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Abstract. We present a simple factor 6 algorithm for approximating
the optimal multiplicative distortion of embedding (unweighted) graph
metrics into tree metrics (thus improving and simplifying the factor 100
and 27 algorithms of Badoiu et al. (2007) and Badoiu et al. (2008)). We
also present a constant factor algorithm for approximating the optimal
distortion of embedding graph metrics into outerplanar metrics. For this,
we introduce a notion of metric relaxed minor and show that if G contains
an a-metric relaxed H-minor, then the distortion of any embedding of
G into any metric induced by a H-minor free graph is > «. Then, for
H = K> 3, we present an algorithm which either finds an a-relaxed minor,
or produces an O(«)-embedding into an outerplanar metric.

1 Introduction

1.1 Avant-Propos

The structure of the shortest-path metrics of special classes of graphs, in partic-
ular, graphs families defined by forbidden minors (e.g., line metrics, tree metrics,
planar metrics) is one of the main areas in the theory of metric spaces. From
the algorithmic point of view, such metrics have more structure than general
metrics, and this structure can often be exploited algorithmically. Thus, if the
input metric can be well approximated by a special metric, this usually leads to
an algorithmic advantage; see, e.g., [13] for a survey of algorithmic applications
of embeddings. One way of understanding this structure is to study the low dis-
tortion embeddings from one metric class to another. To do this successfully,
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one needs to develop tools allowing a decomposition of the host space consistent
with the embedded space. If this is impossible, one usually learns much about
the limitations of the host space and the richness of the embedded space. In this
paper, we pursue this direction and study the embeddings into tree metrics and
the metrics of K g-minor free graphs (essentially outerplanar metrics).

The study of tree metrics can be traced back to the beginning of the 20th
century, when it was first realized that weighted trees can in some cases serve as
an (approximate) model for the description of evolving systems. More recently,
as indicated in [16], it was observed that certain Internet originated metrics dis-
play tree-like properties. It is well known [I7] that tree metrics have a simple
structure: d is a tree metric iff all submetrics of d of size 4 are such. Moreover,
the underlying tree is unique, easily reconstructible, and has rigid local structure
corresponding to the local structure of d. But what about the structure of ap-
prozimately tree metrics? We have only partial answers for this question, and yet
what we already know seems to indicate that a rich theory might well be hiding
there. The strongest results were obtained, so far, for the additive distortion. A
research on the algorithmical aspects of finding a tree metric of least additive
distortion has culminated in the paper [1] (see also [§]), where a 6-approximation
algorithm was established (in the notation of [I], their algorithm is a 3 approx-
imation, however, in our more restrictive definition, this is a 6-approximation),
together with a (rather close) hardness result. Relaxing the local condition on d
by allowing its size-4 submetrics to be d-close to a tree metric, one gets precisely
Gromov’s d-hyperbolic geometry. For study of algorithmic and other aspects of
such geometries, see e.g. [7UI4]. The situation with the multiplicative distortion
is less satisfactory. The best result for general metrics is obtained in [4]: the
approximation factor is exponential in v/log A/ loglogn, where A is the aspect
ratio. Judging from the parallel results of [2] for line metrics, it is conceivable
that any constant factor approximation for the general metric is NP-hard. For
some small constant v, the hardness result of [I] implies that it is NP-hard to
approximate the multiplicative distortion better than v even for metrics that
come from unit-weighted graphs. For a special interesting case of shortest path
metrics of unit-weighted graphs, [4] gets a large (around 100) constant approxi-
mation factor (which was improved in [3] to a factor 27). The proof introduces
a certain metric-topological obstacle for getting embeddings of distortion bet-
ter than «, and then algorithmically either produces an O(a)-embedding, or an
a-obstacle (such an obstacle was used also in [I1], and, essentially, in [I5]).

1.2 Our Results

In this paper, we simplify and improve the construction of [4], using a decompo-
sition procedure developed earlier in [Bl6]. The improved constant is 6 and the
running time of the algorithm is linear once the distance matrix is computed. We
also introduce the notion of metric relaxed minor and show that if G contains an
a-metric relaxed H-minor, then the distortion of any embedding of G into any
metric induced by a H-minor free graph is at least a. This generalizes the ob-
stacle of [4]. Using this newly defined H-obstacle, we show that it is an essential
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obstacle not only for trees, but also for graphs without ' = K 3 minors. We fur-
ther develop an efficient algorithm which either embeds the input metric induced
by a unit-weighted graph G into an outerplanar metric with distortion O(«), or
finds an a-metric relaxed K3 s-minor in G. This is a first result of this kind for any
H different from a Cy (which is the a-metric relaxed minor corresponding to the
four-point condition used for embedding into tree-metrics).

1.3 Preliminaries

A metric space (X, d) is isometrically embeddable into a host metric space (Y, d')
if there exists a map ¢ : X — Y such that d'(¢(x),¢(y)) = d(z,y) for all
z,y € X. More generally, ¢ : X — Y is an embedding with (multiplicative)
distortion A > 1 if d(z,y) < d'(p(2),p(y)) < X-d(z,y) for all z,y € X. Given
a metric space (X, d) and a class M of host metric spaces, we denote by A\* :=
A*(X, M) the minimum distortion of an embedding of (X, d) into a member of
M. Analogously, ¢ : X — Y is an embedding with additive distortion X\ > 0
if d(z,y) < d'(p(x),0(y)) < d(z,y) + A for all z,y € X and, in a similar
way, we can define the minimum additive distortion. In this paper, we consider
unweighted graphs as input metric spaces and tree metrics (trees) or outerplanar
metrics as the class of host metric spaces. If not specified, all our results concern
embeddings with multiplicative distortion. For a connected unweighted graph
G = (V,E), we denote by dg(u,v) the shortest-path distance between u and v.
A finite metric space (X, d) is called a tree metric [IT] if it isometrically embeds
into a tree, i.e., there exists an weighted tree T = (X', E’) such that X C X’
and d(u,v) = dr(u,v) for any two points u,v € X, where dr(u,v) is the length
of the unique path connecting v and v in T'. Analogously, an outerplanar metric
is a metric space isometrically embeddable into an outerplanar weighted graph.
Denote by 7 the class of tree metric spaces and by O the class of outerplanar
metric spaces.

2 Preliminary Results

In this section, we establish some properties of layering partitions and of embed-
dings with distortion A of graph metrics into weighted graphs.

2.1 Layering Partitions

The layering partitions have been introduced in [5J6] and recently used in a
slightly more general forms in both approximation algorithms of [3[4] and in
other similar contexts [(9JI0]. Let G = (V, E) be a graph with a distinguished
vertex s and let r := max{dg(s,z) : © € V'}. A layering of G with respect to
s is the decomposition of V' into the spheres L' = {u € V : d(s,u) = i}, i =
0,1,2,...,7. A layering partition LP(s) = {Lil,...,L;)i :1=0,1,2,...,r} of G
is a partition of each L! into clusters Li, ..., L;)i such that two vertices u,v € L?
belong to the same cluster L; iff they can be connected by a path outside the
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ball B;_1(s) of radius ¢ — 1 centered at s. Let I" be a graph whose vertex set is
the set of all clusters L; in a layering partition LP and C = L; and C' = L;/, are
adjacent in I iff there exist u € L; and v € L;', such that u and v are adjacent
in G. I' is a tree [6], called the layering tree of G. LP and I' are computable in
linear time [6]. We can construct a new tree H = (V, F) (closely reproducing the
global structure of I') by identifying for each cluster C' = L; an arbitrary vertex
e € L'~ (the support vertex for cluster C') which has a neighbor in C' and by
making x¢ adjacent in H with all vertices v € C. In what follows, we assume
that I" and H are rooted at s. Let D be the largest diameter of a cluster in LP,
ie.,, D := maxcersp max, yec{da(u,v)}. The following result (also implicitly
used in [567]) shows that the additive distortion of the embedding of G into H
is essentially D:

Proposition 1. If x,y € V, then dy(z,y) — 2 < dg(z,y) < dg(z,y) + D.

Proof. Let C, and Cy be the clusters containing = and y. Let C be the nearest
common ancestor of C; and Cy in I'. For C # Cy, let ', y’ € C be the ancestors
of z and y in a BFS(G, s)-tree. Then dr(Cy,C) = dg(z,2’') and dr(Cy,C) =
dc(y,y'). By construction of H, dy(z,y) is equal to dp(Cy,C) + dr(Cy,C) or
to dr(Cy, C)+dr(Cy, C') + 2. By the triangle inequality, dg(z,y) < dg(z,2’) +
da(@',y)+da(y,y') < dr(Cy,C)+dr(Cy,C)+D < di(x,y)+ D. By definition
of clusters, dg(z,y) > da(z,2') + da(y,y’) > du(z,y) — 2. O

The BFS-tree H preserves the distances between the root s and any other vertex
of G. We can locally modify H by assigning uniform weights to its edges or by
adding Steiner points to obtain a number of other desired properties. Assigning
length w := D + 1 to each edge of H, we will get a tree H,, = (V, F,w) in which
G embeds with distortion essentially equal to D + 1 : dg(u,v) < dg,, (u,v) <
(D + 1)(dg(u,v) + 2) Yu,v € V. Adding Steiner points and using edge lengths
0 and 1, H can be transformed into a tree H' which has the same additive
distortion and satisfies the non-expansive property. For this, for each cluster
C = L; we introduce a Steiner point pc, and add an edge of length 0 between
any vertex of C' and pc and an edge of length 1 between pco and the support
vertex x¢ for C: dy:(u,v) < dg(u,v) < dg/(u,v) + D Yu,v € V. Finally, by
replacing each edge in H' with edge of length w := P}!, we obtain a tree H/,

2
so that dg(u,v) < dgr (u,v) < (D4 1)(da(u,v) +1) Yu,v € V.

2.2 Embeddings with Distortion A of Graph Metrics

We continue with two auxiliary standard results about embeddings.

Lemma 1. If G = (V,E),G' = (V',E') are two graphs, one unweighted and
second weighted, and ¢ : V — V' is a map so that dg:(o(u), p(v)) < A Vuv € E,
then da(¢(x), ¢(y)) < Me(z,y) Yo,y € V.

Lemma 2. If G = (V,E),G' = (V',E') are two graphs, one unweighted and
second weighted, and ¢ : V +— V' is a map so that dg/ (e(u), (v)) > dg(u,v)
Vip(u)p(v) € B, then der (p(x), ¢(y)) = da(z,y) Yo,y € V.
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3 Embedding into Trees

We describe now a simple factor 6 algorithm for approximating the optimal
distortion A\* = A*(G,T) of embedding finite unweighted graphs G into trees.
For this, we first investigate the properties of layering partitions of graphs which
A-embed into trees, i.e., for each such graph G = (V| E) there exists a tree T =
(V/,E') with V' C V' such that (1) dg(z,y) < dr(z,y) (non-contractibility)
and (2) dr(z,y) < A-dg(z,y) (bounded expansion) for every z,y € V. Denote
by Pr(z,y) the path connecting the vertices x,y in T. For x € V' and A C V’,
we denote by dr(z, A) = min{dr(z,v) : v € A} the distance from z to A. First
we show that the diameters of clusters in a layering partition of such a graph
G are at most 3, allowing already to build a tree with distortion 9\*. Refining
this property of layering partitions, we construct in O(|V'||E|) time a tree into
which G embeds with distortion < 6\*.

Lemma 3. If G A-embeds into a tree, then for any x,y € V, any (x,y)-path
Pg(x,y) of G and any vertex ¢ € Pr(x,y), dr(c, Pa(x,y)) < \/2.

Proof. Removing c from 7', we separate = from y. Let T, be the subtree of
T \ {c} containing y. Since = ¢ T, we can find an edge ab of Pg(z,y) with
a € Ty and b ¢ T,,. Therefore, the path Pr(a,b) must go via c. If dr(c,a) > /2
and dr(c,b) > A/2, then dr(a,b) = dr(a, c)+dr(c,b) > X and since dg(a, b) = 1,
we obtain a contradiction with the assumption that the embedding of G in T has
distortion A (condition (2)). Hence dr(c, Po(x,y)) < min{dr(c,a),dr(c,b)} <
A/2, concluding the proof. |

Lemma 4. If G \-embeds into a tree T, then the diameter in G of any cluster
C of a layering partition of G is < 3, i.e., dg(x,y) < 3\ for any x,y € C. In
particular, \*(G,T) > D/3.

Proof. Let Pg(x,y) be a (z,y)-path of G outside the ball Bg(s), where k =
dg(s,z) — 1. Let Pg(x,s) and Pg(y,s) be two shortest paths of G connecting
z,s and y, s, respectively. Let ¢ € V(T') be the unique vertex of T in Pr(z,y) N
Pr(z,s),NPr(y,s). Since ¢ belongs to each of the paths Pr(x,y), Pr(z,s),
and Pr(y,s), applying Lemma [ three times, we infer that dr(c, Pa(z,v)),
dr(c, Pa(x,s)), and dr(c, Pa(y,s)) are < A/2. Let a be a closest to ¢ vertex
of Pg(z,s) in the tree T, i.e., dr(a,c) = dr(c, Pa(x,s)) < A/2. Let z be a closest
to a vertex of Pg(z,y) in T. From (1) and previous inequalities we conclude
that dg(a,z) < dr(a,z) = dr(a, Pa(z,y)) < dr(a,c) + dr(c, Pa(z,y)) < A
Since z € Pg(z,y) and Pg(z,y) N Bi(s) = 0, necessarily dg(s, z) > dg(s,y) =
dg(s,a) + dg(a,x), yielding dg(a,z) < dg(a,z) < A. Analogously, if b is a
closest to ¢ vertex of Pg(y,s) in T, then dg(b,y) < A and dr(b,c) < A/2. By
non-contractibility condition (1) and triangle condition, d¢(a,b) < dr(a,b) <
dr(a,c)+dr(b,c) < A Summarizing, we obtain the desired inequality dg(x,y) <
da(z,a) + da(a,b) +da(b,y) < 3. O

Lemma [I] and the properties of H’ imply that one can construct in linear time
an unweighted tree H = (V, F') (without Steiner points) and a {0, 1}-weighted
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tree H' = (V US’, F’) (with Steiner points), so that dg(z,y) — 2 < dg(z,y) <
di(z,y) + 3\ and dy/(x,y) < dg(x,y) < dg/(z,y) + 3\ Vz,y € V. Hence, for
any graph G, it is possible to turn its non-contractive multiplicative distortion
embedding into a weighted tree to a non-expanding additive distortion embed-
ding into a {0, 1}-weighted tree. ;From properties of the trees H, and H, , we
obtain:

Corollary 1. If G = (V, E) \-embeds into a tree, then there exists uniformly
weighted trees Hy, = (V, F,w) and H,, = (VUS’, F',w) (without and with Steiner
points), both constructible in O(|V||E|) time, such that dg(u,v) < dp, (u,v) <

w

(BA+1)(dg(u,v)+2) and dg(u,v) < dg: (u,v) < (3A+1)(dg(u,v)+1) Vu,v € V.

w

Corollary[[limplies already that there exists a factor 12 (factor 8 if Steiner points
are used) approximation algorithm for considered problem. We will show now
that, by strengthening Lemma 4] one can improve the approximation ratio from
12 to 9 and from 8 to 6.

Lemma 5. If G = (V, E) X-embeds into a tree T, C = L, € LP is a cluster of a
layering partition of G and v is a vertex of C, then dg(v', u) < max{3A—1,2A+1}
for any neighbor v' € L'~ of v and any u € C.

Proof. Let ¢ € V(T) be the nearest common ancestor in the tree T' (rooted at
s) of all vertices of cluster C' = L; Let z and y be two vertices of C' separated
by ¢. Let Pg(z,y) be a path of G connecting vertices z and y outside the ball
B;_1(s). Then, as in the proof of Lemma[ we have dr(c, Pg(z,y)) < A/2. Pick
an arbitrary vertex v € C and a shortest path Pg(v, s) connecting v with s in G.
Since ¢ separates v from s in T, by Lemma Bl dr(c, Pa(v,s)) < A/2 holds. Let
a, be a closest to ¢ vertex of Pg(v,s) in the tree T. Then, dr(a,, Pa(z,y)) <
dr(ay,c) + dr(e, Po(z,y)) < A. The choice of the path Ps(z,y) and inequality
(1) imply that dg(ay,v) < dg(ay, Pa(z,y)) < dr(ay, Po(z,y)) < A

Consider an arbitrary vertex u € C, u # v. By the triangle inequality and (1),
we have dg(ay, ) < dr(ay,ay) < dr(ay,c) + dr(ay, c) < A, thus dg(a,,u) <
dc(ay,ay) + dg(ay,u) < 2X. Let v/ € L*~1 be a neighbor of v in Pg(v,s). If
a, = v, then dg(v,u) = dg(ay,u) < 2\, ie., dg(v',u) < dg(v,u) +1 < 2X+ 1.
Otherwise, if a,, # v, then dg (v, u) < dg(V', ay)+da(ay, u) < A—=14+2X = 3\—1,
de(v',u) < max{3A —1,2A + 1}. O

To make the embedding non-contractive, it suffices to assign the length ¢ :=
max{3\ —1,2A + 1} to each edge of H and get a uniformly weighted tree H, =
(V,F,€). Then dg(u,v) < dp, (u,v) < max{3A—1,2A\+1}(dc(u,v)+2). The tree
H, (without Steiner points) provides a 9-approximation to our problem. If we
allow Steiner points and assign the length ¢ := 32’\ to each edge of H', then get
a uniformly weighted tree Hy such that dg(u,v) < dm; (u,v) < 3A(dg(u,v) +1).

For a graph G = (V, E), we do not know A in advance, however we know
from Lemma [ that \*(G,7) > D/3. Therefore, the length ¢ to be assigned
to the edges of the tree H (which is defined independently of the value of \),
can be found as follows: £ = max{dg(u,v) : wv is an edge of H}. The length
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¢, which needs to be assigned to each edge of H’, can be found as follows:
¢ = } max{D, max{dg(u,v) : uv is an edge of H}}. Hence, ¢ can be computed
in O(|V||E|) time. Our main result of this section is the following theorem.

Theorem 1. There exists a factor 6 approximation algorithm for the optimal
distortion of embedding an unweighted graph G into a tree.

The approximation ratio 6 of our algorithm holds only for adjacent vertices of
G. It decreases when distances in G increase. Our tree H, does not have any
Steiner points and the edges of both trees H; and H) are uniformly weighted.
The tree Hj, with Steiner points, is better than the tree H; only for small graph
distances. So, the Steiner points do not really help, confirming A. Gupta’s claim
[12.

4 Minors, Relaxed Minors, and Metric Minors

We define metric relaxed minors, which, together with layering partitions, are
used for approximate embedding of graphs into outerplanar metrics.

4.1 Minors and Relaxed Minors

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained
from G by contracting or delating some edges and some isolated vertices. To
adapt the concept of minor to our embedding purposes, note that H = (V' E')
is a minor of G = (V, E) if there exists a map p: V/ U E’ ~ 2V such that

(i) for any vertex v of H, G(u(v)) is connected;
(ii) for any vertices v # v' of H, G(u(v)) N G(u(v')) = 0;
(iii) for any edge e = uv of H, G(u(e)) is a path P. of G with ends in G(u(u))
and G(u(v));
(iv) for any vertex v and any edge e of H with v & e, P. N G(u(v)) = 0;
(v') for any edges e = (z,y),¢’ = (u,v) of H, P. and P, intersect iff {z,y} N
{u,v} # 0 and if e = (z,y),¢’ = (x,v), then P. N Por = p(x).

Indeed, if p exists, then contracting each pu(v),v € V', to a single vertex v and
each P, to an edge e, (ii),(iii), and (v') ensure that the resulting graph will be
isomorphic to H. Note that if in (v') two paths P, and P, intersect, then they
intersect in G(u(u)), where u is the common end of e and €’. In particular, if e, ¢’
are non-incident, then P, and P, are disjoint. For our metric purposes we need
a weaker notion of minor by allowing intersecting paths to intersect anywhere.
A graph H = (V', E’) is a relazed minor of a graph G = (V, E) if there exists a
map p: V' UE' — 2V satisfying (i)-(iv) and the following relaxation of (v'):

(v) for any two non-incident edges e, e’ of H, the paths P, N P., = 0.
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The concept of relaxed minor is weaker than that of minor: the triangle Cs5 is not
a minor of any tree, but it is a relaxed minor of the star K 3 : 4 maps the three
vertices of (5 to the three leaves of K; 3 and maps each edge uv of C3 to the path
of K1 3 between the leaves p(u) and p(v). The map p satisfies (i)-(v) but does
not satisfy (v’). Relaxed and a-metric relaxed minors (see Subsection are crucial
because their existence corresponds to a witness that G cannot be embedded into
H-relaxed-minor-free graphs with small distortion (see Proposition [B]). Thus it
seems important to relate this notion to standard minors. We conjecture that
if the graph H 1is triangle-free, then the notion of relaxed minor is not weaker
than that of minor. We established a weaker statement which is enough to deal
with H of special form: H will be bipartite H = (V, F; E') with every vertex
f € F of degree two. Such subdivided graphs H can be seen as a subdivision of
an arbitrary graph H' = (V, E’) where (u,v) € H' iff there is a member f € F
such that (u, f), (v, f) € E.

Proposition 2. If a graph G = (V, E) has a subdivided graph H = (V' E’) as
a relaxed minor, then G has H as a minor.

4.2 «o-Metric Relaxed Minors

Two sets A, B are a-far if min{dg(a,b) : a € A,b € B} > a. For a > 1, we call
a graph H = (V' E’) an a-metric relaxed minor of G = (V, E) if there exists
amap u: V' UE' +— 2V satisfying (i)-(v) and the following stronger version of
condition (v):

(v™) for any non-incident edges e = uv and €’ = w'v" of H, the sets p(u) U P. U
w(v) and p(u') U P U p(v') are a-far in G.

Let ¢ be an embedding of a graph G = (V, E) into a graph G’ = (V', E’) with
distortion < a. For S C V inducing a connected subgraph G(5) of G, we denote
by [¢(S)] a union of shortest paths of G’ running between each pair of vertices of
»(S) which are images of adjacent vertices of G(.S), one shortest path per pair.

Lemma 6. If G a-embeds into G' and two sets of vertices A, B inducing con-
nected subgraphs of G are a-far, then [p(A)] N [p(B)] = 0.

Proposition 3. If a subdivided 2-connected graph H = (V' E’) is an a-metric
relazed minor of G = (V, E), then any embedding of G into an H-minor free
graph has distortion > a.

Proof. Suppose G has an embedding ¢ with distortion < « into an H-minor
free graph G’. Let p: V' U E' — 2V be a map showing that H is an a-metric
relaxed minor of G. Extend ¢ from V to the edge-set FE by associating with
each edge e of G the shortest path P. := [p(e)] of G'. Pick any vertex v of H.
Then, ¢(u(v)) is a connected subgraph of G’ because pu and ¢ map connected
subgraphs to connected subgraphs. From Lemma [6] we know that ¢ maps two
a-far connected subgraphs of G to two disjoint subgraphs of G’. As to the map
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u, we assert that for any distinct vertices v,v' of H, u(v) and u(v') are a-far
and for any vertex v and any edge e of H with v ¢ e, p(v) and u(e) = P, are
a-far. We will prove the first part. Since H is 2-connected, any two vertices v, v’
belong to a common cycle C' of H. Since H is triangle-free, v and v’ belong to
non-incident edges e, ¢’ of C. Applying (v*) to e and €', we conclude that p(v)
and p(v') are a-far. Now, we define the following map v : V' U E' — 2V(&)
from H to G'. For each v € V' set v(v) = ¢(u(v)). For each edge e = uv of H,
u(e) = P, is a path of G with end-vertices u* € u(u) and v* € u(v). Each edge f
of P, is mapped by ¢ to a path ¢(f) of G'. Let v(e) be any path of G’ between
u' = p(u*) and v = p(v*) contained in the set [J{¢(f) : f is an edge of P,.}.
From definition of v and properties of p and ¢ it follows that v satisfies (i) and
(iii). We will show that v satisfies (ii), (iv), and (v) as well. To verify (ii), pick
two vertices u, v of H. The sets u(u) and p(v) are a-far, thus Lemma [6 implies
that v(u) = p(p(u)) and v(v) = p(u(v)) are disjoint, showing (ii). Analogously,
if v is a vertex and e is an edge of H with v ¢ e, then, since the sets p(v) and
P, = p(e) are a-far, thus, by Lemma[fl v(v) = ¢(u(v)) and ¢(P,) are disjoint.
Since v(e) C p(Pe.), v(v) and v(e) are disjoint as well, establishing (iv). The
last condition (v) can be derived in a similar way by using (v*) and Lemma [6l
Hence, v satisfies (i)-(v), i.e., H is a relaxed minor of G’. By Proposition 2 H
is a minor of G’, contradicting that G’ is H-minor free. 0

4.3 Lower Bounds for a-Embeddings into K ,.-Minor Free Graphs

We use the previous results to give lower bounds for the distortion of embedding
a graph G = (V, E) into K5 ,-minor free graphs.

Proposition 4. If a cluster C of a layering partition LP of G contains r > 3
vertices vy,...,v} that are pairwise (da + 2)-far, then any embedding ¢ of G
into a Ky .-minor free graph has distortion > o.

Proof. Let LP be defined with respect to s and let 7" be a BFS tree rooted
at s. Let k be the distance from s to C. Since C' contains (4« + 2)-far vertices
vf,...,v5, k> 2a+ 2. We will define a mapping p from K5, to G allowing to
conclude that K» , is an a-metric relaxed minor of G. Since K5, is a subdivided
graph, Proposition [J will show that any embedding of G into a K ,-minor free
graph has distortion > a.

Let ui,...,u,,v,w be the vertices of K ,, where v, w have degree r. Denote
by e; the edge vu; and by f; the edge wu;, i = 1,...,r. Let P;,..., P, be
the paths of T" of length o + 1 from v7,...,v} towards the root s. Denote by
ui,...,u’ the other end vertices of the paths Pi,..., P.. Let Ry,..., R, be the
paths of T of length o 4+ 1 from wj,...,u; towards s. Denote by wy,...,w;
the other end vertices of the paths Ri,...,R,. Set p(u;) = uf, p(e;) == P
and u(f;) == R; for i« = 1,...,r. Let u(v) be the connected subgraph of G
induced by all (or some) paths connecting the vertices vf, ..., v} outside the ball
Byj,—1(s). Finally, let pu(w) := Br_2qa—-2(s) (clearly, wy, ..., w} belong to p(w)).
From the definitions of y and LP, we conclude that p satisfies (i) and (iii). Since
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() C Ujsp L, p(w) = Br_2q—2(s), and the vertices u} = p(uq),. .., u; = pu(u,)
belong to L*~*~1, the u-images of the vertices of Ks, are pairwise a-far in G.
Analogously, any vertex of u(v) is at distance > « from any path R; = u(f;) and
any vertex of p(w) is at distance > « from any path P; = u(e;). If a vertex u} is
at distance < « from x € P;UR; for j # 4, then, by triangle inequality, we obtain
da(vi,v}) < dg(vj,ui) +de(u;,z) + dg(z,v]) < a+ 1+ a+dg(vj,z). Since
T # wi, dg(vy,z) < 2a+ 1, yielding dg (vf,v}) < a+1+a+2a+1=4a+2,
contrary to the assumption that v} and v} are (4o + 2)-far. This contradiction
shows that the p-images of any vertex and any non-incident edge of K, are
a-far. It remains to show that any two paths P; and R; with ¢ # j are a-far.
If dg(z,y) < o for x € P\ {v},uj} and y € R; \ {uj,w}}, then dg(v],v}) <
da(vi,z) + da(v,y) + da(y,v;) < a+a+2a+1 < 4a + 1, contrary to the
assumption that v} and vj are o-far. This contradiction shows that K5, is an
a-metric relaxed minor of G. O

5 Embedding into Outerplanar Graphs

We present now the algorithm for approximate embedding of graph metrics into
into outerplanar metrics.

5.1 The Algorithm

Let G = (V, E) be the input graph and let LP be a layering partition of G.
We assume that A > 1 is so that each cluster C' of LP contains at most two
(4\+ 2)-far vertices (otherwise, by Proposition[d the optimal distortion is larger
than A). Set A := 4X+2. We call a cluster C' bifocal if it has two A-far vertices ¢;
and cz. In addition, for such cluster C' let C1 = {z € C : dg(z,c1) < dg(x,c2)}
and Cy = {x € C : dg(z,c2) < dg(z,c1)}, and call C; and Cy the cells of C
centered at ¢; and ¢y (we will suppose below that ¢; and ¢o form a diametral pair
of C). If diam(C) < A (i.e., C is not bifocal), then the cluster C is called small.
Then C' has a unique cell centered at an arbitrary vertex of C. A bifocal cluster
C is called big if diam(C) > 16\ + 12, otherwise, if A4 < diam(C) < 16\ + 12,
then C is a medium cluster. An almost big cluster is a medium cluster C' such
that diam(C) > 16X + 10. A cluster C is A-separated if C' is bifocal with cells
Cy and Cy and dg(u,v) > A for any u € Cq and v € Cs. Further, we will set
A := 8\ + 6. A bifocal cluster C’ is spread if both cells Cy,Cy of its father C
are adjacent to C’. Given a cluster C' at distance k from s and its son C’, we
call the union of C' with the connected component of G(V \ Bj(s)) containing
C’ the CC’-fiber of G and denote it by F(C,C”). We now ready to describe the
algorithm.

5.2 Small, Medium, and Big Clusters
We present here without proof several simple properties of clusters of LP.

Lemma 7. If C is bifocal, then the diameter of each of its cells is < 2A.
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Algorithm APPROXIMATION BY OUTERPLANAR METRIC

Input: A graph G = (V, E), a layering partition LP of G, and A

Output: An outerplanar graph G’ = (V, E’) or an answer “not”

1. For each cluster C of the layering partition LP do

2. If C has two big sons or C' is big and has two spread sons, then
return “not”.

3. Else for each son C’ of C do

4. Case 1: If ¢’ is small, then pick the center ¢ of a cell of C
adjacent to C’ and in G’ make c adjacent to all vertices of C’.
5. Case 2: If ' is medium and C is not big, or C’ is medium and

not spread and C' is big, then pick the center ¢ of a cell of C
adjacent to C’ and in G’ make c adjacent to all vertices of C’.

6. Case 3: If " is medium, C is big, and C” is the (unique) spread
son of C, then in G’ make the center c; of cell C; of C adjacent
to all vertices of C’. Additionally, make the center cz2 of cell Ca
of C adjacent to all vertices of C’.

7. Case 4: If C' = C{ U C%, such that C} is adjacent to C1 and
C% is adjacent to Ca, where C; and Cy are the cells of C' with
centers c¢; and cz, then in G’ make c¢; adjacent to all vertices
of C{ and c2 adjacent to all vertices of C5.

Lemma 8. If C is bifocal and diam(C) = dg(c1,c2) > 12\ + 6, then (i) C is
(diam(C) — 2A — 1)-separated, in particular C1 N Co = () and (i) diam(Cy) < A
and diam(Cs) < A.

If C is big, then C is (8\ + 8)-separated and if C is almost big, then C is
(8\ + 6)-separated, whence big and almost big clusters are A-separated. If C' is
big or almost big, then diam(Cy) < A and diam(Csy) < A.

Lemma 9. If C is big, then C has a bifocal spread son C' such that contracting
the four cells of C and C' (but preserving the inter-cell edges), we will obtain a
2Ks.

Lemma 10. If C’' is big or almost big, then its father C is bifocal and the
neighbors in C of the centers ¢ and ¢ of the cells C] and Ch of C' belong to
different cells of C. Big and almost big clusters are spread.

Lemma 11. If C is big, no son of C' has a cell adjacent to both cells of C. No
big cluster C' has a small son adjacent to both cells of C.

5.3 Correctness of the Algorithm

The following results establish the correctness and the approximation ratio of
our algorithm.

Theorem 2. Let G = (V,E) be a graph and X > 1. If the algorithm returns
the answer “not”, then any embedding of G into a Ka 3-minor free graph has
distortion > X. If the algorithm returns the outerplanar graph G' = (V, E'), then
assigning to its edges weight w := 20\ + 15, we obtain an embedding of G to G’
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such that dg(z,y) < dg (x,y) < bwdg(z,y) Yo,y € V. As a result, we obtain a
factor 100\ + 75 approximation of the optimal distortion of embedding a graph
into an outerplanar metric.

The proof of this theorem is subdivided into two propositions. We start with a
technical result, essentially showing that in both cases when our algorithm re-
turns the answer “not”, any embedding of GG into an outerplanar metric requires
distortion > A:

Proposition 5. Let C be a big or an almost big cluster having two sons C', C"
such that the two cells of C' can be connected in both CC’'- and CC" -fibers of G.
Then, any embedding of G in a Ky 3-minor free graph has distortion > A. These
conditions hold in the following two cases: (i) C is big and has two spread sons;
(i) C has two big sons C',C". In particular, if the algorithm returns the answer
“not”, then any embedding of G in a Ka 3-minor free graph requires distortion
> A

Now suppose that the algorithm returns the graph G’. By construction, G’ is
outerplanar. Let dg/(z,y) be the distance in G’ between x and y, where each
edge of G’ has length w := 20\ + 15. We continue with the basic property of G’
allowing to analyze the approximation ratio.

Proposition 6. For each edge xy of G, x and y can be connected in the graph
G’ by a path consisting of at most 5 edges, i.e. dg/(x,y) < dw. Conversely, for
each edge vy of G, dg(z,y) < 20\ + 15.

5.4 Proof of Proposition

We start with first assertion. First suppose that dg(s,z) = dg(s,y). Let C be
the cluster of G containing xy. Then, either C' is not big or C is big and z,y
belong to the same cell of C. In both cases, by construction of G’, we deduce
that = and y will be adjacent in G’ to the same vertex from the father Cy of C,
implying dg/ (x,y) = 2w. Now suppose that x € C,y € C' and C’ is a son of C.
Let Cy be the father of C. Let z be a vertex of C' to which y is adjacent in G’.
If C is small, medium, or C' is big but = and z belong to the same cell, then in
G’ the vertices z and z will be adjacent to the same vertex x¢, of Cy, yielding
de (z,y) < 3w. So, suppose that C is big and the vertices z and z belong to
different cells C; and Cs of C, say z € C; and = € Cy. By Lemma [IIl C’ is not
small. According to the algorithm, z is the center of the cell Cy, i.e., z = ¢;.
Note also that 2 and the center ¢y of its cell are both adjacent in G’ to a vertex
zc, € Cy, whence dg/(z,c2) = 2w. If C” is big and say y € C], then since y
is adjacent to z in G’, from the algorithm we conclude that a vertex of Cj is
adjacent in G to a vertex of C;. On the other hand, y € Cf is adjacent in G to
x € Cs. As a consequence, the cell Cf is adjacent in G to both cells C; and Cs of
C, which is impossible by Lemma [IIl So, the cluster C’ must be medium. If C
has a big son C”, then since both cells of C are adjacent in G to the medium son
C’, we obtain a contradiction with Proposition Bli). Hence, C' cannot have big
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sons. Moreover, by Proposition Bl C’ is the unique spread son of C. According
to the algorithm (see Case 3), the centers z = ¢; and c¢o of the cells of C are
adjacent in G’ to a common vertex u from C’, yielding dg/(z,¢2) = 2w. As a
result, we obtain a path with at most 5 edges connecting the vertices y and z in
G: (y,z=c1,u,co,x0,,T).

We continue with second assertion. Any edge xy of G’ runs between two
clusters lying in consecutive layers of G (and G'); let x € C and y € C’, where C
is the father of C’. In G, y has a neighbor z’ € C. Let 2’ # z, otherwise we are
done. If C is not big, then dg(z, 2') < 16X+ 12, whence dg(z,y) < 16X+ 13. So,
suppose C is big. If z, 2’ belong to the same cell of C, then Lemma [ implies that
de(z,2') < 24 = 8\+4, yielding dg(z, y) < 8\+5. Now, let € Cy and 2’ € Cs.
By Lemma [TT] C” is medium or big. If C’ is big and y € Cf, since z and y are
adjacent in G’, according to the algorithm, C] contains a vertex that is adjacent
in G to a vertex of C;. Since y € C7 is adjacent in G to ¥’ € Cy, we obtain a
contradiction with Lemma [[1l Hence C” is a medium cluster. According to the
algorithm, z is the center of the cell C; and C contains a vertex z adjacent in
G to a vertex v € C'. Since z,z € Cy implies dg(z,2) < 4\ + 2 and y,v € '
implies dg(y,v) < 16\ + 12, we obtain dg(z,y) < 20\ + 15.

5.5 Proof of Proposition

By Proposition[3] it suffices to show that G contains K 3 as a A-metric relaxed
minor. Indeed, suppose that C' is a big or an almost big cluster with cells C; and
C5 having two sons C',C”, such that C; and Cs can be connected by a path in
each of the CC’- and CC"-fibers of G. Let k = dg (s, C). Denote by P’ and P”
the shortest such paths connecting two vertices of C, one in C and another in
Cy, in F(C,C") and F(C,C"), respectively. Denote by =’ € C; and 3’ € C5 the
end-vertices of P’ and by 2" € Cy and ¢y’ € Cs the end-vertices of P”. The choice
of P’ implies P'NC = {z,y'} and the choice of P" implies P" NC = {z",y"}.
Let w’ and w” be middle vertices of P’ and P”, respectively. Let a’,b" be the
vertices of P’ at distance A + 1 (measured in P’) from w’, where a’ is between
w’ and x’ and b is between w’ and 3. Let L’ be the subpath of P’ between a’
and w’ and R’ the subpath of P’ between w’ and o’'. Analogously, for P” we
can define the vertices a”,b” and the paths L, R” of length A + 1 each. Finally,
denote by Pj, Pj the subpaths of P’ between a’ and 2’ and between b’ and y'.
Analogously, define the supbaths P;’ and Py of P”. Pick any shortest path M’
in G between the vertices x’, 2" and any shortest path M" between y',y". Let
F’ be a subpath of a shortest path P(z’,s) from z’ to the root s starting with
2’ and having length 3\. Analogously, let F” be a subpath of a shortest path
P(y",s) from y” to s starting with y” and having length 3\. Let J’ and J” be
the subpaths of length A+ 1 of P(z’, s) and P(y’, s), which continue F’ and F",
respectively, towards s.

Now we define a mapping p : V(Ka3)UE(K33) — V(G) certifying that Ko 3
is a A-metric relaxed minor of G. Denote the vertices of Ks 3 by a,b,c, ¢, q",
where the vertices ¢’ and ¢” are assumed to be adjacent to each of the ver-
tices a, b,c. We set p(a) := {w'}, u(d) := {w"},u(¢) == P{UP/ UM UF =
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Q' uld") == PAUPyUM"UF" = Q", and p(c) := By =: S, where k' =
k —4X — 1. Additionally, for each edge of K3, we set u(aq’) := L', p(aq”) =
R u(bg’) = L", u(bq") := R", u(q's) :== J', u(q"s) := J’. We will call the paths
L' L" R ,R" P|,P,, P!, Py, F' F" J J" M M", the vertices w’',w”, and the
set S the elements of the map p. Notice first that each vertex of K» 3 is mapped
to a connected subgraph of G and each edge of K3 3 is mapped to a path of G,
thus p satisfies the conditions (i) and (iii) of a metric relaxed minor. It remains
to show that u satisfies the remaining conditions of a A-metric relaxed minor.
The proof of this is subdivided into several results: (1) dg(w’,C) > 4\ + 3 and
dg(w”,C) > 4X + 3, (2) S is Mfar from all elements of p except J', J"” (3) v’
is A-far from all elements of u except L', R’ and w” is A-far from all elements
of p except L, R", (4) L', R’ are A-far from L”, R", P/, Py, J J" and L" , R"
are A-far from P, Py, J', J", (5) Q' is MAfar from the R’, R”, J" and Q" is A-far
L',L" J, and (6) Q" and Q" are \-far.

To prove the second assertion of Proposition [l first suppose that the cluster
C' is big and C has a big and a medium sons C’, C” such that both cells C; and
Cy are adjacent to C” or that C has two medium sons C’,C"” adjacent to both
cells of C. By definition of the layering, each vertex of C’ U C” is adjacent to a
vertex of C. If all vertices of C” are adjacent to vertices from the same cell of C,
say C1, then for any 2/, ¢y’ € C’ we have dg(2',y’) <2+ 4)\ 4 2, contrary to the
assumption that C’ is big. Hence, both cells of C' are adjacent to C’, say x € Cy
is adjacent to 2’ € C' and y € C5 is adjacent to ¢y’ € C’. By Lemma [IIl 2’ and
y" belong to different cells of C’, say 2’ € C] and ¢y € C4. Let k := dg(s,C).
Since #’,y" € C’, the vertices 2’ and y’ are adjacent in G(V \ By(s)) by a path
P(z',y"). Then P(x,y) := zx’ U P(x’,y') Uy'y is a path between z and y in the
CC'-fiber F(C,C"). Analogously, since both cells C; and Cy are adjacent to C”,
we conclude that two vertices from different cells of C' can be connected by a
path belonging to the CC”-fiber, showing that the first condition of Proposition
is fulfilled. This establishes (i). Now suppose that C' has two big sons C’ and
C". Then C' is either a big or an almost big cluster. By Lemma [d, each of the
clusters C’,C" is (8 + 8)-separated while the cluster C' is (8 + 6)-separated
and that its cells C7 and Cs have diameters at most A. As in previous cases,
one can deduce that C is adjacent to one cell of each of the clusters C' and C”,
while C5 is adjacent to the second cell of these clusters, establishing (ii).

5.6 Proof of Theorem

The algorithm returns the answer “not” when a cluster C has two big sons or a
big cluster C has two spread sons. In this case, by Proposition Bl any embedding
of G into a K g-minor free graph requires distortion > A, whence A*(G, O) > .
Now suppose that the algorithm returns the outerplanar graph G’ weighted
uniformly with w = 20X 4+ 15. Notice that in Case 4 of the algorithm, the
required matching between the four cells of the big clusters C and C’ exists
by Lemma [ and because C’ is the unique spread son of C. By Proposition
we have dg(z,y) < 20\ + 15 = dg/(z,y) for each edge zy of the graph G'.
By Lemma [2l we conclude that dg(x,y) < dg/(z,y) for any pair x,y € V. By
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Proposition [@], for any edge xy of G, the vertices z and y can be connected in G’
by a path with at most 5 edges, i.e., dg/(z,y) < 5w = 100\ + 75. By Lemma [I]
we conclude that dg/(z,y) < (100X + 75)dg(z, y) for any pair x,y of V. Hence
dg < dg < (100X + 75)d¢.
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