Spanners in sparse graphs

Feodor F. Dragan! Fedor V. Fomin? Petr A. Golovach?

IDepartment of Computer Science, Kent State Universit
P P y

2Department of Informatics, University of Bergen

The 35th International Colloquium on Automata, Languages
and Programming, Reykjavik, 2008

Outline

© Introduction
@ Multiplicative spanners
@ History and related work
@ Our results

© Combinatorial bounds
@ Planar graphs
@ Graphs of bounded genus
@ Apex-minor-free graphs

© Algorithmic consequences
@ Polynomial cases
@ H-minor-free graphs

Introduction
[1}

t-spanners

Definition (t-spanner)

Let t be a positive integer. A subgraph S of G, such that

V(S) = V(G), is called a (multiplicative) t-spanner, if

dists(u, v) < t - distg(u, v) for every pair of vertices u and v. The
parameter t is called the stretch factor of S.

Introduction
[1}

t-spanners

Definition (t-spanner)

Let t be a positive integer. A subgraph S of G, such that

V(S) = V(G), is called a (multiplicative) t-spanner, if

dists(u, v) < t - distg(u, v) for every pair of vertices u and v. The
parameter t is called the stretch factor of S.

| A

Observation (t-spanner)

Let G be a connected graph, and t be a positive integer. A
spanning subgraph S of G is a t-spanner of G if and only if for
every edge (x,y) of G, dists(x,y) < t.

A\

Introduction

oe

Examples of spanners

3 and 2-spanners

Introduction

oe

Examples of spanners

3 and 2-spanners

Introduction

oe

Examples of spanners

3 and 2-spanners

Introduction
°

History and related work

@ D. Peleg and J. D. Ullman, 1987

Introduction
°

History and related work

@ D. Peleg and J. D. Ullman, 1987
@ D. Peleg and A. A. Schaffer, 1989

Introduction
°

History and related work

@ D. Peleg and J. D. Ullman, 1987

@ D. Peleg and A. A. Schaffer, 1989
@ L. Cai and D. G. Corneil, 1995

Introduction
°

History and related work

@ D. Peleg and J. D. Ullman, 1987

@ D. Peleg and A. A. Schaffer, 1989
@ L. Cai and D. G. Corneil, 1995

o It is NP-complete to decide whether there is a tree t-spanner
for any fixed t > 4.

Introduction
°

History and related work

@ D. Peleg and J. D. Ullman, 1987

@ D. Peleg and A. A. Schaffer, 1989
o L. Cai and D. G. Corneil, 1995
o It is NP-complete to decide whether there is a tree t-spanner
for any fixed t > 4.

o For t < 2 tree t-spanners can be constructed in polynomial
time.

Introduction
°

History and related work

@ D. Peleg and J. D. Ullman, 1987
@ D. Peleg and A. A. Schaffer, 1989
o L. Cai and D. G. Corneil, 1995
o It is NP-complete to decide whether there is a tree t-spanner

for any fixed t > 4.
o For t < 2 tree t-spanners can be constructed in polynomial

time.

@ S. P. Fekete and J. Kremer, 2001

Introduction
°

History and related work

D. Peleg and J. D. Ullman, 1987
D. Peleg and A. A. Schaffer, 1989
o L. Cai and D. G. Corneil, 1995

o It is NP-complete to decide whether there is a tree t-spanner

for any fixed t > 4.
o For t < 2 tree t-spanners can be constructed in polynomial

time.
@ S. P. Fekete and J. Kremer, 2001
o It is NP-complete to decide whether there is a tree t-spanner
for planar graphs, where t is part of the input.

Introduction
°

History and related work

D. Peleg and J. D. Ullman, 1987
D. Peleg and A. A. Schaffer, 1989
o L. Cai and D. G. Corneil, 1995

o It is NP-complete to decide whether there is a tree t-spanner

for any fixed t > 4.
o For t < 2 tree t-spanners can be constructed in polynomial

time.
o S. P. Fekete and J. Kremer, 2001
o It is NP-complete to decide whether there is a tree t-spanner

for planar graphs, where t is part of the input.
e For t < 3 tree t-spanners can be constructed in polynomial

time.

Introduction
[I}

Spanners of bounded treewidth

Problem (k-Treewidth t-spanner)

Instance: A connected graph G and positive integers k and t.
Question: Is there a t-spanner of G of treewidth at most k7

Introduction
oce

Our results

@ Every t-spanner in a planar graph of treewidth k has
treewidth Q(k/t)

Introduction
oce

Our results

@ Every t-spanner in a planar graph of treewidth k has
treewidth Q(k/t)

@ Every t-spanner in an apex-minor-free graph of treewidth k
has treewidth Q(k/t)

Introduction
oce

Our results

@ Every t-spanner in a planar graph of treewidth k has
treewidth Q(k/t)

@ Every t-spanner in an apex-minor-free graph of treewidth k
has treewidth Q(k/t)

@ The k-TREEWIDTH t-SPANNER problem is FPT for
apex-minor-free graphs

Introduction
oce

Our results

@ Every t-spanner in a planar graph of treewidth k has
treewidth Q(k/t)

@ Every t-spanner in an apex-minor-free graph of treewidth k
has treewidth Q(k/t)

@ The k-TREEWIDTH t-SPANNER problem is FPT for
apex-minor-free graphs

@ The k-TREEWIDTH t-SPANNER problem is NP-complete for
apex-graphs

Combinatorial bounds
®00

Planar graphs

Theorem (Bounds for planar graphs)

Let G be a planar graph of treewidth k and let S be a t-spanner of
G. Then the treewidth of S is Q(k/t).

Combinatorial bounds
oceo

Sketch of the proof

Walls and grids

4)

Combinatorial bounds

[e] Jeo}

Sketch of the proof

Walls and grids

4)

n
e
5
o
Qo
=
S
3
o
£
E
o
o

Sketch of the proof
Walls and grids

Combinatorial bounds
oceo

Sketch of the proof

Walls and grids

4)

Combinatorial bounds

[e] Jeo}

Sketch of the proof

Walls and grids

4)

SRS

Combinatorial bounds
ocoe

Sketch of the proof

Walls and grids

()

Combinatorial bounds
ocoe

Sketch of the proof

Walls and grids

()

Combinatorial bounds
ocoe

Sketch of the proof

Walls and grids

()

Combinatorial bounds
.

Graphs of bounded genus

Theorem (Bounds for bounded-genus graphs)

Let G be a graph of treewidth k and Euler genus g, and let S be a

t-spanner of G. Then the treewidth of S is Q(t.ng).

Combinatorial bounds
®00

Apex-minor-free graphs

Definition (Apex graphs)
An apex graph is a graph obtained from a planar graph G by
adding a vertex and making it adjacent to some vertices of G.

Combinatorial bounds
®00

Apex-minor-free graphs

Definition (Apex graphs)

An apex graph is a graph obtained from a planar graph G by
adding a vertex and making it adjacent to some vertices of G.

Apex graphs

Combinatorial bounds
oeo

Apex-minor-free graphs

Definition (Apex-minor-free graphs)

A graph class G is apex-minor-free if G excludes a fixed apex graph
H as a minor.

Combinatorial bounds
oeo

Apex-minor-free graphs

Definition (Apex-minor-free graphs)

A graph class G is apex-minor-free if G excludes a fixed apex graph
H as a minor.

Theorem (Bounds for apex-minor-free graphs)

Let H be a fixed apex graph. For every t-spanner S of an
H-minor-free graph G, the treewidth of S is Q(tw(G)).

Combinatorial bounds

ooe

Counterexample for H-minor-free graphs

2-spanner for an apex graph

Combinatorial bounds

ooe

Counterexample for H-minor-free graphs

2-spanner for an apex graph

Algorithmic consequences
®00

Algorithmic consequences

Theorem (Complexity)

Let G be a class of graphs such that, for every G € G and every
t-spanner S of G, the treewidth of S is at least tw(G) - fg(t),
where fg is the function only of t. Then for every fixed k and t,
the existence of a t-spanner of treewidth at most k in G € G can
be decided in linear time.

Algorithmic consequences
oeo

Sketch of the proof

@ For given integers k and t, we decide whether
tw(G) < k/fg(t). If tw(G) > k/fg(t), then G does not have
a t-spanner of treewidth at most k. Otherwise, we construct a
tree decomposition of G of width at most k/fg(t).

Algorithmic consequences
oeo

Sketch of the proof

@ For given integers k and t, we decide whether
tw(G) < k/fg(t). If tw(G) > k/fg(t), then G does not have
a t-spanner of treewidth at most k. Otherwise, we construct a
tree decomposition of G of width at most k/fg(t).

@ We apply Courcelle’'s Theorem: every problem expressible in
monadic second order logic (MSOL) can be solved in linear
time on graphs of bounded treewidth.

Algorithmic consequences
oeo

Sketch of the proof

@ For given integers k and t, we decide whether
tw(G) < k/fg(t). If tw(G) > k/fg(t), then G does not have
a t-spanner of treewidth at most k. Otherwise, we construct a
tree decomposition of G of width at most k/fg(t).

@ We apply Courcelle’'s Theorem: every problem expressible in
monadic second order logic (MSOL) can be solved in linear
time on graphs of bounded treewidth.

o The property that a subgraph S has the treewidth at most k is
expressible in MSOL for every fixed k.

Algorithmic consequences
oeo

Sketch of the proof

@ For given integers k and t, we decide whether
tw(G) < k/fg(t). If tw(G) > k/fg(t), then G does not have
a t-spanner of treewidth at most k. Otherwise, we construct a
tree decomposition of G of width at most k/fg(t).

@ We apply Courcelle’'s Theorem: every problem expressible in
monadic second order logic (MSOL) can be solved in linear
time on graphs of bounded treewidth.

o The property that a subgraph S has the treewidth at most k is
expressible in MSOL for every fixed k.

o The condition “for every edge (x, y) of G, dists(x,y) < t"
can be written as an MSOL formula for every fixed t.

Algorithmic consequences
ocoe

Algorithmic consequences

Corollary (k-treewidth t-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed k and t, the existence
of a t-spanner of treewidth at most k in an H-minor-free graph G
can be decided in linear time.

Algorithmic consequences
ocoe

Algorithmic consequences

Corollary (k-treewidth t-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed k and t, the existence
of a t-spanner of treewidth at most k in an H-minor-free graph G
can be decided in linear time.

Corollary (Sparse t-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed m and t, the
existence of a t-spanner with at most n — 1 + m edges in an
n-vertex H-minor-free graph G can be decided in linear time.

Algorithmic consequences
®0

Theorem (Apex graphs)

For every fixed t > 4, deciding if an apex graph G has a tree
t-spanner is NP-complete.

Thank you!

	Introduction
	Multiplicative spanners
	History and related work
	Our results

	Combinatorial bounds
	Planar graphs
	Graphs of bounded genus
	Apex-minor-free graphs

	Algorithmic consequences
	Polynomial cases
	H-minor-free graphs

