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Abstract. Recently in several papers, graphs with maximum neighborhood orderings were
characterized and turned out to be algorithmically useful. This paper gives a unified framework for
characterizations of those graphs in terms of neighborhood and clique hypergraphs which have the
Helly property and whose line graph is chordal. These graphs are dual (in the sense of hypergraphs)
to chordal graphs. By using the hypergraph approach in a systematical way new results are obtained,
some of the old results are generalized, and some of the proofs are simplified.
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1. Introduction. The class of chordal graphs is a by now classical and well-
understood graph class which is algorithmically useful and has several interesting
characterizations. In the theory of relational database schemes there are close relation-
ships between desirable properties of database schemes, acyclicity of corresponding
hypergraphs, and chordality of graphs which corresponds to tree and Helly properties
of hypergraphs [2], [5], [25]. Chordal graphs arise also in solving large sparse systems
of linear equations [28], [36] and in facility location theory [13].

Recently a new class of graphs was introduced and characterized in [20], [6], [21],
[39] which is defined by the existence of a maximum neighborhood ordering. These
graphs appeared first in [20] and [16] under the name HT–graphs but only a few
results have been published in [21]. [34] also introduces maximum neighborhoods but
only in connection with chordal graphs (chordal graphs with maximum neighborhood
ordering were called there doubly chordal graphs).

It is our intention here to attempt to provide a unified framework for charac-
terizations of those graph classes in terms of neighborhood and clique hypergraphs.
These graphs are dual (in the sense of hypergraphs) to chordal graphs (this is why we
call them dually chordal) but have very different properties—thus they are in general
not perfect and not closed under taking induced subgraphs. By using the hypergraph
approach in a systematical way new results are obtained, a part of the previous results
are generalized, and some of the proofs are simplified. The present paper improves
the results of the unpublished manuscripts [20] and [6].

Graphs with maximum neighborhood orderings (alias dually chordal graphs) are
a generalization of strongly chordal graphs (a well-known subclass of chordal graphs
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for which not only a maximum neighborhood but a linear ordering of neighborhoods of
neighbors is required—this leads to the fact that strongly chordal graphs are exactly
the hereditary dually chordal graphs, i.e., graphs for which each induced subgraph is
a dually chordal graph). Notice also that doubly chordal graphs are precisely those
graphs which are chordal and dually chordal.

Maximum neighborhood orderings are also algorithmically useful, especially for
domination-like problems and problems which are based on distances. Many prob-
lems remaining NP–complete on chordal graphs have efficient algorithms on strongly
chordal graphs. In some cases this is due to the existence of maximum neighbors (and
not to chordality). Therefore many problems efficiently solvable for strongly chordal
and doubly chordal graphs remain polynomial-time solvable for dually chordal graphs,
too. In the companion papers [18], [19], [9], [10] the algorithmic use of the maximum
neighborhood orderings is treated systematically. Dually chordal graphs seem to rep-
resent an important supplement of the world of classical graph classes.

One of our theorems shows that a graph G has a maximum neighborhood order-
ing if and only if the neighborhood hypergraph of G is a hypertree, i.e., it has the
Helly property and its line graph is chordal. Due to the self-duality of neighborhood
hypergraphs this is also equivalent to the α–acyclicity of the hypergraph which im-
plies a linear time recognition of the graph class. This contrasts with the fact that
the best known recognition algorithms for strongly chordal graphs have complexity
O(|E|log|V |) [35] and O(|V |2) [38].

There are several interesting generalizations of this class. Theorem 4 shows that
a graph G has a maximum neighborhood ordering if and only if the clique hypergraph
(or the disk hypergraph) of G has the Helly property and its line graph is chordal. It is
known from [4], [17] that G is a disk–Helly graph (i.e., a graph whose disk hypergraph
has the Helly property) if and only if G is a dismantlable clique–Helly graph, and in
[3] it is shown that G is an absolute reflexive retract if and only if G is a dismantlable
clique–Helly graph. Thus dually chordal graphs are properly contained in the classes
of disk–Helly and clique–Helly graphs.

The paper is organized as follows. In section 2 we give standard hypergraph
notions and properties. Section 3 is devoted to graphs with maximum neighbor-
hood ordering. There we define some types of hypergraphs associated with graphs
and present characterizations of dually chordal graphs, doubly chordal graphs, and
strongly chordal graphs via hypergraph properties. The results of this section are
from [20]. Section 4 deals with bipartite graphs with maximum neighborhood order-
ing. There we also describe relationships between graphs and bipartite graphs with
different types of maximum neighborhood orderings. A part of the results of this
section are from [6] and [22]. In section 5 some results confirming the duality between
chordal graphs and dually chordal graphs are established. We conclude with two dia-
grams which present relationships between classes of graphs, hypergraphs, and some
bipartite graphs.

2. Standard hypergraph notions and properties. We mainly use the hy-
pergraph terminology of Berge [7]. A finite hypergraph E is a family of nonempty
subsets (the edges of E) from some finite underlying set V (the vertices of E). The
subhypergraph induced by a set A ⊆ V is the hypergraph EA defined on A by the
edge set EA = {e ∩ A : e ∈ E}. The dual hypergraph E∗ has E as its vertex set and
{e ∈ E : v ∈ e} (v ∈ V ) as its edges. The 2-section graph 2SEC(E) of the hypergraph
E has vertex set V , and two distinct vertices are adjacent if and only if they are con-
tained in a common edge of E . The line graph L(E) = (E , E) of E is the intersection
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graph of E ; i.e., ee′ ∈ E if and only if e∩ e′ 6= ∅. A hypergraph E is reduced if no edge
e ∈ E is contained in another edge of E .

A hypergraph E is conformal if every clique C in 2SEC(E) is contained in an
edge e ∈ E . A Helly hypergraph is one whose edges satisfy the Helly property; i.e.,
any subfamily E ′ ⊆ E of pairwise intersecting edges has a nonempty intersection.

First we give a list of well-known properties of hypergraphs (for these and other
properties cf. [7]).

(i) Taking the dual of a hypergraph twice is isomorphic to the hypergraph itself;
i.e., (E∗)∗ ∼ E .

(ii) L(E) ∼ 2SEC(E∗).
(iii) E is conformal if and only if E∗ has the Helly property.

A hypergraph E is a hypertree (called arboreal hypergraph in [7]) if there is a tree
T with vertex set V such that every edge e ∈ E induces a subtree in T (T is then
called the underlying vertex tree of E). A hypergraph E is a dual hypertree if there is a
tree T with vertex set E such that for all vertices v ∈ V Tv = {e ∈ E : v ∈ e} induces
a subtree of T (T is then called the underlying hyperedge tree of E).

Observe that E is a hypertree if and only if E∗ is a dual hypertree.

A sequence C = (e1, e2, . . . , ek, e1) of edges is a hypercycle if ei ∩ ei+1(mod k) 6= ∅
for 1 ≤ i ≤ k. The length of C is k. A chord of the hypercycle C is an edge e with
ei∩ei+1(mod k) ⊆ e for at least three indices i, 1 ≤ i ≤ k. A hypergraph E is α–acyclic
if it is conformal and contains no chordless hypercycles of length at least 3. Note that
the notion of α–acyclicity was introduced in [5] in a different way but the notion given
above is equivalent to that given in [5] (cf. [29]).

In a similar way, a graph G is chordal if it does not contain any induced (chordless)
cycles of length at least 4.

Theorem 1.

(i) (See [23], [27].) E is a hypertree if and only if E is a Helly hypergraph and its
line graph L(E) is chordal.

(ii) (See [5], [25], [29].) E is a dual hypertree if and only if E is α–acyclic.

Due to the dualities between hypertrees and dual hypertrees, the conformality
and the Helly property, and the line graph of a hypergraph and the 2-section graph of
the dual hypergraph, Theorem 1 can be expressed also in other variants by switching
between a property and its dual.

A particular instance of hypertrees are totally balanced hypergraphs. A hyper-
graph is totally balanced if every cycle of length greater than two has an edge containing
at least three vertices of the cycle.

Theorem 2 (see [32]). A hypergraph E is totally balanced if and only if every
subhypergraph of E is a hypertree.

There is a close connection between totally balanced hypergraphs, strongly chordal
graphs and chordal bipartite graphs [1], [26], [11]; see [8] for a systematic treatment
of these relations. Motivated by these results, we will establish similar connections
between hypertrees, dually chordal graphs, and some classes of bipartite graphs.

Hypergraphs can be represented in a natural way by incidence matrices. Let E =
{e1, . . . , em} be a hypergraph and V = {v1, . . . , vn} be its vertex set. The incidence
matrix IM(E) of the hypergraph E is a matrix whose (i, j) entry is 1 if vi ∈ ej and
0 otherwise. The (bipartite vertex–edge) incidence graph IG(E) = (V, E , E) of the
hypergraph E is a bipartite graph with vertex set V ∪ E , where two vertices v ∈ V
and e ∈ E are adjacent if and only if v ∈ e. Note that the transposed matrix IM(E)T

is the incidence matrix of the dual hypergraph E∗, while IG(E) ∼ IG(E∗) if the sides
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of the bipartite graph are not marked.

Following [33] a matrix M is in doubly lexical order if rows and columns as 0-1-
vectors are in increasing order. Two rows r1 < r2 and columns c1 < c2 form a Γ if the

crossing points of these rows and columns define the submatrix [
1 1
1 0

]. An ordered

0-1 matrix M is supported Γ if for every pair r1 < r2 of rows and pair c1 < c2 of
columns which form a Γ there is a row r3 > r2 with M(r3, c1) = M(r3, c2) = 1 (r3

supports Γ).

A subtree matrix is the incidence matrix of a collection of subtrees of a tree T . A
totally balanced matrix is the incidence matrix of a totally balanced hypergraph.

Theorem 3. Let M be a 0-1 matrix.

(i) (See [33].) M is a subtree matrix if and only if it has a supported Γ−ordering.
(ii) (See [1], [31], [33].) M is a totally balanced matrix if and only if it has a Γ−

free ordering.

Due to the duality shown later, part (i) of this theorem provides a matrix char-
acterization of chordal graphs as well as dually chordal graphs by transposing the
incidence matrix.

3. Maximum neighborhood orderings in graphs. Let G = (V,E) be a finite
undirected simple (i.e., without loops and multiple edges) and connected graph. For
two vertices x, y ∈ V the distance dG(x, y) is the length (i.e., number of edges) of
a shortest path connecting x and y. Let I(x, y) = {v ∈ V : dG(x, v) + dG(v, y) =
dG(x, y)} be the interval between vertices x and y. By NG(v) = {u : uv ∈ E} and
NG[v] = NG(v) ∪ {v} we denote the open neighborhood and the closed neighborhood
of v, respectively. If no confusion can arise we will omit the index G. Let N 0(G) =
{N(v) : v ∈ V } and N (G) = {N [v] : v ∈ V } be the open neighborhood hypergraph
and the closed neighborhood hypergraph of G, respectively. Let also C(G) = {C : C is
a maximal clique in G} be the clique hypergraph of G.

It is easy to see that the following holds:

(i) 2SEC(C(G)) is isomorphic to G (and thus C(G) is conformal).
(ii) (N (G))∗ is isomorphic to N (G) (where it is assumed that the hypergraph

N (G) = {N [v] : v ∈ V } is a multiset) and the same holds for N 0(G).

Concerning clique hypergraphs of chordal graphs, from Theorem 1 we have the fol-
lowing well-known equivalence:

(iii) A graph G is chordal if and only if its clique hypergraph C(G) is α–acyclic if
and only if C(G) is a dual hypertree.

Let v be a vertex of G. The disk centered at v with radius k is the set of all
vertices having distance at most k to v: Nk[v] = {u : u ∈ V and d(u, v) ≤ k}. Denote
by D(G) = {Nk[v] : v ∈ V , k a positive integer} the disk hypergraph of G.

First we present some results establishing a connection between the closed neigh-
borhood, the clique, and the disk hypergraphs of a given graph G.

Let a maximal induced cycle of G be an induced cycle of G with a maximum
number of edges. Denote by l(G) the number of edges of a maximal induced cycle of
G.

Lemma 1. Let G be an arbitrary graph.

(i) l(L(D(G))) = l(L(N (G))). In particular, L(D(G)) is chordal if and only if
L(N (G)) is so.

(ii) l(L(N (G))) ≤ l(L(C(G))). In particular, if L(C(G)) is chordal, then L(N (G))
is so.

(iii) If N (G) is conformal, then (C(G))∗ is so.
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Proof. (i) Among all maximal induced cycles of the graph L(D(G)) choose a cycle

C = (Nr1 [v1], . . . , Nrk [vk], Nr1 [v1])

with a minimal sum s = r1 + . . . rk. We claim that C is formed by unit disks only;
i.e., r1 = r2 = · · · = rk = 1. Assume to the contrary that r1 ≥ 2.

Pick arbitrary vertices a ∈ Nr1 [v1] ∩ Nr2 [v2] and b ∈ Nrk [vk] ∩ Nr1 [v1]. Now
consider two neighbors v′1 ∈ I(a, v1) and v′′1 ∈ I(b, v1) of the vertex v1. If

Nr1−1[v′1] ∩Nrk [vk] = ∅, Nr1−1[v′′1 ] ∩Nr2 [v2] = ∅
holds then the disks

(Nr1−1[v′1], Nr2 [v2], . . . , Nrk [vk], Nr1−1[v′′1 ])

form an induced cycle with k + 1 edges, contradicting the maximality of C.
So assume for example that Nr1−1[v′1] ∩ Nrk [vk] 6= ∅. Then replacing the disk

Nr1 [v1] by Nr1−1[v′1] in the cycle C we obtain an induced cycle with k edges and total
radius sum s − 1. This again contradicts the choice of C. Thus C consists of unit
disks; i.e., C is an induced cycle of the graph L(N (G)).

(ii) Consider vertices v1, . . . , vk whose neighborhoods generate a maximal induced
cycle C in the graph L(N (G)). Let

B2 = N [v1] ∩N [v2], . . . , Bk = N [vk−1] ∩N [vk], B1 = N [vk] ∩N [v1].

In each set Bi pick a vertex bi such that the sum s = d(b1, b2) + · · · + d(bk−1, bk) +
d(bk, b1) is minimal. Now define a cycle C ′ of the graph L(C(G)) using the following
rules: if the vertices bi, bi+1(mod k) are adjacent, then add a clique Ki to C ′ which
contains the vertices bi, bi+1(mod k) and vi; otherwise add two cliques K ′i and K ′′i (in
this order) to C ′ which contain the edges vibi and vibi+1(mod k), respectively.

The cycle C ′ has at least k edges. Assume that C ′ is not induced; i.e., two non-
consecutive cliques K ′ and K ′′ of C ′ have a nonempty intersection. By the definition
of C ′ any clique of C ′ contains a center of some neighborhood from C. Since C is an
induced cycle the cliques K ′ and K ′′ contain centers of two consecutive neighborhoods
of C. Let us assume that v1 ∈ K ′ and v2 ∈ K ′′. Up to symmetry we have one of the
following possibilities: K ′ = K1 and K ′′ = K ′′2 or K ′ = K ′1 and K ′′ = K ′2 or K ′ = K ′1
and K ′′ = K ′′2 .

In all of these cases the inequality d(b1, b2) + d(b2, b3) ≥ 3 holds. Let b∗2 ∈
K ′ ∩K ′′ ⊂ B2. Since d(b1, b

∗
2) + d(b∗2, b3) = 2 this leads to a contradiction with the

choice of the vertices b1, . . . , bk. Hence C ′ is an induced cycle of L(C(G)) and its
length is at least k = l(L(N (G))).

(iii) By the duality properties of hypergraphs it is sufficient to show that C(G) is a
Helly hypergraph. Let F = {C1, . . . , Cm} be a family of pairwise intersecting cliques.
For each vertex v ∈ ⋃mi=1 Ci consider the closed neighborhood N [v]. Evidently, any
two such neighborhoods intersect. Therefore the vertices of the set

⋃m
i=1 Ci induce in

2SEC(N (G)) a clique. By the conformality of N (G) there exists a vertex w such that
N [w] contains the union

⋃m
i=1 Ci. Due to the maximality of the cliques C1, . . . , Cm

the vertex w belongs to all of them.

3.1. Characterization of dually chordal graphs. Let G = (V,E) be a graph.
A vertex v ∈ V is simplicial inG ifN [v] is a clique inG. LetGi = G({vi, vi+1, . . . , vn})
be the subgraph induced by {vi, vi+1, . . . , vn} and Ni[v] be the closed neighborhood
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of v in Gi. A linear ordering (v1, . . . , vn) of V is a perfect elimination ordering of G
if for all i ∈ {1, . . . , n}, Ni[vi] is a clique; i.e., vi is simplicial in Gi.

It is known that a graph G is chordal if and only if G has a perfect elimination
ordering. Moreover, every noncomplete chordal graph has two nonadjacent simplicial
vertices (see [28]).

A vertex u ∈ N [v] is a maximum neighbor of v if for all w ∈ N [v], N [w] ⊆ N [u]
holds (note that u = v is not excluded). A linear ordering (v1, v2, . . . , vn) of V is a
maximum neighborhood ordering of G if for all i ∈ {1, . . . , n}, there is a maximum
neighbor ui ∈ Ni[vi]; i.e.,

for all w ∈ Ni[vi], Ni[w] ⊆ Ni[ui] holds.

Note that graphs with maximum neighborhood orderings are in general not perfect.
Indeed, let G = (V,E) be any graph and x /∈ V be a new vertex. Then for G′ =
(V ∪ {x}, E ∪ {vx : v ∈ V }) the ordering (v1, . . . , vn, x) is a maximum neighborhood
ordering. Thus, e.g., the C5 with an additional dominating vertex (the wheel W5) has
a maximum neighborhood ordering and is not perfect.

Theorem 4. For a graph G the following conditions are equivalent:
(i) G has a maximum neighborhood ordering ;
(ii) there is a spanning tree T of G such that any maximal clique of G induces a

subtree in T ;
(iii) there is a spanning tree T of G such that any disk of G induces a subtree in T ;
(iv) N (G) is a hypertree (is a dual hypertree).

Proof. (i) =⇒ (ii). We proceed by induction on the number of vertices of the
graph G. Let x be the first vertex in a maximum neighborhood ordering of G. Let y
be a maximum neighbor of x; i.e., N2[x] = N [y]. If x = y, then x is adjacent to all
other vertices of G and the desired tree T could be a star with center x. Thus (ii) is
fulfilled. Assume now that x 6= y. By induction hypothesis there exists a spanning
tree of the graph G − x = G(V \ {x}) which satisfies condition (ii). Among all such
spanning trees choose a tree T in which y is adjacent with a maximum number of
vertices from N(x). We claim that y is adjacent with all vertices from N(x) \ {y}.

Assume the contrary and pick a vertex z ∈ N(x) which is nonadjacent to y in T .
In T consider a path y − · · · − v − z connecting vertices y and z. Denote by Tv with
v ∈ Tv and Tz with z ∈ Tz the connected components of T obtained by deleting an
edge (v, z). Adding to these subtrees a new edge (y, z) we transform the tree T into a
new tree T ′. Since y and z are adjacent vertices of G−x the tree T ′ is a spanning tree
of G − x. Now we show that T ′ fulfills the condition (ii), too. Let C be a maximal
clique of G− x. If z /∈ C, then C is completely contained in one of the subtrees Tv or
Tz; i.e., C induces in both trees T and T ′ one and the same subtree. So, suppose that
z ∈ C. Since N [z] ⊆ N [y] = N2[x] we have y ∈ C. Let u1, u2 be arbitrary vertices
from C. If both vertices u1 and u2 belong to one and the same subtree Tv or Tz, then
these vertices are connected in T and T ′ by one and the same path, and we are done.
Now, let u1 ∈ Tv and u2 ∈ Tz. In Tv the vertices u1 and y are connected by a path
l1, consisting of vertices from C. In a similar way, the vertices u2 and z are joined in
Tz by a path l2 ⊆ C. Gluing together the paths l1 and l2 and the edge yz we obtain
a path which connects the vertices u1 and u2 in T ′. Hence any clique C of G − x
induces a subtree in T ′; i.e., T ′ also satisfies condition (ii). This, however, contradicts
the choice of the spanning tree T . The contradiction shows that y is adjacent in T to
all vertices of N(x) \ {y}.

Consider a spanning tree T ∗ of G obtained from T by adding a leaf x adjacent to
y. Evidently T ∗ fulfills condition (ii) of the theorem; i.e., T ∗ is the required tree.
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(ii) =⇒ (iii). Let T be a spanning tree of G such that any clique of G induces a
subtree in T . We claim that any disk Nr[z] of G induces a subtree in T , too. In order
to prove this, it is sufficient to show that the vertex z and any vertex v ∈ Nr[z] may
be connected in T by a path consisting of vertices from Nr[z]. Let v = v1− v2−· · ·−
vk − vk+1 = z be a shortest path of G between v and z. By Ci we denote a maximal
clique of G containing the edge vivi+1, i ∈ {1, . . . , k}. From the choice of T it follows
that the vertices vi and vi+1 are connected in T by a path li ⊆ Ci. The vertices of

the set L =
⋃k
i=1 li induce a subtree T (L) of the tree T . Therefore the vertices v and

z may be connected in T (L) (and in T , too) by a path l. Since d(z, w) ≤ d(z, vi) ≤ r
for any vertex w ∈ Ci any clique Ci belongs to the disk Nr[z]. So our claim follows
from the following evident inclusions:

l ⊆ L ⊆
k⋃
i=1

Ci ⊆ Nr[z].

(iii) =⇒ (iv) is evident.
(iv) =⇒ (i). Suppose T is a tree with the same vertex set as G such that NG[v]

induces a subtree Tv of T for all vertices v in G. Consider T as a tree rooted at a
chosen vertex r. Every NG[v] has a unique vertex v∗ such that

dT (r, v∗) < dT (r, u) for all vertices u ∈ NG[v] \ {v∗},
which can be considered as the root of the subtree Tv of T . Sort the vertices of G into
v1, v2, . . . , vn such that

d(r, v∗1) ≥ d(r, v∗2) ≥ · · · ≥ d(r, v∗n).

We claim that this ordering is a maximum neighborhood ordering of G. Note that
v∗i ∈ Ni[vi]. For each vj ∈ Ni[vi] and vk ∈ Ni[vj ], vj is in both Tvi and Tvk . So v∗i and
v∗k are both ancestors of vj . Also, dT (r, v∗k) ≤ dT (r, v∗i ). Thus v∗i is in the path from
vj to v∗k in T . Since vj and v∗k are both in NG[vk]; i.e., in the subtree Tvk of T , v∗i is
also in Tvk ; i.e., v∗i ∈ NG[vk] and so vk ∈ Ni[v∗i ]. Thus v∗i is a maximum neighbor of
vi for 1 ≤ i ≤ n. This proves that v1, v2, . . . , vn is a maximum neighborhood ordering
of G.

This result was also presented in [21].
In [40] a linear time algorithm for recognizing α–acyclicity of a hypergraph is

given. Since dual hypertrees are exactly the α–acyclic hypergraphs by Theorem 4 we
have the following.

Corollary 1. It can be recognized in linear time O(|V |+ |E|) whether a graph
G has a maximum neighborhood ordering.

In [18], [9] we show that for a given dually chordal graph a maximum neighborhood
ordering can be generated in linear time, too.

From Theorem 4 it also follows that G has a maximum neighborhood ordering
if and only if C(G) is a hypertree. Recall that the graph G is chordal if and only
if (C(G))∗ is a hypertree. Thus graphs with maximum neighborhood ordering are
dual to chordal graphs in this sense. Therefore we call them dually chordal graphs.
The further results will confirm this term and will show the deepness of this duality.
Note that unlike for chordal graphs where the number of maximal cliques is linearly
bounded, this is not the case for dually chordal graphs.

Furthermore from Theorem 4 it follows that G has a maximum neighborhood
ordering if and only if D(G) is a hypertree. Using this fact in [9] we present efficient
algorithms for r–domination and r–packing problems on dually chordal graphs.
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The kth power Gk, k ≥ 1, of G has the same vertices as G, and two distinct
vertices are joined by an edge in Gk if and only if their distance in G is at most k.

Corollary 2. Any power of a dually chordal graph is dually chordal.
Proof. Let G be a dually chordal graph, and let Gk be some power of this graph.

A unit disk of Gk with center in v coincides with the disk Nk[v] of G. Therefore
N (Gk) is the family of all disks of radius k of the graph G. Since G is dually chordal
N (Gk) has the Helly property and L(N (Gk)) is chordal as an induced subgraph of
the chordal graph L(D(G)). By Theorem 4 it follows that Gk is dually chordal.

3.2. Doubly chordal, power–chordal, and strongly chordal graphs. A
vertex v of a graph G is simple [26] if the set {N [u] : u ∈ N [v]} is totally ordered
by inclusion. A linear ordering (v1, . . . , vn) of V is a simple elimination ordering of
G if for all i ∈ {1, . . . , n} vi is simple in Gi. A graph is strongly chordal if it admits
a simple elimination ordering. A k-sun [11], [14], [26] is a graph with 2k vertices for
some k ≥ 3 whose vertex set can be partitioned into two sets U = {u1, u2, . . . , uk} and
W = {w1, w2, . . . , wk} such that U induces a complete graph, W forms an independent
set, and ui is adjacent to wj if and only if i = j or i = j + 1(mod k).

Corollary 3. For a graph G the following conditions are equivalent:
(i) G is a strongly chordal graph;
(ii) G is a sun-free chordal graph;
(iii) G is a hereditary dually chordal graph; i.e., any induced subgraph of G is

dually chordal.
Proof. The equivalence of (i) and (ii) is contained in [11], [14], [26]. Since every

induced subgraph of a strongly chordal graph is strongly chordal we deduce that (i)
=⇒ (iii). Furthermore, any simple vertex v of G evidently has a maximum neighbor.
Finally (iii) =⇒ (ii) because induced cycles of length at least four and suns do not
contain a vertex which has a maximum neighbor.

By Lemma 1(iii) conformality of N (G) implies conformality of (C(G))∗. Moreover
in [16], [17] it has been shown that for chordal graphs N (G) is a Helly hypergraph
if and only if C(G) is so. By Lemma 1(ii) we also know that L(N (G)) is chordal if
L(C(G)) is chordal. The following result shows that for chordal graphs the converse
is also true.

Lemma 2. For a chordal graph G the following conditions are equivalent:
(i) G2 ∼ L(N (G)) is chordal ;
(ii) L(C(G)) is chordal.

Proof. (ii) =⇒ (i) follows from Lemma 1(ii). Conversely, assume that there is an
induced cycle Γ = (C1, . . . Cm, C1),m ≥ 4, of the graph L(C(G)). Let C =

⋃m
i=1 Ci.

G2(C) as an induced subgraph of the chordal graph G2 contains a simplicial vertex
x. Suppose that x ∈ C1. This means C2, Cm ⊆ N2[x]. Because of the simpliciality
of x in G2 for arbitrary vertices u ∈ C2 and v ∈ Cm we have d(u, v) ≤ 2. Let
C2 = {x1, . . . xs} and Cm = {y1, . . . yt}. We claim that any vertex of C2 has in G a
neighbor in Cm and vice versa. Assume to the contrary that this is not the case for
x1; i.e.,

d(x1, y1) = d(x1, y2) = · · · = d(x1, yt) = 2.

Since G is chordal there exists a common neighbor of the vertices x1 and y1, . . . , yt.
However, this contradicts the fact that Cm is a maximal clique of G. Thus our claim
is true.

In the clique C2 choose a vertex xi which is adjacent to a maximum number
of vertices from Cm. Suppose that xi is adjacent to y1, . . . , yl−1. Note that l ≤ t,
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otherwise C2 ∩ Cm 6= ∅. By our claim we conclude that yl is adjacent to some vertex
xj ∈ C2. A unique chord of the cycle (xi, yk, yl, xj , xi), k ∈ {1, . . . , l − 1} may be
only xjyk. Therefore xj is adjacent with y1, . . . , yl−1, yl, contradicting the choice of xi.
So, our initial assumption that Γ is an induced cycle of L(C(G)) leads to a contra-
diction.

A graph is power–chordal if all of its powers are chordal. For the next theorem
we need the following lemma.

Lemma 3. Let G be a noncomplete graph. If both graphs G and G2 are chordal,
then there exist two nonadjacent vertices of G which are simplicial in G and G2.

Proof. The assertion is evident when G2 is complete. Assume that G2 is noncom-
plete and let the assertion be true for all smaller graphs. Since G2 is chordal there are
two nonadjacent simplicial vertices in G2. If both vertices are also simplicial in G, we
are done. So, suppose that the simplicial vertex x of G2 has in G two nonadjacent
neighbors u and v. Consider a minimal (u − v)-separator F of the graph G. From
[15] it follows that F is a complete subgraph of G. Evidently x ∈ F . Let G(A) and
G(B) be connected components of G(V \ F ) containing u and v, respectively.

By the induction hypothesis either the subgraph G1 = G(A ∪ F ) contains a pair
of two nonadjacent vertices which are simplicial in G1 and G2

1 or G1 is a complete
graph. In the first case at least one of the obtained vertices is in A (since F induces a
complete subgraph). In the second case any vertex from A is simplicial in G1 = G2

1.

Summarizing we conclude that the set A contains a vertex y which is simplicial in
G1 and G2

1. It is evident that y is simplicial in G. Now we show that y is simplicial in
G2, too. It is enough to consider only the case when y is adjacent in G with a vertex of
F . For any vertex w /∈ A∪ F we have d(w, x) ≤ 2 if d(w, y) ≤ 2. Since y is simplicial
in G2

1 a similar implication also holds for any vertex u ∈ A ∪ F : if d(u, y) ≤ 2,
then d(u, x) ≤ 2. Hence for arbitrary vertices v and w such that d(y, w) ≤ 2 and
d(y, v) ≤ 2 we have analogous inequalities d(x,w) ≤ 2 and d(x, v) ≤ 2. Now, recall
that x is simplicial in G2. This implies that d(v, w) ≤ 2 and y is simplicial in G2.

In a similar way we obtain the existence of a vertex z ∈ B which is simplicial in
G and G2. It remains to notice that y and z are nonadjacent.

Theorem 5. For a graph G the following conditions are equivalent:

(i) G is power–chordal ;
(ii) G and G2 are chordal ;
(iii) there exists a common perfect elimination ordering of G and G2 (i.e., an

ordering(v1, . . . , vn) of V such that vi is simplicial in both graphs Gi and G2
i ,

i ∈ {1, . . . , n}).
Proof. In [24] it is shown that if Gk is chordal, then so is Gk+2. Consequently,

powers of chordal graphs are chordal provided that G2 is chordal; i.e., (i) ⇐⇒ (ii).
The implication (iii) =⇒ (ii) is evident. To prove that (ii) =⇒ (iii) we proceed by
induction on the number of vertices. By Lemma 3 there is a simplicial vertex v of
G and G2. It is easy to see that (G − v)2 = G2 − v; i.e., both graphs G − v and
(G − v)2 are chordal. Applying to these graphs the induction hypothesis we obtain
the required common perfect elimination ordering.

A vertex v of a graph G is doubly simplicial [34] if v is simplicial and has a
maximum neighbor. A linear ordering (v1, . . . , vn) of the vertices of G is doubly
perfect if for all i ∈ {1, . . . , n} vi is a doubly simplicial vertex of Gi. A graph G is
doubly chordal [34] if it admits a doubly perfect ordering. The following result justifies
the term “doubly chordal graphs.”

Corollary 4 (See [20], [34]). For a graph G the following conditions are equiv-



446 A. BRANDSTÄDT, F. DRAGAN, V. CHEPOI, AND V. VOLOSHIN

alent:
(i) G is doubly chordal ;
(ii) G is chordal and dually chordal ;
(iii) both hypergraphs C(G) and (C(G))∗ are hypertrees.

Proof. From the previous results it is sufficient to show that (ii) =⇒ (i). Since G
and G2 are chordal, Theorem 5 ensures the existence of a vertex v which is simplicial
in G and G2. For any two vertices x, y ∈ N2[v] the inequality d(x, y) ≤ 2 is fulfilled.
Hence N [x]∩N [y] 6= ∅. Since N (G) is a hypertree the family of pairwise intersecting
disks {N [x] : x ∈ N2[v]} has a nonempty intersection. Let w be a vertex from
this intersection. Then w is a maximum neighbor of v. As we already mentioned
(G − v)2 = G2 − v. It remains to show that N (G − v) has the Helly property.
But this is obvious, because any neighborhood containing v contains the vertex w,
too.

From these results we conclude that powers of doubly chordal graphs are doubly
chordal. For strongly chordal graphs a similar result was established in [33]: Powers
of strongly chordal graphs are strongly chordal.

4. Maximum neighborhood orderings in bipartite graphs. LetG = (V,E)
be an arbitrary graph, and let v be a vertex of G. Following [3] the sets

HDodd(v) = {u ∈ V : d(u, v) ≤ k and d(u, v) is odd},

HDeven(v) = {u ∈ V : d(u, v) ≤ k and d(u, v) is even}
are called the half-disks centered at v with radius k. By HD(G) we denote the family
of all half-disks of G and call it the half–disk hypergraph of the graph G.

4.1. Bipartite graphs with maximum X–neighborhood ordering. For
bipartite graphs B = (X,Y,E) there are also standard hypergraph constructions:
NX(B) = {N(y) : y ∈ Y } denotes the X–sided neighborhood hypergraph of B (anal-
ogously define N Y (B)). Note that (NX(B))∗ is isomorphic to N Y (B) and the same
for X and Y exchanged. In addition, N 0(B) = NX(B) ∪N Y (B).

The half-disks of a bipartite graph B are defined as follows: for z ∈ X let
HDX

B (z, k) = {x : x ∈ X and d(z, x) ≤ k and d(z, x) even} and for z ∈ Y let
HDX

B (z, k) = {x : x ∈ X and d(z, x) ≤ k and d(z, x) odd} (the half-disks in
X). Analogously define the half-disks in Y . Again if no confusion can arise we
will omit the index B. The half–disk hypergraph HD(B) of the bipartite graph
B splits into two components: HDX(B) = {HDX(y, 2k + 1) : y ∈ Y and k a
positive integer} ∪ {HDX(x, 2k) : x ∈ X and k a positive integer}, called the X–
sided half–disk hypergraph (consisting of subsets of X), and HDY (B) (defined anal-
ogously) called the Y –sided half–disk hypergraph (consisting of subsets of Y ); i.e.,
HD(B) = HDX(B) ∪HDY (B).

A bipartite graph B = (X,Y,E) is called X–conformal [2] if for any set S ⊆ Y
with the property that all vertices of S have pairwise distance 2 there is a vertex
x ∈ X with S ⊆ N(x). B is X–chordal [2] if for every cycle C in B of length at
least 8 there is a vertex x ∈ X which is adjacent to at least two vertices in C whose
distance in C is at least 4 (a bridge vertex). Analogously define Y –chordality and
Y –conformality. In [2] it is also shown that the following connection holds.

Lemma 4. Let B = (X,Y,E) be a bipartite graph. Then B is X–chordal and
X–conformal if and only if N Y (B) is a dual hypertree if and only if NX(B) is a
hypertree.
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A vertex y ∈ N(x) of B = (X,Y,E) is a maximum neighbor of x if for all y′ ∈
N(x) N(y′) ⊆ N(y) holds. Let BYi = B(X ∪ {yi, yi+1, . . . , yn}) and Ni(x) be the
neighborhood of x ∈ X in BYi . A linear ordering (y1, . . . , yn) of Y is a maximum
X–neighborhood ordering of B if for all i ∈ {1, . . . , n} there is a maximum neighbor
xi ∈ N(yi) of yi; i.e.,

for all x ∈ N(yi) Ni(x) ⊆ Ni(xi) holds.

Analogously define a maximum Y –neighborhood ordering.
Theorem 6. Let B = (X,Y,E) be a bipartite graph. Then the following condi-

tions are equivalent:
(i) B has a maximum X–neighborhood ordering ;
(ii) B is X–chordal and X–conformal ;
(iii) NX(B) is a hypertree;

(iv) the X–sided half-disk hypergraph HDX(B) is a hypertree.
Proof. The equivalence (ii) ⇐⇒ (iii) follows from Lemma 4. The direction (iv)

=⇒ (iii) is obvious.
(i) =⇒ (ii). Let (y1, . . . , yn) be a maximum X–neighborhood ordering of Y .

Consider a chordless cycle C = (xi1 , yi1 , . . . , xik , yik), k ≥ 4. Assume that yi1 is
the leftmost Y –vertex of C in (y1, . . . , yn) which appears in this ordering in the jth
position: yi1 = yj . Since yik ∈ Nj(xi1) \Nj(xi2) and yi2 ∈ Nj(xi2) \Nj(xi1) the sets
Nj(xi1) and Nj(xi2) are incomparable with respect to set inclusion. Thus neither xi1
nor xi2 are maximum neighbors of yi1 . Let x be a maximum neighbor of yi1 = yj .
Then yi1 , yi2 , yik ∈ Nj(x) and x is a bridge vertex. (Note that x is even a neighbor of
three Y –vertices of C.) Thus B is X-chordal.

Now let S ⊆ Y be a subset of vertices of pairwise distance 2. Let y ∈ S be the
leftmost element of S in (y1, . . . , yn) and assume that y = yj . For all y′ ∈ S there
are common neighbors x′ ∈ X of y and y′. If x is a maximum neighbor of yj , then
S ⊆ Nj(x). Thus B is X–conformal.

(ii) =⇒ (i). Assume that B is X–chordal and X–conformal. By Lemma 4 the
graph G′ = 2SEC(N Y (B)) is chordal. Let (y1, . . . , yn) be a perfect elimination
ordering of G′. Thus NG′ [y1] is a clique; i.e., for all u, v ∈ NG′ [y1], u 6= v, there is
a common neighbor in X and so the distance between u and v is 2. Since B is X–
conformal there is an x ∈ X with NG′ [y1] ⊆ NB(x). Necessarily x is a neighbor of y1

in B and is also a maximum neighbor of y1 in B since for all x′ ∈ X with x′ ∈ NB [y1]
NB(x′) ⊆ NG′ [y1].

The same argument can be applied repeatedly to the graph BYi since G′ \ {y1} is
again chordal. Thus the perfect elimination ordering (y1, . . . , yn) of G′ is a maximum
X–neighborhood ordering of B and vice versa.

(iii) =⇒ (iv). Suppose that TN is a tree with vertex set X such that for all
yi ∈ Y , i ∈ {1, . . . , n}, N(yi) induces a subtree in TN , and let (y1, . . . , yn) be a
maximum X–neighborhood ordering of Y . We have to show that then also each
half–disk of HDX(B) induces a subtree in TN , too.

The proof is done along the maximum X–neighborhood ordering (y1, . . . , yn) of Y .
Let Yi denotes the subset {yi, . . . , yn}, and let Bi be the bipartite graph B restricted
to Yi. For Yn the assertion is obviously true since the only X–sided half-disks in this
case are the one-vertex sets {x}, x ∈ X, and the neighborhood N(yn). Obviously,
these sets induce subtrees of TN . Assume now that the half-disks of HDX(Bi+1)
induce subtrees in TN , i ≥ 1. We will show that then also the half-disks of HDX(Bi)
induce subtrees in TN . Without loss of generality let i = 1. Let x be a maximum
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neighbor of y1. In order to show that the half-disks of HDX(B) induce subtrees of
TN we describe their structure. Consider for example the half–disk centered at z with
radius k ≥ 2. We distinguish two cases.

Case 1. z ∈ N(y1). First suppose that the degree of z is 1; i.e., N(z) = {y1}.
Then HDX

B (z, k) = HDX
B2

(x, k−2)∪N(y1) as can be easily seen: for every vertex

w /∈ N(y1) we have d(x,w) = d(z, w)− 2 and thus w ∈ HDX
B2

(x, k− 2). Otherwise, if

the degree of z is larger than 1, then HDX
B (z, k) = HDX

B2
(z, k) ∪N(y1); indeed, for

every vertex w /∈ N(y1) there is a path of length d(z, w) which avoids the vertex y1.
Case 2. z /∈ N(y1).
If d(z, y1) > k, then HDX

B (z, k) = HDX
B2

(z, k). Otherwise, we obtain that

HDX
B (z, k) = HDX

B2
(z, k)∪N(y1). Furthermore in the latter case the vertex x belongs

to HDX
B2

(z, k); as HDX
B2

(z, k) contains a neighbor xj of y1 and since x is a maximum
neighbor of y1 the half–disk also contains x itself.

Thus in all cases either HDX
B (z, k) is the same as before or is a union of two

subtrees of TN which both contain x. Thus it is again a subtree of TN .
From the proof of the implication (ii) =⇒ (i) it follows also that (y1, . . . , yn) is

a maximum X–neighborhood ordering of B if and only if (y1, . . . , yn) is a perfect
elimination ordering of 2SEC(N Y (B)).

4.2. Graphs with b–extremal ordering. Now let G be again an arbitrary
graph. Lemma 1 gives a connection between the closed neighborhood and the disk
hypergraphs of a given graph G. The next lemma establishes a similar connection
between the open neighborhood hypergraph and the half–disk hypergraph of a graph
G.

Lemma 5. For any graph G l(L(HD(G))) = l(L(N 0(G))) holds. In particular,
L(HD(G)) is chordal if and only if L(N 0(G)) is so.

In a graph G a vertex v is dominated by another vertex u 6= v if N(v) ⊆ N(u). A
vertex v is b–extremal if it is dominated by another vertex and there exists a vertex w
such that N(N(v)) = N(w). The ordering (v1, . . . , vn) of V is a b–extremal ordering
of G if for all i ∈ {1, . . . , n} vi is b–extremal in Gi. It is quite evident that a graph
G admitting a b–extremal ordering must be bipartite. Indeed, consider the following
iterative coloring of G. Let the vertices vn and vn−1 be colored. Then for any i
(i < n− 1) if the vertex vi is dominated by vj , then vi gets the same color as vj .

Theorem 7. For a graph G the following conditions are equivalent:
(i) N 0(G) is a hypertree;
(ii) HD(G) is a hypertree;
(iii) G is bipartite, and G has a maximum X–neighborhood ordering and

a maximum Y –neighborhood ordering ;
(iv) G has a b–extremal ordering.

Proof. The equivalence of (i), (ii), and (iii) is an immediate consequence of The-
orem 6 and the fact that if N 0(G) is a hypertree, then G is bipartite (which has a
straightforward proof).

(i) =⇒ (iv). Let N 0(G) be a hypertree. Then G is bipartite, say, G = (X,Y,E).
Consider the chordal graphs GY = 2SEC(N Y (G)) and GX = 2SEC(NX(G)). Let
x ∈ X be a simplicial vertex of GX . Additionally suppose that x is an opposite vertex
in G for some v; i.e., x /∈ I(v, x′) for any vertex x′ of G. Since x is simplicial in GX the
distance between every two vertices from N(N(x)) is 2. By the Helly property there
is a vertex y ∈ Y such that N(y) = N(N(x)). Moreover, since x is an opposite vertex
for v and G is bipartite, necessarily N(x) ⊆ I(x, v). Consider the family of half-disks
consisting of open neighborhoods centered at vertices of N(x) and a half-disk centered
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at v with radius d(x, v) − 1. By the Helly property for half-disks there is a common
vertex z 6= x of these open neighborhoods. So N(x) ⊆ N(z). Hence any vertex x,
which is opposite in G and simplicial in GX or GY , is a b-extremal vertex of the graph
G.

Now we prove that such a vertex always exists. Let diam(G), diam(GX), and
diam(GY ) be the diameters of the graphs G, GX , and GY , respectively. First assume
that diam(G) is even; i.e., diam(G)=2k. Then max(diam(GX), diam(GY ))=k. Let
diam(GX)=k and let x′ and x′′ be a diametral pair in GX . Then d(x′, x′′) = 2k =
diam(G); i.e., any diametral pair of GX is a diametral pair of G, too. It is known [41]
that any chordal graph contains a diametral pair of simplicial vertices. Now assume
that diam(G) is odd; i.e., diam(G)=2k+1. Then max(diam(GX), diam(GY ))=k. Let
diam(GX)=k, and let x′ and x′′ be simplicial vertices which constitute a diametral
pair of GX . Then either x′ and x′′ are mutually opposite vertices in G or one of them
is an end of a diameter in G.

(iv) =⇒ (iii). If G = (V,E) has a b–extremal ordering (v1, . . . , vn), then by
arguments above G is bipartite: G = (X,Y,E). Assume that v1 ∈ Y . Let G′ =
G − v1 = (X,Y − v1, E

′) with a maximum Y –neighborhood ordering (x1, . . . , xr)
and a maximum X–neighborhood ordering (y1, . . . , ys). Then (v1, y1, . . . , ys) is also
a maximum X–neighborhood ordering of G: it is obvious that v1 has a maximum
neighbor in X. Furthermore, as we will show, (x1, . . . , xr) is still a maximum Y –
neighborhood ordering of G. Assume by way of contradiction that for x1 this is not
so. Let z be a maximum neighbor of x1 in G′, and assume that N(z) and N(v1)
are incomparable with respect to set inclusion. Since v1 is b–extremal there is a
vertex u ∈ Y \ {v1} such that N(v1) ⊆ N(u), contrary to the maximality of N(z)
in G′.

Recall [30] that a graph G is chordal bipartite if G is bipartite and any induced
cycle of G has length 4.

Corollary 5. For a graph the following conditions are equivalent:
(i) Every induced subgraph of G admits a b–extremal ordering ;
(ii) G is a chordal bipartite graph.

We conclude this section by establishing some relationships between dually chordal
graphs and their bipartite relatives. For this we recall two standard transformations
of graphs. The first transformation associates with a graph G = (V,E) the bipartite
graph B(G), called the bigraph of G. The vertex set of B(G) consists of two disjoint
copies V ′ and V ′′ of V, with v′ ∈ V ′ and w′′ ∈ V ′′ adjacent in B(G) if and only if v
and w either coincide or are adjacent in G. Equivalently, B(G) is the (vertex–closed-
neighborhood) incidence graph of G; i.e., B(G) = IG(N (G)). In a similar way we
define the bipartite graph BC(G) = IG(C(G)).

From Theorems 4, 6, and 7 we obtain the following result.
Corollary 6. Let G be a graph. Then G has a maximum neighborhood or-

dering if and only if B(G) has a maximum X–neighborhood ordering (maximum Y –
neighborhood ordering) if and only if B(G) has a b–extremal ordering.

Let B = (X,Y,E) be a bipartite graph. Then the graph splitX (B)=(X ∪ Y,EX)
is obtained from B by completing X to a clique. Assume that X is a maximal clique
in splitX(B), i.e., for no y ∈ Y X ⊆ N(y). Note that the set of maximal cliques in
splitX(B) is

C(splitX(B)) = {{y} ∪N(y) : y ∈ Y } ∪ {X}.

Lemma 6. Let B = (X,Y,E) be a bipartite graph.
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(i) NX(B) has the Helly property if and only if C(splitX(B)) has the Helly property
(analogously for Y instead of X).

(ii) L(NX(B)) is chordal if and only if L(C(splitX(B))) is chordal.

Thus NX(B) is a hypertree if and only if C(splitX(B)) is a hypertree.
The assertion (i) follows from the definition of NX(B) and C(splitX(B)). To

show (ii) let L = L(NX(B)) = ({N(y) : y ∈ Y }, E′) and (N(y1), . . . , N(yk)) be a
perfect elimination ordering of L. Then N(y1) is a simplicial vertex in L; i.e., all
N(y) intersecting N(y1) are pairwise intersecting (the elements in the intersection
are elements of X). Then for R = L(C(splitX(B))) (N [y1], . . . , N [yk], X) is a perfect
elimination ordering of R and vice versa.

Corollary 7. Let B = (X,Y,E) be a bipartite graph. Then B is X–chordal
and X–conformal if and only if splitX(B) is doubly chordal.

The proof of this result is a sequence of equivalences: B is X–chordal and X–
conformal if and only ifNX(B) is a hypertree if and only if C(splitX(B)) is a hypertree
if and only if splitX(B) is doubly chordal.

In section 2 we gave the notion of the incidence graph IG(E) of a hypergraph E .
In the particular case of one-sided neighborhood hypergraphs N V (IG(E))) = E and
N E(IG(E))) = E∗ hold.

Corollary 8. Let E be a hypergraph. Then E is a hypertree if and only if IG(E)
has a maximum X–neighborhood ordering if and only if splitV (IG(E)) has a maximum
neighborhood ordering.

5. The duality between chordal and dually chordal graphs. In this sec-
tion we take advantage of the previous results to explain the duality between chordal
and dually chordal graphs.

Theorem 8. Let G = (V,E) be a graph.
(i) G is chordal if and only if BC(G) has a maximum y–neighborhood ordering.
(ii) G is dually chordal if and only if BC(G) has a maximum X–neighborhood

ordering.
(iii) G is doubly chordal if and only if BC(G) has a X–neighborhood

ordering and a maximum Y –neighborhood ordering if and only if BC(G) has
a b–extremal ordering.

It is well known [12] that chordal graphs are exactly the intersection graphs of
subtrees of a tree. The next result shows that a dual property characterizes the class
of dually chordal graphs.

Theorem 9. Let G = (V,E) be a graph.
(i) (See [12]) G is chordal if and only if it is the line graph of some hypertree if

and only if it is the 2–section graph of some α–acyclic hypergraph.
(ii) G is dually chordal if and only if it is the line graph of some α–acyclic hyper-

graph if and only if it is the 2–section graph of some hypertree if and only if
it is the 2–section graph of paths of a tree.

(iii) G is doubly chordal if and only if it is the line graph of some α–acyclic hyper-
tree if and only if it is the 2–section graph of some α–acyclic hypertree.

Proof. To show (ii) let G be a dually chordal graph. By Theorem 4 E = C(G) is
a hypertree. Recall also that G = 2SEC(C(G)) = 2SEC(E). Let T be a representing
tree of E . We obtain the hypergraph E ′ of paths of the tree T from E by replacing
every subtree TC (C ∈ C(G)) by a collection of all paths connecting in T the leaves
of TC . Obviously, 2SEC(E)=2SEC(E ′).

Now assume that G is the 2–section graph of some hypertree E with representing
tree T . Consider a neighborhood N [v] in G. Since N [v] is a union of subtrees con-
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Fig. 1.

taining v, N [v] is a subtree of T ; i.e., N (G) is a hypertree. By Theorem 4 G is dually
chordal.

It is well known that there is a simple method to obtain an underlying hyperedge
tree for the clique hypergraph C(G) of a chordal graph G (the so-called clique–tree
[37]): Weight the edges of the intersection graph L(C(G)) by the size of the intersection
and find a maximum spanning tree on this graph.

For a dually chordal graph G there is a dual variant of this method (see [18]):
Weight every edge of the graph G = 2SEC(C(G)) by the number of maximal cliques
of G containing this edge and find a maximum spanning tree on this weighted graph.
Then G is dually chordal if and only if every maximum spanning tree on G is an
underlying vertex tree for C(G).

As it was shown in [33] the matrix MTM (MT the transpose of M) is totally
balanced provided that M is so. Unfortunately a similar property does not hold for
subtree matrices; see Figure 1. The graph Γ is dually chordal. So the incidence matrix
M = IM(C(Γ)) is a subtree matrix. The matrix MTM is the neighborhood matrix
M = IM(N (L(C(Γ)))) of the clique graph L(C(Γ)) of Γ. Since L(C(Γ)) is not dually
chordal MTM is not a subtree matrix. Nevertheless the following is true.

Corollary 9. If M is a subtree matrix then so is MMT .
Proof. Let EM be a hypertree whose incidence matrix is M . By Theorem 9

the graph G = 2SEC(EM ) is dually chordal. Note that the matrix MMT is the
neighborhood matrix IM(N (G)). Since N (G) is a hypertree (Theorem 4) MMT is
a subtree matrix.

The graph Γ of Figure 1 shows that the clique graph of a dually chordal graph
is not necessarily dually chordal. The results below characterize the clique graphs of
chordal, dually chordal, and doubly chordal graphs.

Subsequently we use the following notations: A graph G is clique–Helly if C(G)
has the Helly property. G is Helly chordal if G is chordal and clique–Helly. G is
clique–chordal if L(C(G)) is chordal.

Corollary 10. G is a Helly chordal graph if and only if G is the clique graph
of some dually chordal graph G′; i.e., G ∼ L(C(G′)).

Proof. By Theorem 4 the clique hypergraph C(G′) has the Helly property. By
Theorem 9 L(C(G′)) is chordal. On the other hand, as follows from [4, Theorem
3.2], cliques of the graph L(C(G′)) have the Helly property. Conversely, assume that
G is a Helly chordal graph. By Theorem 9 G is the line graph of some conformal
hypertree E . It is easy to see that any conformal and reduced hypergraph is the



452 A. BRANDSTÄDT, F. DRAGAN, V. CHEPOI, AND V. VOLOSHIN

Fig. 2.

clique hypergraph of its 2–section graph. Then any conformal and reduced hypertree
is the clique hypergraph of some dually chordal graph. So it is sufficient to transform E
into such a hypergraph E ′ without changing its line graph. We obtain the hypergraph
E ′ from E by adding to each edge ei of E one new vertex ui incident to ei only.

Corollary 11 (see [39]). G is a dually chordal graph if and only if G is the clique
graph of some chordal graph if and only if G is the clique graph of some intersection
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Fig. 3.

graph of paths in a tree.

The proof follows from Theorem 9 by using similar arguments as in the proof of
Corollary 10.

Combining Corollaries 10 and 11 and Theorem 9 we obtain the following.

Corollary 12. G is a doubly chordal graph if and only if G is the clique graph
of some doubly chordal graph.

Our duality results are established using the clique hypergraph C(G) of a graph
G. The following four properties of this hypergraph play a crucial role:

- Conformality of C(G);
- Chordality of G = 2SEC(C(G));
- Helly property of C(G);
- Chordality of L(C(G)).

The conformality of C(G) is fulfilled for all graphs. Chordal graphs are a well–
investigated class; see, for instance, [28]. Clique–Helly graphs are characterized in [4],
[16], [17].

In different combinations the four conditions above characterize the graph classes
considered in this paper.

dually chordal = clique–Helly
⋂

clique–chordal
doubly chordal = clique–Helly

⋂
clique–chordal

⋂
chordal

Helly chordal = clique–Helly
⋂

chordal
Power–chordal = clique–chordal

⋂
chordal

We conclude with the hint to two diagrams (Figures 2 and 3) which show the
relations between graph classes and hypergraphs associated with these graphs.

6. Concluding remarks. We have shown the close relationship of graphs with
maximum neighborhood ordering and hypergraph properties as the Helly property
and tree-like representations of maximal cliques and neighborhoods. Thus in the
sense of hypergraph duality these graphs are dual to chordal graphs but have differ-
ent properties, especially they are in general not perfect. On the other hand maximum
neighborhood orderings turn out to be very useful for domination-like problems (see
[21], [34], [18], [6], [19]). In the papers [9], [10] the algorithmic use of maximum neigh-
borhood orderings is treated systematically.
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