Spanners in sparse graphs

Feodor F. Dragan¹ Fedor V. Fomin² Petr A. Golovach²

¹Department of Computer Science, Kent State University

²Department of Informatics, University of Bergen

The 35th International Colloquium on Automata, Languages and Programming, Reykjavik, 2008

Algorithmic consequences

Outline

1 Introduction

- Multiplicative spanners
- History and related work
- Our results

2 Combinatorial bounds

- Planar graphs
- Graphs of bounded genus
- Apex-minor-free graphs

3 Algorithmic consequences

- Polynomial cases
- H-minor-free graphs

t-spanners

Definition (*t*-spanner)

Let t be a positive integer. A subgraph S of G, such that V(S) = V(G), is called a *(multiplicative)* t-spanner, if $\operatorname{dist}_{S}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v)$ for every pair of vertices u and v. The parameter t is called the *stretch factor* of S.

t-spanners

Definition (*t*-spanner)

Let t be a positive integer. A subgraph S of G, such that V(S) = V(G), is called a *(multiplicative) t-spanner*, if $\operatorname{dist}_{S}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v)$ for every pair of vertices u and v. The parameter t is called the *stretch factor* of S.

Observation (*t*-spanner)

Let G be a connected graph, and t be a positive integer. A spanning subgraph S of G is a t-spanner of G if and only if for every edge (x, y) of G, dist_S $(x, y) \le t$.

Combinatorial bounds

Algorithmic consequences

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Examples of spanners

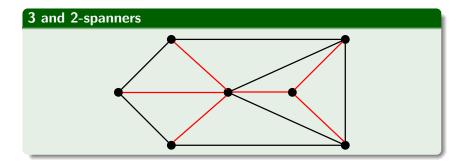
3 and 2-spanners

Combinatorial bounds

Algorithmic consequences

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

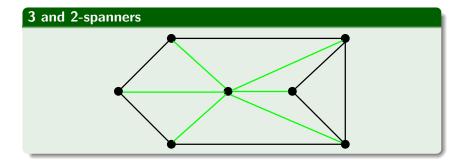
Examples of spanners



Combinatorial bounds

Algorithmic consequences

Examples of spanners



Algorithmic consequences

History and related work

• D. Peleg and J. D. Ullman, 1987

Algorithmic consequences

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989

Algorithmic consequences

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989
- L. Cai and D. G. Corneil, 1995

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989
- L. Cai and D. G. Corneil, 1995
 - It is NP-complete to decide whether there is a tree *t*-spanner for any fixed *t* ≥ 4.

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989
- L. Cai and D. G. Corneil, 1995
 - It is NP-complete to decide whether there is a tree *t*-spanner for any fixed *t* ≥ 4.
 - For t ≤ 2 tree t-spanners can be constructed in polynomial time.

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989
- L. Cai and D. G. Corneil, 1995
 - It is NP-complete to decide whether there is a tree *t*-spanner for any fixed *t* ≥ 4.
 - For t ≤ 2 tree t-spanners can be constructed in polynomial time.
- S. P. Fekete and J. Kremer, 2001

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989
- L. Cai and D. G. Corneil, 1995
 - It is NP-complete to decide whether there is a tree *t*-spanner for any fixed *t* ≥ 4.
 - For t ≤ 2 tree t-spanners can be constructed in polynomial time.
- S. P. Fekete and J. Kremer, 2001
 - It is NP-complete to decide whether there is a tree *t*-spanner for planar graphs, where *t* is part of the input.

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989
- L. Cai and D. G. Corneil, 1995
 - It is NP-complete to decide whether there is a tree *t*-spanner for any fixed *t* ≥ 4.
 - For t ≤ 2 tree t-spanners can be constructed in polynomial time.
- S. P. Fekete and J. Kremer, 2001
 - It is NP-complete to decide whether there is a tree *t*-spanner for planar graphs, where *t* is part of the input.
 - For t ≤ 3 tree t-spanners can be constructed in polynomial time.

Combinatorial bounds

Algorithmic consequences

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Spanners of bounded treewidth

Problem (*k***-Treewidth** *t***-spanner)**

Instance: A connected graph G and positive integers k and t. Question: Is there a t-spanner of G of treewidth at most k?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Every t-spanner in a planar graph of treewidth k has treewidth $\Omega(k/t)$

- Every t-spanner in a planar graph of treewidth k has treewidth $\Omega(k/t)$
- Every t-spanner in an apex-minor-free graph of treewidth k has treewidth Ω(k/t)

Our results

- Every t-spanner in a planar graph of treewidth k has treewidth $\Omega(k/t)$
- Every t-spanner in an apex-minor-free graph of treewidth k has treewidth Ω(k/t)
- The *k*-TREEWIDTH *t*-SPANNER problem is FPT for apex-minor-free graphs

Our results

- Every t-spanner in a planar graph of treewidth k has treewidth $\Omega(k/t)$
- Every t-spanner in an apex-minor-free graph of treewidth k has treewidth Ω(k/t)
- The *k*-TREEWIDTH *t*-SPANNER problem is FPT for apex-minor-free graphs
- The *k*-TREEWIDTH *t*-SPANNER problem is NP-complete for apex-graphs

Planar graphs

Theorem (Bounds for planar graphs)

Let G be a planar graph of treewidth k and let S be a t-spanner of G. Then the treewidth of S is $\Omega(k/t)$.

Combinatorial bounds

Algorithmic consequences

Sketch of the proof

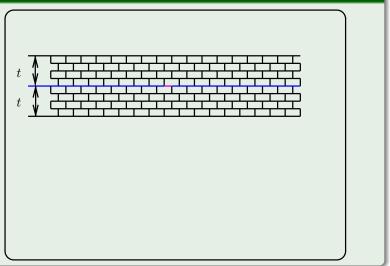
Walls and grids

200

Combinatorial bounds

Algorithmic consequences

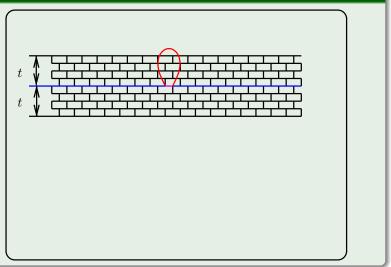
Sketch of the proof



Combinatorial bounds

Algorithmic consequences

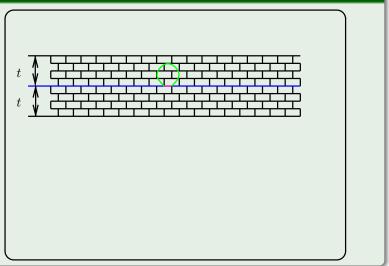
Sketch of the proof



Combinatorial bounds

Algorithmic consequences

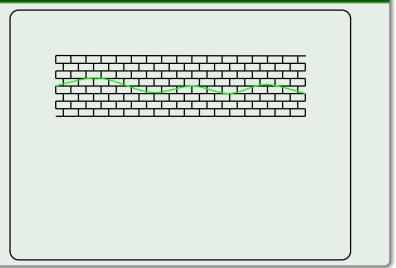
Sketch of the proof



Combinatorial bounds

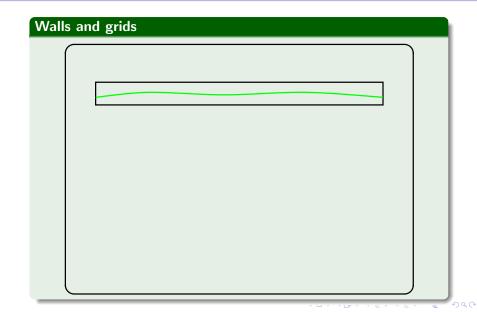
Algorithmic consequences

Sketch of the proof



Combinatorial bounds

Algorithmic consequences



Combinatorial bounds

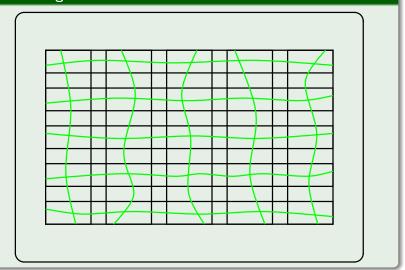
Algorithmic consequences

Sketch of the proof

Algorithmic consequences

Sketch of the proof

Walls and grids



200

Combinatorial bounds

Algorithmic consequences

Graphs of bounded genus

Theorem (Bounds for bounded-genus graphs)

Let G be a graph of treewidth k and Euler genus g, and let S be a t-spanner of G. Then the treewidth of S is $\Omega(\frac{k}{t \cdot \sigma^{3/2}})$.

Algorithmic consequences

Apex-minor-free graphs

Definition (Apex graphs)

An *apex graph* is a graph obtained from a planar graph G by adding a vertex and making it adjacent to some vertices of G.

Algorithmic consequences

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Apex-minor-free graphs

Definition (Apex graphs)

An *apex graph* is a graph obtained from a planar graph G by adding a vertex and making it adjacent to some vertices of G.

Apex graphs

Combinatorial bounds

Algorithmic consequences

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Apex-minor-free graphs

Definition (Apex-minor-free graphs)

A graph class G is *apex-minor-free* if G excludes a fixed apex graph H as a minor.

Algorithmic consequences

Apex-minor-free graphs

Definition (Apex-minor-free graphs)

A graph class G is *apex-minor-free* if G excludes a fixed apex graph H as a minor.

Theorem (Bounds for apex-minor-free graphs)

Let H be a fixed apex graph. For every t-spanner S of an H-minor-free graph G, the treewidth of S is $\Omega(\mathbf{tw}(G))$.

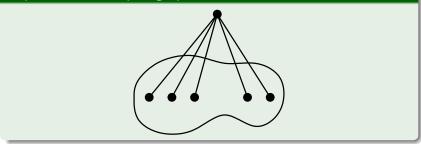
Combinatorial bounds

Algorithmic consequences

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Counterexample for *H***-minor-free graphs**

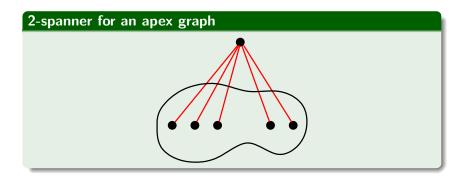
2-spanner for an apex graph



Combinatorial bounds

Algorithmic consequences

Counterexample for *H***-minor-free graphs**



Combinatorial bounds

Algorithmic consequences

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Algorithmic consequences

Theorem (Complexity)

Let \mathcal{G} be a class of graphs such that, for every $G \in \mathcal{G}$ and every t-spanner S of G, the treewidth of S is at least $\mathbf{tw}(G) \cdot f_{\mathcal{G}}(t)$, where $f_{\mathcal{G}}$ is the function only of t. Then for every fixed k and t, the existence of a t-spanner of treewidth at most k in $G \in \mathcal{G}$ can be decided in linear time.

Sketch of the proof

For given integers k and t, we decide whether
 tw(G) ≤ k/f_G(t). If tw(G) > k/f_G(t), then G does not have a t-spanner of treewidth at most k. Otherwise, we construct a tree decomposition of G of width at most k/f_G(t).

- For given integers k and t, we decide whether
 tw(G) ≤ k/f_G(t). If tw(G) > k/f_G(t), then G does not have
 a t-spanner of treewidth at most k. Otherwise, we construct a tree decomposition of G of width at most k/f_G(t).
- We apply Courcelle's Theorem: every problem expressible in monadic second order logic (MSOL) can be solved in linear time on graphs of bounded treewidth.

- For given integers k and t, we decide whether
 tw(G) ≤ k/f_G(t). If tw(G) > k/f_G(t), then G does not have
 a t-spanner of treewidth at most k. Otherwise, we construct a tree decomposition of G of width at most k/f_G(t).
- We apply Courcelle's Theorem: every problem expressible in monadic second order logic (MSOL) can be solved in linear time on graphs of bounded treewidth.
 - The property that a subgraph S has the treewidth at most k is expressible in MSOL for every fixed k.

- For given integers k and t, we decide whether
 tw(G) ≤ k/f_G(t). If tw(G) > k/f_G(t), then G does not have
 a t-spanner of treewidth at most k. Otherwise, we construct a tree decomposition of G of width at most k/f_G(t).
- We apply Courcelle's Theorem: every problem expressible in monadic second order logic (MSOL) can be solved in linear time on graphs of bounded treewidth.
 - The property that a subgraph S has the treewidth at most k is expressible in MSOL for every fixed k.
 - The condition "for every edge (x, y) of G, dist_S(x, y) ≤ t" can be written as an MSOL formula for every fixed t.

Algorithmic consequences 00000

Algorithmic consequences

Corollary (*k*-treewidth *t*-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed k and t, the existence of a t-spanner of treewidth at most k in an H-minor-free graph G can be decided in linear time.

Algorithmic consequences

Corollary (*k*-treewidth *t*-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed k and t, the existence of a t-spanner of treewidth at most k in an H-minor-free graph G can be decided in linear time.

Corollary (Sparse *t*-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed m and t, the existence of a t-spanner with at most n - 1 + m edges in an n-vertex H-minor-free graph G can be decided in linear time.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Theorem (Apex graphs)

For every fixed $t \ge 4$, deciding if an apex graph G has a tree t-spanner is NP-complete.

Algorithmic consequences $\circ \circ \circ \circ \circ \bullet$

Thank you!