. }
\end{aligned}
$$

Part 3: Can you translate the result back into English?

Solution:

"For every woman there is an airline such that for all flights, this woman has not taken that flight or that flight is not on this airline"

