
Introduction Combinatorial bounds Algorithmic consequences

Spanners in sparse graphs

Feodor F. Dragan1 Fedor V. Fomin2 Petr A. Golovach2

1Department of Computer Science, Kent State University

2Department of Informatics, University of Bergen

The 35th International Colloquium on Automata, Languages
and Programming, Reykjavik, 2008

Introduction Combinatorial bounds Algorithmic consequences

Outline

1 Introduction
Multiplicative spanners
History and related work
Our results

2 Combinatorial bounds
Planar graphs
Graphs of bounded genus
Apex-minor-free graphs

3 Algorithmic consequences
Polynomial cases
H-minor-free graphs

Introduction Combinatorial bounds Algorithmic consequences

t-spanners

Definition (t-spanner)

Let t be a positive integer. A subgraph S of G , such that
V (S) = V (G), is called a (multiplicative) t-spanner, if
distS(u, v) ≤ t · distG (u, v) for every pair of vertices u and v . The
parameter t is called the stretch factor of S .

Observation (t-spanner)

Let G be a connected graph, and t be a positive integer. A
spanning subgraph S of G is a t-spanner of G if and only if for
every edge (x , y) of G, distS(x , y) ≤ t.

Introduction Combinatorial bounds Algorithmic consequences

t-spanners

Definition (t-spanner)

Let t be a positive integer. A subgraph S of G , such that
V (S) = V (G), is called a (multiplicative) t-spanner, if
distS(u, v) ≤ t · distG (u, v) for every pair of vertices u and v . The
parameter t is called the stretch factor of S .

Observation (t-spanner)

Let G be a connected graph, and t be a positive integer. A
spanning subgraph S of G is a t-spanner of G if and only if for
every edge (x , y) of G, distS(x , y) ≤ t.

Introduction Combinatorial bounds Algorithmic consequences

Examples of spanners

3 and 2-spanners

Introduction Combinatorial bounds Algorithmic consequences

Examples of spanners

3 and 2-spanners

Introduction Combinatorial bounds Algorithmic consequences

Examples of spanners

3 and 2-spanners

Introduction Combinatorial bounds Algorithmic consequences

History and related work

D. Peleg and J. D. Ullman, 1987

D. Peleg and A. A. Schäffer, 1989

L. Cai and D. G. Corneil, 1995

It is NP-complete to decide whether there is a tree t-spanner
for any fixed t ≥ 4.
For t ≤ 2 tree t-spanners can be constructed in polynomial
time.

S. P. Fekete and J. Kremer, 2001

It is NP-complete to decide whether there is a tree t-spanner
for planar graphs, where t is part of the input.
For t ≤ 3 tree t-spanners can be constructed in polynomial
time.

Introduction Combinatorial bounds Algorithmic consequences

History and related work

D. Peleg and J. D. Ullman, 1987

D. Peleg and A. A. Schäffer, 1989

L. Cai and D. G. Corneil, 1995

It is NP-complete to decide whether there is a tree t-spanner
for any fixed t ≥ 4.
For t ≤ 2 tree t-spanners can be constructed in polynomial
time.

S. P. Fekete and J. Kremer, 2001

It is NP-complete to decide whether there is a tree t-spanner
for planar graphs, where t is part of the input.
For t ≤ 3 tree t-spanners can be constructed in polynomial
time.

Introduction Combinatorial bounds Algorithmic consequences

History and related work

D. Peleg and J. D. Ullman, 1987

D. Peleg and A. A. Schäffer, 1989

L. Cai and D. G. Corneil, 1995

It is NP-complete to decide whether there is a tree t-spanner
for any fixed t ≥ 4.
For t ≤ 2 tree t-spanners can be constructed in polynomial
time.

S. P. Fekete and J. Kremer, 2001

It is NP-complete to decide whether there is a tree t-spanner
for planar graphs, where t is part of the input.
For t ≤ 3 tree t-spanners can be constructed in polynomial
time.

Introduction Combinatorial bounds Algorithmic consequences

History and related work

D. Peleg and J. D. Ullman, 1987

D. Peleg and A. A. Schäffer, 1989

L. Cai and D. G. Corneil, 1995

It is NP-complete to decide whether there is a tree t-spanner
for any fixed t ≥ 4.

For t ≤ 2 tree t-spanners can be constructed in polynomial
time.

S. P. Fekete and J. Kremer, 2001

It is NP-complete to decide whether there is a tree t-spanner
for planar graphs, where t is part of the input.
For t ≤ 3 tree t-spanners can be constructed in polynomial
time.

Introduction Combinatorial bounds Algorithmic consequences

History and related work

D. Peleg and J. D. Ullman, 1987

D. Peleg and A. A. Schäffer, 1989

L. Cai and D. G. Corneil, 1995

It is NP-complete to decide whether there is a tree t-spanner
for any fixed t ≥ 4.
For t ≤ 2 tree t-spanners can be constructed in polynomial
time.

S. P. Fekete and J. Kremer, 2001

It is NP-complete to decide whether there is a tree t-spanner
for planar graphs, where t is part of the input.
For t ≤ 3 tree t-spanners can be constructed in polynomial
time.

Introduction Combinatorial bounds Algorithmic consequences

History and related work

D. Peleg and J. D. Ullman, 1987

D. Peleg and A. A. Schäffer, 1989

L. Cai and D. G. Corneil, 1995

It is NP-complete to decide whether there is a tree t-spanner
for any fixed t ≥ 4.
For t ≤ 2 tree t-spanners can be constructed in polynomial
time.

S. P. Fekete and J. Kremer, 2001

It is NP-complete to decide whether there is a tree t-spanner
for planar graphs, where t is part of the input.
For t ≤ 3 tree t-spanners can be constructed in polynomial
time.

Introduction Combinatorial bounds Algorithmic consequences

History and related work

D. Peleg and J. D. Ullman, 1987

D. Peleg and A. A. Schäffer, 1989

L. Cai and D. G. Corneil, 1995

It is NP-complete to decide whether there is a tree t-spanner
for any fixed t ≥ 4.
For t ≤ 2 tree t-spanners can be constructed in polynomial
time.

S. P. Fekete and J. Kremer, 2001

It is NP-complete to decide whether there is a tree t-spanner
for planar graphs, where t is part of the input.

For t ≤ 3 tree t-spanners can be constructed in polynomial
time.

Introduction Combinatorial bounds Algorithmic consequences

History and related work

D. Peleg and J. D. Ullman, 1987

D. Peleg and A. A. Schäffer, 1989

L. Cai and D. G. Corneil, 1995

It is NP-complete to decide whether there is a tree t-spanner
for any fixed t ≥ 4.
For t ≤ 2 tree t-spanners can be constructed in polynomial
time.

S. P. Fekete and J. Kremer, 2001

It is NP-complete to decide whether there is a tree t-spanner
for planar graphs, where t is part of the input.
For t ≤ 3 tree t-spanners can be constructed in polynomial
time.

Introduction Combinatorial bounds Algorithmic consequences

Spanners of bounded treewidth

Problem (k-Treewidth t-spanner)

Instance: A connected graph G and positive integers k and t.
Question: Is there a t-spanner of G of treewidth at most k?

Introduction Combinatorial bounds Algorithmic consequences

Our results

Every t-spanner in a planar graph of treewidth k has
treewidth Ω(k/t)

Every t-spanner in an apex-minor-free graph of treewidth k
has treewidth Ω(k/t)

The k-Treewidth t-spanner problem is FPT for
apex-minor-free graphs

The k-Treewidth t-spanner problem is NP-complete for
apex-graphs

Introduction Combinatorial bounds Algorithmic consequences

Our results

Every t-spanner in a planar graph of treewidth k has
treewidth Ω(k/t)

Every t-spanner in an apex-minor-free graph of treewidth k
has treewidth Ω(k/t)

The k-Treewidth t-spanner problem is FPT for
apex-minor-free graphs

The k-Treewidth t-spanner problem is NP-complete for
apex-graphs

Introduction Combinatorial bounds Algorithmic consequences

Our results

Every t-spanner in a planar graph of treewidth k has
treewidth Ω(k/t)

Every t-spanner in an apex-minor-free graph of treewidth k
has treewidth Ω(k/t)

The k-Treewidth t-spanner problem is FPT for
apex-minor-free graphs

The k-Treewidth t-spanner problem is NP-complete for
apex-graphs

Introduction Combinatorial bounds Algorithmic consequences

Our results

Every t-spanner in a planar graph of treewidth k has
treewidth Ω(k/t)

Every t-spanner in an apex-minor-free graph of treewidth k
has treewidth Ω(k/t)

The k-Treewidth t-spanner problem is FPT for
apex-minor-free graphs

The k-Treewidth t-spanner problem is NP-complete for
apex-graphs

Introduction Combinatorial bounds Algorithmic consequences

Planar graphs

Theorem (Bounds for planar graphs)

Let G be a planar graph of treewidth k and let S be a t-spanner of
G. Then the treewidth of S is Ω(k/t).

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

Walls and grids

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

Walls and grids

t

t

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

Walls and grids

t

t

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

Walls and grids

t

t

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

Walls and grids

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

Walls and grids

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

Walls and grids

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

Walls and grids

Introduction Combinatorial bounds Algorithmic consequences

Graphs of bounded genus

Theorem (Bounds for bounded-genus graphs)

Let G be a graph of treewidth k and Euler genus g, and let S be a
t-spanner of G. Then the treewidth of S is Ω(k

t·g3/2).

Introduction Combinatorial bounds Algorithmic consequences

Apex-minor-free graphs

Definition (Apex graphs)

An apex graph is a graph obtained from a planar graph G by
adding a vertex and making it adjacent to some vertices of G .

Apex graphs

Introduction Combinatorial bounds Algorithmic consequences

Apex-minor-free graphs

Definition (Apex graphs)

An apex graph is a graph obtained from a planar graph G by
adding a vertex and making it adjacent to some vertices of G .

Apex graphs

Introduction Combinatorial bounds Algorithmic consequences

Apex-minor-free graphs

Definition (Apex-minor-free graphs)

A graph class G is apex-minor-free if G excludes a fixed apex graph
H as a minor.

Theorem (Bounds for apex-minor-free graphs)

Let H be a fixed apex graph. For every t-spanner S of an
H-minor-free graph G, the treewidth of S is Ω(tw(G)).

Introduction Combinatorial bounds Algorithmic consequences

Apex-minor-free graphs

Definition (Apex-minor-free graphs)

A graph class G is apex-minor-free if G excludes a fixed apex graph
H as a minor.

Theorem (Bounds for apex-minor-free graphs)

Let H be a fixed apex graph. For every t-spanner S of an
H-minor-free graph G, the treewidth of S is Ω(tw(G)).

Introduction Combinatorial bounds Algorithmic consequences

Counterexample for H-minor-free graphs

2-spanner for an apex graph

Introduction Combinatorial bounds Algorithmic consequences

Counterexample for H-minor-free graphs

2-spanner for an apex graph

Introduction Combinatorial bounds Algorithmic consequences

Algorithmic consequences

Theorem (Complexity)

Let G be a class of graphs such that, for every G ∈ G and every
t-spanner S of G, the treewidth of S is at least tw(G) · fG(t),
where fG is the function only of t. Then for every fixed k and t,
the existence of a t-spanner of treewidth at most k in G ∈ G can
be decided in linear time.

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

For given integers k and t, we decide whether
tw(G) ≤ k/fG(t). If tw(G) > k/fG(t), then G does not have
a t-spanner of treewidth at most k. Otherwise, we construct a
tree decomposition of G of width at most k/fG(t).

We apply Courcelle’s Theorem: every problem expressible in
monadic second order logic (MSOL) can be solved in linear
time on graphs of bounded treewidth.

The property that a subgraph S has the treewidth at most k is
expressible in MSOL for every fixed k.
The condition “for every edge (x , y) of G , distS(x , y) ≤ t”
can be written as an MSOL formula for every fixed t.

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

For given integers k and t, we decide whether
tw(G) ≤ k/fG(t). If tw(G) > k/fG(t), then G does not have
a t-spanner of treewidth at most k. Otherwise, we construct a
tree decomposition of G of width at most k/fG(t).

We apply Courcelle’s Theorem: every problem expressible in
monadic second order logic (MSOL) can be solved in linear
time on graphs of bounded treewidth.

The property that a subgraph S has the treewidth at most k is
expressible in MSOL for every fixed k.
The condition “for every edge (x , y) of G , distS(x , y) ≤ t”
can be written as an MSOL formula for every fixed t.

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

For given integers k and t, we decide whether
tw(G) ≤ k/fG(t). If tw(G) > k/fG(t), then G does not have
a t-spanner of treewidth at most k. Otherwise, we construct a
tree decomposition of G of width at most k/fG(t).

We apply Courcelle’s Theorem: every problem expressible in
monadic second order logic (MSOL) can be solved in linear
time on graphs of bounded treewidth.

The property that a subgraph S has the treewidth at most k is
expressible in MSOL for every fixed k.

The condition “for every edge (x , y) of G , distS(x , y) ≤ t”
can be written as an MSOL formula for every fixed t.

Introduction Combinatorial bounds Algorithmic consequences

Sketch of the proof

For given integers k and t, we decide whether
tw(G) ≤ k/fG(t). If tw(G) > k/fG(t), then G does not have
a t-spanner of treewidth at most k. Otherwise, we construct a
tree decomposition of G of width at most k/fG(t).

We apply Courcelle’s Theorem: every problem expressible in
monadic second order logic (MSOL) can be solved in linear
time on graphs of bounded treewidth.

The property that a subgraph S has the treewidth at most k is
expressible in MSOL for every fixed k.
The condition “for every edge (x , y) of G , distS(x , y) ≤ t”
can be written as an MSOL formula for every fixed t.

Introduction Combinatorial bounds Algorithmic consequences

Algorithmic consequences

Corollary (k-treewidth t-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed k and t, the existence
of a t-spanner of treewidth at most k in an H-minor-free graph G
can be decided in linear time.

Corollary (Sparse t-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed m and t, the
existence of a t-spanner with at most n − 1 + m edges in an
n-vertex H-minor-free graph G can be decided in linear time.

Introduction Combinatorial bounds Algorithmic consequences

Algorithmic consequences

Corollary (k-treewidth t-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed k and t, the existence
of a t-spanner of treewidth at most k in an H-minor-free graph G
can be decided in linear time.

Corollary (Sparse t-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed m and t, the
existence of a t-spanner with at most n − 1 + m edges in an
n-vertex H-minor-free graph G can be decided in linear time.

Introduction Combinatorial bounds Algorithmic consequences

Theorem (Apex graphs)

For every fixed t ≥ 4, deciding if an apex graph G has a tree
t-spanner is NP-complete.

Introduction Combinatorial bounds Algorithmic consequences

Thank you!

	Introduction
	Multiplicative spanners
	History and related work
	Our results

	Combinatorial bounds
	Planar graphs
	Graphs of bounded genus
	Apex-minor-free graphs

	Algorithmic consequences
	Polynomial cases
	H-minor-free graphs

