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multiplicative tree 4-, 
additive tree 3-spanner 

of G

Well-known Tree Tree t t --Spanner ProblemSpanner Problem

Given unweighted undirected graph G=(V,E) and integers t,r.
Does G admit a spanning tree T =(V,E’)  such that

 ),(),(,, uvdisttuvdistVvu GT 

rvudistvudistVvu GT  ),(),(,,

(a multiplicative tree t-spanner of G) 

(an additive tree r-spanner of G)?

or

G T
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Some known results for the tree Some known results for the tree 
spanner problemspanner problem

• general graphs [CC’95]
– t  4 is NP-complete. (t=3 is still open, t  2 is P)

• approximation algorithm for general graphs [EP’04]
– O(logn) approximation algorithm 

• chordal graphs [BDLL’02]
– t  4 is NP-complete. (t=3 is still open.)

• planar graphs [FK’01]
– t 4 is NP-complete. (t=3 is polynomial time solvable.)

• easy to construct for some special families of graphs.

(mostly multiplicative case)
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multiplicative 2- and  additive 1-spanner of G

Well-known Sparse Sparse t t --Spanner ProblemSpanner Problem

Given unweighted undirected graph G=(V,E) and integers t,m,r.
Does G admit a spanning graph H =(V,E’) with |E’|  m s.t.

 ),(),(,, uvdisttuvdistVvu GH 

rvudistvudistVvu GH  ),(),(,,

(a multiplicative t-spanner of G) 

(an additive r-spanner of G)?

G H

or
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Some known results for sparse Some known results for sparse 
spanner problemsspanner problems

• general graphs
– t, m1 is NP-complete [PS’89]
– multiplicative (2k-1)-spanner with n1+1/k edges [TZ’01, BS’03]

• n-vertex chordal graphs (multiplicative case) [PS’89] 
(G is chordal if it has no chordless cycles of length >3)
– multiplicative 3-spanner with O(n logn) edges
– multiplicative 5-spanner with 2n-2 edges 

• n-vertex c-chordal graphs (additive case) [CDY’03, DYL’04] 
(G is c-chordal if it has no chordless cycles of length >c)
– additive (c+1)-spanner with 2n-2 edges
– additive (2 c/2

 

)-spanner with n log n edges
 For chordal graphs:  additive 4-spanner with 2n-2 edges, additive 2- 

spanner with n log n edges
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New Collective Additive Tree Collective Additive Tree 
r r --Spanners Problem Spanners Problem 

Given unweighted undirected graph G=(V,E) and integers , r.
Does G admit a system of  collective additive tree r-spanners 

{T1 , T2 …, T}                               such that
 ),(),(,0, ruvdistuvdistiandVvu GTi

 
(a system of  collective additive tree r-spanners of G )?

2 collective additive tree 2-spanners

collective multiplicative 
tree t-spanners 

can be defined similarly

,,

surplussurplus



ISAAC 2005, Sanya Feodor F. Dragan,  Kent State University

New Collective Additive Tree Collective Additive Tree 
r r --Spanners Problem Spanners Problem 

Given unweighted undirected graph G=(V,E) and integers , r.
Does G admit a system of  collective additive tree r-spanners 

{T1 , T2 …, T}                               such that
 ),(),(,0, ruvdistuvdistiandVvu GTi

 
(a system of  collective additive tree r-spanners of G )?

2 collective additive tree 2-spanners

,,
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New Collective Additive Tree Collective Additive Tree 
r r --Spanners Problem Spanners Problem 

Given unweighted undirected graph G=(V,E) and integers , r.
Does G admit a system of  collective additive tree r-spanners 

{T1 , T2 …, T}                               such that
 ),(),(,0, ruvdistuvdistiandVvu GTi

 
(a system of  collective additive tree r-spanners of G )?

2 collective additive tree 2-spanners

,,
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New Collective Additive Tree Collective Additive Tree 
r r --Spanners Problem Spanners Problem 

Given unweighted undirected graph G=(V,E) and integers , r.
Does G admit a system of  collective additive tree r-spanners 

{T1 , T2 …, T}                               such that
 ),(),(,0, ruvdistuvdistiandVvu GTi

 
(a system of  collective additive tree r-spanners of G )?

2 collective additive 
tree 0-spanners or 
multiplicative tree    

1-spanners
2 collective additive tree 2-spanners

,,
,,
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Applications of Collective Tree Applications of Collective Tree 
SpannersSpanners

• message routing in networks
Efficient  routing schemes are known for trees
but not for general graphs. For any two nodes, 
we can route the message between them in one 
of the trees which approximates the distance 
between them. 
- ( log2n/ log log n)-bit labels, 

- O( ) initiation,  O(1) decision 

• solution for sparse t-spanner 
problem
If a graph admits a system of  collective additive 
tree r-spanners, then the graph admits a sparse 
additive r-spanner with at most (n-1) edges, 
where n is the number of nodes.

2 collective tree 2- 
spanners for G
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• chordal graphs, chordal bipartite graphs
– log n collective additive tree 2-spanners in polynomial time
– Ώ(n1/2) or Ώ(n) trees necessary to get +1
– no constant number of trees guaranties +2 (+3)

• circular-arc graphs
– 2 collective additive tree 2-spanners in polynomial time

• c-chordal graphs 
– log n collective additive tree 2 c/2 -spanners in polynomial time

• interval graphs 
– log n collective additive tree 1-spanners in polynomial time
– no constant number of trees guaranties +1

Previous results on the collective Previous results on the collective 
tree spanners problemtree spanners problem 
(Dragan, Yan, Lomonosov [SWAT(Dragan, Yan, Lomonosov [SWAT’’04])04]) 
(Corneil, Dragan, K(Corneil, Dragan, Kööhler, Yan [WGhler, Yan [WG’’05])05])
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• AT-free graphs 
– include: interval, permutation, trapezoid, co-comparability
– 2 collective additive tree 2-spanners in linear time
– an additive tree 3-spanner in linear time (before)

• graphs with a dominating shortest path 
– an additive tree 4-spanner in polynomial time (before)
– 2 collective additive tree 3-spanners in polynomial time
– 5 collective additive tree 2-spanners in polynomial time

• graphs with asteroidal number an(G)=k 
– k(k-1)/2 collective additive tree 4-spanners in polynomial time

– k(k-1) collective additive tree 3-spanners in polynomial time

Previous results on the collective Previous results on the collective 
tree spanners problemtree spanners problem 

(Dragan, Yan, Corneil [WG(Dragan, Yan, Corneil [WG’’04])04])
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• the only paper (before) on collective multiplicative tree 
spanners in weighted planar graphs

• any weighted planar graph admits a system of O(log n) 
collective multiplicative tree 3-spanners

• they are called there the tree-covers. 
• it follows from (Corneil, Dragan, K(Corneil, Dragan, Kööhler, Yan [WGhler, Yan [WG’’05]) 05]) 

that 
– no constant number of trees guaranties +c (for any 

constant c) 

Previous results on the collective Previous results on the collective 
tree spanners problemtree spanners problem 
(Gupta, Kumar,Rastogi [SICOMP(Gupta, Kumar,Rastogi [SICOMP’’05])05])
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New results on collective New results on collective additiveadditive tree tree 
spanners of spanners of weightedweighted graphs with graphs with 

bounded parametersbounded parameters
Graph class  r

planar 0

with genus g 0

W/o an h-vertex minor 0

tw(G) ≤ k-1 0

cw(G) ≤ k 2w

c-chordal next slide

)( nO

)( gnO

)( 3nhO
nk 2log

nk 2/3log

No constantNo constant number of number of 
trees guaranties trees guaranties +r+r for for 
any constant any constant r r even for even for 
outerouter--planarplanar graphsgraphs

 )log/loglog( 2 nnn


 )(n

to get +0 to get +0 

to get +1 to get +1 

• w is the length of a longest edge in G
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New results on collective New results on collective additiveadditive tree tree 
spanners of spanners of weightedweighted cc--chordal graphschordal graphs

Graph class  r

c-chordal
(c>4)

4-chordal 2w

weakly chordal 2w

n2log6

No constantNo constant number of number of 
trees guaranties trees guaranties +r+r for for 
any constant any constant r r even for even for 
weakly chordal graphsweakly chordal graphsn
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((, , γγ, , rr))--Decomposable GraphsDecomposable Graphs

• A graph G=(V, E) is (, γ, r)-decomposable if there 
exists a vertex-separator S in G such that 

Balanced separator: each conn. comp. of G-S has ≤ n vertices;
Bounded r-dominating set: S has an r-dominating set D in G with |D|≤ γ;
Hereditary family: any induced subgraph of G is (, γ, r)-decomposable.
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Main Results of the PaperMain Results of the Paper
Theorem: Any (,γ, r)-decomposable graph 

admits a system of  at mostγlog1/

 

n 
collective additive tree 2r-spanners.

Graph class decomposition
planar

with genus g
W/o an h-vertex minor

tw(G) ≤ k-1 
cw(G) ≤ k

c-chordal

)0,6,3/2( n
)0),(,3/2( gnO
)0),(,3/2( 3nhO

)0,,2/1( k

 
 
  ))13/(,4,2/1(

),3/)2(,5,2/1(
),2/,1,2/1(

wc
wc

wc




),,3/2( wk

++

Polynomial Polynomial 
time time 

constructionsconstructions
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Constructing a Rooted Balanced Constructing a Rooted Balanced 
Decomposition Tree for Decomposition Tree for an an ((, , γγ, , rr))-- 

Decomposable GraphDecomposable Graph

• Find a good balanced separator S of G. 
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•Use S as the root of the rooted balanced decomposition tree.

Constructing a Rooted Balanced Constructing a Rooted Balanced 
Decomposition Tree for Decomposition Tree for an an ((, , γγ, , rr))-- 

Decomposable GraphDecomposable Graph

1, 2, 3, 4
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1, 2, 3, 4

• For each connected component of G-S, find its good 
balanced separator.

Constructing a Rooted Balanced Constructing a Rooted Balanced 
Decomposition Tree for Decomposition Tree for an an ((, , γγ, , rr))-- 

Decomposable GraphDecomposable Graph
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1, 2, 3, 4

5, 6, 8 10, 11, 12,13 16, 17, 19, 23, 25

• Use the separators as nodes of the rooted balanced 
decomposition tree and let S be their father.

Constructing a Rooted Balanced Constructing a Rooted Balanced 
Decomposition Tree for Decomposition Tree for an an ((, , γγ, , rr))-- 

Decomposable GraphDecomposable Graph
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5, 6, 8 10, 11, 12,13 16, 17, 19, 23, 25

Constructing a Rooted Balanced Constructing a Rooted Balanced 
Decomposition Tree for Decomposition Tree for an an ((, , γγ, , rr))-- 

Decomposable GraphDecomposable Graph
• Recursively repeat previous procedure until each connected 
component has an r-dominating set of size at most γγ..
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• Get the rooted balanced decomposition tree.

1, 2, 3, 4

5, 6, 8 10, 11, 12,13 16, 17, 19, 23, 25

14 15 7 9 21 22 20 26 24

Constructing a Rooted Balanced Constructing a Rooted Balanced 
Decomposition Tree for Decomposition Tree for an an ((, , γγ, , rr))-- 

Decomposable GraphDecomposable Graph
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• for each layer of the decomposition tree, construct local 
spanning trees (shortest path trees in the subgraph).
• we use second layer for illustration.

1, 2, 3, 4

5, 6, 8 10, 11, 12,13 16, 17, 19, 23, 25

14 15 7 9 21 22 20 26 24

Constructing Local Spanning TreesConstructing Local Spanning Trees
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• each time, pick a different vertex from the r-dominating set 
to grow a shortest path tree in the subgraph.

1, 2, 3, 4

5, 6, 8 10, 11, 12,13 16, 17, 19, 23, 25

14 15 7 9 21 22 20 26 24

Constructing Local Spanning TreesConstructing Local Spanning Trees
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• each time, pick a different vertex from the r-dominating set 
to grow a shortest path tree in the subgraph.

Constructing Local Spanning TreesConstructing Local Spanning Trees
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• Connect local spanning trees to form spanning trees for the 
original graph.
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Spanning Trees ConstructionSpanning Trees Construction
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• Connect local spanning trees to form spanning trees for the 
original graph.

Spanning Trees ConstructionSpanning Trees Construction
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• Connect local spanning trees to form spanning trees for the 
original graph.

Spanning Trees ConstructionSpanning Trees Construction
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• Three spanning 
trees for the original 
graph w.r.t. layer 2 of 
the decomposition 
tree.
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AnalysisAnalysis

x y

Length is at most r+l2Length is at most r+l1

l1 l2r

Theorem: Any (,γ, r)-decomposable graph 
admits a system of  at mostγlog1/

 

n 
collective additive tree 2r-spanners.
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Further ResultsFurther Results

 Any (,γ, r)-decomposable graph G admits an 
additive 2r-spanner with at most γ n log1/

 

n edges 
which can be constructed in polynomial time.

 Any (,γ, r)-decomposable graph G admits a 
routing scheme of deviation 2r and with labels of 
size O(γ log1/

 

n log2n/log log n) bits per vertex. 
Once computed by the sender in γ log1/

 

n  time, 
headers never change, and the routing decision is 
made in constant time per vertex.
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Open questions and future plansOpen questions and future plans

• Given a graph G=(V, E) and two integers  and r, what is 
the complexity of finding a system of  collective additive 
(multiplicative) tree r-spanner for G? (Clearly, for most 

 and r, it is an NP-complete problem.)

• Find better trade-offs between  and r for planar graphs, 
genus g graphs and graphs w/o an h-minor. 

• We may consider some other graph classes. What’s the 
optimal  for each r?

• More applications of collective tree spanner…
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Thank YouThank You
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