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t-spanners

Definition (t-spanner)

Let t be a positive integer. A subgraph S of G, such that

V(S) = V(G), is called a (multiplicative) t-spanner, if

dists(u, v) < t - distg(u, v) for every pair of vertices u and v. The
parameter t is called the stretch factor of S.
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parameter t is called the stretch factor of S.
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Observation (t-spanner)

Let G be a connected graph, and t be a positive integer. A
spanning subgraph S of G is a t-spanner of G if and only if for
every edge (x,y) of G, dists(x,y) < t.
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D. Peleg and A. A. Schaffer, 1989
o L. Cai and D. G. Corneil, 1995

o It is NP-complete to decide whether there is a tree t-spanner

for any fixed t > 4.
o For t < 2 tree t-spanners can be constructed in polynomial

time.
o S. P. Fekete and J. Kremer, 2001
o It is NP-complete to decide whether there is a tree t-spanner

for planar graphs, where t is part of the input.
e For t < 3 tree t-spanners can be constructed in polynomial

time.
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Spanners of bounded treewidth

Problem (k-Treewidth t-spanner)

Instance: A connected graph G and positive integers k and t.
Question: Is there a t-spanner of G of treewidth at most k7
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Our results

@ Every t-spanner in a planar graph of treewidth k has
treewidth Q(k/t)

@ Every t-spanner in an apex-minor-free graph of treewidth k
has treewidth Q(k/t)

@ The k-TREEWIDTH t-SPANNER problem is FPT for
apex-minor-free graphs

@ The k-TREEWIDTH t-SPANNER problem is NP-complete for
apex-graphs
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Planar graphs

Theorem (Bounds for planar graphs)

Let G be a planar graph of treewidth k and let S be a t-spanner of
G. Then the treewidth of S is Q(k/t).
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Graphs of bounded genus

Theorem (Bounds for bounded-genus graphs)

Let G be a graph of treewidth k and Euler genus g, and let S be a

t-spanner of G. Then the treewidth of S is Q(t.ng).
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Apex-minor-free graphs

Definition (Apex graphs)
An apex graph is a graph obtained from a planar graph G by
adding a vertex and making it adjacent to some vertices of G.
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Apex-minor-free graphs

Definition (Apex-minor-free graphs)

A graph class G is apex-minor-free if G excludes a fixed apex graph
H as a minor.
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Apex-minor-free graphs

Definition (Apex-minor-free graphs)

A graph class G is apex-minor-free if G excludes a fixed apex graph
H as a minor.

Theorem (Bounds for apex-minor-free graphs)

Let H be a fixed apex graph. For every t-spanner S of an
H-minor-free graph G, the treewidth of S is Q(tw(G)).
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Counterexample for H-minor-free graphs

2-spanner for an apex graph
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Algorithmic consequences

Theorem (Complexity)

Let G be a class of graphs such that, for every G € G and every
t-spanner S of G, the treewidth of S is at least tw(G) - fg(t),
where fg is the function only of t. Then for every fixed k and t,
the existence of a t-spanner of treewidth at most k in G € G can
be decided in linear time.
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Sketch of the proof

@ For given integers k and t, we decide whether
tw(G) < k/fg(t). If tw(G) > k/fg(t), then G does not have
a t-spanner of treewidth at most k. Otherwise, we construct a
tree decomposition of G of width at most k/fg(t).
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Sketch of the proof

@ For given integers k and t, we decide whether
tw(G) < k/fg(t). If tw(G) > k/fg(t), then G does not have
a t-spanner of treewidth at most k. Otherwise, we construct a
tree decomposition of G of width at most k/fg(t).

@ We apply Courcelle’'s Theorem: every problem expressible in
monadic second order logic (MSOL) can be solved in linear
time on graphs of bounded treewidth.

o The property that a subgraph S has the treewidth at most k is
expressible in MSOL for every fixed k.

o The condition “for every edge (x, y) of G, dists(x,y) < t"
can be written as an MSOL formula for every fixed t.
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Algorithmic consequences

Corollary (k-treewidth t-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed k and t, the existence
of a t-spanner of treewidth at most k in an H-minor-free graph G
can be decided in linear time.
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Corollary (k-treewidth t-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed k and t, the existence
of a t-spanner of treewidth at most k in an H-minor-free graph G
can be decided in linear time.

Corollary (Sparse t-spanners for apex-minor-free graphs)

Let H be a fixed apex graph. For every fixed m and t, the
existence of a t-spanner with at most n — 1 + m edges in an
n-vertex H-minor-free graph G can be decided in linear time.
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Theorem (Apex graphs)

For every fixed t > 4, deciding if an apex graph G has a tree
t-spanner is NP-complete.
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